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When real-time applications require distributed transaction processing, both correct 
completion and timeliness should be satisfied. All previous commit protocols, however, fail 
to provide the timeliness for real-time processing. That is, methods for the timely completion 
do not always guarantee the correct completion or vice ~,ersa. In this paper, we propose s 
novel commit protocol, called an mteg~ted commst protocol (ICP), in which the correct 
completion is satisfied with timely completion for distributed real-time transactions. The 
basic idea of ICP is that commit procedures for correct completion use the results of remote 
transactions which are timely executed, The timely execution is provided by the dynamic 
multilevel scheduling policy and the multi-version timestamp ordering scheme, 

t. INTRODUCTION 

Applications including telecommunication systems 
and military systems stimulated database research 
towards real-time database systems [6]. They require 
a timely completion such that data manipulation 
operations should be executed within a specified 
deadline. The real-time database systems need to 
operate in a distributed fashion to support inherent 
distributed nature of the applications. A distributed 
program requires a group of cooperating 
transactions distributed in the whole system. It is 
essential for the system to complete correctly so that 
the group of transactions behave consistently in the 
presence of failures. A key property of the correct 
completion is failure atomicity that means either a 
program has the intended results, or it has no results 
at all [1]. 

The distributed transaction processing requires lots 
of message exchanges over the uetworks, which can 
hinder the timely completion. Because the speed of 
communication network limits the performance of dis- 
distributed systems, it is necessary to reduce the 
number of intereite communications for real-time pro- 
cessing. Other important aspects for the timeliness 
are how to specify the time constraints and how to 
execute the transactions within the time constraints. 
In addition, it must guarantee th_ correct completion 
of the transactions. TO summarize, we must provide a 
new commit protocol in which correct completion and 
timely completion are both satisticd in a distributed 
real-time transaction processing environment. 

2. RELATED WORK AND MOTIVATION 

2.1 Related Work 

The atomic commitment protocol (ACP is proposed 
to guarantee failure atomicity for correct completion 
of the distributed transactions..~L well-known algorith- 

m for ACP is the two-phase commit protocol (2PCP) 

p 1; and its variations are proposed in [3,4,8]. Mohan 
81 and Ceri [1] improved the performance of 2PCP 

by reducing the number of m~seages exchanged in 
non-reaIJtime systems. Chu [3] and Davidson [8] 
suggested other variations of the commit protocol for 
real-time applications. We descdhe these latter two 
commit protocols and their problems because only 
they are concerned with the real-time processing. 

Resilient Commit Pretoco/ 
Chu suggested a resilient commit protocol under the 
assumption that both reliable networks and periodic- 
al exchange of "1 am alive" messages among sites 
are used. The assumption of reliable networks elimi- 
nates acknowledgement messages because the 
messages are managed by the network subsystems. 
Without checking the agreement of each participant. 
this protocol satisfies the failure atomicity. It enables 
the fast computing of the protocol due to the 
elimination of the agreement phase in 2PCP. This 
commit protocol, however, did not consider the 
timeliness which must be one of the primary goals of 
real-time systems. To support the timeliness, the time 
constraints must be reflected in the commit protocol. 

Timed Atomic Co,nmitment Protocol 
The timed atomic commitment protocol provide.~ time 
specifications to check deadlines in each phase of 
2PCP. The time constraints are defined in the 
transaction itself. For the timely completion, 
Davidson assumed both a sufficiently long deadline 
and a fair scheduling policy. Under these 
assumptions, the timed atomic commitment protocol 
satisfied timeliness for real-time applications. Since 
this protocol was based on basic 2PCP [5], there are 
two phases of message exchange for commit 
processing_ But. to support tha fast computing, it is 
required to reduce the number of message 
exchanoes to commit quickly. Also, scheduling 
policies ~ for real-time processing may produce 
different orders of transaction execution, affected by 
time constraints given, a~ shown in Example 1, Ther- 
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efore, a proper scheduling policy must be suggested 
to satisfy the t imeliness of commit  processing. 

