Explanation-based Learning and Finite State
Transducers: Applications to Parsing Lexicalized
Tree Adjoining Grammars

B. Srinivas

Department of Computer and Information Sciences

University of Pennsylvania
Philadelphia, PA 19104

srini@linc.cis.upenn.edu

Abstract. Explanation-based Learning techniques have been
applied in NLP for speeding up parsing in limited domains.
In [7], we showed that combining the LTAG representation
with the EBL technique provides a novel method for parsing
based on a FST mechanism and demonstrated a speedup in
parsing times on the ATIS corpus. In this paper, we extend
that approach to account for cases of “long distance extrac-
tions” and show that the same FST mechanism can be used
for these sentences as well.

1 Introduction

Explanation-based Learning (EBL) techniques were originally
introduced in the AI literature by [2, 3, 8]. The main idea
behind EBL is that it is possible to form generalizations from
single positive training examples if the system can explain
why the example is an instance of the concept under study.
The generalizer possesses the knowledge of the concept un-
der study and the rules of the domain for constructing the
required explanation. The objective of EBL is to keep track
of suitably generalized solutions (explanations) to problems
solved in the past and to replay those solutions to solve new
but somewhat similar problems in the future.

EBL Terminology — Parsing Terminology
Concept — Grammaticality
Rules of the Domain — Grammar

Instance — Sentence
Explanation — Parse

Explanation Structure = — Derivation Structure

the grammar

Table 1.

Correspondence between EBL and parsing
terminology.

The correspondence between the EBL terminology and pars-
ing terminology is shown in Table 1. In parsing, the concept
under study is grammaticality of an input. The fact and rules
to be used in explaining the grammaticality of input is given
by the grammar. A training sentence serves as an instance of
the concept. A parse of a sentence represents an ezplanation
of why the sentence is grammatical according to the grammar.

(© 1996 B. Srinivas

ECAI 96. 12th European Conference on Artificial Intelligence
Edited by W. Wahlster

Published in 1996 by John Wiley & Sons, Ltd.

A derivation tree represents the explanation structure. Pars-
ing new sentences amounts to finding analogous explanations
from the explanations for the training sentences.

Rayner [5] was the first to investigate the usefulness of the
EBL technique in the context of natural language parsing
systems. Samuelsson and Rayner [6] specialize a CFG-based
grammar for the ATIS domain by storing chunks of the parse
trees present in a treebank of parsed examples. Neumann [4]
also attempts to specialize a grammar given a training corpus
of parsed examples by generalizing the parse for each sen-
tence and storing the generalized phrasal derivations under a
suitable index.

We showed in [7] that combining the LTAG representation
with the EBL technique provides a novel method for parsing
in limited domains based on a FST mechanism. In this paper,
we extend that approach to account for cases of “long distance
extractions” and show that the same mechanisms of FST can
be used for these sentences as well.

The paper is laid out as follows. In Section 2 we present
an overview of our approach to using EBL. The two types of
generalization mechanisms that fall out of the LTAG represen-
tation are presented in Section 3 and Section 4. In Section 5
we present the FST representation of the set of generalized
parses.

2 Owur Approach

We are pursuing the EBL approach in the context of a wide-
coverage Lexicalized Tree-Adjoining grammar development
system called XTAG [1]. Details of the LTAG formalism and
the XTAG system are presented in [9].

The training phase of the EBL process involves generaliz-
ing the derivation trees generated by XTAG for the training
sentences and storing these generalized parses in the general-
ized parse database under an index computed from the lexical
features of the words of the sentence. The application phase
of EBL is shown in the flowchart in Figure 1. An index us-
ing the lexical features of the words in the input sentence
is computed. Using this index, a set of generalized parses is
retrieved from the generalized parse database created in the
training phase. If the retrieval fails to yield any generalized

Input V?mence

‘ Morph Analyzer ‘ ‘ Tagger

Morph DB

Lex Prob DB

i | compuelndex | !
Generalized Parsel<—
Sdection |

i| TreeGrafing | Derivation Tree

Derivation Tree

Flowchart of the XTAG system with the EBL

component

Figure 1.

parse then the input sentence is parsed using the full parser.
However, if the retrieval succeeds, the output is a generalized
parse that associates with each word the elementary tree that
it anchors and the elementary tree into which it adjoins or
substitutes into — an almost parse. The almost parse is in-
put to the “stapler” which instantiates the generalized parse
to the sentence. The details of the “stapler” are discussed in
Section 7.

