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Abstract. The analysis of events in dynamic scenes has become an important 
and challenging problem increasingly in recent years. Events can be considered 
as obvious changes of important features with semantic meanings. From this 
viewpoint, the fundamental task of events analysis is to extract semantically 
meaningful changes and associate all of these basic motion patterns and 
changes with relevant visual concepts of moving objects in dynamic scenes.  
In this paper, we propose a method to extract lower level motion patterns and 
associate them with visual concepts respectively in a well-defined structure. 
Furthermore we also analyze latent spatial-temporal relationships among these 
basic visual concepts for event modeling and analysis. Finally, we present ex-
perimental results which prove the effectiveness of our approach on some real-
world videos of dynamic scenes. 

1   Introduction 

As a challenging problem, semantic analysis of dynamic scenes has been paid more 
attention by researchers in recent years. Furthermore many methods have been pre-
sented for dealing with it. Some of these methods define and analyze semantic mean-
ings based on the global statistical properties of the movement. From the global view-
point, this kind of methods usually ignores semantics of features exhibited in a lesser 
temporal scale. On the other hand, considering basic semantic meaningful features in 
small temporal interval is useful for the semantic understanding of the entire event. 
The basic flowchart of a video surveillance system will include elementary proce-
dures such as environment modeling, object detection, tracking and recognition. 
However, each of these is not the termination of semantic analysis in a dynamic 
scene; there should be some further missions for achieving semantic understanding 
and interpretation of what behaviors or events performed by those moving objects in 
this dynamic scene. Compared with the lower level processing, the higher level phase 
involves spatio-temporal relationship mining, reasoning under uncertainty, semantic 
representation, and so on [1]. 

The basic requirement of the event analysis is to extract semantically meaningful 
motion patterns in the scene [2]. In different research areas, semantics has quite dif-
ferent meanings. There is a restrictive definition in semiotics that semantics implies 
the relationship between signs and objects. But for language science, semantics means 
the meaning and relationship of words. In our research work, we adopt the definition 
that semantics is the mapping and integration between related concepts [3].  
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But there is a gap between measurable features and semantic meanings. According 
to the ability and the procedure of human in perception and understanding for the 
world, event can be considered as the semantically meaningful changes in the scenes. 
The basic elements for event analysis and understanding are various concepts. Each 
concept denotes a special semantic meaning. And all these concepts are grouped into 
different clusters according to their semantic functions. For the purpose of semantic 
analysis and understanding of events in dynamic scenes, all related concepts should be 
obtained firstly, and all these concepts should be organized in a well-defined structure.  

As declared by some genres in philosophy, the world can be considered as the inte-
gration of different kinds of entities. From this viewpoint, all existing things in a spe-
cial dynamic scene, such as different regions, moving or static objects can be treated 
as different entities with their own relative properties. Further more, given concepts 
can be used to denote these entities and their properties. The semantic analysis in the 
special domain can be achieved from these concepts and their relationships.

The three fundamental components of a concept are an entity, a term or a word and 
corresponding attributes [4]. Each concept is described as a sign by a term or a word 
to distinguish each other. And the difference or the similarity of different concepts 
can be defined on all these measurable attributes. 

The difficulty for a certain definition of event is due to various demands from dif-
ferent domains. Thibadeau [5] defines first-order change descriptions as motion and 
the second-order ones as action, and Newtson [6] treats activity as the maintenance of 
first-order primitive properties. In this paper we consider events as obvious changes 
of important features as mentioned in [7]. 

High-level analysis and understanding of dynamic scenes is the final goal of com-
puter vision. Compared with the traditional vision tasks such as tracking and recog-
nizing moving objects, high-level vision is to achieve deeper analysis of spatial-
temporal relationships exhibited by all visible and measurable data in dynamic scenes 
[8]. Contextual spatial-temporal information acts as an important clue for semantic 
understanding.  

This paper proposes a method to associate semantic meaningful motion patterns 
with corresponding visual concepts for semantic analysis of events in dynamic scenes. 
Sections in this paper are organized as follows. Section 2 outlines previous work of 
event modeling and analysis. Methods for motion pattern extraction and concept mod-
eling are described in Section 3 and Section 4 respectively. Then experimental results 
are showed and analyzed in Section 5. Finally, we draw conclusions and discuss fu-
ture work in Section 6. 

