
Fluent Model Checking for Event-based Systems
Dimitra Giannakopoulou

RIACS/USRA, NASA Ames Research Center,
Moffett Field, CA 94035-1000, USA
dimitra@email.arc.nasa.gov

Jeff Magee
Department of Computing, Imperial College London,

180 Queen’s Gate, London SW7 2AZ, UK
jnm@doc.ic.ac.uk

ABSTRACT
Model checking is an automated technique for verifying that a
system satisfies a set of required properties. Such properties are
typically expressed as temporal logic formulas, in which atomic
propositions are predicates over state variables of the system. In
event-based system descriptions, states are not characterized by
state variables, but rather by the behavior that originates in these
states in terms of actions. In this context, it is natural for temporal
formulas to be built from atomic propositions that are predicates
on the occurrence of actions. The paper identifies limitations in
this approach and introduces “fluent” propositions that permit
formulas to naturally express properties that combine state and
action. A fluent is a property of the world that holds after it is
initiated by an action and ceases to hold when terminated by
another action. The paper describes an approach to model
checking fluent-based linear-temporal logic properties, with its
implementation and application in the LTSA tool.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model checking;

General Terms
Design, Languages, Verification.

Keywords
Model-checking, linear temporal logic, software architecture
analysis.

1. INTRODUCTION
Our work is targeted at analyzing the behavioral properties of
complex systems at the architectural level. In this context, the
software architecture of a system is described by a set of
components, the structure that interconnects these components
and the connectors that describe how components interact. In
common with other researchers concerned with the rigorous
specification of software architectures, we have chosen an event-
based formalism to describe behavior. This is a natural choice
since at the architectural level, we are concerned with the
interactions between components in terms of messages sent or
received by components and service invocations initiated or
accepted by components. These messages and invocations are
most naturally modeled as actions or events, and component

behavior is thus modeled in terms of these actions and events (in
the rest of the paper, the terms event and action will be used
interchangeably). For example, the Architectural Description
Language (ADL) Wright [1] is based on the process algebra
CSP[15] for behavior descriptions and FDR[31] for behavior
analysis; PADL[4] is based on CCS[26] and via TwoTowers, uses
the Concurrency Workbench [7] for functional analysis; our own
Darwin ADL[20] uses the process algebra style language FSP
[21], and the Labeled Transition System Analyzer (LTSA) tool
[22].

In these event-based models of behavior, properties are described
in terms of actions. Our experience however has been that,
although in some cases this is a natural approach to take, the task
of expressing properties often becomes unmanageable. To address
this problem, we introduce “fluent” propositions, which define
state predicates whose values are determined by the occurrence of
actions. Fluents provide an elegant and uniform framework for
supporting the description of properties that combine state and
action. Moreover, we have developed an approach for model
checking fluent-based linear-time temporal logic (LTL)
properties.

Although fluents are applicable to other temporal logics, we are
interested in LTL for a number of reasons. We find it natural to
reason about component interactions in terms of sequences of
events in linear time. LTL is an expressive formalism that is also
supported by efficient techniques for on-the-fly model checking.
In addition, LTL is one of the logics that is supported by the work
on specification patterns [10], which we wish to utilize in our
framework for providing users with assistance in expressing
properties formally. This body of work has undoubtedly been
inspired by the success and popularity of the SPIN model-
checking tool[16] that incorporates many of the recent advances
in LTL model checking.

Why not use existing state-based model checkers such as SPIN to
analyze Software Architecture? The reasons are twofold. Firstly,
we wish to retain the compositional character of process algebra
descriptions in which sub-components can be composed to form
behaviorally equivalent components with reduced state space. In
process algebra, component behavior is specified directly in terms
of actions and local state is not explicitly represented. Secondly,
the atomic propositions of LTL properties in SPIN are predicates
on state variables. Properties on events can only be specified
indirectly in relation to changes in these state variables. A recent
paper [27] presents an approach to specifying events in LTL
properties. However, this approach still has the problem that
events are specified indirectly in terms of edges. These edges are
changes to the truth values of atomic propositions and relate to
state variables rather than directly to actions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’03, September 1–9, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009…$5.00.

In the following, Section 2 presents some background on LTL
model checking. Section 3 presents an interpretation for LTL with
actions as atomic propositions, and illustrates the limitations of
this approach. A more flexible approach is developed in Section 4
using fluents. The basic model checking procedure for LTL based
on fluents (FLTL) is outlined in Section 5, and is subsequently
refined in Section 6. Section 7 discusses the implementation of
FLTL model checking in the LTSA tool, and Section 8 closes the
paper with conclusions and future directions.

2. BACKGROUND
This section provides some background on Labeled Transitions
Systems(LTSs), Linear-time Temporal Logic (LTL), and the
automata-theoretic approach to model checking LTL properties.

2.1 Labeled Transition Systems (LTSs)
We use LTSs to model the behavior of communicating
components in a concurrent system. Let Act be the universal set of
observable actions, and let τ denote a local action that is
unobservable to a component’s environment. An LTS M is a
quadruple 〉〈 0,,, qAQ δ where:

• Q is a finite set of states,
• ActA ⊆ is the communicating alphabet of M,
• QAQ ×∪×⊆ }τ{δ is a labeled transition relation,
• Qq ∈0 is the initial state.

We call an execution of M a sequence of actions (observable or τ)
that M can perform starting at its initial state. We say that

〉〈= 0,,, qAQM δ transits into 〉′〈=′ 0,,, qAQM δ with action a,

denoted as MM a ′→ , if and only if .),,(00 δ∈′qaq

The hiding operator “\” takes an LTS 〉〈= 0,,, qAQM δ and a set
of actions ActH ⊆ , and returns 〉′−〈= 0,,,\ qHAQHM δ ,
where δ ′ is obtained from δ by turning all transitions labeled
with actions in H into τ transitions.

