
An Object-Oriented Architecture forConstraint-Based Graphical EditingRichard Helm, Tien Huynh, Kim Marriott, and John VlissidesIBM T.J. Watson Research CenterYorktown Heights, NY 10598AbstractDirect-manipulation graphics editors are useful tools for a wide variety of domains suchas technical drawing, computer-aided design, application building, and music composition.Constraints can be a powerful mechanism for specifying complex semantics declarativelyin these domains. To date, few domain-speci�c graphics editors have provided constraint-based speci�cation and manipulation facilities. Part of the reason is that graphical editorsare hard enough to develop without implementing a constraint system as well. Even thoughgraphical editing frameworks can reduce the di�culty of constructing domain speci�c graph-ical editors, a fundamental problem remains: there do not exist general constraint solvingarchitectures that are e�cient enough to support highly interactive editing, yet suitablyexible and extensible to adapt to di�erent editing domains.Addressing this problem, we present an object-oriented architecture that integratesthe graphical editing framework Unidraw with QOCA, a powerful new constraint solvingtoolkit. QOCA leverages recent advances in symbolic computation and geometry to supporte�cient incremental solving of simultaneous equations and inequations, while optimizingconvex quadratic objective functions. QOCA also supports new kinds of constraint manipu-lation that have novel applications to graphical editing. QOCA exploits the implementationlanguage to provide a convenient, object-oriented syntax for expressing constraints in theframework. The result is a generic and easily extended architecture for constraint-based,direct-manipulation graphical editing.Keywords: graphical editing, simultaneous linear constraints, quadratic optimization,object-oriented frameworks1 IntroductionConstraints are a powerful formalism in graphical user interfaces, both as an aid in interfacedevelopment and as an interaction paradigm. Constraints can specify spatial and semanticrelationships declaratively between objects in a user interface, while an underlying constraintsolver will ensure that interface meets the speci�cation. Previous work [2, 3, 5, 16, 20, 13,21, 22] has established that constraint systems need at least the following capabilities to bee�ective in graphical user interfaces:An earlier version of this paper appears in Proceedings of the Third Eurographics Workshop on Object-Oriented Graphics, Champ�ery, Switzerland, October 1992.To appear in Advances in Object-Oriented Graphics II, Springer Verlag, 1993.

- 2 -� multi-way constraints that can express at least simultaneous linear equations andinequations [7, 10]� low latency and high-bandwidth feedback during direct manipulation [16]� incremental addition and deletion of constraints [10, 17]� the ability to detect causes of unsatis�ability for debugging inconsistent systemsof constraints [10].� semantic feedback during direct manipulation to indicate valid ranges for variablesand movements of objects [12]� graceful handling of underconstrained systems [16, 6]Drawing packages, CAD systems, application builders, and diagrammatic editors arerepresentative of a class of applications that could bene�t particularly from constraints.These direct-manipulation graphics editors let a user manipulate visual manifestations offamiliar objects to convey information in a domain, and they are usually responsible formaintaining spatial and semantic relationships between objects. Constraints are a naturalway to specify these relationships and to ensure their maintenance. Responsibility can thusbe transferred from the user to the constraint system, freeing the user to focus on morecreative aspects of his task.Yet few graphical editing systems employ constraints to any degree; those that doare research prototypes [1, 20, 2, 21]. Perhaps one reason is that graphical editors arenotoriously di�cult to implement, even with conventional user interface toolkits. Severalframeworks for building graphical editors have been reported recently [23, 24, 27] that ad-dress this problem. These frameworks provide a generic software architecture that typicallysupports the following:� the de�nition of domain-speci�c graphical components and their semantics� mechanisms for composing and structuring components� (reversible) operations on components� specialized direct manipulation techniques� persistence and externalization of application dataExperience with graphical editing frameworks [25] has shown that they simplify editordevelopment for di�erent domains compared with traditional user interface toolkits, whichsupport only the controlling elements of an application (e.g., buttons, scroll bars, andmenus). Unfortunately, current frameworks take little or no advantage of the power ofconstraints. This de�ciency reects the fact that constraint capabilities are absent frommost hand-built graphics editors. Therefore combining the capabilities of a graphical editingframework with a general-purpose constraint system can make domain-speci�c, constraint-based graphical editing systems far simpler to develop.Integrating graphical editing frameworks and constraint systems raises new issues andchallenges. Some problems stem from the nature of constraint-based editing in a highly

- 3 -interactive environment: every component may be constrained, and the entire constraintsystem may need to be re-solved on every input event (e.g., mouse motion). Other problemsconcern the integration itself: constraints can be so basic to the operation of frameworkobjects but so closely coupled with the constraint system that integrating them requiresa rewrite of the framework, the constraint system, or both. Consequently, the integrationstrategy requires a careful design and implementation e�ort to minimize modi�cations tothe existing systems.This paper presents an architecture for constraint-based, direct-manipulation graphicalediting that addresses these issues. The architecture integrates Unidraw [27], a graphicalediting framework developed at Stanford University, and QOCA1, a new object-orientedconstraint-solving toolkit developed at IBM Research. Unidraw is an established graphicalediting framework that already has limited constraint-solving capabilities. QOCA leveragesrecent results in symbolic computation and geometry to support e�cient incremental andinteractive constraint manipulation. Our goal is to combine these systems to provide ageneric and easily extended architecture for constraint-based, direct-manipulation graphicalediting.This paper o�ers an overview of the integrated architecture and its subsystems. Webegin by presenting examples of constraint-based editing that demonstrate the power anddesirability of this paradigm in general and the advanced capabilities of QOCA in particu-lar. Then we describe the Unidraw framework and how we integrated it with QOCA toolkitobjects to allow constraint speci�cation. Next we provide details of the QOCA implemen-tation and the algorithms on which it is based. We conclude the paper with a summary ofthe architecture and discussion of future directions for this work.2 Sample ApplicationsQOCA is an extensible constraint solving toolkit that supports incremental solving of si-multaneous (in)equations and optimizes convex quadratic objective functions. QOCA alsosupports new kinds of constraint manipulation that have novel applications to graphicalediting. The following examples illustrate how graphical user interfaces can bene�t fromthis technology, both in implementing commonplace functionality and in providing new,constraint-based capabilities.2.1 Graphical ConnectivityA simple application of constraints in user interfaces is to maintain connectivity betweengraphical objects. The top of Figure 1 depicts rectangle objects A and C and an arrow-headed line B. We wish to link the rectangles with the line so that the arrows and rectanglesabut regardless of their relative positions, as shown at the bottom of the �gure.To ensure that the endpoints of the arrows remain inside the rectangles, we begin byspecifying the inequality constraintslA � lB � rA; bA � bB � tA; lC � rB � rC ; bC � tB � tC1Quadratic Optimization Constraint Architecture

