
Explanation-based Learning and Finite StateTransducers: Applications to Parsing LexicalizedTree Adjoining GrammarsB. SrinivasDepartment of Computer and Information SciencesUniversity of PennsylvaniaPhiladelphia, PA 19104srini@linc.cis.upenn.eduAbstract. Explanation-based Learning techniques have beenapplied in NLP for speeding up parsing in limited domains.In [7], we showed that combining the LTAG representationwith the EBL technique provides a novel method for parsingbased on a FST mechanism and demonstrated a speedup inparsing times on the ATIS corpus. In this paper, we extendthat approach to account for cases of \long distance extrac-tions" and show that the same FST mechanism can be usedfor these sentences as well.1 IntroductionExplanation-based Learning (EBL) techniques were originallyintroduced in the AI literature by [2, 3, 8]. The main ideabehind EBL is that it is possible to form generalizations fromsingle positive training examples if the system can explainwhy the example is an instance of the concept under study.The generalizer possesses the knowledge of the concept un-der study and the rules of the domain for constructing therequired explanation. The objective of EBL is to keep trackof suitably generalized solutions (explanations) to problemssolved in the past and to replay those solutions to solve newbut somewhat similar problems in the future.EBL Terminology ! Parsing TerminologyConcept ! GrammaticalityRules of the Domain ! GrammarInstance ! SentenceExplanation ! ParseExplanation Structure ! Derivation Structurethe grammarTable 1. Correspondence between EBL and parsingterminology.The correspondence between the EBL terminology and pars-ing terminology is shown in Table 1. In parsing, the conceptunder study is grammaticality of an input. The fact and rulesto be used in explaining the grammaticality of input is givenby the grammar. A training sentence serves as an instance ofthe concept. A parse of a sentence represents an explanationof why the sentence is grammatical according to the grammar.

A derivation tree represents the explanation structure. Pars-ing new sentences amounts to �nding analogous explanationsfrom the explanations for the training sentences.Rayner [5] was the �rst to investigate the usefulness of theEBL technique in the context of natural language parsingsystems. Samuelsson and Rayner [6] specialize a CFG-basedgrammar for the ATIS domain by storing chunks of the parsetrees present in a treebank of parsed examples. Neumann [4]also attempts to specialize a grammar given a training corpusof parsed examples by generalizing the parse for each sen-tence and storing the generalized phrasal derivations under asuitable index.We showed in [7] that combining the LTAG representationwith the EBL technique provides a novel method for parsingin limited domains based on a FST mechanism. In this paper,we extend that approach to account for cases of \long distanceextractions" and show that the same mechanisms of FST canbe used for these sentences as well.The paper is laid out as follows. In Section 2 we presentan overview of our approach to using EBL. The two types ofgeneralization mechanisms that fall out of the LTAG represen-tation are presented in Section 3 and Section 4. In Section 5we present the FST representation of the set of generalizedparses.2 Our ApproachWe are pursuing the EBL approach in the context of a wide-coverage Lexicalized Tree-Adjoining grammar developmentsystem called XTAG [1]. Details of the LTAG formalism andthe XTAG system are presented in [9].The training phase of the EBL process involves generaliz-ing the derivation trees generated by XTAG for the trainingsentences and storing these generalized parses in the general-ized parse database under an index computed from the lexicalfeatures of the words of the sentence. The application phaseof EBL is shown in the
owchart in Figure 1. An index us-ing the lexical features of the words in the input sentenceis computed. Using this index, a set of generalized parses isretrieved from the generalized parse database created in thetraining phase. If the retrieval fails to yield any generalizedc
 1996 B. SrinivasECAI 96. 12th European Conference on Arti�cial IntelligenceEdited by W. WahlsterPublished in 1996 by John Wiley & Sons, Ltd.

Syn DB

Trees DB

Generalized Parse
Selection

Compute Index

Gen. Parse DB

Morph Analyzer

Morph DB
P.O.S Blender

Tagger

Lex Prob DB

Input Sentence

Found?