Example 1: Consider the #ritowing set of transactiona with arrival 
time AT, computation time CT, arid deadline DL in a single site. 
These transacUons are applied to Ihree scheduling policies for 
reG.:-time processing: rate monotonic fRM) scheduling, least slack 
time tlrst (LSF) scheduling, and earliest deadline first (EDF) 
sched'~;ng J2,7"J. The results are shown below. 
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(a) fbl" 
RM schedules transacllons with a shorter computation time first. 
n produces a Schedule T 1 -> T 2 -> T 4 -> T 3 as shown in (1). At 
In), T 3 cannot rireempt T 1 because TI'S e l ,  which is 3, is equal 
to Ts'S CT. SO, T t is continuously dispatched. When T 1 is 
completed at lime 4, T 2 is dispatched because T2'a CT is the 
shortest of T 2, T3, arid T 4, At (b) and (C), T 4 and T3 fail because 
of its missed DL, respectively. EDF is based On the deadline of 
transacl~,.,,~s and produces ~ schedule T 4 -> T 2 -> T 3 -> T r as 
shown in (2). At (at', T 3 preempts T 1 because T3's DL is snorter 
than T l 's DL At (b)', T 4 preempts T 3 because the deadline of T,4 
iS shorter lhan that of T 3. At (C)', T 3 tails because o# its missed 
deadline Lastly, LSF is based on slack time S, defined as S = DL 
- {current time + CT - executed time}. It schedules transaclions 
with a leasl stack lime first, and Ih,Js produces a ~;cheduIe T 4 -> 
T 3 > T 2 -> T1 as $hC~Wn in 13), At (at", T 3 Drsempts T 1 because 
Ts's S, which is 2, is shoiler than T 1 'S S, At (b)", T 4 preempts T 3 
because TO'5 S, which is 1, is the sha~est slack time. At (C)", T 2 
tails because ot its ~isseq deadlil~6. Note this exarnp'.e shews 
that the failed transactions turn out to be different for rheas 
scheduling policies, rt implies lhal rhe timely completion of 
transaclions can be changed by Ihe scheduling policy used O 

2.2 Motivation 

We have shown that the above two commit  protocols 
support  the correct complet ion but cannot guarantee 
the t imel iness. To supped  the distr ibuted real-t ime 
transactioe processing, it is necessary to consider 
the ways  t,~ specify t ime constraints, the  t ime ly  
execution of the transactions, arid fast comput ing Of 
the commi t  protocol. We propose a new commi t  
prc.:o.,'ot that includes the t ime speoiticatioll method, 
the t ime ly  execut ion pol icy,  and fast comput ing  
capabil i ty. The goal  of the proposed protocol is to 
satisfy the correct complet ion and t imely complet ion 
for the distributed real-time transactions. 

3. A MODEL FOR DISTRIBUTED PROCESSING 

A model for the diStributed real-time transaction proc- 
easing cor~siats of a calling transaction, called a 
coordinator, and its cooperating transactions, cal led 
participants. A coordinator T~ dynamical ly  creates a 
set of participants, i.e., {TIT, Tie, ..., Tin }, and manages 
their  COrrect complet ion. T i keep~ information on the 
part ic ipants to guarantee the correct complet ion.  
Each padic ipant  returns its execut ion result  which 
wi l l  be used to decide e commit/abort action by its 
coordinator.  Examp le  2 shows that  a d is t r ibuted 
transaction requires its cooperatieg transactions. 