The parallel composition operator “||” is a commutative and
associative operator that combines the behavior of two LTSs by
synchronizing the actions common to their alphabets and
interleaving the remaining actions. Let 〉〈= 1

0
111 ,,,1 qAQM δ

and 〉〈= 2
0

222 ,,,2 qAQM δ .Then ,,,,|| 021 〉〈= qAQMM δ where
21 QQQ ×= , 21 AAA ∪= ,),(2

0
1
00 qqq = , and δ is defined as

follows, where a is an observable action or τ (the symmetric rules
are implied by commutativity of ||):

•
2121

2
11

||||

,

MMaMM

AaMaM

′→

∉′→

•
2121

2211

||||

τ,,

MMaMM

aMaMMaM

′′→

≠′→′→

2.2 Linear Temporal Logic (LTL)
Given a set of atomic propositions ℘ , a well-formed LTL formula
is defined inductively using the standard Boolean operators, and
the temporal operators X (next) and U (strong until) as follows:

• each member of ℘ is a formula,
• if ϕ and ψ are formulas, then so are ¬ ϕ, ϕ ∨ ψ, ϕ ∧ ψ, Xϕ,

ϕ U ψ.
An interpretation for an LTL formula is an infinite word w =
x0x1x2… over 2℘ . In other words, an interpretation maps to each
instant of time a set of propositions that hold at that instant. We
write wi for the suffix of w starting at xi. LTL semantics is then
defined inductively as follows:

• w |= p iff p ∈ x0, for p ∈ ℘
• w |= ϕ ∨ ψ iff (w |= ϕ) or (w |= ψ)
• w |= ¬ ϕ iff not w |= ϕ
• w |= ϕ ∧ ψ iff (w |= ϕ) and (w |= ψ)
• w |= X ϕ iff w1 |= ϕ
• w |= ϕ U ψ iff ∃ i ≥ 0, such that:
 wi |= ψ and ∀ 0 ≤ j < i , wj |= ϕ

We introduce the abbreviations “true ≡ ϕ ∨ ¬ϕ ” and
“false ≡ ¬ true”. Boolean operator ⇒ is defined as follows:
 ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ. Temporal operators F (eventually), G
(always), and W (weak until) are defined in terms of the main
temporal operators as follows: Fϕ ≡ true U ϕ, Gϕ ≡ ¬F¬ϕ , and ϕ
W ψ ≡ ((ϕ U ψ) ∨ Gϕ).

2.3 Model checking LTL
Model-checking, invented by Clarke and Emerson[6] and Queille
and Sifakis [29], is an automated technique for checking a finite
state system against some temporal logic specification. The
standard automata-theoretic approach [35] to model checking
LTL properties is based on the use of Büchi automata.

A Büchi automaton (BA) is a 5-tuple 〉Σ〈= FqQB ,,,, 0δ , where
Q is a finite set of states, Σ is a finite set of labels, QQ ×Σ×⊆δ
is a labeled transition relation, q0∈ Q is the initial state, and F⊆ Q
is a set of accepting states.

An execution of B on an infinite word >< �210 aaa over Σ is an
infinite word >< �210 sss over Q, such that: s0 = q0 and ∀ i∈ N,
(si, ai , si+1)∈ .δ An execution is accepting if some element of F
occurs in it infinitely often. An infinite word w over Σ is accepted
by the automaton B, if there exists some accepting execution of B
on w.

For any LTL formula over a set of propositions ℘ , a Büchi
automaton can be constructed that accepts exactly those infinite
words over 2℘ that satisfy ϕ. Based on this result, a finite-state
system is checked against an LTL specification ϕ by computing
the intersection of the system with a Büchi automaton
corresponding to (¬ϕ); the system satisfies ϕ if this intersection
accepts no words, i.e., if its language is empty.

3. ACTION LTL (ALTL)
In the context of event-based behavior specifications, we must
determine the meaning of the atomic propositions from which
LTL formulas are built. Our first approach, following from the
work of one of the authors[12] and used by Leuschel, Massart and
Currie[24] in relation to CSP, is to directly associate propositions
with actions. We term this approach ALTL to distinguish it both

from the usual state-based interpretations for LTL and from our
subsequent approach based on fluents.

In ALTL, the set of propositions ℘ is the universal set of actions
(or events) Act. An interpretation assigns to each time instant a set
of actions that occur at that instant. In our interleaving model of
concurrency where a single action can occur at a time, these sets
are singletons. An infinite execution >< m210 aaa of an LTS
defines an interpretation that assigns action ai to each time instant
i∈ N. An LTS M satisfies an LTL property ϕ if and only if ϕ holds
in all interpretations defined by executions of M. Note that, unlike
standard trace theory [15], τ actions must be taken into account in
this context, because they may be the cause of infinite stuttering,
identified in process algebras as divergence. Initially, to simplify
the presentation, we will assume that all actions in the system LTS
are observable. We deal with LTSs with τ actions in Section 6.

3.1 Limitation
Although ALTL provides a clear and obvious interpretation for
LTL formulas in the context of event-based system descriptions, it
is limited in the ease with which properties can be specified. To
illustrate this, we use an example arising from work on verifying a
new decentralized style for organizing television control
software[34]. Figure 1 shows a simplified fragment of the
software architecture of a television organized using this style.
Each component is responsible for controlling a part of the signal
path in the television.

TUNER
DRIVER

TUNER
CONTROL

SCREEN
DRIVER

SCREEN
CONTROL

tune endtune blank unblank

TUNER
DRIVER

TUNER
CONTROL

SCREEN
DRIVER

SCREEN
CONTROL

tune endtune blank unblank

Figure 1. Fragment of TV software architecture

A required property of this system is that to avoid artifacts on the
screen when changing channels, the screen must be blanked when
the tuner is tuning into the new channel. The screen is blanked by
the action blank and displays the new channel signal when the
action unblank occurs. The tuner starts tuning into the new
channel when initiated by the action tune and indicates that it has
finished tuning by the action endtune. The required safety
property can be stated quite simply in English: “If the tuner is
tuning, then the screen must be blanked.” However, translating
this into ALTL is less straightforward. If we make the assumption
that the screen is initially blanked, the required property can be
expressed as:

NOARTIFACTS ≡ G((unblank ⇒ (¬tune W blank)) ∧
 (tune ⇒ (¬unblank W endtune)))

If we assume that the screen is not initially blanked then the
property becomes:

 (¬tune W blank) ∧ G((unblank ⇒ (¬tune W blank)) ∧
 (tune ⇒ (¬unblank W endtune)))

In the actual TV model, there is more than one method of
initiating tuning and blanking and more than one way that these
activities and states terminate. In addition, the property must be
specified for architectures with multiple tuners and multiple
output devices. The task of specifying the required property in
ALTL quickly becomes unmanageable. The reason is that ALTL
is limited to action propositions (only one of which can be true at
any given instant). It is often non-trivial to express LTL properties
directly in terms of actions, especially when these actions are used
to define time intervals and relationships between them (e.g. no
overlapping). Such intervals are often easier to define in terms of
values of (system) state predicates that characterize them. For
example, if we could observe a predicate TUNING of the tuner
driver which was true when the driver was tuning and a predicate
BLANKED of the screen driver which was true when the screen
was blanked, we could express the desired property in LTL simply
as G(TUNING ⇒ BLANKED). This definition is a direct
translation of the requirement stated in English above. The
problem of observing state predicates in event-based system
descriptions is addressed in the next section.

