
Microprocessing and Microprogramming 34 (1992) 63-66 63
North-Holland

RELIABLE TRANSACTION PROCESSING FOR REAL-TIME DISTRIBUTED
DATABASE SYSTEMS

Yong I. Ycon and Song C. Moon

Computer Science Department, Korea Advanced Institute of Science end Technology,
Cheongryang P.O. Box 150. Seoul, 130-650 KOREA. E-mail: {yJyoon.moon}@csd.kaist.ac.kr

When real-time applications require distributed transaction processing, both correct
completion and timeliness should be satisfied. All previous commit protocols, however, fail
to provide the timeliness for real-time processing. That is, methods for the timely completion
do not always guarantee the correct completion or vice ~,ersa. In this paper, we propose s
novel commit protocol, called an mteg~ted commst protocol (ICP), in which the correct
completion is satisfied with timely completion for distributed real-time transactions. The
basic idea of ICP is that commit procedures for correct completion use the results of remote
transactions which are timely executed, The timely execution is provided by the dynamic
multilevel scheduling policy and the multi-version timestamp ordering scheme,

t. INTRODUCTION

Applications including telecommunication systems
and military systems stimulated database research
towards real-time database systems [6]. They require
a timely completion such that data manipulation
operations should be executed within a specified
deadline. The real-time database systems need to
operate in a distributed fashion to support inherent
distributed nature of the applications. A distributed
program requires a group of cooperating
transactions distributed in the whole system. It is
essential for the system to complete correctly so that
the group of transactions behave consistently in the
presence of failures. A key property of the correct
completion is failure atomicity that means either a
program has the intended results, or it has no results
at all [1].

The distributed transaction processing requires lots
of message exchanges over the uetworks, which can
hinder the timely completion. Because the speed of
communication network limits the performance of dis-
distributed systems, it is necessary to reduce the
number of intereite communications for real-time pro-
cessing. Other important aspects for the timeliness
are how to specify the time constraints and how to
execute the transactions within the time constraints.
In addition, it must guarantee th_ correct completion
of the transactions. TO summarize, we must provide a
new commit protocol in which correct completion and
timely completion are both satisticd in a distributed
real-time transaction processing environment.

2. RELATED WORK AND MOTIVATION

2.1 Related Work

The atomic commitment protocol (ACP is proposed
to guarantee failure atomicity for correct completion
of the distributed transactions..~L well-known algorith-

m for ACP is the two-phase commit protocol (2PCP)

p 1; and its variations are proposed in [3,4,8]. Mohan
81 and Ceri [1] improved the performance of 2PCP

by reducing the number of m~seages exchanged in
non-reaIJtime systems. Chu [3] and Davidson [8]
suggested other variations of the commit protocol for
real-time applications. We descdhe these latter two
commit protocols and their problems because only
they are concerned with the real-time processing.

Resilient Commit Pretoco/
Chu suggested a resilient commit protocol under the
assumption that both reliable networks and periodic-
al exchange of "1 am alive" messages among sites
are used. The assumption of reliable networks elimi-
nates acknowledgement messages because the
messages are managed by the network subsystems.
Without checking the agreement of each participant.
this protocol satisfies the failure atomicity. It enables
the fast computing of the protocol due to the
elimination of the agreement phase in 2PCP. This
commit protocol, however, did not consider the
timeliness which must be one of the primary goals of
real-time systems. To support the timeliness, the time
constraints must be reflected in the commit protocol.

Timed Atomic Co,nmitment Protocol
The timed atomic commitment protocol provide.~ time
specifications to check deadlines in each phase of
2PCP. The time constraints are defined in the
transaction itself. For the timely completion,
Davidson assumed both a sufficiently long deadline
and a fair scheduling policy. Under these
assumptions, the timed atomic commitment protocol
satisfied timeliness for real-time applications. Since
this protocol was based on basic 2PCP [5], there are
two phases of message exchange for commit
processing_ But. to support tha fast computing, it is
required to reduce the number of message
exchanoes to commit quickly. Also, scheduling
policies ~ for real-time processing may produce
different orders of transaction execution, affected by
time constraints given, a~ shown in Example 1, Ther-

64 Y.L Yoon, S.C. Moon

efore, a proper scheduling policy must be suggested
to satisfy the t imeliness of commit processing.