Exarnple 2: Consider an electronic switching system tESS) such 
as TDX-10. which is considered as a hard real-Ur, le system, 
consisls of several siles, each composed o! OMP, I~IMP, and 
several ASPs. In lhis ESS, Ors are used as ¢dleria to generate 
COs by CDGT when a call happens in an ASP. For example, CI is 
used IO determine whether a call is local or long-distance and GD 
is .-?nlpu[ad on basis of Ct Cle are replioaled in all ASPs and are 
pe,-iodic~tly changed. To change CIs, CIMT invokes CIHT and 
CIHT invokes several ClOTs. There is a transaction hierarchy 
a m o n g  these transactions as shown in Figure 1. E] 

~ ASP: access s~tching processor 
i~MP: m~n-machine processor 
OMP: operation and maiolaioence 

MMP OMP prc~ssor 
EHT; SxCepl/0tl ta R c{{ir,~' fralls~¢iiorl 
Ch charging [nl0rrilalion 
CO; r, hargio 9 data 
CIMT: Clroar~ger~ed wnsacii0n 
C[HT: CI Oa~lllng Iransaction 
CICT: C[ dla~gingtramaction 
COST: CD sending Ir~saclion 
COS]': CO ~r~al~n lransadion 

Figure 1 

4. INTEGRATED COMMIT PROTOCOL 

The basic idea of new commi t  protocol is that  the 
commit  procedures for correct complet ion use the 
results of participants which are t imely executed. We 
call the new protocol an integrated commit protocol 
(ICP). The ICP is composed of three parts: language 
construct5 to specify the  real- t ime requirements,  
scheduling policy to support  the t imely execut ion, 
and commit procedures to satisfy the failure atomicity. 
In this section, we describe these three pads. 

4.1 Language Constructs 

The distr ibuted real-time transaction processing req- 
uires some t ime constraints. Transact ion deadl ine 
(TO) is required to ensure a transaction complet ion. 
Remote execut ion dead l ine  (RED) is required to 
ensure the completion of a remote request. Theorem 
t shOws a relationship between the t ime constraints. 
[Theorem 1] A padicipant's deadline TO~ is/ess than 

the coordinator's remote execution deadline REDL 
IP roo l~  O b v i o u s l y ,  t h c  r e su l t  o f  pa i -dc ipan ts  m a y  b c  u s e d  b y  
file c o o r d i n a t o r  a f t e r  R E D  i a s  s h o w n  in  F i g u r e  2.  i"R 

invocation TD coot ' termination 

r 1 request a remote processing 

Coordinato~ ~ TDO panepanti / 31 / t o ' - - z "  

,ll,,-,,,,! .............................. Ill, 

invocation tarniination 

Figure 2 

The constraints must  be reflecled to the distr ibuted 
real-time processing. To do this, we need language 
constructs for the specification of the t ime constraints. 
the invocation of remote transactions, and handl ing 
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the missed time constraints. Remote procedure call 
(RPC supports the invecation of remote transaction, 
execution of the remote transaction, and handling of 
its results [9]. But, the original RPC scheme does not 
include the timing requirements. Thus. we extend the 
RPC scheme to support the real-time processing. We 
focus on the issues to extend the RPC scheme. 

Specifying the time constraints 
In Figure 3, TD is explicitly specified by using the 
input arguments in the transaction definition. RED is 
also explicitly specified in the procedure call syntax. 

'Send and no wait' and keeping the return messages 
To support asynchronous remote processing, each 
coordinator is not required to wait until its return mes- 
sage is arrived. To do so, the "send-and-no wait'cell 
syntax i~ proposed. Each coordinator may keep the 
return messages until these are used to guarantee 
the correctness of the participants. To keep the return 
messages, a vectorized array is defined in the call 
syntax of the coordinator as shown in Figure 3. 

Handling the exception and failure recovery 
To handle exceptions for reliable processing, the 
exception handling routines ore defined in the 
application programs. The routines contain the 
compensative operations to support the forward 
recovery and to resolve the inconsistency caused by 
exceptions or failures. A transaction can have 
several exception handling routines and compensat- 
ive routines for timeout exception, error recovery, 
and undoing the updates. The routines are 
performed as urgent transactions to handle the 
exceptions or failures immediately. 