- 4 -
A

(l,b)

(r,t)
B

(l,b)

(r,t)

C

(r,t)

(l,b)

Figure 1: Boxes-and-arrows connectivityover the variables de�ning the rectangles and line. These constraints are insu�cient, how-ever, because they do not guarantee that the arrowheads and rectangles abut properly. Wecan express these semantics as an optimization problem that minimizes the arrowheadedline's length: minimize((lB � rB)2 + (bB � tB)2)This expression, called an objective function, ensures that the line assumes the shortestdistance between the rectangles. Objective functions are distinct from constraints: anobjective function can only a�ect an underconstrained system. During constraint solving,therefore, QOCA will assign values to variables that minimize the objective functions. Asthe line's endpoints are constrained by the inequalities and governed by this objectivefunction, the line will reorient and deform to accommodate the desired optimization.2.2 Underconstrained SystemsSo far we have used an objective function to specify an explicit design criterion: that thearrowheads and rectangles should abut. Less obvious is the need to clarify what happenswhen the user moves a rectangle, say rectangle A. Rectangle C may remain stationary andthe line may stretch, for example, or the line may stay a �xed size while C moves the samedistance as A. Without specifying a preference, either scenario is plausible; the system isunderconstrained.Handling underconstrained systems is a classic problem in constraint satisfaction.Stated generally, a constraint system must have a way to determine values for variablesthat are not constrained to take unique values. Requiring precisely constrained systems|that is, neither over- nor underconstrained|places too much responsibility on the user tocreate potentially complex yet error-free constraint speci�cations.

- 5 -One way to deal with this problem is with constraint hierarchies [4], in which lower pri-ority constraints express default behavior. The constraint solver selects (either arbitrarilyor via comparators) non-required constraints to include in the solution. The primary dif-�culty with constraint hierarchies is in de�ning appropriate hierarchies (and comparators)so that, as constraints and defaults from di�erent parts of the hierarchy are selected, theresultant solutions are continuous with respect to each other.In contrast, the process of minimizing objective functions e�ectively selects values forunderconstrained variables. The key idea is to continually re�ne the objective functionsduring direct manipulation so that new solutions are always as close as possible to theold. The objective functions provides a declarative way to express exactly what \closeness"means.Returning to our connectivity example, we can make the system behave predictablywhen a rectangle is moved by introducing additional objective functions. Suppose we requirethat the rectangles deform and move as little as possible during direct manipulation. Thisrequirement is captured via the objective functionsminimize((lA � l0A)2 + (bA � b0A)2 + (rA � r0A)2 + (tA � t0A)2)and minimize((lC � l0C)2 + (bC � b0C)2 + (rC � r0C)2 + (tC � t0C)2);which state that the new values for the variables de�ning the rectangles (lA; rA; :::; lC; rC; :::)should remain as close as possible to their current values given by the constants(l0A; r0A; :::; l0C; r0C; :::). By updating these constants at the start of each direct manipula-tion, we ensure that the rectangles will be deformed no more than necessary (and typicallynot at all).Through objective functions, QOCA supports the \Principle of Least Astonishment":it guarantees that the rectangles will move as little as possible should the system ever beunderconstrained. Moreover, because solutions are selected via objective functions, whichare continuous, solutions generated by the solver during direct manipulation are likewisecontinuous with respect to each other. The system will not generate sudden discontinuousjumps between solutions.2.3 Constrained LayoutSimultaneous linear constraints are a convenient way to express graphical layout. For ex-ample, Figure 2 graphically depicts constraints that left-align three small boxes and centerthe topmost small box horizontally in the surrounding box. Vertical constraints providewhitespace between the boxes and the surrounding box, ensuring that it is large enough tocontain the smaller boxes.Given that the dimensions of the surrounding box are W �H and the dimensions ofthe top most box are w � h, the constraints that capture this layout are3h+ 2Y1 + 2Y2 = H;2X1 + w = W;X1 = Y1:

- 6 -
X1 X1

Y1

Y2

Y2

Y1Figure 2: Example layoutThese constraints form a system of simultaneous linear equations in three unknowns, therebydemonstrating the need for a constraint solver that can solve simultaneous linear equations.In general, a constraint solver based on local propagation is not adequate whenever con-straints express a dependency between the x and y dimensions.Objective functions add even more power as they can express layout in terms of a\spring" metaphor, in which layouts can deform in precise and intuitive ways. The objectivefunction measures the potential energy of a particular con�guration, and the best layout isthe one that minimizes this potential.More formally, a spring S is speci�ed by its minimum length Lmin, its rest length Lrest,its maximal length Lmax, and its energy coe�cients when compressed Ecomp and stretchedEstr. Letting x be the extent of S, x must obey the constraints Lmin � x � Lmax; and theenergy of S is: e(x) = �Ecomp(Lrest � x) if Lmin � x � Lrest;Estr(x� Lrest) if Lrest � x � Lmax.As the acronym suggests, QOCA is designed to solve quadratic optimization problems. At�rst glance it is not clear that minimization of e can be handled by our system, because itis piecewise-linear rather than quadratic. However, we can transform this into a quadraticoptimization problem (actually a linear optimization problem) by introducing two newvariables: xcomp, the amount the spring is compressed, and xstr, the amount the spring isstretched. The associated constraints areLmin � x � Lmax; xcomp � 0; xstr � 0; x = Lrest � xcomp + xstrand the energy of S is given bye0(x; xcomp; xstr) = Ecompxcomp +Estrxstr:Now for all Lmin � x � Lmax, the minimum value of e0(x; xcomp; xstr) is the same as thatof e(x)|the minimum value of e0 occurs when both xcomp or xstr is zero. Thus the twoproblems have the same solution.

- 7 -
Figure 3: Dialog box with horizontal spring constraints superimposed

Figure 4: Resized dialog box with incorrect layout behavior2.4 Diagnosing AnomaliesOne of the problems with declarative speci�cations in general and constraints in particularis that it can be di�cult to ascertain the cause of unexpected behavior. The larger the set ofconstraints, the more likely it is that the system is either over- or underconstrained, incon-sistent, or otherwise at odds with desired semantics. Any system that supports nontrivialconstraint speci�cations should also o�er mechanisms for diagnosing anomalous behavior.For example, consider interactive layout in a user interface builder. The dialog box inFigure 3 consists of check boxes and radio buttons aligned with spring constraints (arrows)and an alignment constraint (dashed vertical line). The builder is displaying only horizontalconstraints for simplicity.Now the interface designer would like the whitespace in between and around the buttonsto grow and shrink equally as the dialog is resized. When the designer resizes the dialog,however, there radio buttons stay a �xed distance away from the right edge (Figure 4). Todiagnose this problem, the builder can use the constraint system to determine the causes ofunsatis�ability.
Figure 5: Diagnosing incorrect layout behavior

- 8 -
Figure 6: Corrected layout behaviorA natural interface to this functionality would let the user try to move a misplacedobject. Then the system can provide feedback to help explain why the object cannot occupyits proper place. QOCA supports this diagnosis by providing primitive operations for testingthe satis�ability of constraints and detecting the causes of their unsatis�ability.In Figure 5 the user is trying to move one of the misplaced radio buttons. The systemresponds by displaying graphically the constraints that keep the button from moving: theleft-alignment constraint and the spring to the right of the second \sometimes" radio button.This suggests to the user that a spring constant is incorrect. When he examines the spring'sattributes he discovers that its spring constant is zero when it should be identical to that ofthe other springs. The user can then modify this constant in the builder, and the resultinginterface exhibits the proper resize semantics (Figure 6).3 Unidraw Framework IntegrationUnidraw is an object-oriented framework for building direct-manipulation graphical editors.It is a part of InterViews [15], a comprehensive set of programming abstractions and toolsfor the design and implementation of workstation applications. Unidraw partitions thecommon functionality of graphical editors into four major class hierarchies:1. Components represent the elements in a graphical editing domain, for example,geometric shapes in technical drawing, schematics of electronic parts in circuitlayout, and notes in written music. Components encapsulate the appearance andsemantics of these elements. The user arranges components to convey informationin the domain of interest.2. Tools support direct manipulation of components. Tools employ animation andother visual e�ects for immediate feedback to reinforce the user's perception thathe is dealing with real objects. Examples include tools for selecting componentsfor subsequent editing, for applying coordinate transformations such as translationand rotation, and for connecting components.3. Commands de�ne operations on components. Commands are similar to mes-sages in traditional object-oriented systems in that components can receive andrespond to them. Commands can also be executed in isolation to perform arbi-trary computation, and they can reverse the e�ects of such execution to supportundo. Examples include commands for changing the attributes of a component,

- 9 -duplicating a component, and grouping several components into a composite com-ponent.4. External representations de�ne a one-way mapping between components andtheir representation in an outside format. For example, a transistor component cande�ne both a PostScript representation for printing and a netlist representation forcircuit simulation; each is generated by a di�erent class of external representation.Partitioning editor functionality into components, commands, tools, and external rep-resentations is the foundation of the Unidraw architecture. We will introduce additionalUnidraw classes as they become relevant.3.1 Basic IntegrationThe obvious application of QOCA in Unidraw was as a replacement for Unidraw's special-purpose geometric constraint solver, which enforces connectivity semantics between com-ponents. However, making QOCA's full power available to the Unidraw programmer addsa new dimension to the framework's capabilities|support for constraint-based graphicalediting. In this section we discuss several key aspects of the integration of these two sys-tems.Unidraw can leverage constraints in two ways: (1) constraints can de�ne attributes ofnew user-de�ned components, for example, to de�ne the center point of a rectangle in termsof its corners; and (2) constraints can appear as graphical components to be manipulatedin their own right. Before describing how this is done in Unidraw, we must �rst considerhow to specify constraints in QOCA.3.1.1 Expressing Constraints in QOCAQOCA makes constraints, objective functions, and variables �rst class objects, and it pro-vides a natural syntax to de�ne these objects directly in the programming language, in thiscase C++. QOCA de�nes constraints and variables using the arithmetic and relationaloperators of C++. This requires heavily overloading these operators, but the result is anatural syntax for declaring constraints.The following example, written in C++, captures the relationship between temperaturescales in Fahrenheit, Celsius, and Kelvin as constraints over variables representing thesequantities. It makes use of three classes, CVariable, Constant, and Constraint.CVariable fahr, cent, kelv;Constant Freezing = 32.0;Constant AbsoluteZero = 273.13;Constraint c1 = fahr - Freezing == cent * 1.8;Constraint c2 = cent == kelv - AbsoluteZero;Constraints are added to the system merely by instantiating constraint objects. QOCAensures that the values of CVariable objects adhere to the constraint speci�cation. Through