Example 1: Consider the #ritowing set of transactiona with arrival
time AT, computation time CT, arid deadline DL in a single site.
These transacUons are applied to Ihree scheduling policies for
reG.:-time processing: rate monotonic fRM) scheduling, least slack
time tlrst (LSF) scheduling, and earliest deadline first (EDF)
sched'~;ng J2,7"J. The results are shown below.

lime o t , z 3 4 5 6 7 ~ 9]o
(~lme unit: second) R M | T f T2 TI TI T2 T4T4 T3 "r~ TSl , >, (i t

a ~ tc~
Ti I

'1~ '1 #
tat' t~)' fct'

LSF I TI 1+3 T4"r4 T3 T % ~ TI Ti TI I . (St
¢. ~),.

(a) fbl"
RM schedules transacllons with a shorter computation time first.
n produces a Schedule T 1 -> T 2 -> T 4 -> T 3 as shown in (1). At
In), T 3 cannot rireempt T 1 because TI'S e l , which is 3, is equal
to Ts'S CT. SO, T t is continuously dispatched. When T 1 is
completed at lime 4, T 2 is dispatched because T2'a CT is the
shortest of T 2, T3, arid T 4, At (b) and (C), T 4 and T3 fail because
of its missed DL, respectively. EDF is based On the deadline of
transacl~,.,,~s and produces ~ schedule T 4 -> T 2 -> T 3 -> T r as
shown in (2). At (at', T 3 preempts T 1 because T3's DL is snorter
than T l 's DL At (b)', T 4 preempts T 3 because the deadline of T,4
iS shorter lhan that of T 3. At (C)', T 3 tails because o# its missed
deadline Lastly, LSF is based on slack time S, defined as S = DL
- {current time + CT - executed time}. It schedules transaclions
with a leasl stack lime first, and Ih,Js produces a ~;cheduIe T 4 ->
T 3 > T 2 -> T1 as $hC~Wn in 13), At (at", T 3 Drsempts T 1 because
Ts's S, which is 2, is shoiler than T 1 'S S, At (b)", T 4 preempts T 3
because TO'5 S, which is 1, is the sha~est slack time. At (C)", T 2
tails because ot its ~isseq deadlil~6. Note this exarnp'.e shews
that the failed transactions turn out to be different for rheas
scheduling policies, rt implies lhal rhe timely completion of
transaclions can be changed by Ihe scheduling policy used O

2.2 Motivation

We have shown that the above two commit protocols
support the correct complet ion but cannot guarantee
the t imel iness. To supped the distr ibuted real-t ime
transactioe processing, it is necessary to consider
the ways t,~ specify t ime constraints, the t ime ly
execution of the transactions, arid fast comput ing Of
the commi t protocol. We propose a new commi t
prc.:o.,'ot that includes the t ime speoiticatioll method,
the t ime ly execut ion pol icy, and fast comput ing
capabil i ty. The goal of the proposed protocol is to
satisfy the correct complet ion and t imely complet ion
for the distributed real-time transactions.

3. A MODEL FOR DISTRIBUTED PROCESSING

A model for the diStributed real-time transaction proc-
easing cor~siats of a calling transaction, called a
coordinator, and its cooperating transactions, cal led
participants. A coordinator T~ dynamical ly creates a
set of participants, i.e., {TIT, Tie, ..., Tin }, and manages
their COrrect complet ion. T i keep~ information on the
part ic ipants to guarantee the correct complet ion.
Each padic ipant returns its execut ion result which
wi l l be used to decide e commit/abort action by its
coordinator. Examp le 2 shows that a d is t r ibuted
transaction requires its cooperatieg transactions.