2   Previous Work 

Existing work on event analysis is usually based on trajectory analysis of moving 
objects. Methods for trajectory extraction and simple object classification are based 
on some traditional methods proposed in [10, 11, 12, and 13]. Since more expressive 
semantically meaningful features can be extracted from trajectories, they are not or-
ganized in a proper structure for farther semantic analysis. That means each semanti-
cally meaningful feature should be associated with a concept, and the relationship of 
these concepts should also be considered seriously.  

In [14], events are modeled and recognized by exhibited periodically variational 
patterns. Similar work proposed in [15] treats human activities as descriptions of their 
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basic spatial-temporal characteristics. Ivanov and Bobick [16] extract primitive fea-
tures by using HMM and recognize activities with a context-free parsing mechanism. 
Event or activity can also be divided into elementary components, and can be de-
tected, represented and identified at different levels in a uniform framework [17, 18, 
19, 20, and 21]. Kojima et al. [21] employ a case frame with syntactic components to 
model events in office scene. All syntactic components are associated with related 
semantic features, and the model can provide natural language descriptions of those 
official events. Chaudron et al. [22] represent the interpretation of event in dynamic 
scene as a symbolic layered prototype by Petri nets. 

In recent years, more and more researchers tend to use probabilistic frameworks to 
express and analyze events, such as Bayesian networks, hidden Markov models, etc. 
All these models have a common peculiarity that stochastic parameters can be ac-
quired automatically without any assumptions of prior knowledge under uncertainty. 
Considering idiographic demands under different circumstances, some variations have 
emerged. Galata et al. [23] mention a method to present human behavior by variable 
length Markov models (VLMM). The algorithm of coupled hidden Markov models 
(CHMM) to model two-handed interactions is presented in [24]. At the same time, the 
superiority of these methods mentioned above brings obvious shortages. The compu-
tation of parameters for the given structure of a model is time-costly. To fit another 
problem, the structure of the model must be changed, and the learning for variable 
structures is more difficult. 

From Birnbaum et al., who use ontology to define causal changes in their attention 
controller in [25] , ontology related methods [26, 27, and 28] are increasingly applied 
in various areas, such as semantic web, data mining, knowledge management, infor-
mation fusion, linguistics and etc. 

3   Motion Patterns Extraction 

In a visual surveillance system, scenes of the environment captured by fixed cameras 
can be looked as combinations of all kinds of visual entities exhibited in the video 
data. These entities are regions with different spatial positions and appearances, mov-
ing objects and their different motion and interaction patterns, and so on. The seman-
tic analysis of the scene can be looked as mining and analysis for all kinds of relation-
ship of related visual concepts. So at the beginning of this kind of work, all visual 
concepts must be defined and constructed in a unified form. 

3.1   Location States Extraction  

To determine locations of moving objects in a dynamic scene, we can look the scene 
as different adjacent regions which are labeled with their attributes, such as grassplot, 
road, sideway, intersection, crosswalk, etc. There is a pre-hypothesis that the semantic 
attribute of each region blob in the scene is homogeneous. So each region has its 
unique semantic label. Examples of semantic attributes of different labeled regions 
are showed in Table 1. At the same time, different spatial regions have invariable 
topological adjacent relationship under a fixed camera. Figure 1 shows an example of 
topological adjacent relationship for different regions in a special scene. 
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Table 1. Semantic Attributes of Labeled Regions 

Labeled Regions Semantic Attributes 
Road Vehicles and other moving objects can move in it. 
Sideway Only allow foot passengers moving in it. 
Grassplot Any motion of moving objects occurs in it is not allowed. 
Crossway Any stop of moving objects in it is not allowed. 
Parking Lot Only allow vehicle parking in it. 

As illustrated in Figure 1, nine nodes denote nine different regions, and edges refer 
the adjacent spatial relationship of these regions. Different color of these nodes means 
different semantic attributes of these regions and highlighted edges indicate that mov-
ing objects can transit between two connected nodes. All related constraints can be 
defined in this topological graph. 

