Microprocessing and Microprogramming 34 (1992) 63-66
North-Holland

83

RELIABLE TRANSACTION PROCESSING FOR REAL-TIME DISTRIBUTED

DATABASE SYSTEMS

Yong I. Yoon and Song C. Moon

Computer Science Department, Korea Advanced Institute of Science and Technoicgy,
Cheongryang P.O. Box 150, Seoul, 130-650 KOREA. E-mail: {yiyoon,moon}@csd.kaist.ac.kr

When real-time applications require distributed transaction processing, both correct
completion and timeliness should be satisfied. All previous commit protocols. however, fail
to provide the timeliness for real-time processing. That is, methods for the timely completion
do not always guarantee the correct completion or vice versa. In this paper, we propose &
novel commit protocol, called an integrated commit protocol {ICP), in which the correct
compietion is satisfied with timely completion for distributed real-time transactions. The
basic idea of ICP is that commit procedures for correct completion use the results of remote
transactions which are timely executed. The timely execution is provided by the dynamic
multilevel scheduling policy and the mutti-version timestamp ordering scheme.

1. INTRODUCTION

Applications including telecommunication systems
and military systems stimulated database research
towards real-time database systems [6]. They require
a timely ccmpletion such that data manipulation
operations should be executed within a specified
deadiine. The real-time database systems need to
operate in a distributed fashion to support inherent
distributed nature of the applications. A distributed
program requires a group of cooperating
transactions distributed in the whole system. it is
essential for the system to complete correctly so that
the group of transactions behave consistently in the
presence of failures. A key property of the correct
completion is failure atomicity that means either a
prog"rﬁr]n has the intended results, or it has no results
at all [1].

The distributed transaction processing requires lots
of message exchanges over the networks, which can
hinder the timely completion. Because the speed of
communication netwark limits the performance of dis-
distributed systems, it is nec95537 to reduce the
number of intersite communications for real-time pro-
cessing. Other important aspects for the timeliness
are how to specify the time constraints and how to
execute the transactions within the time constraints.
In addition, it must guarantee th._ correct completion
of the transactions. To summarize, we must provide a
new commit protocol in which correct completion and
timely completion are both satisficd in a distribuied
real-time transaction processing environment.

2. RELATED WORK AND MOTIVATION
2.1 Related Work
The atomic commitment protocal (ACP) is proposed

to guarantee failure atomicity for correct completion
of the distributed transactions. .\ well-known algorith-

m for ACP is the iwo-phase commit protocol (2PCP)
[51, and its variations are proposed in [3,4,8}. Mohan
8] and Ceri [1] improved the performance of 2PCP
by reducing the number of messages exchanged in
non-real-time systems. Chu [3] and Davidson 8]
suggested other variations of the commit protoco! for
real-time applications. We describe these latter two
commit protocols and their problems because only
they are concerned with the real-time processing.

Resilient Commit Protocol

Chu suggested a resilient commit protocol under the
assumption that both reliable networks and periodic-
al exchang_e of "l am alive™ messages among sites
are used. The assumption of reliable netwaorks elimi-
nates acknowledgement messages because the
messages are managed by the network subsystems.
Without checking the agreement of each participant.
this protocol! satisfies the failure atomicity. & enables
the fast computing of the protoco! due to the
elimination of the agreement phase in 2PCP. This
commit protocel, however, did not considetr the
timeliness which must be cne of the primary goals of
real-time systems. To support the timeliness, the time
constraints must be reflected in the commit protocol.

Timed Atomic Cammitment Protocol

The timed atomic commitment protocol provides time
specifications to check deadlines in each phase of
2PCP. The time constraints are defined in the
transaction itself. For the timely completion,
Davidson assumed both a sufficiently long deadline
and a f{air scheduling policy. Under these
assumptions, the timed atomic commitment protocol
satisfied timeliness for real-ime applications. Since
this protoco! was based on basic 2PCP [5), there are
two phases of message exchange for commit
processing. But, to support the fast computing, it is
required to reduce the number of message
exchanges to commit quickly. Aiso, scheduling
policies for real-time processing may produce
different orders of transaction execution, affected by
time constraints given, as shown in Example t. Ther-

64 Y.l Yaon, S.C. Maoon

efore, a proper scheduling pelicy must be suggested
to satisfy the timeliness of commit processing.