- 10 -operator overloading, QOCA evaluates the expressions in the constraints and returns in-stances of class Expression. Expressions are objects that capture the abstract syntax treeof the expressions in the constraint. These structures can be then assigned as in the caseabove or can be manipulated symbolically by other objects.Objective functions de�ne expressions to be minimized or maximized. In this example,suppose we want to minimize the di�erence between the variable representing Fahrenheitand freezing. We can express this requirement with an instance of class Objective:Objective o = Minimize(fahr*fahr - Freezing);Minimize is a function that takes an Expression as an argument and returns an instance ofclass Objective. The Objective object o establishes an objective function that QOCA mustconsider in solving the constraint system.It is often necessary to assign values to the variables and then have these values au-tomatically propagate to the constrained variables via the constraint solving class Con-straintSolver. But the allowed values of CVariables are governed by Constraint and Ob-jective objects. Consequently, assigning a value to a variable is not a direct assignment|theassigned value may be inconsistent with some constraints or may not satisfy some objective.Instead QOCA treats an assignment to a variable as a request that the CVariable take thatvalue. Only when the constraint system is solved are the requested values considered. Thenthe solver propagates computed values back to the variables, notifying them that they havechanged. In solving the constraints, the requested values act as parameters to the system,and all other variables will depend on them. Thus we can writecent = 95;and the solver will assign the correct values to fahr and kelv whenever the Solve method(i.e., ConstraintSolver::Solve) is called.The classes CVariable, Constant, Constraint, Objective, and ConstraintSolver are theprimary base classes visible to users in QOCA, and they do not depend on Unidraw inany way. Additional classes integrate QOCA and Unidraw without compromising theirindependence, as we demonstrate in subsequent sections.3.1.2 Constraint State VariablesCVariable objects play a central role in the speci�cation of constraints. Clearly if Unidrawis to support general constraint speci�cation, it must surface CVariable to the users of theframework. Complicating the issue is Unidraw's notion of a state variable. State variablesare persistent values that can de�ne a graphical user interface for viewing and modi�cation,and they can change automatically through Unidraw's support for dataow. Componentscommonly have one or more state variables that store user-accessible state. For example,an inverter component in a schematic capture system may use state variables to de�ne thelogic levels at its input and output terminals.State variables thus play some of the same roles as constraint variables, and vice versa.To avoid introducing dependencies between Unidraw and QOCA, we derive a new class,constrained state variable, or CSVar, from both the StateVar state variable base class

- 11 -class ConstrainedRectComp : public Component {CSVar _left, _right, _centerx;CSVar _top, _bottom, _centery;Constraint _Xconstraint, _Yconstraint;...};ConstrainedRectComp::ConstrainedRectComp () {_Xconstraint = _left + _right == 2.0 * _centerx;_Yconstraint = _top + _bottom == 2.0 * _centery;} Figure 7: Excerpt from ConstrainedRectComp class declaration and de�nitionand from CVariable. CSVar inherits both the constraint semantics of CVariable and the per-sistence and other Unidraw-oriented aspects of StateVars without introducing dependenciesbetween the base classes.The mechanism for keeping CSVars consistent with the constraint system builds uponboth the QOCA and Unidraw architectures. Ordinary CVariables receive requests forchange and later have their values updated in one pass via ConstraintSolver::Solve.However, Unidraw programs do not call this operation directly. Unidraw already de�nes aglobal Update operation that synchronizes the application and the state of its constituentobjects, which may involve solving connectivity constraints, repainting the screen, and soon. We simply extended this operation to invoke Solve on the constraint solver.CSVars have the added need to notify their enclosing component (if any) whenever theychange. Therefore the CSVar class adds protocol for associating one or more componentswith an instance. CSVar also extends CVariable's Update operation to notify its associatedcomponents of a change in its value.3.2 Constraining ComponentsTo place constraints on components, variables that represent attributes of components mustbe de�ned in terms of CSVars. This lets us establish constraints between an object's internalvalues (i.e., internal constraints) and across objects (external constraints).Internal constraints simplify a component's de�nition. Code previously required tomaintain relationships between member variables is now delegated to the solver through theconstraints. Internal constraints also simplify alternate de�nitions of objects. For examplea rectangle can be de�ned by a center point and one corner or by opposite corners. Considerthe class ConstrainedRectComp shown in Figure 7, which de�nes six member CSVarsrepresenting its opposing corner points and its center. Note how internal constraints in theconstructor de�ne the center point in terms of its corners.To present constraints graphically as components, we derive a new base class of graph-ical component called ConstraintComp, which de�nes an appearance and manipulationsemantics for constraints. Derived classes add semantics for particular constraints. For