Transaction: Ti (arguments) 
Declaration of except/on handling routines; 
Specification of the transaction deadline TO/; 
Initialization of vector 'V'; 
Specification of RED; 
V = RPC RED and other arguments); 
Check the timeliness of the remote transact on; 

END Ti; 

Figure 3 

4.2 Timely Execution Method 

There are three types el transaction: internal transac- 
tions for local processing, external transactions for 
remote processing, and urgent transactions for exce- 
ption handling. These transactions must be executed 
within their time constraints. 

Scheduling Policy 
tn our model, transactions keep their time infon'naticn 
.e., TD and RED, and their urgency information 

defined ~t the time of their creation. We suggest a 
dynamic multi-level pderity scheduling policy based 
on the urgency and on the priorities assigned by the 
EDF schedul!ng policy. The reason is ~hat we are 
able to know the deadline and the arrival time for 
each transaction, and that the EDF scheduling policy 
produces feasible schedules for real-time iproeassing 
when both the deadline and the arrival time a r c  
given [2,7]. When an urgent transaction arrives, it is 
immediately executed. It two transactions have the 

same level of urgency, then the execution order is 
decided by their priorities. The multi-level scheduling 
policy allows the preemption between transactions 
as shown in Example 3. The preemption induces the 
restart for the preempte,J transaction to resolve the 
inconsistency for shared data. 

Conflict Resolving Method 
To prevent the restart of preempted transaction, we 
adopt multi-verslen concurrency control protocol with 
the multi-level scheduling policy. The reason is that 
the multi-version timestamp ordering scheme is ab~e 
to prevent the restarts of preempted transactions as 
shown in Example 3. Also, it is desirable for aggress- 
ive recovery using the compensative routines. For 
example in Example 3, if the coordinator for T 2 
decides an abort action, T 2 undo the updated vers on 
X" by removing X". 

Example 3: Consider Example 2. Suppose that. in ASP/. there 
are three kinds o! transaction: T 1 for CDGT. T 2 for CICT. and T 3 
for CDST. Additicnolly. suppose that there are two ki~s of da~a: 
X tsr CI and y for CD. Y is generated using X by CDGTwben a c~ 
happens. CDST is periodically invoked to send Y to OMP. Each 
tran$a..1~on has operations and time intorrnobon as foflows: 

T 2 :  t....W(X).,..,} ~ I I  

These transactions are executed as to/lows by our policies. 
time in 11 12 13 14 15 16 17 

IT1 I T s l  T S l T I  IT1 i T31T31 

(1) through (6) denote the flow of scheduling X' and Y' denote 
the versions of X and Y at time 10, respectively. At (1), T 1 rez~d X' 
to compute a new Y. At (2), T 2 preempts T 1 because T l's DL is 
longer than Ts'S DL. At (3). Re~d/Wlite conflict noc~m be~'~een 
T 1 and T 2 because T 1 i s  preempted dedng read X'and T s wants 
to write X~ Then. T 2 creates a new version X" for X. At (4]. T 2 
unilaterally commits because T 2 is executed normally. At (5), T 1 
writes Y' to change the current CL At (6). T 3 reads Y" thai is 
changed by T 1. rn 

4,3 Commit Procedures 

When transactions are timely executed, their correct 
completion must be guaranteed despite of failures. 
The commit procedures of integrated commit 
protocol supports the failure atom/city to satisfy the 
correct completion with the timeliness. Figure 4 
shows the basic flow of ICP. 

~ yams] ing 

COMMIT or 
ABORT-UNO0 IT 

-.l~Sy~ ~,~ pro¢©~¢ ='L-....__.....~ Coordinator -t~ =~y~r .~l,~* ?~:¢s~ parsclpants 

FiGure 4 

The return messages from participants are stored in 
the vector/zeal array which consists of three lists: all 
participants list Pn, committed participants list Pc, and 
aborted participants list Pa. Pn keeps a set of 
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participants invoked by a coordinator. Pcand Pa 
keep the result values from participants. 