Yes

No

Stapler

Parser

Tree Grafting

Tree Selection

Derivation Tree

Derivation TreeFigure 1. Flowchart of the XTAG system with the EBLcomponentparse then the input sentence is parsed using the full parser.However, if the retrieval succeeds, the output is a generalizedparse that associates with each word the elementary tree thatit anchors and the elementary tree into which it adjoins orsubstitutes into { an almost parse. The almost parse is in-put to the \stapler" which instantiates the generalized parseto the sentence. The details of the \stapler" are discussed inSection 7.The three key aspects of LTAG (a) lexicalization, (b) ex-tended domain of locality and (c) factoring of recursion fromthe domain of dependencies (1) lead to an immediate general-ization of parses for the training set of sentences, (2) achievegeneralization over recursive substructures of the parses, and(3) allow for a �nite state transducer (FST) representation ofthe set of generalized parses.3 Feature-generalizationIn LTAGs, a derivation tree uniquely identi�es a parse fora sentence. A derivation tree is a sequence of elementarytrees associated with the lexical items of the sentence alongwith substitution and adjunction links among the elemen-tary trees. Also, the values for features at each node of ev-ery elementary tree is instantiated during the parsing pro-cess. Given an LTAG parse, the generalization of the parseis truly immediate in that a generalized parse is obtained by(a) uninstantiating the particular lexical items that anchorthe individual elementary trees in the parse and (b) unin-stantiating the feature values contributed by the morphol-ogy of the anchor and the derivation process. This type ofgeneralization is called feature-generalization and results in afeature-generalized parse. The process of feature generaliza-tion is shown in Figure 2 for the sentence who did you say
ies from Boston to Washington. Figure 2(a) illustrates thederivation structure for the sentence. Each word in the deriva-

tion structure is associated with elementary trees with initialtrees (�s) or auxiliary trees (�s). The nodes in the deriva-tion tree are connected by substitution links (dotted lines)or adjunction links (). Applying the feature-generalization onFigure 2(a) results in Figure 2(b). The trees �3 and �4 areno longer distinct so we denote them by �3. So also the trees�4 and �5 are no longer distinct, so we denote them by �4 inFigure 2(b).
α 1[flies]

α 2[who] (1) β1[say] (2)

β2[did] (0) α 3[you] (1)

β3[from] (2.2)

α 4[Boston] (2.2)

β4[to] (2.2)

α 5[Washington] (2.2)(a)
α 1[V]

α 2[N] β1[V]

β2[V] α 3[N]

β3[P]

α 4[N]

β3[P]

α 4[N] N V N V V P N P N(b) (c)Figure 2. (a) Derivation structure (b) Feature GeneralizedDerivation structure (c) Index for the generalized parse for thesentence who did you say
ies from Boston to Washington3.1 Storing and retrievingfeature-generalized parsesThe feature-generalized parse of a sentence is stored in a gen-eralized parse database under an index computed from thetraining sentence. In this case, the part-of-speech (POS) se-quence of the training sentence is treated as the index to thefeature-generalized parse. The index for the example sentencewho did you say
ies from Boston to Washington is shown inFigure 2(c). In the application phase, the POS sequence ofthe input sentence is used to retrieve a generalized parse(s)which is then instantiated to the features of the sentence.We have chosen here to index the generalized parse underthe POS sequence of the training sentence. However, it mustbe noted that depending on the degree of abstraction fromthe lexical items, the generalized parse may be stored underdi�erent indices containing varying amounts of lexical speci�cinformation. The degree of abstraction strongly in
uences theamount of training material required for adequate coverage ofthe test sentences and the number of parses assigned to thetest sentences.This method of retrieving a generalized parse allows forparsing of sentences of the same lengths and the same POSsequence as those in the training corpus. However, in our ap-proach there is another generalization that falls out of theLTAG representation which allows for
exible matching of theindex to allow the system to parse sentences that may di�erin length from sentences similar to the ones in the trainingcorpus.EBL and FST: Applications to Parsing LTAGs 83 B. Srinivas

4 Recursive-generalizationAuxiliary trees in LTAG represent recursive structures. So ifthere is an auxiliary tree that is used in an LTAG parse, thenthat tree with the trees for its arguments can be repeatedany number of times, or possibly omitted altogether, to getparses of sentences that di�er from the sentences of the train-ing corpus only in the number of auxiliary trees. This typeof generalization can be called recursive-generalization. Fig-ure 3 illustrates the process of recursive generalization. Thetwo Kleene star regular expressions around the prepositionphrase in Figure 3(b) can be merged into one and the result-ing recursive generalized parse is shown in Figure 3(c).
α 1[V]