The three key aspects of LTAG (a) lexicalization, (b) ex-
tended domain of locality and (c) factoring of recursion from
the domain of dependencies (1) lead to an immediate general-
ization of parses for the training set of sentences, (2) achieve
generalization over recursive substructures of the parses, and
(3) allow for a finite state transducer (FST) representation of
the set of generalized parses.

3 Feature-generalization

In LTAGs, a derivation tree uniquely identifies a parse for
a sentence. A derivation tree is a sequence of elementary
trees associated with the lexical items of the sentence along
with substitution and adjunction links among the elemen-
tary trees. Also, the values for features at each node of ev-
ery elementary tree is instantiated during the parsing pro-
cess. Given an LTAG parse, the generalization of the parse
is truly ¢mmediate in that a generalized parse is obtained by
(a) uninstantiating the particular lexical items that anchor
the individual elementary trees in the parse and (b) unin-
stantiating the feature values contributed by the morphol-
ogy of the anchor and the derivation process. This type of
generalization is called feature-generalization and results in a
feature-generalized parse. The process of feature generaliza-
tion i1s shown in Figure 2 for the sentence who did you say
fltes from Boston to Washington. Figure 2(a) illustrates the
derivation structure for the sentence. Each word in the deriva-

EBL and FST: Applications to Parsing LTAGs

tion structure is associated with elementary trees with initial
trees (as) or auxiliary trees (8s). The nodes in the deriva-
tion tree are connected by substitution links (dotted lines)
or adjunction links (). Applying the feature-generalization on
Figure 2(a) results in Figure 2(b). The trees 8s and B; are
no longer distinct so we denote them by B;. So also the trees
a4 and as are no longer distinct, so we denote them by a4 in

Figure 2(b).

a1fflies]

azlwha] (1)

p1lsay] () p3[from] (2.2) B4lto] (2.2)
p2[did] (0) a3[§/8u] [€))] a4[BOStiJrI] 2.2) a5[Washinlgton] 2.2
(a)
a1[V]
a2[N] p1[V] B3[P] B3[P]

sVl 3Nl adN] aalN]
(b) (c)

Figure 2. (a) Derivation structure (b) Feature Generalized
Derivation structure (c) Index for the generalized parse for the

sentence who did you say flies from Boston to Washington

3.1 Storing and retrieving
feature-generalized parses

The feature-generalized parse of a sentence is stored in a gen-
eralized parse database under an index computed from the
training sentence. In this case, the part-of-speech (POS) se-
quence of the training sentence is treated as the index to the
feature-generalized parse. The index for the example sentence
who did you say flies from Boston to Washington is shown in
Figure 2(c). In the application phase, the POS sequence of
the input sentence is used to retrieve a generalized parse(s)
which is then instantiated to the features of the sentence.

We have chosen here to index the generalized parse under
the POS sequence of the training sentence. However, it must
be noted that depending on the degree of abstraction from
the lexical items, the generalized parse may be stored under
different indices containing varying amounts of lexical specific
information. The degree of abstraction strongly influences the
amount of training material required for adequate coverage of
the test sentences and the number of parses assigned to the
test sentences.

This method of retrieving a generalized parse allows for
parsing of sentences of the same lengths and the same POS
sequence as those in the training corpus. However, in our ap-
proach there is another generalization that falls out of the
LTAG representation which allows for flexible matching of the
index to allow the system to parse sentences that may differ
in length from sentences similar to the ones in the training
corpus.