The decision for correct completion is made through 
the results of participants kept in Pcand P.. We 
define a theorem for the decision. When Pc=is the 
same to Pn. the coordinator decides commit action. 
Otherwise, the coordinator decides abort, action by 
Theorem 2, When the coordinator decides an action 
far atomicity, the coordinator sends ~ message for 
the decided action 1o partic;pants. For example, if the 
abort a~ '1, the cobrdinator sends ABORT-UNDO 
messag~ io Pc and sends ABORT message to Pn " 
(Pa + Pc)- If the commit action, the coordinator sends 
COMMIT message to Pn- Algorithm 1 show the flow. 

[Theerern 2] If Pc is not equal to Pn, then the 
coordinator always decides the Abort action. 

[Proof] It is obvious that each p~.iciF~t must be executed 
before the coordinator decides a commi£1abort ~.ction hy 
using the result of participants, because of Theorem 1. If P¢ 
is not equal to Pn, then TD of some participant exceeds RED 
of coordinator. Then, ",re must aho~ the participants for the 
correct complefic, with the timely comple~ion, r7 

Aloorithm 1: Decision P r o . c , ~  
JF(Pc/=Pn) 
THENdecide Abort action ; 

SEND ABORTTO Pn- (Pa + Pc) and 
SEND ABORT-UND~ TO Pc ; 

ELSE decide Commit action ; 
SEND COMMIT TO Pc; 

FI; 

In the distributed transaction processing, there are 
several failures: transaction failures, site failures, and 
lost messages. We show recovery procedures to 
survive these failures for reliable processing. 

Transaction failures 
For the transaction processing, each transaction 
updates some data objects temporarily, If software 
fauR occurs, the ey~em indicates an abort signal 1o 
the faulty l:ansaction. The transactions take abort 
action to Peep the consistency for the temporarily 
updated data. We solve this case by using the undo 
routine that is defined in the faulty transaction. 

Site failures 
II the coordinator fails, parficipants issue timeoat 
exception because no message from the coordinator 
is received. Then the participants execute the 
compensative routines which will decide the abort 
action. The failed coordinator is recovered by 
Algorithm 2. First, the recovery manager checks the 
deadline of the failed transaction to guarantee the 
timeliness. If missed, the recovery manager decides 
the abort action and '~end ABORT message to Pn- If 
not missed, the recovery manager restores to normal 
state and continuously executes its normal functions. 

When a participant fails, the coerdinator decides the 
abort action through Theorem 2. But, to keep the 
failure atomicity for a!ive participants, the failed 
participant is excluded front its participants list Pn 
until the failed participant is recovered. The failed 
participant is recovered by restoring all the current 
coordinator site's status and sends an alive message 

to its coordinator. The coordinator includes the 
recovered transaction into its participant list Pn- 

Alaorithm 2: Recov.~rv Procedures 
IF DeadlineOfTransaction is not expired; 
THEN restore to normal state; 

execute the normal function; 
ELSE decide Abolt action; 

SEND ABORTTO Pn; 
terminate the transaction ; 

FI; 

Lost Messages 
When the return messages from participants are lost, 
the coordinator regards that the participants ate 
failed. The coordinator decides abort action and 
sends an ABORT message to each participant. When 
the action message is lost, the participants also 
regard that the coordinator is failed and perform the 
compensative routines to decide the abort action. 

5. CONCLUSION AND FURTHER STLIDY 

We have proposed a new commit protocol, called 
ICP, for the reliable distributed real-time transaction 
precessmg. ICP used the timely executed results in 
the commit procedures for the correct completion 
and the timely uompletion. Furthermore, lOP obtains 
fast computing through using of the result values of 
participating transactions because the use of result 
values reduces the number of message exchanges 
for commit processing in 2PCP. 

We plan to implement ICP in the real world 
environments like ESS. Then, we will show our 
protocol satisfies both timeliness and correct 
completion. 
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