α 2[N] β1[V]

β2[V] α 3[N]

β3[P]

α 4[N]

β3[P]

α 4[N]

α 1[V]

α 2[N] β1[V]

β2[V] α 3[N]

β3[P]

α 4[N]

β3[P]

α 4[N]

* *

*

*(a) (b)
α 1[V]

α 2[N] β1[V]

β2[V] α 3[N]

β3[P]

α 4[N]

**

* N (V)� (N V)� V (P N)�(c) (d)Figure 3. (a) Feature-generalized derivation tree (b)Recursive-generalized derivation tree (c) Recursive-generalizedderivation tree with the two Kleene-stars collapsed into one (d)Index for the generalized parse for the sentence who did you say
ies from Boston to Washington.4.1 Storing and retrievingrecursive-generalized parsesDue to recursive-generalization, the POS sequence covered bythe auxiliary tree and its arguments can be repeated zero ormore times. As a result, the index of a generalized parse of asentence with auxiliary trees is no longer a string but a regularexpression pattern on the POS sequence and retrieval of a gen-eralized parse involves regular expression pattern matching onthe indices. The index for the example sentence is shown inFigure 3(d), since the auxiliary verb, the verb with clausalcomplement, and the prepositions anchor auxiliary trees.The most e�cient method of performing regular expressionpattern matching is to construct a �nite state machine foreach of the stored patterns and then traverse the machineusing the given test pattern. If the machine reaches the �nalstate, then the test pattern matches one of the stored patterns.

Given that the index of a test sentence matches one ofthe indices from the training phase, the generalized parse re-trieved will be a parse of the test sentence, modulo the auxil-iary trees. For example, if the test sentence, tagged appropri-ately, is(1) who/N did/V you/N say/V
ies/V from/P Boston/Nto/P Washington/N on/P Monday/N.the index of the test sentence matches the index of the trainingsentence, however, the generalized parse retrieved needs tobe augmented to accommodate the additional modi�er on/PMonday/N. To do so, we need to provide a mechanism thatassigns the additional auxiliary trees and their arguments thefollowing:1. The elementary trees that they anchor and2. The substitution and adjunction links to the treesthey substitute or adjoin into.In other words, each instantiation of the Kleene-star in theregular expression index has to be assigned the required struc-ture so that it can be integrated into the derivation tree. AFinite-State Transducer (FST) representation allows a way ofcombining the generalized parse and the POS sequence (reg-ular expression) that it is indexed by into a uniform represen-tation.5 Finite-State Transducer RepresentationA �nite-state transducer is a �nite-state machine with eachstate transition arc labeled with two symbols { the input andthe output symbols. For each successful state transition, theoutput symbol associated with the transition arc is output.For our purpose, the input symbol represents a POS of aword and the output symbol represents information on howthe word integrates with the rest of the derivation.A derivation structure can be encoded by specifying the el-ementary tree associated with each word along with the infor-mation to indicate which elementary tree it would be adjoinedor substituted into. The encoding should be such that the ad-ditional auxiliary trees and their arguments that result fromthe recursive generalization are also assigned correct substi-tution and adjunction links.5.1 Types of auxiliary treesAuxiliary trees in LTAG have been distinguished as modi-�er auxiliary trees and predicative auxiliary trees. While themodi�er auxiliary trees modify the constituent they adjoin onto, the predicative auxiliary trees subcategorize for the con-stituent they adjoin on to. Examples of the modi�er auxiliarytrees and predicative auxiliary trees are shown in Figure 4.The additional auxiliary trees that result from recursivegeneralization display di�erent adjunction behaviour depend-ing on the type of the auxiliary tree as shown in sentences(2) and (3). The successive repetitions of the modi�er in (2)can modify the same head (
ies) as did the modi�ers in thetraining example. However, successive repetition of the pred-icative auxiliary trees take as complement the clause followingit. Thus, in (3), think adjoins on to said and not to
ies.EBL and FST: Applications to Parsing LTAGs 84 B. Srinivas