4. FLUENT LTL (FLTL)
To reason about the effects of actions on the state of a system, we
adopt the idea of a fluent from research in Artificial
Intelligence[32]. A fluent is anything whose value is subject to
change over time, although here we deal only with propositional
fluents. The notion is best explained by an informal definition due
to Miller and Shanahan[25] from the Event Calculus originally
introduced by Kowalski and Sergot[18] as a logic program
framework for reasoning about actions and their effects. Miller
and Shanahan informally define propositional fluents as follows:
“Fluents (time-varying properties of the world) are true at
particular time-points if they have been initiated by an action
occurrence at some earlier time-point, and not terminated by
another action occurrence in the meantime. Similarly, a fluent is
false at a particular time-point if it has been previously terminated
and not initiated in the meantime.”

Our use of fluent is consistent with this definition. We define a
fluent Fl by a pair of sets, a set of initiating actions IFl and a set of
terminating actions TFl:

Fl ≡ 〈 IFl , TFl 〉 where IFl , TFl ⊂ Act and IFl ∩ TFl = ∅

In addition, a fluent Fl may initially be true or false at time zero as
denoted by the attribute InitiallyFl.

The set of atomic propositions from which FLTL formulas are
built is the set of fluents Φ. Therefore, an interpretation in FLTL
is an infinite word over 2Φ, which assigns to each time instant the
set of fluents that hold at that time instant. Similarly to ALTL, any
infinite word >< m210 aaa over Act also defines an FLTL
interpretation >< m210 fff over 2Φ as follows:

∀ i∈ N, ∀ Fl ∈ Φ, Fl ∈ fi iff either of the following holds

−),0(FlkFl TaikNkInitially ∉≤≤⋅∈∀∧

−)),()()((: FlkFlj TaikjNkIaijNj ∉≤<⋅∈∀∧∈∧≤∈∃

In other words, a fluent holds at a time instant if and only if it
holds initially or some initiating action has occurred, and in both

cases, no terminating action has yet occurred. Note that the
interval over which a fluent holds is closed on the left and open
on the right, since actions have immediate effect on the values of
fluents. This is slightly different from the fluents of Miller and
Shanahan, which are open on the left and closed on the right[25].
Since the sets of initiating and terminating actions are disjoint, the
value of a fluent is always deterministic with respect to a system
execution. Note that the frame problem as it relates to fluents in
the Event Calculus[25] is not relevant here as we have a fixed set
of well defined actions and each fluent is completely defined by a
fixed subset of these actions.

In contrast to ALTL, in which no two action propositions can be
true at the same instant, it is clear that two fluents can hold
simultaneously. In FLTL, we can concisely express the
NOARTIFACTS property of section 3.1, when the screen is
initially blanked, as:

TUNING ≡ 〈{tune},{endtune}〉 InitiallyTUNING = false
BLANKED ≡ 〈{blank},{unblank}〉 InitiallyBLANKED = true

NOARTIFACTS ≡ G(TUNING ⇒ BLANKED)

4.1 Actions and Fluents
Fluents have been carefully designed to provide a uniform
framework supporting both action- and fluent-based property
specifications, as well as their combination. Specifically, every
action a implicitly defines a fluent whose initial set of actions is
the singleton {a} and whose terminating set contains all other
actions in the alphabet of the system A⊆ Act :

Fluent(a) ≡ 〈{a}, A – {a}〉 Initiallya = false

From the definition, it should be clear that Fluent(a) becomes true
the instant a occurs and becomes false with the first occurrence of
a different action. We can thus define properties that combine
actions with fluents.

It is often more succinct in defining properties to declare a fluent
implicitly for a set of events as in:

Fluent(S) ≡ 〈S, A – S 〉 InitiallyS = false
 where S = {a0, a1, … an}

This is equivalent to a0∨ a1∨ …∨ an where ai represents the
implicitly defined Fluent(ai). Set-based fluents also lead to fewer
fluent automata generated during model checking (section 5).

In the next sections, we outline how FLTL model checking is
implemented in the LTSA tool, and give examples of using the
LTSA concrete syntax for fluents and properties.

5. MODEL CHECKING FLTL
Let M be a finite-state system whose executions define infinite
words over 2℘ , where ℘ is a set of propositions. As mentioned,
the standard procedure for model checking M against some LTL
property ϕ over ℘ , consists of the following steps:

1. construct a Büchi automaton B for ¬ϕ ;

2. check emptiness of the synchronous product of B with M
(corresponds to the intersection of the two automata.

In our framework, we need to model check LTSs against
specifications expressed in FLTL. However, the words produced

by executions of LTSs are defined over the set of actions Act,
whereas the properties are defined over the set of fluent
propositions Φ. This apparent mismatch is not a real problem
since, as observed in section 4, an infinite word over actions also
defines an FLTL interpretation. We are therefore able to define a
procedure for checking FLTL properties of LTSs, without
extending the LTS model.

To bridge the gap between state-based models and event-based
models such as LTSs, De Nicola and Vaandrager introduced
doubly labeled transition systems (DTSs) [9], which were used by
Ramakrishna and Smolka in [30]. DTSs have actions labeling
transitions and propositions labeling states and thus provide a
concise formalism for relating actions to state. In our approach,
fluents define state labels implicitly. Naturally, fluents cannot be
used to express arbitrary state predicates. However, since they are
defined separately, the model of the system remains a simple LTS.
In addition, we have developed an FLTL model checking
procedure that is based only on LTSs. As such, it requires little
modification to the existing implementation of the LTSA tool,
which has efficient representations and algorithms for
manipulating LTSs. Our model checking procedure avoids the
need for augmenting LTSA with a synchronous product operation.
It consists of constructions that are generic, and that could
therefore be introduced in other LTS based analysis tools.