- 12 -example, the derived class PointEqualityComp takes two pairs of CSVars representingtwo points and establishes an equality constraint between them:class PointEqualityComp : public ConstraintComp {public:PointEqualityComp(CSVar&, CSVar&, CSVar&, CSVar&);...private:Constraint _XConstraint, _YConstraint;};PointEqualityComp::PointEqualityComp (CSVar& x1, CSVar& x2, CSVar& y1, CSVar& y2) { _XConstraint = _x1 == _x2;_YConstraint = _y1 == _y2;...}In general, graphical components in Unidraw use structured graphics objects [26] to de-pict themselves graphically. PointEqualityComp maintains a structured graphic object topresent its constraint to the user in an intuitive manner.ConstraintComp objects are often constructed by tools that query components fortheir CSVars using Unidraw's interpreted command mechanism. The tool provides theappropriate direct manipulation semantics, such as dragging or stretching a line betweentwo points. Once a tool has obtained the required CSVars, it returns a command thatpastes the component into the drawing and establishes the proper external constraints.For example, the tool that creates an EqualityPointComp between two points asks thetwo components containing these points to return the appropriate CSVar objects. Thenit instantiates an EqualityPointComp, passing the CSVars to the constructor. Finally, itreturns a PasteCmd object containing the new instance. Later in the paper we discussin more detail how we exploit Unidraw's direct manipulation model to involve constraintsolving and how undoable commands containing constraints work.3.3 Supporting Undo/RedoIn integrating QOCA and Unidraw, it is important to retain full undo and redo capabilities.Two semantics are essential:1. Constraints and optimization functions can exist without a�ecting the constraintsystem.2. The constraint system can be queried for its current state, and it can revert toexactly that state at an arbitrary point in the future.

- 13 -3.3.1 Enabling and DisablingThe �rst semantics implies that an instantiated constraint or objective does not necessarilya�ect the behavior of the system: only an enabled constraint or objective may have ana�ect. This is relevant to the undo model in that structural changes to the system mayhave to be undone.For example, suppose the user deletes the right-hand rectangle in Figure 10. In standardUnidraw this would be accomplished via a DeleteCmd, which removes the component beingdeleted from its enclosing structure but does not destroy it. Instead, the command storesboth the component and its position in the structure. If the DeleteCmd is later undone, itreinserts the component in the structure at the proper place. It is far easier and cheaper tosave the component that to reconstruct it, since a component can be arbitrarily complex.Similarly, it is better to disable and enable constraints and objectives than it is todestroy and recreate them. When the constrained rectangle is removed, it disables all theconstraints and objectives that a�ect its CSVars; if it is subsequently pasted or reinsertedinto the display, it simply enables them again.The Constraint class in QOCA provides protocol for enabling and disabling its in-stances. The ability to switch constraints on and o� at will is one of the novel features ofQOCA and is intrinsic to supporting undo/redo semantics. It requires e�cient incrementaladdition and deletion of constraints. No other constraint solving system that we know ofprovides this capability for the class of constraints that QOCA solves.3.3.2 Saving and Restoring System StateThe second semantics ensures that the editor does not su�er from hysteresis or round-o�errors as operations are undone and redone. There is no guarantee, for example, thatundoing a state-changing operation (such as a move) by performing the inverse operationwill return the system to exactly the original state. Round-o� errors can accumulate evenin ostensibly well-behaved systems.Hysteresis can occur in underconstrained systems as constraints are added and deleted.Consider the scenario in Figure 8. The endpoints of two lines are constrained to coincidevia an equality constraint, which is subsequently removed. Because the lines are undercon-strained, the top portion of stage 3 is a valid con�guration. However, to support undo andredo, the display must be restored to the con�guration at the bottom of stage 3; otherwiseunpredictable results will occur as the user performs additional undo commands.To ensure stability, state-changing commands query the constraint engine for Solutionobjects both before and after they carry out their operations. A Solution object capturesthe state of the constraint solver at a particular instant. On undo, these commands thendirect the constraint engine to adopt the original (i.e., pre-execution) solution. On redo,they set the post-execution solution. The constraint system is thus guaranteed to computethe same values after arbitrarily many undo and redo operations.3.4 Constraining Direct ManipulationIt is important to enforce constraints and to see their e�ects during direct manipulation.Otherwise, the result of the manipulation may not correspond to the feedback provided.

- 14 -
1. Two Lines

=

2. Add PointEquality 3. Delete PointEquality

or Figure 8: Hysteresis in underconstrained systems
Manipulator

1

2

3

4

CreateManipulator

Grasp

Effect

InterpretManipulator()

Execute

(semantic feedback)

messages from framework

(modifies application)

Manipulator

Command

Command

Tool

Manipulator

Tool

receiver result

Manipulating*Figure 9: Basic direct manipulation sequenceFor example, a drawing editor may let a user stretch an unconstrained rectangle arbitrarily.But a rectangle that is constrained to be square should stay that way as it is stretched,thereby reecting the constraint in the manipulation. This section summarizes Unidraw'sdirect manipulation model and how it is integrated with QOCA to support constraineddirect manipulation.3.4.1 Unidraw Direct Manipulation ModelTools are fundamental to Unidraw's direct manipulation model. The user grasps and wieldsa tool to achieve a desired e�ect. The e�ect may involve a change in component or otherapplication object state, or it may change the way components are viewed, or there may beno e�ect at all (if, for example, the tool is used in an inappropriate context). Most toolsgenerate animated e�ects as they are wielded to provide semantic feedback to the user.Tools employ Manipulator objects and commands to handle the mechanics of thedirect manipulation and enact its outcome. A manipulator abstracts and encapsulates thecode that generates semantic feedback. Manipulator provides a standard interface to anabstract state machine that de�nes interaction semantics. Commands actually carry outthe intent of the manipulation and permit its undoing and redoing.