Example 1: Cansider the inliowing set of transactions with arival
time AT, computation time CT, and deadline DL in a single site.
These transactions are applied to three scheduling policies for
zitime p ing: rate ic (RM) scheduiing, least slack
time first (LSF} scheduiing, and earliest deadiine first (EDF)
scher? {2.7]. The results are shown below.
fimeg § 2 3 45 6 7 49 10

(time unit: second) RM O]
C_JsTciol

& b, 3]
Ed] m: @

318
E i1 s LSF RnY < e
@ (or @

RM schedules transactions with a shoster computation tirms tirst.
{t produces a schedule 71 -> To -> Tg > T3 2s shown in (1). At
(a), T cannot preempt T4 because T1's CT, which is 3, is equat
 Tg's CT. So, Ty is continuously dispatched. When T4 is
completed at time 4, Ty is dispatched because T5's CT is the
shortest of Tp, T3, and Ty4. At (b) and (C), T4 and T3 fail because
of its missed DL, respeciively. EDF is based on the dezdiine of
transactiuns and produces a schedule Tq -> Tp > T3 > Ty as
shown in {2). At (a)', T3 preempts Tq because Tg's DL is shorter
than Ty's DL. At (b), T4 preempts T3 because ihe deadiine of T4
is shorter than that of T3. At (¢}, T3 fails because of its missed
deadfine. Lastly, LSF is based on slack time S, defined as S = DL
- {current time + CT - executed fime}. it schedules 1ransactions
with a least slack time first, and thus produces a schedule T4 ->
T3 ->Tg -> Ty as shownin (3). Al (a)", T3 preempts Ty because
T3's S, which is 2, is shorter than T4's S, At (b)", T4 preempts Ty
because Ty's S, which is 1, is the shoriest slack time. At ()", T2
tails because of its missed deadling, Note this example shows
that the failed transactions turn out to be different for these
scheduling policies. it implies that the timely comptetion of
transaclions can be changed by the scheduling policy used. O

2.2 Motivation

We have shown that the above two commit protocols
support the correct completion but cannot guarantee
the timeliness. To support the distributed real-time
transaction processing, it is necessary to consider
the ways to specify time constraints, the timely
execution of the transactions, ard fast computing of
the commit protoeol. We propose a new commit
prciero! that includes the time specification method,
the timely execution policy, and fast computing
capability. The goal of the proposed protocol is to
satisfy the correct compietion and timely completion
far the distributed real-time transactions.

3. A MODEL FOR DISTRIBUTED PROCESSING

A model for the distributed real-time transaction proc-
essing consists of a calling transaction, called a
coordinator, and its cooperating transactions, called
participants. A coordinator T, dynamically creates a
set of participants, i.e., {Tjy, Ta. ... T;?). and manages
their correct completion. ‘h keeps infarmation on the
participanis to guarantee the correct completion.
Each participant returns its execution result which
will be used to decide a commit/abort action by its
coordinator. Example 2 shows that a distributed
transaction requires its cocoerating transactions.

Example 2: Consider an elecironic switching system (ESS) such
as TDX-10, which is considered as a hard realtime system,
consists of several sites, each composed ot OMP, MMP, and
several ASPs. In this ESS, Cls are used as criteria to generate
CDs by CDGT when a call happens in an ASP. For example, Clis
used 1o determine whether a call is local or long-distance and CD
is ~~miputed on basis of C1. Cls are replicated in all ASPs and are
periodically changed. To change Cls, CIMT invokes CIHT and
CIHT invokes several CICTs. There is @ transaction hierarchy
among these transactions as shown in Figure 1.