5.1 Generating a Büchi automaton

TUNING∧¬ BLANKED

true
true

TUNING∧¬ BLANKED

true
true

Figure 2. Büchi automaton for ¬G(TUNING ⇒⇒⇒⇒ BLANKED)

Let ϕ be an FLTL property for a system. The first step of our
approach is to generate a Büchi automaton for ¬ϕ . We use the
algorithm LTL2BUCHI[13], which is an improvement over
previous tableau-based constructions by Gerth, Peled, Vardi and
Wolper [11] and Daniele, Giunchiglia and Vardi[8]. The result is
a Büchi automaton whose alphabet Σ is the powerset of fluents
2Φ. For example, Figure 2 depicts the Büchi automaton obtained
for the formula ¬G(TUNING ⇒ BLANKED). In our illustrations
of automata, a label x∈ 2Φ is represented as a conjunction of terms,
with one term pi for each fluent Fli∈Φ , such that pi = Fli if Fli∈Φ ,
and pi = ¬Fli otherwise. Also, a transition labeled “true” can be
fired irrespective of the current values of fluents. For the
automaton of Figure 2, each “true” transition is an abbreviation
for a transition for each label in 2Φ: (¬TUNING ∧ ¬BLANKED),
(¬TUNING ∧ BLANKED), (TUNING ∧ ¬BLANKED), and (TUNING ∧
BLANKED).

5.2 Adding Fluent Labels
Let)||||(m1 MMM o= be a system with alphabet AM, which
consists of a set of m processes M1…Mm. In order to model check
M, we augment it by adding to each composite state a set of self-
transitions labeled with the values from 2Φ of fluents that hold at

that state. This is achieved by the parallel composition of M with a
set of fluent automata.

Fluent automata
For each fluent Fl ≡ 〈 IFl , TFl 〉 InitiallyFl where IFl, TFl ⊂ Act, we
construct a fluent automaton, which is an LTS

〉〈= 0,,, qAQFFl δ defined as follows:

• },{ ft qqQ =

• Φ∪∪= 2FlFl TIA
•)},,(),,,(|{ tttf qaqqaqIa Fl∈∀=δ

)},,(),,,(|{ ftff qaqqaqTa Fl∈∀∪

)},,(|,2{ ff qxqxFlx ∉∈∀∪ Φ

)},,(|,2{ tt qxqxFlx ∈∈∀∪ Φ
• tf 00 else false, if qqInitiallyqq Fl ===

The fluent automaton for the fluent TUNING from section 3 is
depicted in Figure 3, where ¬TUNING is an abbreviation for the
set of labels {¬TUNING∧¬ BLANKED, ¬TUNING∧ BLANKED} and
TUNING is an abbreviation for the set of labels
{TUNING∧¬ BLANKED, TUNING∧ BLANKED}.

tune

endtune

{endtune, ¬TUNING } {tune, TUNING }

tune

endtune

{endtune, ¬TUNING } {tune, TUNING }

Figure 3. Fluent automaton for TUNING initially false.

The automaton has two states, one in which the fluent does not
hold and one in which it does. The initial state of the automaton is
determined by the value of the attribute InitiallyFl. The automaton
moves into the holding state when an action from its initiating set
occurs and to the not holding state when an action from its
terminating set occurs. In other words, the automaton relates
actions to the truth-value of the fluent and those values are
represented by the self-transitions labeled from 2Φ. So if

n1 FlFl m represent the fluents in Φ, the composition

)||||||||||(
n1m1 FlFl FFMMMF mm=

achieves the desired effect of adding to each composite state in M,
self-transitions labeled with the fluents that hold in that state.
Effectively these transitions simulate the state labeling of DLTs.
Note that for model checking, the composition of the system and
the fluent automata can be explored on-the-fly.

5.3 Synchronous product
As discussed, model checking involves computing the
synchronous product of the system with a Büchi automaton. In
our context, this product requires that for each step that system M
takes (i.e. transition labeled with an action from AM), the Büchi
automaton BΦ over 2Φ also take a step according to the fluent
values resulting from that transition. These fluent values, as
described above, are represented by self-transitions on each state

of the augmented system MF. To compute the synchronous
product, we use conventional parallel composition and a
synchronizer automaton constructed as follows.

Synchronizer automaton
For a set of fluents Φ and a system with alphabet ,MA such that

),,(MFlMFl ATAIFl ⊆∧⊆Φ∈∀ the synchronizer automaton is
an LTS 〉〈=Φ 0,,, qAQSync

MA δ where:

• },{ 10 qqQ =

• Φ∪= 2MAA

•)},,(|2{)},,(|{ 0110 qxqxqaqAa M
Φ∈∀∪∈∀=δ

Figure 4 depicts the synchronizer for the example formula
¬G(TUNING ⇒ BLANKED) for a system alphabet {tune,
endtune, blank, unblank, anon} where anon is some other action
that the system performs but is not used in defining fluents.

true

{tune, endtune, blank, unblank, anon}

true

{tune, endtune, blank, unblank, anon}

Figure 4. Synchronizer automaton

The required synchronous product between the augmented system
MF with Büchi automaton BΦ can now be formed by the
following parallel composition:

)||||||||||||||(
n1m1 ΦΦ= BSyncFFMMMFB

MAFlFl mm

Following [12], we mark accepting states in BΦ by adding a self-
transition labeled @B. In essence, after every transition of system
M, the synchronizer automaton forces the Büchi automaton BΦ to
observe the fluent values in the resulting state and take a step
accordingly.

5.4 Model checking
For model checking, since BΦ accepts the complement of the
language accepted by the FLTL property formula, we need to
check that the language accepted by MFB is empty. This consists
of checking that MFB does not contain any strongly connected
component that is reachable from the initial state and contains an
accepting state. We use Tarjan’s depth first search algorithm [19]
for computing strongly connected components. MFB is not
explicitly constructed but explored “on-the-fly”.