B. Srinivas

NVNVVPNPN

4 Recursive-generalization

Auxiliary trees in LTAG represent recursive structures. So if
there is an auxiliary tree that is used in an LTAG parse, then
that tree with the trees for its arguments can be repeated
any number of times, or possibly omitted altogether, to get
parses of sentences that differ from the sentences of the train-
ing corpus only in the number of auxiliary trees. This type
of generalization can be called recursive-generalization. Fig-
ure 3 illustrates the process of recursive generalization. The
two Kleene star regular expressions around the preposition
phrase in Figure 3(b) can be merged into one and the result-
ing recursive generalized parse is shown in Figure 3(c).

aglV]

a1[V] -

aaN B[]

P2Vl waN] aglN] aglN] @Z[VD a3N]

(a) (b)

B3[P B3[P]

a4[N] a4[N]

N (V)* (N V)* V (P N)*
(d)

Figure 3.
Recursive-generalized derivation tree (c) Recursive-generalized
derivation tree with the two Kleene-stars collapsed into one (d)

(a) Feature-generalized derivation tree (b)

Index for the generalized parse for the sentence who did you say
flies from Boston to Washington.

4.1 Storing and retrieving

recursive-generalized parses

Due to recursive-generalization, the POS sequence covered by
the auxiliary tree and its arguments can be repeated zero or
more times. As a result, the index of a generalized parse of a
sentence with auxiliary trees is no longer a string but a regular
expression pattern on the POS sequence and retrieval of a gen-
eralized parse involves regular expression pattern matching on
the indices. The index for the example sentence is shown in
Figure 3(d), since the auxiliary verb, the verb with clausal
complement, and the prepositions anchor auxiliary trees.
The most efficient method of performing regular expression
pattern matching is to construct a finite state machine for
each of the stored patterns and then traverse the machine
using the given test pattern. If the machine reaches the final
state, then the test pattern matches one of the stored patterns.

EBL and FST: Applications to Parsing LTAGs 84

Pl JegPl)”

Given that the index of a test sentence matches one of
the indices from the training phase, the generalized parse re-
trieved will be a parse of the test sentence, modulo the auxil-
lary trees. For example, if the test sentence, tagged appropri-
ately, is

(1) who/N did/V you/N say/V flies/V from/P Boston/N
to/P Washington/N on/P Monday/N.

the index of the test sentence matches the index of the training
sentence, however, the generalized parse retrieved needs to
be augmented to accommodate the additional modifier on/P
Monday/N. To do so, we need to provide a mechanism that
assigns the additional auxiliary trees and their arguments the
following:

1. The elementary trees that they anchor and
2. The substitution and adjunction links to the trees
they substitute or adjoin into.

In other words, each instantiation of the Kleene-star in the
regular expression index has to be assigned the required struc-
ture so that it can be integrated into the derivation tree. A
Finite-State Transducer (FST) representation allows a way of
combining the generalized parse and the POS sequence (reg-
ular expression) that it is indexed by into a uniform represen-
tation.

5 Finite-State Transducer Representation

A finite-state transducer is a finite-state machine with each
state transition arc labeled with two symbols — the input and
the output symbols. For each successful state transition, the
output symbol associated with the transition arc is output.
For our purpose, the input symbol represents a POS of a
word and the output symbol represents information on how
the word integrates with the rest of the derivation.

A derivation structure can be encoded by specifying the el-
ementary tree associated with each word along with the infor-
mation to indicate which elementary tree it would be adjoined
or substituted into. The encoding should be such that the ad-
ditional auxiliary trees and their arguments that result from
the recursive generalization are also assigned correct substi-
tution and adjunction links.

5.1 Types of auxiliary trees

Auxiliary trees in LTAG have been distinguished as modi-
fier auxiliary trees and predicative auxiliary trees. While the
modifier auxiliary trees modify the constituent they adjoin on
to, the predicative auxiliary trees subcategorize for the con-
stituent they adjoin on to. Examples of the modifier auxiliary
trees and predicative auxiliary trees are shown in Figure 4.

The additional auxiliary trees that result from recursive
generalization display different adjunction behaviour depend-
ing on the type of the auxiliary tree as shown in sentences
(2) and (3). The successive repetitions of the modifier in (2)
can modify the same head (flies) as did the modifiers in the
training example. However, successive repetition of the pred-
icative auxiliary trees take as complement the clause following
it. Thus, in (3), think adjoins on to sa:d and not to flies.