Legend: 

1, 3, 5, 7:  Grassplot 

2, 9:   Road 

4, 6:   Sideway 

8:   Crossway 

(a)              (b)                              (c)                              (d) 

Fig. 1. Topological Relationship of Regions in the Scene 

We use central points of moving regions as the approximate locations of moving 
objects. Mapping coordinates of central points to the semantically labeled image, we 
can obtain regions objects occupied. When objects move through different regions, 
label sequences of region transitions can also be obtained.  

3.2   Motion States Extraction 

All moving objects are leading actors in dynamic scenes. Event modeling and seman-
tic analysis are focused on them. We can extract and express motion states of moving 
objects separately. Under a fixed camera, a trajectory of a moving object is repre-
sented as temporally sequential pairs of coordinates in frames. These pairs of coordi-
nates can be presented like this format: 

}),,(,),,(),,{( 2211 LL tt yxyxyxL = (1)

where ),( tt yx is the coordinates of a moving object at time t or is at the t th sequence 
number of the current frame.  

The basic motion states of a single moving object are “Move” and “Stay”, and the 
basic direction states are “Go Straight”, “Turn Left” and “Turn Right”. The small 
trajectory segments of moving objects with the temporal scale about two seconds 
(50~60 frames) can be divided into these basic elements. 

Figure 2 shows an example of two moving objects separately, labeled by m  and 
n . When each moving object has appeared in the scene, a sub-coordinate is set up for  
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  Fig. 2.  Motions in Different Coordinates                   Fig. 3. Motion States Mapping 

this object, and all related motion status can be extracted and calculated in this sub-
coordinate. The origin of each sub-coordinate is the initial position of each moving 
object. For easy calculation, we present a trajectory in Polar Coordinate, 

}),,(,),,(),,{( 2211 LL ttL θρθρθρθρ =−
 (2) 

and define the interval change 'ρ and 'θ  as 

)}{(' ili ρρρ −= +
, ),(~' 2

'' ρρ σµρ N  

)}{(' ili θθθ −= +
, ),(~' 2

'' θθ σµθ N  
(3) 

where l  is an interval. 
Based on statistical analysis of training data, we make an assumption that 'ρ and 

'θ  obey the Gaussian distribution under the existing noise. The motion patterns about 
movement 

StatusM and direction
StatusDir can be mapped into different status as shows in 

Figure 3. All these parameters are all learned from videos of special scenes under 
special viewpoints. As a result, when zoom ratio or viewpoint changed, all these pa-
rameters should also be recalculated. 

3.3   Interaction States Extraction 

When we analyze the interaction between moving objects, we should consider oppo-
site distances of these objects in a unique coordinate of the whole image (see object i, 
j and their opposite distance in Figure 4. (a)). The basic varieties of opposite distances 
can be increase, reduce and without obvious changes. By using learned thresholds, we 
can distinguish opposite distance d(i,j) between object i and j as one of those three 
basic varieties. And all these thresholds are also view or scale based. When several 
moving objects are very close to each other, it is hard for our tracking algorithm, even 
for human, to determine whether they should belong to a whole moving object or 
regard as separate objects. In the same way, when objects are so far from each other, 
it is unnecessary for considering their interactions. To deal with this problem, we can 
define different region scales (Figure 4. (b)) for each moving object. The size of each 
region scale is related to the size of each moving object. By using these region scales, 
we can determine interaction states of moving objects easily. 
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Fig. 4.  (a) Opposite Distances between Objects. (b) Region Scale for Interactions. 

4   States Transition-Based Concept Modeling 

The definition of concept in Webster’s dictionary is “an abstract or generic idea gen-
eralized from particular instances”, it is the basic element of human thought. As a 
symbolic abstraction of the essence of reality, a concept contains some related meas-
urable attributes. It is exhilarative that location states, motion states and different 
interaction categories of moving objects mentioned above are all based on measurable 
attributes. For further semantic analysis of events performed by moving objects in 
dynamic scenes, we should associate all these states, patterns and categories with 
corresponding concepts in certain temporal sequences. Some of concepts and verbs 
used in our model are chosen from the classification of motion verbs in traffic scene 
given by Badler [9] formerly.  