- 15 -
1

2
3

FrameFigure 10: Frames of animation produced by CDragManip::ManipulatingFigure 9 depicts the four basic stages of a direct manipulation:21. The active tool receives a CreateManipulator message from the framework in re-sponse to user input. The tool creates an appropriate manipulator and returns itto the framework.2. The framework exercises the manipulator in response to user input:(a) Grasp instructs the manipulator to prepare to generate semantic feedback.In response, the manipulator typically initializes internal state associated withthe ensuing animation.(b) The framework issuesManipulating messages repeatedly in response to userinput until the manipulator indicates that manipulation has ceased. Each callto Manipulating usually generates a new frame of animation.(c) E�ect instructs the manipulator to �nalize its internal state following thedirect manipulation.3. The framework asks the active tool to interpret the manipulator it had createdvia the InterpretManipulator message. The manipulator returns a command inresponse.4. The framework executes the command to carry out the user's intent.3.4.2 Integrating ConstraintsTo enforce constraints during direct manipulation, Unidraw may solve the constraint systemon every input event. The state of the system thus changes beforemanipulator interpretationat stage 3 above. This contrasts with interactions that do not involve constraints, whereinthe application is a�ected only after manipulation has ended.2This discussion omits many details of Unidraw's direct manipulation model to focus on the parts thatrelate directly to its interplay with QOCA. A detailed description of the model appears elsewhere [27].

- 16 -Consider the boxes-and-arrows connectivity example from Section 2.1. Figure 10 de-picts three frames of animation produced when the user moves the right-hand rectanglewith a MoveTool. In this case, each frame is generated by a call to Manipulating onan instance of CDragManip (short for \constrained drag manipulator"), the manipulatorthat the MoveTool created. MoveTool initializes the CDragManip with the CSVars thatde�ne the lower-left and upper-right corners of the rectangle being moved.CDragManip's Grasp operation records the current values of the system's CSVars ina Solution object. Each subsequent call to Manipulating generates a frame of animation:CDragManip requests changes to the rectangle's CSVar values each time the cursor movesduring manipulation. Then CDragManip calls Unidraw::Update, which solves the con-straint system and updates the display. Unidraw thus maintains the connectivity con-straints during direct manipulation simply by treating each frame of the animation as anincremental change to the constraint system.QOCA's incremental parametric constraint solver performs each step of the manip-ulation e�ciently. It treats the variables being manipulated (that is, those that receiverequests to change value in the call to Manipulating) as parameters. The solver minimizesthe manipulation of the constraints by solving parametric quadratic optimization prob-lems incrementally. Most often it computes new values of variables that depend on theparameters directly|constraint manipulation occurs relatively infrequently.A subtle point in this strategy concerns when to change the objective functions toreect the rectangle's �nal position. Recall that the system includes objective functions(expressed via Objective objects) that minimize the distance between the rectangle's initialand �nal positions. After manipulation it is necessary to adjust the constants appearing inthese objectives to make their values correspond to the new position.We refer to this process as leapfrogging the objective functions at the end of eachmanipulation step to catch up to the current values of the CSVars they e�ect. This adjust-ment takes place in the command that records the overall e�ect of the direct manipulation.When the framework issues the InterpretManipulator message (passing the CDragManip asan argument) to the MoveTool, it responds by producing a CMoveCmd, or \constrainedmove command." This command's purpose is twofold: (1) to adjust the rectangle com-ponent's objectives, and (2) to provide a record of the manipulation should it be undoneor redone later. If the command is undone (or redone), CMoveCmd moves the rectangleback to its original position (or to its new position) and adjusts the rectangle's objectivesaccordingly.4 QOCA Internals4.1 Architectural OverviewQOCA has the four main components illustrated in Figure 11:1. A solver, which adds or deletes constraints while incrementally maintaining thesolved form. The test for satis�ability is a byproduct of maintaining the solvedform.

- 17 -
Optimization

Function
Current
Solution

Current Constraints

Solver

Optimizer

 Normal FormProjector Detector

Figure 11: QOCA architecture2. A detector, which takes a constraint that is inconsistent with the current con-straints and identi�es sources of the inconsistency.3. A projector, which takes a set of variables and projects the current constraintsonto those variables.4. An optimizer, which recomputes the current solution given requested values forparameters. It �nds values for non-parametric variables that both satisfy theconstraints and minimize the optimization problems.In addition, QOCA maintains a record of the current constraints and the current op-timization function. It also maintains a current solution, the assignment of variablesthat satis�es the current constraints and minimizes the current optimization function.QOCA's architecture is designed to be exible. It permits experimentation with dif-ferent classes of constraints and domains (e.g., reals, booleans, etc.), di�erent constraintsolving algorithms for these domains, and di�erent representations for objects in these do-mains. QOCA's object-oriented design allows parts of the system to be varied independentlyof others. For example, real numbers, currently represented as doubles, can be changed toin�nite precision or rational representations simply by changing the de�nition of a singleclass.Moreover, as improved algorithms and solvers are developed, existing algorithms canbe replaced with minimal disturbance. This modularity highlights an advantage of usingglobal constraint solvers such as QOCA. Systems that employ local propagation [16, 19]often distribute constraint solving methods throughout the system, relegating to each objectthe responsibility to solve its own constraints. This makes it di�cult to exploit e�cientrepresentations and constraint solving algorithms in these systems.

