
A RIGOROUS ANALYSIS OF TIME DOMAIN PARALLELISM�

A. DESHPANDEy , S. MALHOTRAy , C. C. DOUGLASz AND M. H. SCHULTZy

Abstract. Time dependent partial di�erential equations are often solved using algorithmswhich
parallelize the solution process in the spatial domain. However, as the number of processors increases,
the parallel e�ciency is limited by the increasing communication/computation ratio. Recently, sev-
eral researchers have proposed algorithms incorporating time domain parallelism in order to increase
e�ciency. In this paper we discuss a class of such algorithms and analyze it rigrously.

Key words. iterative methods, time domain parallelism, partial di�erential equations.

AMS(MOS) subject classi�cations. G.1.0. Parallel Algorithms [Numerical Analysis]; G.1.3.
Linear Systems (Direct and Iterative methods); G.1.8. Parabolic Equations (Partial Di�erential
Equations); D.1.3. Parallel Programming.

1. Introduction. We investigate a parallel algorithm for the numerical solution
of linear, time-dependent partial di�erential equations of the form

8<
:

@u
@t

+ Lu = f; x 2
; 0 < t < T;

B(u) = ub(t); x 2 @
; 0 < t < T;

u(x; 0) = u0(x); x 2

where L is a linear elliptic spatial operator, B is the boundary operator, and
 is a
spatial domain with boundary @
. For simplicity of presentation we choose the one
dimensional problem
 = (0; 1) and Dirichlet boundary conditions u(0; t) = u(1; t) =
0. Our model problem in this paper will be the one dimensional heat equation.

Implicit time stepping schemes, coupled with �nite di�erence approximations of
the spatial derivatives, lead to linear systems at each time step tk, of the form,

Auk = Buk�1 + b; k = 1; 2; : : :n;(1)

where A and B are m � m matrices (m is the number of grid points in the interior
of the domain) whose elements depend on L and B and uk is an m{vector containing
function values u at all the grid points at the k0th time step. Starting from u0, which
is known from the initial condition, we can use an iterative algorithm such as Jacobi,
Gauss-Seidel, or SOR to solve (1) sequentially for each time step:

uki = Tuki�1 + c; i = 1; 2; : : :; k = 1; 2; : : :n;

where T is the iteration matrix and c is a vector of known values.
Usually, the entire process is spatially parallelized by splitting the domain
 into

subdomains and distributing problems on the subdomains to multiple processors (see
[3] and [5]). At each iteration, the processors need to exchange boundary information
with processors holding adjacent subdomains. As the number of processors increases,
the communication/computation ratio increases making the parallel e�ciency de-
crease. In an e�ort to forestall this and to allow increasing numbers of processors to

� This work is supported in part by ONR Grant # N0014-91-J-1576 and by an IBM/Yale joint
study.

y Yale Center for Parallel Supercomputing, Department of Computer Science, Yale University,
New Haven, CT 06520-8285.

z IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598-0218.

1

be used e�ectively, a number of researchers have suggested algorithms which introduce
time domain parallelism as well as space domain parallelism [4, 7, 8, 9, 10].

In this paper, we investigate a time domain parallel algorithm for solving (1).
Other authors have considered a similar algorithm ([4], [9] and [10]), but not from
a rigorous theoretical point of view. We demonstrate that the parallel and serial
algorithms do not converge in the same number of iterations. We also provide a
convergence theory for the parallel algorithm and computational experiments, which
show that the number of iterations required for convergence in the parallel scheme is
just enough to negate the advantages of time domain parallelism in case of the model
problem considered above. We note at this stage that the parallel approach has been
successfully used to solve certain nonlinear problems [2] and time domain parallelism
may indeed be a viable and useful approach in those application areas.

2. The Temporal Method. Consider an iterative scheme for time domain par-
allelism by solving the linear systems at di�erent time steps simultaneously. The
central idea is to assemble n steps of (1) into the form

Gu �

0
BBBBBB@

A

�B A

�B
. . .