Item Descriptionthis tree : the elementary tree that the word anchorshead word : the word on which the current word is dependent on; \{" if the current word doesnot depend on any other word.head tree : the tree anchored by the head word;: \Tclause" if the type of the tree anchored by the head word is a clausal tree: \{" if the current word does not depend on any other word;: \�" if the tree does not matter.number : a signed number that indicates the direction and the ordinal position of the particularhead elementary tree from the position of the current word OR: an unsigned number that indicates the gorn-address (i.e., the node address) in thederivation tree to which the word attaches OR: \{" if the current word does not depend on any other word.Table 2. Description of the components in the tuple representation associated with each word.N/(�2, V, �1, +1) V/(�2, V,�,+1) (N/(�3, V, �1,+1) V/(�1,V, Tclause,+1))� V/(�1, {, {, {) (P/(�3, V, �1, 0)(a) N/(�4, P, �3, -1))�
, V , 1, +1)αN/(3 β

V/(β2 , V , * , +1)

, V , α 1 , +1)2αN/(, V , αβP/(3 1 , 0)V/(α 1 , -- , -- , --)

N/(α 4 , P , β 3, -1)

, -- , -- , --)ε/(-- , -- , -- , --)ε/(--

S1 S2 S3

S4

S5 S6 S7

, V , V/(β 1 Tclause, +1)(b)Figure 5. Finite State Transducer Representation for the sentences: who did you say
ies from Boston to Washington, who did yousay
ies from Boston to Washington on Monday, who did you think I said
ies from Boston to Washington, : : :
NPr

NPf* PP

P

from

NP↓

Sr

NP0↓ VP

V

said

S1*(a) (b)Figure 4. (a): Modi�er Auxiliary Tree, (b): PredicativeAuxiliary Tree(2) who did you say
ies from Boston to Washington on
Monday.(3) who did you think I said
ies from Boston toWashington.Based on the preceding observations we assume that theadditional auxiliary trees along with their arguments wouldbe assigned elementary trees along with substitution and ad-junction links as follows:� The additional auxiliary trees along with their argumentswould be assigned the same generalized elementary trees asthey were assigned in the training example.� The arguments of the auxiliary trees will be assigned thesame substitution and adjunction links as they were as-signed the training example.� If the auxiliary tree is a modi�er auxiliary tree then it isassumed that it modi�es the same head as it did in thetraining example.� If the auxiliary tree is a predicative auxiliary tree then it isassumed to adjoin to the immediately following clause, interms of string position.EBL and FST: Applications to Parsing LTAGs 85 B. Srinivas

5.2 Encoding the generalized derivationtreeWe encode the derivation tree in a manner similar to the de-pendency representationby associating each word with a tuple(this tree, head word, head tree, number) where the descrip-tion for the components of the tuple is given in Table 2. Aderivation tree expresses two types of relations between words:head-complement relations and head-modi�er relations. For ahead-complement dependency relation, the number in the tu-ple associated with a word is a signed number that indicatesthe ordinal position of its head in the input string. For ahead-modi�er dependency relation, the number in the tupleassociated with a word is an unsigned number that representsthe tree-address (Gorn address) of its head in the derivationtree.Consider the example sentence (4) with the generalizedderivation tree in Figure 3(c).(4) Who did you say
ies from Boston to WashingtonFollowing this notation, the derivation tree in Figure 3(c)is represented as in Figure 5(a) which can be seen as a path inan FST as in Figure 5(b). The FSTs resulting from the gen-eralized derivation for each sentence in a corpus are combinedby a union and the resulting FST is minimized.This FST representation is possible due to the lexicalizednature and the extended domain of locality of elementarytrees because of which lexical dependencies are localized towith in a single elementary structure. Further, the factoringof recursion in LTAGs provides a method of generalizing overrecursive structures independent of whether the structure ex-presses head-complement relation or head-modi�er relation.Also, it is interesting to note that the head-complement rela-tions are expressed on string positions, where as head-modi�errelations are expressed on the structural positions.6 Phrasal EBLThe method described in this paper is ideally suited for do-mains where the patterns are repetitive at the sentence level,However, this method can be extended for domains where thepatterns are repetitive at the phrasal level. The idea wouldbe to identify the repetitive phrasal subtrees from the deriva-tion trees and create an FST as described in this paper foreach of those subtrees, such as an FST for NPs, FST for PPsand so on. In the test phase these FSTs are applied as asequence of transductions with each transduction resultingin the type of the phrase that is recognized along with thephrase internal substitution and adjunction links. The headof the phrase (word that does not depend on any other wordin the phrase) identi�ed by the current transduction is usedin the next transduction for linking with other words.7 StaplerA stapler is an impoverished parser that is used in conjunctionwith the FST to generate all possible attachment sites for all(if any) modi�ers besides instantiating the features of nodesof the trees by term uni�cation. The stapler performs thefollowing tasks.