- 18 -4.2 ImplementationHere we describe briey the algorithms and techniques used in the constraint system. Acomplete description of QOCA is forthcoming [11], and preliminary performance measure-ments have already been reported [10].QOCA leverages the well-developed theory and e�cient algorithms that have been in-vestigated extensively in operations research for handling linear constraints. The Simplexalgorithm is the key technique used in the system. The Simplex is an e�cient symbolic ma-nipulation technique for testing satis�ability and for optimizing linear constraints. QOCAalso takes advantage of new results from symbolic computation, both for e�cient repre-sentation of constraints and in incremental algorithms for constraint manipulation. QOCAcurrently supports linear arithmetic constraints, that is, linear equalities and inequalitiesover the real numbers, and the optimization of convex quadratic functions.4.2.1 Normal FormAlmost all constraint manipulation in QOCA is on the normal form of the current con-straints. The normal form is essentially a compiled non-redundant representation of theconstraints in which as many variables as possible are eliminated. Elsewhere [10] we dis-cuss in detail some of the rami�cations of normal forms for constraint solving. Briey, thenormal form is constructed as follows. Assume that we have a set of linear equalities andinequalities over the variables x1; :::; xn. We can rewrite them into a set of equalities byreplacing each inequality a1x1 + a2x2 + � � �+ anxn � bby a1x1 + a2x2 + � � �+ anxn + s = bwhere s is a distinct new slack variable and s � 0. The normal form of this rewrittenset is obtained by eliminating as many of the original variables x1; :::; xn as possible usingGauss-Jordan elimination. The remaining equations will contain only slack variables. Theseequations are collected, and the Simplex algorithm is used to �nd their feasible basic form.Thus the normal form consists of two sets of equalities. The �rst set, called the de�ningequations, contains the equations used to eliminate the original variables x1; :::; xn. Thesecond set, called the slack equations, is a basic form of the equations in slack variables.In practice we do not explicitly compute the normal form of a constraint set C. Rather,we represent the normal form implicitly as the productMC, whereM is an invertible matrixcalled the quasi-inverse. M is essentially the product of the elementary row operationsused to compute a normal form from C. One advantage of this implicit representation isthatM is smaller than C, which means performing a pivot onM is cheaper than performingone on C.4.2.2 Adding and Deleting ConstraintsThe main advantage of the quasi-inverse representation, however, is that M captures howthe original constraints were used to obtain the solved form. This lets the solver (re)computea normal form e�ciently when a constraint is deleted. We handle the addition of constraints

- 19 -and incremental computation of a new normal form with standard techniques in sensitivityanalysis [18]. The expected cost3 is proportional to the cost of one pivot in M . The actualcost of this pivot depends on the representation of M . With a non-sparse representation,the actual cost is O(n2), where n is the number of original constraints. The cost should besigni�cantly less with a representation that preserves the sparseness in the original system.At present, however, the system uses a non-sparse representation for simplicity.4.2.3 Causes of Unsatis�abilityEach time a constraint is added to the solver, it is �rst simpli�ed using the de�ning equa-tions. If the new constraint becomes a contradiction after the simpli�cation, the causes ofthe unsatis�ability can be traced back immediately using the quasi-inverse|indices of thenon-zero elements in the row of the quasi-inverse corresponding to the new constraint indi-cate the constraints that contradict it. When the simpli�ed constraint contains only slackvariables, it is added into the slack equations; then the Simplex is activated to solve thesystem. If this system is infeasible, one can apply the technique proposed by Gleeson andRyan [8] to identify the minimally infeasible subsystems and hence decide which constraintsshould be removed to obtain feasibility.It follows from the construction of the normal form that the number of slack equationsis less than or equal to the number of inequalities in the original system. This is criticalbecause (except for constraint deletion and addition) all operations in the constraint systemhave cost proportional to the number of slack equations rather than the size of the originalsystem. The de�ning equations are only used to transform solutions in terms of the slackvariables to solutions in terms of the original variables.4.2.4 ProjectionGiven a set of variables to project on, the projector �rst combines the de�ning equationsfor these variables with all the slack equations. Then a projection algorithm computes theactual projection. Since the projection space is assumed to be small, we use a projectionalgorithm called the Convex Hull Method [14], which is based on a geometric approach.For small projection spaces, it is much faster than other projection algorithms based onalgebraic manipulation. It uses the Simplex algorithm repeatedly to compute the convexhull of the projected constraints.4.2.5 Quadratic OptimizationThe algorithm used for optimizing convex quadratic functions is a variant of the Simplexalgorithm; see Murty [18] for details. When a new constraint is added, the optimizationproblem is (re)solved to �nd the new solution. During direct manipulation, however, asequence of very similar optimization problems are solved in which the values of parameterschange only slightly. In this case we solve the optimization problem incrementally, making3In fact, we use the Dual Simplex, and so adding a constraint has in the worst-case exponential complexity.However in practice, the Simplex algorithm has incremental cost proportional to the number of constraintsadded. In fact, the Simplex is routinely used in problems with many millions of constraints, and it is oftenpreferred to the more complex interior point methods that have polynomial worst case complexity.

- 20 -use of the basis of the last solution as the starting basis for the new optimization. If theparametric values are su�ciently close, the cost of each optimization is expected to be onepivot on the slack equations. In fact, during direct manipulation we often know that theoptimal solution for the initial parameter values is just the current solution. This meansthat the initial basis can be constructed e�ciently, since we know which variables are basic.To our knowledge, optimization functions are a new technique for handling undercon-strained systems in user interface applications. This approach is related to Witkin's systemfor graphical animation [28], which uses functions to de�ne the total energy of a system. Inthis system a global solver tries to minimize the total energy during manipulation to controlthe movement of graphical objects. Our constraint toolkit can be viewed as combining anenergy model approach and pure constraints.5 ConclusionBasic constraint technology has matured to the point that highly interactive applicationscan incorporate constraints in both their interface and their implementation. Concurrently,advances in reusable user interface frameworks have made graphical editing systems easierto implement. Our work has focused on combining these developments to create a powerful,object-oriented architecture for constraint-based graphical editing.We have integrated QOCA, an extensible constraint system, with Unidraw, a frame-work for building direct-manipulation graphical editors. Critical to QOCA's e�ectiveness insupporting constraints in Unidraw-based applications are its ability to solve simultaneousequations and inequations, optimize convex quadratic objective functions, incrementallyadd and delete constraints, incrementally re-solve parametric quadratic optimization prob-lems, and detect causes of unsatis�ability in inconsistent constraints. An important goalof the integration was to avoid compromising existing Unidraw capabilities such as itsdirect-manipulation model and unlimited undo/redo. QOCA's powerful linear arithmeticconstraints, constraint manipulation techniques, and sound theoretical foundation makeQOCA an advanced platform for interactive constraint-based editors.We plan to use QOCA extensively in the future. One project will extend key glyphsin InterViews, such as trays and glue, to be implemented in terms of QOCA constraints.QOCA will also serve as a basic element in our pen-based visual language parsing system [9].We will continue research into new algorithms for manipulating constraints, QOCA beinga good vehicle for exploring new algorithms. We also hope to make QOCA freely available,thereby promoting more widespread applications for constraints.References[1] E. Bier and M. Stone. Snap-dragging. In ACM SIGGRAPH '86 Conference Proceed-ings, pages 233{240, Dallas, TX, August 1986.[2] A. Borning. The programming language aspects of ThingLab { a constraint-orientedsimulation laboratory. ACM Transactions on Programming Languages and Systems,3(4):343{387, October 1981.