. . . A

�B A

1
CCCCCCA

0
BBBBB@

u1

u2

...
un�1

un

1
CCCCCA

=

0
BBBBB@

u0 + b1
b2
...

bn�1
bn

1
CCCCCA
� b:(2)

Equation (2) can be solved in parallel using an iterative scheme such as Jacobi or
Gauss-Seidel with the red-black block ordering. If A = D � L � U , where D;L and
U are diagonal, lower triangular, and upper triangular, then the iteration matrix TA
for solving (1) using Gauss-Seidel is TA = (D � L)�1U:

The iteration matrix TG for Gauss-Seidel for (2) is TG = (�D � �L)�1 �U; where
�D; �L and �U are the diagonal, lower triangular, and upper triangular parts of G. As
was shown in [9], TG is a block lower triangular matrix with diagonal blocks equal to
(D � L)�1U . Hence, the eigenvalues of TG are the collections of all eigenvalues of all
the block matrices on the main diagonal. Since all blocks on the main diagonal are
equal to TA, TG has the same eigenvalues as TA but with higher multiplicity. This
shows that

%(TA) = %(TG);

where %(T) is the spectral radius of T . Hence, both iterations appear to converge at
the same rate. This would seem to imply that the algorithm using time domain par-
allelism is far superior to those employing only spatial domain parallelism. However,
we demonstrate below that this is not valid.

Any stationary linear iteration scheme can be written in the form uk+1 = Tuk+c

where T is the iteration matrix and c is a vector of known values. The error ek in the
kth approximation to the solution is given by ek = T ke0:

Hence, the sequence of iterates u1; u2; : : : ; uk; : : :will converge to the true solution
as k ! 1 if and only if limk!1 T k = 0 since u0, and hence e0, is arbitrary. If the
m � m matrix T has m linearly independent eigenvectors vs; s = 1; : : : ;m, then it
follows that

ek =

mX
s=1

cs�
k
svs;(3)

2

where �s is the eigenvalue corresponding to vs. Thus ek will tend to 0 for an arbitrary
e0 if and only if j �s j < 1 for all s, i.e., if and only if %(T) < 1, and the convergence
rate behaves like %k.

While the preceding result is true in general (see [6]), this argument holds only if
the matrix T has m linearly independent eigenvectors. If T is defective, i.e., lacking
eigenvectors, then we may not be able to express e0 as a linear combination of the
eigenvectors and (3) may not hold. In this case, we cannot claim that the convergence
rate behaves like %k except in an asymptotic sense, which may not yield any useful
information.

Now, consider solving (2) using a block Jacobi iteration scheme, where each block
corresponds to one time step. The resulting iteration matrix is

T =

0
BBB@

0
A�1 0

.. .
. . .

A�1 0

1
CCCA :

T is an mn�mn matrix, where m is the order of A and n is the number of time steps
we are attempting to solve simultaneously. This matrix is defective for any matrix A
and all its eigenvalues are 0. Hence, the spectral radius does not give a true picture of
the convergence rate and one must actually look at the norm of the kth power of the
iteration matrix, T k, to determine the number of iterations it takes for the iterative
scheme to converge. Since kekk

2
= kT ke0k

2
� kT kk

2
ke0k

2
and there exists at least

one initial error vector e0 for which the equality holds, we can only assert convergence
if the norm of the error is reduced in k iterations by a factor of � < 1, i.e. if

kT kk
2
� � < 1;(4)

we can determine lower and upper bounds on the number of iterations for convergence
by determining k such that (4) holds. We will show that the number of iterations
required to solve (2) is enough to negate any advantages of time domain parallelism.

3. Block Iterative Methods. In this section, we derive bounds on kT kk
2
for

block Jacobi and Gauss-Seidel methods.
In order to simplify the notation in this section, we restrict our attention to

backward Euler and Crank-Nicolson di�erence schemes. First, consider the block
Jacobi iterative method. In the case of the backward Euler scheme, the matrices in
(1) are B = Im and

Am�m =

0
BBBB@

1 + 2r �r

�r 1 + 2r
. . .

. . .
. . . �r

�r 1 + 2r

1
CCCCA ;

where r �
(m+1)2

n
� �t

(�x)2
. The number of timesteps being being solved for in parallel

is n.

3

The kth power of the iteration matrix is given by

T kBJ =

0
BBBBBBB@

0
... 0

A�k
. . .