ASP: acesss switching proccessor

MMP: man-machine processor

OMP: operation and maintainence
processor

EHT. sxcaption handling lransaction

Cl: charging informalion
@@D CO0: charging data
. @ @ CIMT: Cl management fransaction
CIHT: Cl handling lransaction
CICT: Cl changing transaction

CDST: CD sending Iransaction
COGT: €D generatian fransaciion

Figure 1

4. INTEGRATED COMMIT PROTOCOL

The basic idea of new commit protocol is that the
commit procedures for correct completion use the
results of participants which are timely exacuted. We
call the new protocol an integrated commit protocol
(ICP). The ICP is composed of three parts: language
constructs to specify the real-time requirements,
scheduling policy to support the timely execution,
and commit procedures to satisfy the failure atomicity.
In this section, we describe these three parts.

4.1 Language Constructs

The distributed real-time transaction processing reg-
uires some time constraints. Transaction deadline
(TD) is required to ensure a transaction completion.
Remote execution deadline (RED) is required fo
ensure the completion of a remote request. Theorem
1 shows a relationship between the time constraints.
{Theorem 1] A participant's deadfine TDi is less than

the coordinator's remote execution deadline RED.
[{Proof] Obviously, the result of participants may be used by
the coordinutor after RED; as shown in Figuwre 2. [

invotation termination
it i

requestra remote processing

; RED of coordinator 1)
e I

N i
Coordinator \ TD, of participant i /
il]

Paricipant i

invocation termination
Figure 2

The constraints must be reflected to the distributed
real-time processing. To do this, we rieed language
constructs for the specification of the time constraints,
the invocation of remore transactions, and handling

Reliable transaction processing 65

the missed time constraints. Remote procedure call
(RPC) supports the invacation of remote transaction,
execution of the remote transaction, and handling of
its results [9]. But, the eoriginal RPC scheme does not
include the timing requirements. Thus, we extend the
RPC scheme 10 suppon the real-time processing. We
focus on the issues fo extend the RPC scheme.

Specifying the time constraints

In Figure 3, TD is expiicitly specified by using the
input arguments in the transaction definition. RLD is
also explicitly specified in the procedure call syntax.

‘Send and no wait' and keeping the returm messages
To support asynchronous remote processing, each
coordinator is not required to wait until its return mes-
sage is arrived. To do so, the ‘send-and-no wait’ call
syntax is proposed. Each coordinator may keep the
return messages until these are used to guarantee
the correctness of the participants. To keep the retum
messages, a vectorized array is defined in the call
syntax of the coordinator as shown in Figure 3.

Handling the exception and failure recuvery

To handle exceptions for reliable processing, the
exception handling routines are defined in the
application programs. The routines contain the
compensative operations fo suppont the forward
recovery and to rasolve the inconsistency caused by
exceptions or failures. A transaction can have
several exception handling routines and compensat-
ive routines for timeout exception, error recovery,
and undoing the updates. The routines are
performed as urgent transactions to handle the
exceptions or faiiures immediataly.

Transaction: Tj (arguments)
Declaration of exception handling routines;
Specification of the fransaction deadline TD;;
Initiatization of vector "V*;
Specification of RED;
V = RPC(RED and other arguments};
Check the timeliness of the remote transaction;
END Tj;

Figure 3
4.2 Timely Execution Method

There are three types of transaction: intemal transac-
tions for local processing, external transactions for
remote processing, and urgent transactions for exce-
ption handling. These transactions must be executed
within their time constraints.