- 21 -[3] A. Borning and R.A. Duisberg. Constraint based tools for building user interfaces.ACM Transactions on Graphics, 4(4), 1986.[4] A. Borning, M. Maher, A. Martindale, and M. Wilson. Constraint hierarchies and logicprogramming. In International Conference on Logic Programming. MIT Press, 1989.[5] D. Epstein and W.R. Lalonde. A smalltalk window system based on constraints,. InObject-Oriented Programming Systems, Languages and Applications Conference, pages83{94. ACM Press, 1988.[6] B. N. Freeman-Benson. Kaleidoscope: Mixing objects, constraints, and imperativeprogramming. In Object-Oriented Programming Systems, Languages and ApplicationsConference, pages 77{88, 1990.[7] B. N. Freeman-Benson and Alan Borning. Integrating constraints with an object-oriented language. In European Conference on Object-Oriented Programming, pages268{286, 1992.[8] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities.ORSA Journal on Computing, 2(1):61{63, Winter 1990.[9] R. Helm, K. Marriott, and M. Odersky. Building visual language parsers. In ComputerHuman Interaction (CHI), pages 105{112. ACM Press, 1991.[10] Richard Helm, Tien Huynh, Catherine Lassez, and Kim Marriott. A linear con-straint technology for user interfaces. In Graphics Interface, pages 301{309, Vancouver,Canada, 1992.[11] Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. QOCA: An extensibleobject-oriented constraint solving toolkit. Technical Report In Preparation, IBM T.J.Watson Research Center, 1992.[12] Scott E. Hudson. Adaptive semantic snapping|a technique for semantic feedback atthe lexical level. In ACM CHI '90 Conference Proceedings, pages 65{70, April 1990.[13] D.R. Olson Jr. and K. Allan. Creating interactive techniques by symbolically solvinggeometric constraints. In ACM/SIGGRAPH/SIGCHI User Interface Software Tech-nologies Conference, pages 102{107, Snowbird, Utah, October 1990.[14] C. Lassez and J.-L. Lassez. Quanti�er elimination for conjunctions of linear constraintsvia a convex hull algorithm. Research Report RC 16779, IBM T.J. Watson ResearchCenter, 1991. To appear, Symbolic and Numerical Computation|Towards Integration,Kapur and Mundy editors, Academic Press.[15] Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user interfaceswith InterViews. Computer, 22(2):8{22, February 1989.[16] John H. Maloney, Alan H. Borning, and Bjorn N. Freeman-Benson. Constraint technol-ogy for user interface construction in ThingLab II. In ACM OOPSLA '89 ConferenceProceedings, pages 381{388, New Orleans, LA, October 1989.

- 22 -[17] John H. Maloney, Alan H. Borning, and Bjorn N. Freeman-Benson. An incrementalconstraint solver. Communications of the ACM, 33(1):55{63, January 1990.[18] K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Helder-mann Verlag, Berlin, 1988.[19] Brad A. Myers, Dario A. Guise, Roger B. Dannenberg, Brad Vander Zanden, David S.Kosbie, Ed Pervin, Andrew Mickish, and Philippe Marchel. Comprehensive support forgraphical, highly interactive user interfaces: The Garnet system. Computer, 23(11):71{85, November 1990.[20] G. Nelson. Juno, a constraint-based graphics system. In ACM SIGGRAPH '85 Con-ference Proceedings, pages 235{243, San Fransisco, CA, July 1985.[21] I.E. Sutherland. Sketchpad: A man-machine graphical communication system. InSpring Joint Computer Conference, pages 329{345, 1963.[22] P.A. Szekely and B.A. Myers. A user interface toolkit based on graphical objects andconstraints. In Object-Oriented Programming Systems, Languages and ApplicationsConference, pages 36{45, 1988.[23] Hiroyuki Tarumi, Jun Rekimoto, Masaru Sugai, Go Yamazake, Takahiro Sugiyama,and Chuzo Akiguchi. Canae|a user interface construction environment with editorsas software parts. NEC Research and Development, (98):89{98, July 1990.[24] V.I. Corporation. GECK User's Guide, 1990.[25] John M. Vlissides. Generalized Graphical Object Editing. PhD thesis, Stanford Uni-versity, 1990.[26] John M. Vlissides and Mark A. Linton. Applying object-oriented design to structuredgraphics. In Proceedings of the 1988 USENIX C++ Conference, pages 81{94, Denver,CO, October 1988.[27] John M. Vlissides and Mark A. Linton. Unidraw: A framework for building domain-speci�c graphical editors. ACM Transactions on Information Systems, 8(3):237{268,July 1990.[28] A. Witkin, M. Gleicher, and W. Welch. Interactive dynamics. In ACM SIGGRAPH'90 Conference Proceedings, 1990.