B. Srinivas

Item Description

this_tree . the elementary tree that the word anchors

head_word : the word on which the current word is dependent on; “—” if the current word does
not depend on any other word.

head_tree . the tree anchored by the head word;

“Terause” if the type of the tree anchored by the head word is a clausal tree
“— if the current word does not depend on any other word;
“x” if the tree does not matter.
number : a signed number that indicates the direction and the ordinal position of the particular
head elementary tree from the position of the current word OR
an unsigned number that indicates the gorn-address (i.e., the node address) in the
derivation tree to which the word attaches OR
“— if the current word does not depend on any other word.

Table 2. Description of the components in the tuple representation associated with each word.

N/(O{z, V, a1, +1) V/(,@z, V,*,+1) (N/(O{g, V, ,81,-1—1) V/(,Bl,V, Tclause,+1))* V/(Ol1, = T —) (P/(ﬂg, V, a1, 0)
(a) N/(O“h P, Bs, '1))*
N/(a 2,V ,d 1, +1) el -,) O Vi(ag, =,) PI(B3,V,a1,0)

N N T T N
® R A @] 9

VI(Bp, V%, +1) VIB 1,V Toause +1)

N/t 4, P, B 3,-1)

N/(a3,V,B1,+1) @

Figure 5. Finite State Transducer Representation for the sentences: who did you say flies from Boston to Washington, who did you
say flies from Boston to Washington on Monday, who did you think I said flies from Boston to Washington, ...

(b)

Monday.
Sr
NPy (3) who did you think I said flies from Boston to
/\ Washington.
e pp NPp: VP
Based on the preceding observations we assume that the
/\ . additional auxiliary trees along with their arguments would
P NP VoS . . o
‘ ‘ be assigned elementary trees along with substitution and ad-
. junction links as follows:
from said
(a) (b) ¢ The additional auxiliary trees along with their arguments

would be assigned the same generalized elementary trees as
they were assigned in the training example.

e The arguments of the auxiliary trees will be assigned the
same substitution and adjunction links as they were as-
signed the training example.

Figure 4. (a): Modifier Auxiliary Tree, (b): Predicative
Auxiliary Tree

o [f the auxiliary tree is a modifier auxiliary tree then it is
assumed that it modifies the same head as it did in the
training example.

o [f the auxiliary tree is a predicative auxiliary tree then it is
assumed to adjoin to the immediately following clause, in

(2) who did you say flies from Boston to Washington on terms of string position.

EBL and FST: Applications to Parsing LTAGs 85 B. Srinivas

5.2 Encoding the generalized derivation
tree

We encode the derivation tree in a manner similar to the de-
pendency representation by associating each word with a tuple
(this_tree, head_word, head_tree, number) where the descrip-
tion for the components of the tuple is given in Table 2. A
derivation tree expresses two types of relations between words:
head-complement relations and head-modifier relations. For a
head-complement dependency relation, the number in the tu-
ple associated with a word is a signed number that indicates
the ordinal position of its head in the input string. For a
head-modifier dependency relation, the number in the tuple
associated with a word is an unsigned number that represents
the tree-address (Gorn address) of its head in the derivation
tree.

Consider the example sentence (4) with the generalized
derivation tree in Figure 3(c).

(4) Who did you say flies from Boston to Washington

Following this notation, the derivation tree in Figure 3(c)
is represented as in Figure 5(a) which can be seen as a path in
an FST as in Figure 5(b). The FSTs resulting from the gen-
eralized derivation for each sentence in a corpus are combined
by a union and the resulting FST is minimized.

This FST representation is possible due to the lexicalized
nature and the extended domain of locality of elementary
trees because of which lexical dependencies are localized to
with in a single elementary structure. Further, the factoring
of recursion in LTAGs provides a method of generalizing over
recursive structures independent of whether the structure ex-
presses head-complement relation or head-modifier relation.
Also, it is interesting to note that the head-complement rela-
tions are expressed on string positions, where as head-modifier
relations are expressed on the structural positions.

6 Phrasal EBL

The method described in this paper is ideally suited for do-
mains where the patterns are repetitive at the sentence level,
However, this method can be extended for domains where the
patterns are repetitive at the phrasal level. The idea would
be to identify the repetitive phrasal subtrees from the deriva-
tion trees and create an FST as described in this paper for
each of those subtrees, such as an FST for NPs, FST for PPs
and so on. In the test phase these FSTs are applied as a
sequence of transductions with each transduction resulting
in the type of the phrase that is recognized along with the
phrase internal substitution and adjunction links. The head
of the phrase (word that does not depend on any other word
in the phrase) identified by the current transduction is used
in the next transduction for linking with other words.