Scheduling Folicy

In our model, transactions keep their time information,
i.e, TD and RED, and their urgency information
defined =t the time of thair creation. We suggest a
dynamic muiti-level priority scheduling policy based
on the urgency and on the priorities assigned by the
EDF scheduling policy. The reassn is ihal we are
able to know the deadline and the arrival time for
each transaction, and that the EDF scheduling policy
produces feasible schedules for real-time processing
when both the deadline and the arrival fime are
given [2,7]. When an urgent transaction arrives, it is
immediately executed. It two transactions have the

same level of urgency, then the execution order is
decided by their priorities. The muiti-level scheduling
policy allows the pre ption b 1S
as shown in Example 3. The preemption induces the
restart for the preemptey transaction to resclve the
inconsistency for shared data.

Confiict Resolving Method

To prevent the restart of preempted ransaction, we
adopt multi-version concurrency cantrol protocol with
the multi-level scheduling policy. The reason is that
the multi-version timestamp ordering scheme is able
1o prevent the restarts of preempted transactions as
shown in Example 3. Also, it is desirable for aggress-
ive recovery using the compensative routines. For
example, in Example 3, it the coordinatar for T,
decides an abort action, T, undo the updated version
X" by removing X"

3: Consider 2. Suppose that, in ASPj, there
are three kinds of transaction: Ty tor COGT, T for CICT, and Tg
for CDST. Additionally, suppase that there are two kinds of data
Xtor Cland Y for CD. Y is generated using X by CDGT when a call
happens. COST is periodically invoked to send Y to OMP. Each
transaction has operations and time information as fofiows:
AT T D
=} TI[16 3 15

T2l13 2 13
Tali2 2 1z
ions are executed as follows by our policies.
time 10 11 12 13 14 15 16 17

|[Ta]TefT2fTi] 1] T3l T3]

0N @ B @ B (8
(1) through (6) denote the flow of scheduling. X' and ¥’ denote
the versions of X and Y at time 10, respectively. At {1), T read X*
to compute a new Y. At (2), T, preempts T, because Ty's DL is
longer than T's DL. At (3}, contlist cocurs
T4 and T, because Ty is preempted during read X’ and T, wanis
to write X' Then, T creates a new version X" for X. At (4), T2

i y commits T, is executed At(5), Ty

writes Y* to change the curmrent Cl. At (6}, T3 reads Y" that is
changedby Ty. O

4.3 Commit Procedures

When transactions are timely executed, their correct
completion must be guaranteed despite of failures.
The commit procedures of inlegrated cammit
protocol supports the failure atomicity to satisty the
correct completion with the timeliness. Figure &
shows the basic flow of ICP.

i syncironous processisg

ts

Coordinatar _pyqvrekmous ocersgy Parlielpanl
Figure 4
The return ges from p are stored in

the vectorized array which consis'i; of thrae lists: all
participants list P,,, committed participants list P, and
aborted participants list P,. P, keeps a set of

66 Y.l Yoon, S.C. Moon

panicipants invoked by a coordinator. P.and P,
keep the result values from participants.

The decision for correct completion is made through
the results of participants kept in P, and P,. We
define a theorem for the decision. When P, is the
same to P, the coordinator decides commit action.
Otherwise, the coordinator decides abort action by
Theorem 2. When the coordinatar decides an action
for atomicity, the coordinator sends & message for
the decided action to participants. For example, if the
abort & .1, the courdinator sends ABORT-UNDC
messag: w0 P, and sends ABORT message to P, -
(P, + P,). If the commit action, the coordinalor sends
COMMIT message {o P,. Algorithm 1 show the flow.

{Theocrem 21 If Pp is not equal to Pp. then the

coordinator always decides the Abort action.
{Proof] It is obvious that each participant must be executed
before the coordinator decides a commit/abort action by
using the result of participams, because of Theorem 1.1 P_
is not equal to P, then TD of some participant exceeds PED
of coordinator. Then, we must ahort the participants for the
comrect campletica with the timely completion. 3

Algorithm 1- Decision Procedures
IF (Pp 1= Ppy
THEhfdecide Abort action ;
SEND ABORTTO Py - (P4 + Pp) and
SEND ABORT-UNDO TO Pg ;
ELSE decide Commit action ;
- SEND COMMIT TO Pp;

In the distributed transaction processing, there are
several failures: transaction failures, site ?ailures, and
lost messages. We show recovery procedures to
survive these failures for reliable processing.