. . . 0
A�k : : : 0

1
CCCCCCCA
:

Let tp and ts be the wall clock times for the time parallel and serial algorithms,
respectively. In the serial case the time, ts, for n time steps is ns, where s is the serial
time to solve Ax = b.

Theorem 3.1. The total wall clock time using n processors and ignoring com-

munication time is

tp �
1

�2
ln

�
1

�

�
ts

for the block Jacobi method applied to the backward Euler and Crank-Nicolson dis-

cretization of the heat equation.

Proof. We prove the above statement for the backward Euler method. A proof
for the Crank-Nicolson case can be found in [1]. Note that

kT kBJk2 = kA�kk
2
=

1

�kmin(A)
:

A simple analysis shows that

�min(A) = 1 + 4r sin2(
�

2(m+ 1)
) � 1 +

�2

n
:

Hence,

kT kBJk2 � [1 +
�2

n
]�k:

To be convergent, we need that kT kBJk2 � � < 1: This holds if

k � n
ln
�
1
�

�
�2

= O(n):

The total work in aggregate in the parallel scheme is

Wp = k �work=iteration = kns �
sn2

�2
ln

�
1

�

�
:

Since ts = sn, the total wall clock time using n processors, assuming no communica-

tion overhead, is

tp =
Wp

n
�

ns

�2
ln

�
1

�

�
=

ln
�
1
�

�
�2

ts:

4

m = 60 m = 90

n k n k

Jacobi Gauss-Seidel Jacobi Gauss-Seidel

16 16 8 16 16 8
22 22 11 22 22 11
28 28 14 28 28 14
34 34 17 34 34 17
40 40 20 40 40 20
46 43 23 46 46 23
52 45 24 52 52 26
58 46 24 58 58 29

Table 1

Iterations (k) required for convergence of block methods.

Corollary: Even if we ignore the cost of communication, the total wall clock time to
solve the problem using a time parallel approach is at best asymptotically the same
as the serial time in spite of the larger number of processors used. In particular the
time parallel algorithm will actually take more wall-clock time than the serial version
if � � 5:17� 10�5.

We now analyze block Gauss-Seidel methods. We state the formal result showing
that the time parallel methods never provide an asymptotic speedup and may be
slower for su�ciently small time steps.

Theorem 3.2. Let tBEs , tBEp , tCNs and tCNp be the total wall clock times for

block Gauss-Seidel for the backward Euler and Crank-Nicolson (serial and parallel)

variants. The total wall clock times, assuming no communication overhead, satisfy

tBEp � 1
2�2

ln
�
1
�

�
tBEs and tCNp � 1

2�2
ln
�p

2
�

�
tCNs :

Proof. See [1].
Corollary: The parallel algorithm is slower than the serial one when

� �

�
2:68� 10�9 backward Euler

3:78� 10�9 Crank � Nicolson

Since communication time has not been factored into the above calculation, the par-
allel versions will in practice be slower for much larger values of �.

We have implemented the above block schemes in order to illustrate and validate
our claims. In the results to follow, we counted the number of iterations required for
convergence of block Jacobi and Gauss-Seidel schemes for the backward Euler method
with r � �t

(�x)2
= 100. Convergence is asserted when the norm of the residual is less

than 10�7.
Table 1 contains numerical results for the block Jacobi and Gauss Seidel meth-

ods applied to the backward Euler equations. The number of iterations required to
converge to the desired solution increases linearly with the number of timesteps in
parallel as predicted by the theory. This negates any potential bene�ts from paral-
lelization.

4. Point Iterative Methods. In this section we state some results (see [1]
for proofs) for point Jacobi and Gauss-Seidel methods for solving the conventional

5

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

ef
fic

ie
nc

y

 Jacobi Efficiency for r = 1

o : actual
+ : predicted

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 n

ef
fic

ie
nc

y

Jacobi Efficiency for r = 100

o: actual
+: predicted

Fig. 1. E�ciencies for m = 60

backward Euler scheme whose iteration matrix is given by

Tm�m =
1

(1 + 2r)

0
BBBB@

0 �r

�r 0
. . .