The LTSA tool includes a technique that combines an assumption
of fair choice of transitions with the use of action priority to
specify scheduling conditions[14]. This technique requires
computing terminal sets of states, i.e., strongly connected
components in which there are no transitions from a state in the
component to a state outside the component. To be compatible
with this technique, the Büchi automata that we use for model-
checking must be complete [12]. A Büchi automaton BΦ over 2Φ
is complete if in every state there is an enabled transition for every
label in 2Φ. An automaton BΦ can be easily completed by adding a
non-accepting “sink” state sk, and then introducing transitions to

sk for all undefined transitions in each state of the automaton. The
Büchi automaton of Figure 2 is complete, so it does not require
this additional “sink” state.

6. TESTER AUTOMATON
The procedure outlined in the previous section has a number of
deficiencies: the use of a synchronizer automaton and parallel
composition to form the synchronous product doubles the number
of states that must be explored during model checking, and
representing fluent values by sets of transitions causes an
unnecessarily large number of transitions to be explored.
Moreover, the problem of dealing with unobservable actions as
mentioned in section 3 is not addressed. To deal with these issues,
we partition the composition to form a “tester automaton”. This is
a Büchi automaton BAM that recognizes infinite words over the
alphabet AM⊆ Act of the system.

The composition MFB which we constructed in the previous
section can be factored as follows:

Φ
ΦΦ= 2\)||||||||(

n1
BSyncFFB

MAFlFlAM �

)||||(m1 MMM �=

We form the “tester” automaton BAM from the parallel
composition of the fluent automata, the synchronizer and the
Büchi automaton BΦ. Since the alphabet AM of the system M does
not contain any of the labels in 2Φ, we can safely hide these
actions in the composition BAM. It is now possible to explicitly
construct the LTS for BAM and then optimize it before composing
it with the system.

Firstly, we remove the unnecessary intermediate states in which
the Büchi automaton has not yet observed the state resulting from
a transition on some action in AM. This is performed by coalescing
states separated by the τ transitions caused by hiding the labels in
2Φ. Specifically, due to the use of a synchronizer, any execution
of BAM will consist of a sequence:

 M
aa Aaaqqqq ∈→→→→ �� ,, where, 10

τ
32

τ
10

10

To eliminate intermediate states of BAM, for any two consecutive
transitions (qi, a, qj),(qj, τ, qk) in its LTS, we first replace these
transitions with a single transition (qi, a, qk), and then remove the
resulting unreachable state qj.

Subsequently, we minimize the resulting LTS with respect to
strong bisimulation. The tester automaton obtained is a Büchi
automaton that recognizes sequences of actions from the alphabet
AM. As before, accepting states in BAM are marked by a self-
transition labeled @B.

Although there is a danger of intermediate state-space explosion
in computing the tester automaton BAM, it has the following
advantages. Significant reductions are obtained if the initiating
and terminating sets of different fluents are not disjoint. For
example, this is always the case for the terminating sets of action
fluents. In addition, the cost of a “step” in exploring the state
space of MFB is proportional to the number of automata in the
composition since in each composite state we need to look at
which actions are enabled in each automaton. Consequently,
computing and optimizing BAM speeds up the model checking.

Figure 5 illustrates the tester automaton generated by the LTSA
for ¬G(TUNING ⇒ BLANKED) with alphabet {tune, endtune,
blank, unblank, anon}.

{anon,
endtune,
unblank}

tune

tune

blank

{anon,
blank,
endtune}

tune

unblank endtune

{anon,
blank,
tune}

unblank

unblank {anon,
blank,
endtune,
tune,
unblank}

endtune

{anon,
tune,
unblank}{anon, tune, unblank}

blank

0 1 2 3 4
{anon,
endtune,
unblank}

tune

tune

blank

{anon,
blank,
endtune}

tune

unblank endtune

{anon,
blank,
tune}

unblank

unblank {anon,
blank,
endtune,
tune,
unblank}

endtune

{anon,
tune,
unblank}{anon, tune, unblank}

blank

0 1 2 3 4

Figure 5. Tester automaton for ¬G(TUNING ⇒⇒⇒⇒ BLANKED)

6.1 Safety Properties
Following the formal definition from Alpern and Schneider [2]
and the approach presented in [3], a safety property stipulates that
some “bad thing” does not happen. If a “bad thing” happens in an
infinite sequence, then it must also do so after some finite prefix
and must be irremediable. In the case of a tester process, which
recognizes violating sequences as it is generated from the
negation of a property, a finite sequence of actions is recognized if
it ends in an accepting state and there is no action that can cause
the tester process to leave that accepting state. We call such
accepting states terminal. State 3 of Figure 5 is an example of a
terminal accepting state.

{anon,
endtune,
unblank}

tune

blank

{anon,
blank,
endtune}

tune

unblank endtune

{anon,
blank,
tune}

unblank

-1 0 1 2
{anon,
endtune,
unblank}

tune

blank

{anon,
blank,
endtune}

tune

unblank endtune

{anon,
blank,
tune}

unblank

-1 0 1 2

Figure 6. Deterministic tester for ¬G(TUNING ⇒⇒⇒⇒ BLANKED)

If all the accepting states of a tester automaton are terminal then
the property it represents is a pure safety property. We can replace
the accepting states with ERROR states, in which case model
checking reduces to a simple reachability search for ERROR
states[5]. Further, since the tester automaton is only required to
detect finite sequences, we can usually further minimize the tester
automaton using trace equivalence, which involves standard
determinization and minimization for finite state automata[17].
Applying this to the example of Figure 5 results in the tester
automaton of Figure 6, in which state (-1) is the ERROR state.

6.2 Partial Order Reduction
The tester automaton as described so far is constructed with
respect to the alphabet AM⊆ Act of the system, since AM is used in
defining the synchronizer automaton and fluent automata. This
has two disadvantages: firstly, we must reconstruct the tester when
we wish to check a system with a different alphabet even when the

actions we use to define fluents do not change and secondly, more
seriously, it causes a problem with partial order reduction. This
latter problem is clearly articulated by Valmari[33]. In essence,
synchronizing the tester automaton with every action of the
system makes all transitions dependent on each other and,
consequently, prevents any reduction obtainable from the use of
independency in computing ample sets[28] during partial order
reduction. In our example tester depicted in Figures 5 & 6, in
which the action anon represents the set of system actions not
directly used in the definition of fluents, it can be seen that a self-
transition labeled with this action is enabled in every state.