All related visual concepts can be defined on transitions among those states.  
Figure 5. illustrates transitions on the basic states, such as “Move”, “Stay”, “Go 
Straight”, “Turn Left” and “Turn Right”. These transitions can present all semanti-
cally meaningful features of moving objects. In each temporal scale, motion patterns 
can be classified into basic semantic states, and we can obtain temporal sequences of 
those states showed below, and some related visual concepts can be associated with 
different segments of states transition sequences. 

 MM MM  Move 
SS SS   Stay 
MMSS   Stop 
SSMM   Startup 

MMS SMM   Halt 
 

GSGS GSGS  Go Straight
(GSGS)TLTL   Turn Left 
(GSGS)TRTR   Turn Right 

M SHalt StayMove

Startup

Stop

GS

TL TR

Go 
Straight

Turn 
Right

Turn 
Left

 

Fig. 5. Transitions Model of Basic States 
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Fig. 6. Conceptual Vectors and Semantic Representations 

By using this method, we can obtain all kinds of related visual concepts. For the 
aspect of motion, we can describe it as “Go Straight”, “Turn Right”, “Turn Left”, 
“Retrace”, etc. And there are different interactions in the scene. Interactions between 
moving objects and special regions can be represented as spatial relationships, such as 
“Occupy”, “Enter”, “Transfer”, “Appear”, etc. Interactions of two moving objects can 
be “Close To”, “Away From”, “Encounter”, “Follow”, “Retrace”, etc. And we should 
choose different concept for vehicles and passengers. 

In a certain time slot, we can integrate all these obtained visual concepts into a con-
ceptual vector (see Figure 6.). In this figure, each block denotes a corresponding vis-
ual concept with different color, and each arrow expresses different motion direction 
of this moving object in a certain time slot. By using each conceptual vector, simple 
semantic representation of event performed by moving objects can be obtained. 

All concepts in visual surveillance are obtained at different scales. That means 
some basic concepts are components of other concepts, such as “Move” and “Halt”,
“Go Straight” and “Retrace”. So concepts with similar meanings can be presented in 
dendriform structure as different clusters.  

5   Experimental Results 

From our multi-camera visual surveillance system, we choose two fixed cameras which 
can capture wide visual fields from taller points of views. Under this condition, the 
influence of 3D to 2D perspective can be reduced, and then we can use the coordinates 
of moving objects in the image plane as the probable positions of them in the real scene. 

According to the method mentioned above, we calculate all parameters from train-
ing video, and then analyze all related motion patterns of moving objects in the cer-
tain temporal scale. After associating these motion patterns with corresponding visual 
concepts in conceptual vectors, simple semantic representations will be obtained by 
using these related concepts in a time slot.  

Figure 7 explains complex events performed by moving objects in two selected 
scenes and shows simple semantic representations of these events. As showed in  
Figure 6., we will select “Along” to express the motion of an object if it moves unre-
mittingly in the same region without obvious direction change in several adjacent 
time slots. In the same way, “Follow” will be adopted if two objects are moving in the 
similar direction and their opposite distance keeps reducing. 
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(a) {Person 1 Walk Along Sideway} 

{Person 2 Walk Along Sideway} 

(b) {Person 1 Walk Along Sideway} 

 {Person 2 Walk Along Road} 

 {Person 3 Walk Sideway} 

 {Person 2 Person 3 Meet Sideway} 

(c) {Car 1 Enter Crossway} 

 {Person 1 Walk Along Sideway} 

{Person 2 Walk Fast Along Road} 

(d) {Person 1 Walk Sideway} 

 {Person 2 TurnRight Enter Crossway} 

Fig. 7. Complex Events and Simple Semantic Representations 

6   Conclusion and Future Work 

In this paper, we have presented a method to associate motion patterns with corre-
sponding visual concepts for event analysis seen in dynamic scenes. The key points of 
our method are extraction of motion patterns, concept generation and modeling. Sim-
ple semantic representations of events in the dynamic scenes are obtained in some real 
world videos, and the result also validates the effectiveness of this method. 

Manually labeling of different regions in the dynamic scene and negligence the un-
certainty of observed data are main limitations of our methods. In the future, we will 
adopt some learning methods to achieve semantic labels by using texture and motion 
information. To handle the uncertainty problem of our method, probabilistic mecha-
nism should be a good choice. Extended experiments and embedded polishing are 
also needed for our method. 
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