. . .
. . . �r

�r 0

1
CCCCA :

First, we consider the Jacobi method.
Theorem 4.1. The Jacobi iterations take approximately k iterations to converge

where k is given by

k =
(ln �) + ln(1 + 1=(4r))

ln(2r)� ln(1 + 2r)
:

Theorem 4.2. In the time parallel case, the point Jacobi method takes at least

k iterations to converge where k is the solution to the equation

Ck
n

�n
�k

(1 + 2r)k
= � with � = 2r cos

�
�

m + 1

�
:

Since the above expression for the number of iterations cannot be solved for k in
a simple manner we present the numerically determined values for k. We also present
the number of iterations that were observed experimentally to validate our claim. In
Figure 1 we present data for the computed and experimentally observed e�ciency
of the parallel scheme for two di�erent values of r. As can be easily observed, the
e�ciency of the parallel scheme decreases rapidly with increasing n.

This qualitative behavior is largely independent of m as can be seen from the
graph in Figure 2, in which we show the e�ciency of the parallel scheme for di�erent
values of m. Clearly, the e�ciency does not stay constant with n as claimed in [9].

Now consider the point Gauss-Seidel scheme. Unfortunately, we are unable to
derive a lower bound for the 2-norm of kth power of the Gauss-Seidel iteration matrix.
However, we present numerical results to demonstrate that the e�ciency of the parallel

6

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Jacobi Efficiency for different m

n

ef
fic

ie
nc

y

o: m = 60
+: m = 1000

Fig. 2. E�ciency for m = 60 and m = 1000

scheme goes down with increasing the number of parallel time steps contrary to the
claims made in [9] that it remains constant.

In Figure 3 we show the e�ciency of the parallel scheme for two di�erent values
of r. As the graph shows, the e�ciency decreases with increasing n.

In Figure 4, we show the behavior of the parallel scheme for two di�erent values of
m. As the graph shows, the e�ciency decreases rapidly with increasing n irrespective
of the value of m and does not stay constant.

5. Conclusions. We have analyzed the numerical solution of a linear, one di-
mensional, time dependent partial di�erential equation using time domain parallelism.
We have shown that the increase in the number of iterations required for the conver-
gence of block and point Jacobi and Gauss-Seidel methods negates any advantages of
time domain parallelism. As noted by others [2, 4, 7, 8, 9, 10] these methods can be
useful for some classes of problems. Hence, care must be employed when using them.

REFERENCES

[1] A. Deshpande, S. Malhotra, C. C. Douglas, and M. H. Schultz, Temporal domain par-
allelism: Does it work?, Tech. Rep. YALEU/DCS/TR-996, Department of Computer Sci-
ence, Yale University, New Haven, CT, 1993.

[2] D. E. Keyes, 1994. Private communication.
[3] K. Miller, Numerical analogs to the Schwarz alternating procedure, Numer. Math., 7 (1965),

pp. 91{103.
[4] J. H. Saltz, Parallel and Adaptive Algorithms for Problems in Scienti�c and Medical Comput-

ing, PhD thesis, Department of Computer Science, Duke University, Durham, NC, 1985.
[5] H. A. Schwarz, Uber einige abbildungsaufgaben, Ges. Math. Abh., 11 (1869), pp. 65{83.
[6] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall Inc., Englewood Cli�s, NJ, 1962.
[7] D. Womble, A time stepping algorithm for parallel computers, SIAM J. Sci. Stat. Comput.,

11 (1990), pp. 824{837.

[8] P. Worley, Parallelizing across time when solving time-dependent partial di�erential
equations, in Proc. 5th SIAM Conf. on Parallel Processing for Scienti�c Computing,
D. Sorensen, ed., SIAM, 1991.

[9] J. Zhu, A new parallel algorithm for the numerical solutions of time dependent partial di�er-
ential equations, tech. rep., Mississippi State University, Mississippi State, MS, 1991.

[10] , Solving Partial Di�erential Equations on Parallel Computers, World Scienti�c Pub-
lishing, Singapore, 1994.

7

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

ef
fic

ie
nc

y

Gauss Seidel Efficiency for r = 1

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

ef
fic

ie
nc

y

Gauss Seidel Efficiency for r = 100

Fig. 3. E�ciencies for m = 1000

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 n

ef
fic

ie
nc

y

 Gauss Seidel Efficiency for m = 60 and m = 1000

+: m = 1000
o: m = 60

Fig. 4. E�ciency for m = 60 and m = 1000

8