To address these problems and also deal with τ transitions in the
system, we represent all actions in the system (including action τ)
that are not used in the definition of fluents, by a single action
“*”. If AF is the set of actions appearing in fluent definitions, then
the alphabet used in the construction of the synchronizer is AF
∪ {*}. Steps on action * in the synchronizer represent stuttering
steps in the system with respect to fluent values, but since such
stuttering may be infinite, they must be taken into account in
model checking. The resulting synchronizer is then used in the
construction of the tester automaton, which is performed as
defined earlier in this section. However, to allow the tester to
observe actions associated with “*” we define a slightly modified
parallel composition operator “ *|| ”, as follows.

For a system 〉〈= MMMM qAQM 0,,, δ and a tester automaton
〉〈= TTTT qAQT 0,,, δ such that AT –{*}⊆ AM, the modified parallel

composition M||*T is an LTS 〉〈 0,,, qAQ δ , where Q=QM× QT , A
= AM, q0=(q0M, q0T), and δ is defined as follows, where a is an
observable action or τ:

•
TMaTM

TaTMaM

′′→

′→′→

** ||||

, (note that T has no τ transitions)

•
TMaTM

AaTTMaM T

′′→

∉′→′→

**

*

||||

 ,,

Similarly to the conventional parallel composition operator,
operator “||*” synchronizes transitions labeled with common
actions in the alphabets of the two LTSs. Additionally, transitions
in system M labeled with actions in (AM – AT) or τ synchronize
with * transitions in T, if such transitions are enabled. Since T is a
complete automaton, the second rule will always apply when the
first one does not, so the tester observes every step of the system.
The modified operator is not meant to be commutative or
associative since it is only used to combine tester with system.

An advantage of tester automata that use * transitions is that they
are independent of the system, and can be reused across systems
with the same set of fluents. Moreover, it is now possible to
introduce an optimization to alleviate the problem discussed
above related to partial order reduction. Let q be a state in T that
has a self-transition (q, *, q), such that there exists no transition
from q to a different state labeled with *. The same effect of any
such transitions can be achieved by removing the transition from
the tester T, and adding the following rule to the definition of
operator “ *|| ”:

•
TMaTM

AaTMaM T

**

*

||||

,,

′→

∉→¬′→

where the notation →¬ *T means that there is no transition
labeled with * enabled in T. The result of removing such
transitions weakens the dependence between M and T, and
permits partial order reduction. Partial order reduction is only
enabled in LTSA for LTL-X properties. These are properties that
do not contain operator X and are therefore closed under
stuttering [19], as required for partial order reduction.

7. FLTL in the LTSA
The Labelled Transition System Analyser (LTSA) is a general
purpose tool for exploring event-based system specifications.
Systems are described using FSP, which is a process algebra
notation for describing finite state processes. In addition, models
can be constructed from a set of scenarios described by message
sequence charts. The tool supports interactive model exploration,
domain specific animation[23], compositional reachability
analysis and verification with respect to safety properties specified
as automata[5] and progress properties specified as action
sets[14]. The tool has now been augmented with the FLTL
model-checking procedure described in the previous section. In
the following, we use examples to illustrate the use of the FLTL
features.

7.1 Fluents and FLTL properties
The concrete syntax for FLTL formulas used in the LTSA follows
as closely as possible the LTL syntax used in SPIN. The following
operators are defined:

Unary operators (unop): Binary operators(binop):
[] always (G) U strong until
<> eventually (F) W weak until
X next time && logical AND
! logical negation || logical OR

-> implication
<-> equivalence

Note that we will be representing logical OR as ||OR here to avoid
confusion with the parallel composition operator. An FLTL
formula is defined as Φ := True | False | prop | (Φ) | unop Φ |
Φ binop Φ, where prop is a fluent, an action or a set of actions as
defined in section 3. Fluents are specified as shown by a pair of
actions (or actions sets). An initialization clause is optional. If
missing, the fluent is assumed to be initially false.

The concrete syntax for the property NOARTIFACTS introduced
in section 3.1, for the case where the screen is initially blanked is:

fluent BLANKED =
<blank,unblank> initially True

fluent TUNING = <tune,endtune>
assert NOARTIFACTS = [](TUNING -> BLANKED)

Note that, since the screen is initially blanked, we need to
explicitly set the value of fluent BLANKED to true. In addition,
we can define an equivalent property with actions:

assert ActionNA =
[]((unblank -> (!tune W blank))

&& (tune -> (!unblank W endtune)))

A simple liveness property that asserts that the screen is always
eventually unblanked can be expressed using the action unblank:

assert UNBLANK = []<>unblank

UNBLANK
*

{*, unblank}

unblank

unblank
0 1 2

UNBLANK
*

{*, unblank}

unblank

unblank
0 1 2

Figure 7. Tester automaton for []<>unblank

The tester automaton generated from this property is shown in
Figure 7. Note that the tester corresponds to the negation of the
property, as required by model checking. The automaton
illustrates that * actions are necessary in state 0. They allow the
tester to non-deterministically move to the accepting state, that
corresponds to the moment that unblank stops occurring for ever.
An * self-transition at state 1 has been removed by our
optimization. With our modified parallel composition operator, if
at that stage the system executes an infinite sequence of actions
that are not unblank, this will be detected as a property violation
in the composition of the system with the tester.

TUNER

{endtune,
tune}

tune endtune

tune {endtune, tune}
0 1 2

TUNER

{endtune,
tune}

tune endtune

tune {endtune, tune}
0 1 2

Figure 8. Tester automaton for [](tune -> <>endtune)

In contrast, the tester generated for the response property:

assert TUNER = [](tune -> <>endtune)

depicted in Figure 8 has no * transitions. In this case, only the
action tune can take the automaton into the accepting state. Again,
the automaton stays in the accepting state if the system executes
an infinite sequence of actions that are not endtune.