Exarnple 2: Consider an electronic switching system tESS) such
as TDX-10. which is considered as a hard real-Ur, le system,
consisls of several siles, each composed o! OMP, I~IMP, and
several ASPs. In lhis ESS, Ors are used as ¢dleria to generate
COs by CDGT when a call happens in an ASP. For example, CI is
used IO determine whether a call is local or long-distance and GD
is .-?nlpu[ad on basis of Ct Cle are replioaled in all ASPs and are
pe,-iodic~tly changed. To change CIs, CIMT invokes CIHT and
CIHT invokes several ClOTs. There is a transaction hierarchy
a m o n g these transactions as shown in Figure 1. E]

~ ASP: access s~tching processor
i~MP: m~n-machine processor
OMP: operation and maiolaioence

MMP OMP prc~ssor
EHT; SxCepl/0tl ta R c{{ir,~' fralls~¢iiorl
Ch charging [nl0rrilalion
CO; r, hargio 9 data
CIMT: Clroar~ger~ed wnsacii0n
C[HT: CI Oa~lllng Iransaction
CICT: C[dla~gingtramaction
COST: CD sending Ir~saclion
COS]': CO ~r~al~n lransadion

Figure 1

4. INTEGRATED COMMIT PROTOCOL

The basic idea of new commi t protocol is that the
commit procedures for correct complet ion use the
results of participants which are t imely executed. We
call the new protocol an integrated commit protocol
(ICP). The ICP is composed of three parts: language
construct5 to specify the real- t ime requirements,
scheduling policy to support the t imely execut ion,
and commit procedures to satisfy the failure atomicity.
In this section, we describe these three pads.

4.1 Language Constructs

The distr ibuted real-time transaction processing req-
uires some t ime constraints. Transact ion deadl ine
(TO) is required to ensure a transaction complet ion.
Remote execut ion dead l ine (RED) is required to
ensure the completion of a remote request. Theorem
t shOws a relationship between the t ime constraints.
[Theorem 1] A padicipant's deadline TO~ is/ess than

the coordinator's remote execution deadline REDL
IP roo l~ O b v i o u s l y , t h c r e su l t o f pa i -dc ipan ts m a y b c u s e d b y
file c o o r d i n a t o r a f t e r R E D i a s s h o w n in F i g u r e 2. i"R

invocation TD coot ' termination

r 1 request a remote processing

Coordinato~ ~ TDO panepanti / 31 / t o ' - - z "

,ll,,-,,,,! Ill,

invocation tarniination

Figure 2

The constraints must be reflecled to the distr ibuted
real-time processing. To do this, we need language
constructs for the specification of the t ime constraints.
the invocation of remote transactions, and handl ing

Reliable transaction processing 65

the missed time constraints. Remote procedure call
(RPC supports the invecation of remote transaction,
execution of the remote transaction, and handling of
its results [9]. But, the original RPC scheme does not
include the timing requirements. Thus. we extend the
RPC scheme to support the real-time processing. We
focus on the issues to extend the RPC scheme.

Specifying the time constraints
In Figure 3, TD is explicitly specified by using the
input arguments in the transaction definition. RED is
also explicitly specified in the procedure call syntax.

'Send and no wait' and keeping the return messages
To support asynchronous remote processing, each
coordinator is not required to wait until its return mes-
sage is arrived. To do so, the "send-and-no wait'cell
syntax i~ proposed. Each coordinator may keep the
return messages until these are used to guarantee
the correctness of the participants. To keep the return
messages, a vectorized array is defined in the call
syntax of the coordinator as shown in Figure 3.

Handling the exception and failure recovery
To handle exceptions for reliable processing, the
exception handling routines ore defined in the
application programs. The routines contain the
compensative operations to support the forward
recovery and to resolve the inconsistency caused by
exceptions or failures. A transaction can have
several exception handling routines and compensat-
ive routines for timeout exception, error recovery,
and undoing the updates. The routines are
performed as urgent transactions to handle the
exceptions or failures immediately.

Transaction: Ti (arguments)
Declaration of except/on handling routines;
Specification of the transaction deadline TO/;
Initialization of vector 'V';
Specification of RED;
V = RPC RED and other arguments);
Check the timeliness of the remote transact on;

END Ti;

Figure 3

4.2 Timely Execution Method

There are three types el transaction: internal transac-
tions for local processing, external transactions for
remote processing, and urgent transactions for exce-
ption handling. These transactions must be executed
within their time constraints.