Transaction failures

For the transaction processing, each transaction
updates some data objects temporarily. If software
fault eccurs, the system indicates an abort signal to
the faulty iransaction. The transactions take abort
action to Feaep the consistenicy for the temporarily
updated data. We solve this case by using the undo
routine that is defined in the fauity transaction.

Site failures .)

If the coordinator fails, patticipants issue timeout
exception because no message from the coordinator
is received. Then the participants execute the
compensative routines which will decide the abort
action. The faited coordinator is recovered by
Algorithm 2. First, the recovery manager checks the
deadline of the failed transaction to guarantee the
timeliness. If missed, the recovery manager decides
the abort action and <end ABORT message to Py If
not missed, the recovery manager restores 1o normal
state and continuously executes its normal functions.

When a participant fails, the coordinator decides the
abort action through Theorem 2. But, to keep the
failure atomicity for alive participants, the failed
participant is exciuded from its participants list Py
until the failed parlicipant is recovered. The failed
participant is recovered by restoring ail the current
coordinator site's status and sends an alive message

to its coordinator. The coordinator includes the
recovered transaction into its participant list Py,

Igorithm 2: Recow Pr I
IF DeadlineOfTransaction is not expired;
THEN resfore to normal state;
execute the normal function;
ELSE decide Aboit action;
SEND ABOATTO Pn;
terminate the transaction ;
Fl;

Lost Messages '

When the return messages from Eanimpants are lost,
the coordinator regards that the participants are
tailed. The coordinator decides abort action and
sends an ABORT message to each participant. When
the action message is lost, the participants also
regard that the coordinator is failed and perform the
compensative routines to decide the abort action.

5. CONCLUSION AND FURTHER STUDY

We have proposed a new commit protocol, called
ICP, for the reliable distributed real-time transaction
processing. ICP used the timely executed results in
the commit procedures for the correct completion
and the timely uomgletion. Furthermore, ICP obtains
fast computing through using of the result values of
participating transactions because the use of result
values reduces the number of message exchanges
for commit processing in 2PCP.

We plan to implement ICP in the real world
environments like ESS. Then, we will show our
protocol satisfies both timeliness and correct
cempletion.

REFERENCES

[1] Ceri, 5. and Pelagatti, G., Distributed Database:
Principles and Systems, McGraw-Hill, 1984,

[2] Abbott, R. and Garcia-Molina, H., "Scheduling
Real-Time Transactions: Performance Evaluation,*
Proceedings of VL.DB, 1988, pp. 1-12.

[3] Chu, W., “Resilient Commit Protocol," IEEE 5th
Real-Time Systems Symposium, 1985, pp. 25-29.

[4] Davidson, S. and Lee, |., "Timed Atomnic Commitm-
mant," MS-C1S-88-80, Dept. of Computer and Infor-
mation Science, Univ. of Pennsylvania, Oct. 1989.

[5] Gray, J., "Notes on Database Operating Systems,”
IBM Research Report, RJ 2188, February 1978.

[6] Singhal, M., "Issues and Applications to Design of
Real-Time Database Systems,” ACM SIGMOD
Records, Vol. 17, Na. 1, March 1988, pp. 19-33.

{71 Huang, J., et. al., "Experimental Evaluation of
Real-Time Transaction Processing,” IEEE 10th
Real-Time Systems Symposium, December 1989,
pp. 144-153.

[8] Mohan, C. and Lindsay, B., "Efficient Commit
Protocols for the Tree of Process Model of
Distributed Transactions," IBM Research Report,
RJ 3881, June 1983.

[9] Neison, B.J., "Remote Procedure Calls,"
CMU-CS-81-119, Dept. of Computer Science,
Carnegie-Melion University, 1981.