Finally, it is possible to combine properties as in:

assert SCREEN = (NOARTIFACTS && UNBLANK)

7.2 Indexed Fluents
We have found it convenient to declare indexed sets of fluents.
For example, CRITICAL[i] is true when process p[i] enters a
critical section and false when it exits:

const N = 4
fluent CRITICAL[i:1..N] =

<p[i].enter, p[i].exit>

Mutual exclusion between two processes p[1] and p[2] can simply
be expressed as:

assert MUTEX =
[]!(CRITICAL[1] && CRITICAL[2])

We can also express a mutual exclusion property for N processes:

assert MUTEX_N =
[]!(allOr[i:1..N-1]

(CRITICAL[i] && CRITICAL[i+1..N]))

Here we use an or replicator where:
allOr[i:1..N] C[i] ≡ C[1] ||OR …||OR C[N]

Moreover, the LTSA supports fluent propositions of the form:
FL[i:1..N] ≡ FL[1] ||OR …||OR FL[N]

An and replicator is used to define the required liveness property:

assert LIVE_MUTEX =
allAnd[i:1..N] []<>CRITICAL[i]

The use of index ranges allows the concise expression of
properties. For example, the safety property for a system of
readers and writers in which either multiple readers or a single
writer can access a shared resource can be expressed as:

const N = 3

fluent READING[i:1..N] =
<startRead[i], endRead[i]>

fluent WRITING[i:1..N] =
<startWrite[i], endWrite[i]

// readers and writers cannot access at the same time
assert READ_WRITE =
[]!(READING[1..N] && WRITING[1..N])

// only a single writer can access at one time
assert ONE_WRITE =

[]!allOr[i:1..N-1]
(WRITING[i] && WRITING[i+1..N])

// the required Readers-Writers safety property is
assert RW_SAFE = (READ_WRITE && ONE_WRITE)

Table 1 - Tester automata size (#states)

Property N BΦΦΦΦ BA Safe(BA)
MUTEX_N 2 2 5 4
 3 2 9 5
 4 2 17 6
 5 2 33 7
LIVE_MUTEX 2 6 8 -
 3 8 11 -
 4 10 14 -
 5 12 17 -
RW_SAFE 2 4 22 7
 3 4 74 12
 4 4 769 21
 5 4 1058 38

Table 1 displays the size of the tester automata for the above
properties for different values of N. The column headed BΦ gives
the number of states of the Büchi automata generated by
LTL2BUCHI, the one labeled BA gives the number of states of the
corresponding tester automata and Safe(BA) the number of states
after making safety properties deterministic and minimal. In the
case of safety properties, the table indicates that computing tester
automata may suffer from intermediate state-space explosion, as
mentioned in section 6. However, this is compensated by the

reduction achieved by minimization according to trace
equivalence. Note that for a value of N=5, the RW_SAFE property
requires 10 fluent automata for its construction (i.e.
READING[1..5] and WRITING[1..5]). Consequently, where
possible, it is worth checking safety properties independently
from liveness properties since the safety property reduction cannot
be applied to combined properties, for example to (LIVE_MUTEX
&& MUTEX_N).

7.3 Counterexamples
Although tester automata retain no information concerning the
fluents from which they are formed, we have found it provides
useful diagnostic information to reconstruct the value of fluents
from error traces when displaying counterexamples. This is
accomplished by computing fluent values after each action in the
trace. The example below is a counter example produced from the
MUTEX property. The trace is annotated with the names of
fluents that are true at the time an action occurs:

Trace to property violation in MUTEX:
p[1].mutex.down
p[1].enter CRITICAL[1]
p[2].mutex.down CRITICAL[1]
p[2].enter CRITICAL[1] && CRITICAL[2]

Analysed in: 20ms

8. CONCLUSION
The usefulness of LTL to specify properties in event-based system
models is acknowledged by Leuschel, Massart and Currie[24] in
the context of CSP. They take the approach outlined in section 3
of associating primitive propositions with events. Paun and
Chechik[27] make a convincing case for supporting events in LTL
specifications of state-based system models. In this paper, we
describe the use of fluents as a means of including propositions
related to state in LTL properties of event-based systems. Fluents
permit the concise specification of properties concerned with
state. They provide an elegant way of specifying properties that
combine propositions over the occurrence of actions or events
with propositions over the states that these actions bring about.
Moreover, the paper has outlined an approach for model checking
FLTL properties, based on the use of Büchi automata.

The FLTL model-checking approach presented should be
applicable to other LTS based analysis tools. The inefficient
representation of fluent values as sets of transitions is
compensated for by the construction of tester automata that
remove these transitions before model checking. The formation
of a tester automaton also permits the application of optimizations
such as the recognition and minimization of safety properties.
This procedure relies on the LTL to Büchi automata translation
procedure producing automata with only terminal accepting states
for safety properties. This will not be the case for all safety
properties, however, our experience so far is that it applies to a
sufficiently large class of properties, in particular invariants, to
make it worthwhile.

Critical to the success of any LTL model-checking procedure is
the use of partial-order reduction for those properties that are
closed under stuttering. We have outlined how the use of the ||*
operator permits partial order reduction by weakening the
dependence between tester actions and other system actions. The
use of this operator has the additional advantage that it makes

tester construction independent of the systems to which they are
applied. In other words, we can modify the system model without
rebuilding the tester so long as the actions associated with the
property remain in the alphabet of the system. Space has allowed
us to only sketch the relationship with partial order reduction. At
the moment, when exploring the state space during model
checking, we take the conservative approach of fully expanding
any state in which an “*” action is enabled. We are currently
exploring conditions under which this can be relaxed to achieve
more reduction.

In conclusion, we have used fluents as a way of reasoning about
state in event based system models. We are already finding other
uses for fluents; in specifying preconditions for scenarios and in
specifying performance measures for stochastic models.

Acknowledgements
We are grateful for helpful discussions on the ideas contained
within this paper with Jeff Kramer and Sebastian Uchitel. The UK
author is gratefully for support from EPSRC grants READS
GR/S03270/01 and AEDUS GR/R95715/01.

9. REFERENCES
[1] R. Allen and D. Garlan, A Formal Basis for Architectural

Connection, ACM Transactions on Software Engineering
and Methodology (ACM TOSEM), Vol. 6, No. 3, pp. 213-
249, 97.

[2] B. Alpern and F. Schneider, Defining Liveness, Information
Processing Letters, Vol. 21, No. Oct, pp. 181-185, 1985.

[3] B. Alpern and F. B. Schneider, Recognising Safety and
Liveness, Department of Computer Science, Cornell
University, TR 86-727, January 1986.