Scheduling Policy
tn our model, transactions keep their time infon'naticn
.e., TD and RED, and their urgency information

defined ~t the time of their creation. We suggest a
dynamic multi-level pderity scheduling policy based
on the urgency and on the priorities assigned by the
EDF schedul!ng policy. The reason is ~hat we are
able to know the deadline and the arrival time for
each transaction, and that the EDF scheduling policy
produces feasible schedules for real-time iproeassing
when both the deadline and the arrival time a r c
given [2,7]. When an urgent transaction arrives, it is
immediately executed. It two transactions have the

same level of urgency, then the execution order is
decided by their priorities. The multi-level scheduling
policy allows the preemption between transactions
as shown in Example 3. The preemption induces the
restart for the preempte,J transaction to resolve the
inconsistency for shared data.

Conflict Resolving Method
To prevent the restart of preempted transaction, we
adopt multi-verslen concurrency control protocol with
the multi-level scheduling policy. The reason is that
the multi-version timestamp ordering scheme is ab~e
to prevent the restarts of preempted transactions as
shown in Example 3. Also, it is desirable for aggress-
ive recovery using the compensative routines. For
example in Example 3, if the coordinator for T 2
decides an abort action, T 2 undo the updated vers on
X" by removing X".

Example 3: Consider Example 2. Suppose that. in ASP/. there
are three kinds o! transaction: T 1 for CDGT. T 2 for CICT. and T 3
for CDST. Additicnolly. suppose that there are two ki~s of da~a:
X tsr CI and y for CD. Y is generated using X by CDGTwben a c~
happens. CDST is periodically invoked to send Y to OMP. Each
tran$a..1~on has operations and time intorrnobon as foflows:

T 2 : t....W(X).,..,} ~ I I

These transactions are executed as to/lows by our policies.
time in 11 12 13 14 15 16 17

IT1 I T s l T S l T I IT1 i T31T31

(1) through (6) denote the flow of scheduling X' and Y' denote
the versions of X and Y at time 10, respectively. At (1), T 1 rez~d X'
to compute a new Y. At (2), T 2 preempts T 1 because T l's DL is
longer than Ts'S DL. At (3). Re~d/Wlite conflict noc~m be~'~een
T 1 and T 2 because T 1 i s preempted dedng read X'and T s wants
to write X~ Then. T 2 creates a new version X" for X. At (4]. T 2
unilaterally commits because T 2 is executed normally. At (5), T 1
writes Y' to change the current CL At (6). T 3 reads Y" thai is
changed by T 1. rn

4,3 Commit Procedures

When transactions are timely executed, their correct
completion must be guaranteed despite of failures.
The commit procedures of integrated commit
protocol supports the failure atom/city to satisfy the
correct completion with the timeliness. Figure 4
shows the basic flow of ICP.

~ yams] ing

COMMIT or
ABORT-UNO0 IT

-.l~Sy~ ~,~ pro¢©~¢ ='L-....__.....~ Coordinator -t~ =~y~r .~l,~* ?~:¢s~ parsclpants

FiGure 4

The return messages from participants are stored in
the vector/zeal array which consists of three lists: all
participants list Pn, committed participants list Pc, and
aborted participants list Pa. Pn keeps a set of

66 ~1. Yoon, S.C. Moon

participants invoked by a coordinator. Pcand Pa
keep the result values from participants.

The decision for correct completion is made through
the results of participants kept in Pcand P.. We
define a theorem for the decision. When Pc=is the
same to Pn. the coordinator decides commit action.
Otherwise, the coordinator decides abort, action by
Theorem 2, When the coordinator decides an action
far atomicity, the coordinator sends ~ message for
the decided action 1o partic;pants. For example, if the
abort a~ '1, the cobrdinator sends ABORT-UNDO
messag~ io Pc and sends ABORT message to Pn "
(Pa + Pc)- If the commit action, the coordinator sends
COMMIT message to Pn- Algorithm 1 show the flow.

[Theerern 2] If Pc is not equal to Pn, then the
coordinator always decides the Abort action.