7 Stapler

A stapler is an impoverished parser that is used in conjunction
with the FST to generate all possible attachment sites for all
(if any) modifiers besides instantiating the features of nodes
of the trees by term unification. The stapler performs the
following tasks.

EBL and FST: Applications to Parsing LTAGs

1. Modifier Attachment: It computes the alternate sites of at-
tachments for modifiers, if any, since the generalized deriva-
tion tree provides only one possible attachment site.

2. Address of Operation: The links in the derivation tree are
labeled with node addresses to indicate the location of the
substitution and adjunction operation.

3. Feature Instantiation: The values of the features on the
nodes of the elementary trees are instantiated by a process
of unification.

8 Experimental Results

We have tested the performance of our approach on the ATIS
corpus. A total of 400 sentences, with an average length of 10
words per sentence, which had been completely parsed by the
XTAG system was randomly divided into two sets, a training
set of 300 sentences and a test set of 100 sentences’ For each of
the training sentences, the correct parse was generalized and
stored as a path in a FST. The FST was then minimized. The
minimized FST was tested for retrieval of a generalized parse
for each of the test sentences that were pretagged with the
correct POS sequence. When a match is found, the output of
the FST is a generalized parse that associates with each word
the elementary tree that it anchors and the elementary tree
into which it adjoins or substitutes into — an almost parse.
The size of the resulting FST, the number of sentences which
were assigned the correct parse, the number of parses that
were assigned to each sentence and the average time spent
per sentence are shown in Figure 3.

Size of # of % Avg. # Avg. response
train set | states | recall | of parses time
300 1162 80% 2 0.35 sec/sent
Table 8. Recall percentage, Average number of parses,

Response times and Size of the FST for ATIS corpus

We obtained a speed-up of a factor of 60 in parsing times
when using the FST in conjunction with the stapler in com-
parison to the XTAG parser on the test sentences.

REFERENCES

[1] Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas,
and Martin Zaidel, ‘XTAG System - A Wide Coverage Gram-
mar for English’, in Proceedings of the 17t International Con-
ference on Computational Linguistics (COLING ’94), Kyoto,
Japan, (August 1994).

[2] Steve Minton, ‘Quantitative Results concerning the utility
of Explanation-Based Learning’, in Proceedings of 7% AAAI
Conference, pp. 564-569, Saint Paul, Minnesota, (1988).

[3] Tom M. Mitchell, Richard M. Keller, and Smadar T.
Kedar-Carbelli, ‘Explanation-Based Generalization: A Unify-
ing View’', Machine Learning 1, 1, 47-80, (1986).

[4] Gunter Neumann, ‘Application of Explanation-based Learn-
ing for Efficient Processing of Constraint-based Grammars’, in
10t* IEEE Conference on Artificial Intelligence for Applica-
tions, San Antonio, Texas, (1994).

! We hope to test on more sentences by the time of the conference

B. Srinivas

Manny Rayner, ‘Applying Explanation-Based Generalization
to Natural Language Processing’, in Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems,
Tokyo, (1988).

Christer Samuelsson and Manny Rayner, ‘Quantitative Evalu-
ation of Explanation-Based Learning as an Optimization Tool
for Large-Scale Natural Language System’, in Proceedings of
the 18t7 International Joint Conference on Artificial Intelli-
gence, Sydney,Australia, (1991).

B. Srinivas and Aravind K. Joshi, ‘Some Novel Applications
of Explanation-based Learning to Parsing Lexicalized Tree-
Adjoining Grammars’, in Proceedings of the 337% Conference
of Association of Computational Linguistics, (1995).

Frank van Harmelen and Allan Bundy, ‘Explanation-Based
Generalization = Partial Evaluation’, Artificial Intelligence,
36, 401-412, (1988).

The XTAG-Group, ‘A Lexicalized Tree Adjoining Grammar for
English’, Technical Report IRCS 95-03, University of Pennsyl-
vania, (1995).

EBL and FST: Applications to Parsing LTAGs

87

B. Srinivas