[4] M. Bernardo, P. Ciancarini and L. Donatiello, Architecting
Software Systems with Process Algebras, University of
Bologna, UBLCS-2001-7, July 2001.

[5] S. C. Cheung and J. Kramer, Checking Subsystem Safety
Properties in Compositional Reachability Analysis, 18th
International Conference on Software Engineering
(ICSE'18), Berlin, Germany, pp. 144-154, March 1996.

[6] E. M. Clarke and E. A. Emerson, Synthesis of
synchronisation skeletons for branching time temporal
logic, Logic of Programs Workshop, Yorktown Heights NY,
131.

[7] R. Cleaveland, J. Parrow and B. Steffen, The Concurrency
Workbench: A Semantics-Based Tool for the Verification of
Concurrent Systems, ACM Transactions on Programming
Languages and Systems, Vol. 15, No. 1, pp. 36-72, 93b.

[8] M. Daniele, F. Giunchiglia and M. Y. Vardi, Improved
Automata Generation for Linear Temporal Logic, 11th
International Conference on Computer Aided Verification
(CAV 1999), Trento, Italy, 1633, July 1999.

[9] R. De Nicola and F. W. Vaandrager, Three Logics for
branching bisimulation, Journal of the ACM, Vol. 42, No.
2, pp. 458-487, 1995.

[10] M. Dwyer, G. Avrunin and J. Corbett, Patterns in property
Specifications for Finite-State Verification, 21st
International Conference on Software Engineering
(ICSE'99), Los Angeles, CA, pp. 411-420, 16-22 May 1999.

[11] R. Gerth, D. Peled, M. Y. Vardi and P. Wolper, Simple On-
the-fly Automatic Verification of Linear Temporal Logic,
15th IFIP/WG6.1 Symposium on Protocol Specification,
Testing and Verification (PSTV'95), Warsaw, Poland, pp. 3-
18, June 1995.

[12] D. Giannakopoulou, Model Checking for Concurrent
Software Architectures, PhD Thesis, Imperial College
London, 1999.

[13] D. Giannakopoulou and F. Lerda, From States to
Transitions: Improving translation of LTL formulae to
Büchi automata, 22nd IFIP WG 6.1 International
Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2002), Houston, Texas,
November 2002.

[14] D. Giannakopoulou, J. Magee and J. Kramer, Checking
Progress with Action Priority: Is it Fair?, 7th European
Software Engineering Conference held jointly with the 7th
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE'99), Toulouse, France,
1687, pp. 511-527, September 1999.

[15] C. A. R. Hoare, Communicating sequential processes,
Englewood Cliffs, N.J. ; London, Prentice-Hall
International, 1985.

[16] G. J. Holzmann, The Model Checker SPIN, IEEE
Transactions on Software Engineering, Vol. 23, No. 5, pp.
279-295, 97.

[17] J. E. Hopcroft and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, 79.

[18] R. A. Kowalski and M. Sergot, A Logic-Based Calculus of
Events, New Generation Computing, Vol. 4, No., pp. 67-95,
1986.

[19] L. Lamport, The Temporal Logic of Actions, ACM
Transactions on Programming Languages and Systems, Vol.
16, No. 3, pp. 872-923, 94.

[20] J. Magee, N. Dulay, S. Eisenbach and J. Kramer, Specifying
Distributed Software Architectures, 5th European Software
Engineering Conference (ESEC'95), Sitges, Spain, 989, pp.
137-153, September 1995.

[21] J. Magee and J. Kramer, Concurrency - State Models &
Java Programs, Chichester, John Wiley & Sons, 1999.

[22] J. Magee, J. Kramer and D. Giannakopoulou, Behaviour
Analysis of Software Architectures, 1st Working IFIP
Conference on Software Architecture (WICSA1), San
Antonio, TX, USA, 22-24 February 1999.

[23] J. Magee, N. Pryce, D. Giannakopoulou and J. Kramer,
Graphical Animation of Behavior Models, ICSE, Limerick,
June 2000.

[24] Michael Leuschel, Thierry Massart and A. Currie, How to
Make FDR Spin: LTL Model Checking using Refinement,
Proceedings of FME'2001, LNCS 2021, pp. 99-118.

[25] R. Miller and M. Shanahan, The Event Calculus in
Classical Logic - Alternative Axiomatisations, Linkoping
Electronic Articles in Computer and Information Science,
Vol. 4, No. 16, pp. 1-27, 1999.

[26] R. Milner, Communication and Concurrency, Prentice-Hall,
89.

[27] D. O. Paun and M. Chechik, Events in Linear-Time
Properties, Proceedings of 4th International Conference on
Requirements Engineering, Toronto, June 1999.

[28] D. Peled, Combining Partial Order Reductions with On-
the-Fly Model Checking, 6th International Conference on
Computer Aided Verification (CAV'94), Stanford,
California, 818, pp. 377-390, June 1994.

[29] J.-P. Queille and J. Sifakis, Specification and verification of
concurrent systems in CESAR, 5th International Symposium
on Programming, Turin, 137, pp. 337-350, April 6-8 1982.

[30] Y. S. Ramakrishna and S. A. Smolka, Partial-Order
Reduction in the Weak Modal Mu-Calculus, Proceedings of
the Eighth International Conference on Concurrency Theory
(CONCUR '97), Warsaw, Poland, LNCS 1243, pp. 5-24,
July 1997.

[31] A. W. Roscoe, A Classical Mind: Essays in Honour of
C.A.R. Hoare, pp. 353-378, Prentice-Hall, 94.

[32] E. Sandewall, Features and Fluents: The Representation of
Knowledge about Dynamical Systems, Oxford University
Press, 1994.

[33] A. Valmari, On-the-fly Verification with Stubborn Sets,
Proceedings of CAV ’93, 5th International Conference on
Computer-Aided Verification, Elounda, Greece, LNCS 697,
pp. 397-408.

[34] R. van Ommering, Horizontal Communication: a Style to
Compose Control Software, Philips Research Laboratories.

[35] M. Y. Vardi and P. Wolper, An automata-theoretic
approach to automatic program verification, 1st
Symposium on Logic in Computer Science, Cambridge, pp.
322-331, June 1986.