[Proof] It is obvious that each p~.iciF~t must be executed
before the coordinator decides a commi£1abort ~.ction hy
using the result of participants, because of Theorem 1. If P¢
is not equal to Pn, then TD of some participant exceeds RED
of coordinator. Then, ",re must aho~ the participants for the
correct complefic, with the timely comple~ion, r7

Aloorithm 1: Decision P r o . c , ~
JF(Pc/=Pn)
THENdecide Abort action ;

SEND ABORTTO Pn- (Pa + Pc) and
SEND ABORT-UND~ TO Pc ;

ELSE decide Commit action ;
SEND COMMIT TO Pc;

FI;

In the distributed transaction processing, there are
several failures: transaction failures, site failures, and
lost messages. We show recovery procedures to
survive these failures for reliable processing.

Transaction failures
For the transaction processing, each transaction
updates some data objects temporarily, If software
fauR occurs, the ey~em indicates an abort signal 1o
the faulty l:ansaction. The transactions take abort
action to Peep the consistency for the temporarily
updated data. We solve this case by using the undo
routine that is defined in the faulty transaction.

Site failures
II the coordinator fails, parficipants issue timeoat
exception because no message from the coordinator
is received. Then the participants execute the
compensative routines which will decide the abort
action. The failed coordinator is recovered by
Algorithm 2. First, the recovery manager checks the
deadline of the failed transaction to guarantee the
timeliness. If missed, the recovery manager decides
the abort action and '~end ABORT message to Pn- If
not missed, the recovery manager restores to normal
state and continuously executes its normal functions.

When a participant fails, the coerdinator decides the
abort action through Theorem 2. But, to keep the
failure atomicity for a!ive participants, the failed
participant is excluded front its participants list Pn
until the failed participant is recovered. The failed
participant is recovered by restoring all the current
coordinator site's status and sends an alive message

to its coordinator. The coordinator includes the
recovered transaction into its participant list Pn-

Alaorithm 2: Recov.~rv Procedures
IF DeadlineOfTransaction is not expired;
THEN restore to normal state;

execute the normal function;
ELSE decide Abolt action;

SEND ABORTTO Pn;
terminate the transaction ;

FI;

Lost Messages
When the return messages from participants are lost,
the coordinator regards that the participants ate
failed. The coordinator decides abort action and
sends an ABORT message to each participant. When
the action message is lost, the participants also
regard that the coordinator is failed and perform the
compensative routines to decide the abort action.

5. CONCLUSION AND FURTHER STLIDY

We have proposed a new commit protocol, called
ICP, for the reliable distributed real-time transaction
precessmg. ICP used the timely executed results in
the commit procedures for the correct completion
and the timely uompletion. Furthermore, lOP obtains
fast computing through using of the result values of
participating transactions because the use of result
values reduces the number of message exchanges
for commit processing in 2PCP.

We plan to implement ICP in the real world
environments like ESS. Then, we will show our
protocol satisfies both timeliness and correct
completion.

REFERENCES

[1] Ceri, S. and Pelagatti, G., Distributed Database:
Principles and Systems, McGraw-Hill, 1984.

[2] Abbott, R. and Garcia-Molina, H., "Scheduling
Real-Time Transactions: Performance Evaluation,"
Proceedings of VLDB, 1988, pp. 1-12.

[3] Chu, W., "Resilient Commit Protocol," IEEE 5th
Real-Time Systems Symposium, 1985, pp. 25-29.

[4] Davidson, S. and Lee, I., "i3med Atomic Commitm-
ment," MS-CIS-88-80, Dept. of Computer and Infor-
mation Science, Univ. of Pennsylvania, Oct. 1989.

5 Gray, J., "Notes on Database Operating Systems"
IBM Research Report, RJ 2188, February 1978.

[6] Singhal, M., "Issues and Applications to Design of
Real-Time Database Systems," ACM SIGMOD
Records, Vol. 17, No. 1, March 1988, pp. 19-33.

[7] Huang, J., at. el., "Experimental Evaluation of
Real-Time Transaction Processing," IEEE 10th
Real-Time Systems Symposium, December 1989,
pp. 144-153.

[8] Mohan, C. and Lindsay, S., "Efficient Commit
Protocols for the Tree of Process Model of
Distributed Transactions," IBM Research Report,
RJ 3881, June 1983.

[9] Nelson, B.J., "Remote Procedure Calls,"
CMU-CS-81-119, Dept. of Computer Science,
Carnegie-Mellon University, 1981.