1. Modi�er Attachment: It computes the alternate sites of at-tachments for modi�ers, if any, since the generalized deriva-tion tree provides only one possible attachment site.2. Address of Operation: The links in the derivation tree arelabeled with node addresses to indicate the location of thesubstitution and adjunction operation.3. Feature Instantiation: The values of the features on thenodes of the elementary trees are instantiated by a processof uni�cation.8 Experimental ResultsWe have tested the performance of our approach on the ATIScorpus. A total of 400 sentences, with an average length of 10words per sentence, which had been completely parsed by theXTAG system was randomly divided into two sets, a trainingset of 300 sentences and a test set of 100 sentences1. For each ofthe training sentences, the correct parse was generalized andstored as a path in a FST. The FST was then minimized. Theminimized FST was tested for retrieval of a generalized parsefor each of the test sentences that were pretagged with thecorrect POS sequence. When a match is found, the output ofthe FST is a generalized parse that associates with each wordthe elementary tree that it anchors and the elementary treeinto which it adjoins or substitutes into { an almost parse.The size of the resulting FST, the number of sentences whichwere assigned the correct parse, the number of parses thatwere assigned to each sentence and the average time spentper sentence are shown in Figure 3.Size of # of % Avg. # Avg. responsetrain set states recall of parses time300 1162 80% 2 0.35 sec/sentTable 3. Recall percentage, Average number of parses,Response times and Size of the FST for ATIS corpusWe obtained a speed-up of a factor of 60 in parsing timeswhen using the FST in conjunction with the stapler in com-parison to the XTAG parser on the test sentences.REFERENCES[1] Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas,and Martin Zaidel, `XTAG System - A Wide Coverage Gram-mar for English', in Proceedings of the 17th International Con-ference on Computational Linguistics (COLING '94), Kyoto,Japan, (August 1994).[2] Steve Minton, `Quantitative Results concerning the utilityof Explanation-Based Learning', in Proceedings of 7th AAAIConference, pp. 564{569, Saint Paul, Minnesota, (1988).[3] Tom M. Mitchell, Richard M. Keller, and Smadar T.Kedar-Carbelli, `Explanation-Based Generalization: A Unify-ing View', Machine Learning 1, 1, 47{80, (1986).[4] G�unter Neumann, `Application of Explanation-based Learn-ing for E�cient Processing of Constraint-based Grammars', in10th IEEE Conference on Arti�cial Intelligence for Applica-tions, San Antonio, Texas, (1994).1 We hope to test on more sentences by the time of the conferenceEBL and FST: Applications to Parsing LTAGs 86 B. Srinivas

[5] Manny Rayner, `Applying Explanation-Based Generalizationto Natural Language Processing', in Proceedings of the Inter-national Conference on Fifth Generation Computer Systems,Tokyo, (1988).[6] Christer Samuelsson and Manny Rayner, `Quantitative Evalu-ation of Explanation-Based Learning as an Optimization Toolfor Large-Scale Natural Language System', in Proceedings ofthe 12th International Joint Conference on Arti�cial Intelli-gence, Sydney,Australia, (1991).[7] B. Srinivas and Aravind K. Joshi, `Some Novel Applicationsof Explanation-based Learning to Parsing Lexicalized Tree-Adjoining Grammars', in Proceedings of the 33rd Conferenceof Association of Computational Linguistics, (1995).[8] Frank van Harmelen and Allan Bundy, `Explanation-BasedGeneralization = Partial Evaluation', Arti�cial Intelligence,36, 401{412, (1988).[9] The XTAG-Group, `A LexicalizedTree AdjoiningGrammar forEnglish', Technical Report IRCS 95-03, University of Pennsyl-vania, (1995).

EBL and FST: Applications to Parsing LTAGs 87 B. Srinivas

