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ABSTRACT 
Model checking is an automated technique for verifying that a 
system satisfies a set of required properties. Such properties are 
typically expressed as temporal logic formulas, in which atomic 
propositions are predicates over state variables of the system. In 
event-based system descriptions, states are not characterized by 
state variables, but rather by the behavior that originates in these 
states in terms of actions. In this context, it is natural for temporal 
formulas to be built from atomic propositions that are predicates 
on the occurrence of actions. The paper identifies limitations in 
this approach and introduces “fluent” propositions that permit 
formulas to naturally express properties that combine state and 
action. A fluent is a property of the world that holds after it is 
initiated by an action and ceases to hold when terminated by 
another action. The paper describes an approach to model 
checking fluent-based linear-temporal logic properties, with its 
implementation and application in the LTSA tool. 

Categories and Subject Descriptors 
D.2.4 [Software/Program Verification]: Model checking;  

General Terms 
Design, Languages, Verification. 

Keywords 
Model-checking, linear temporal logic, software architecture 
analysis. 

1. INTRODUCTION 
Our work is targeted at analyzing the behavioral properties of 
complex systems at the architectural level. In this context, the 
software architecture of a system is described by a set of 
components, the structure that interconnects these components 
and the connectors that describe how components interact. In 
common with other researchers concerned with the rigorous 
specification of software architectures, we have chosen an event-
based formalism to describe behavior. This is a natural choice 
since at the architectural level, we are concerned with the 
interactions between components in terms of messages sent or 
received by components and service invocations initiated or 
accepted by components. These messages and invocations are 
most naturally modeled as actions or events, and component 

behavior is thus modeled in terms of these actions and events (in 
the rest of the paper, the terms event and action will be used 
interchangeably). For example, the Architectural Description 
Language (ADL) Wright [1] is based on the process algebra 
CSP[15] for behavior descriptions and FDR[31] for behavior 
analysis; PADL[4] is based on CCS[26] and via TwoTowers, uses  
the Concurrency Workbench [7] for functional analysis; our own 
Darwin ADL[20] uses the process algebra style language FSP 
[21], and the Labeled Transition System Analyzer (LTSA) tool  
[22].  

In these event-based models of behavior, properties are described 
in terms of actions. Our experience however has been that, 
although in some cases this is a natural approach to take, the task 
of expressing properties often becomes unmanageable. To address 
this problem, we introduce “fluent” propositions, which define 
state predicates whose values are determined by the occurrence of 
actions. Fluents provide an elegant and uniform framework for 
supporting the description of properties that combine state and 
action. Moreover, we have developed an approach for model 
checking fluent-based linear-time temporal logic (LTL) 
properties.  

Although fluents are applicable to other temporal logics, we are 
interested in LTL for a number of reasons. We find it natural to 
reason about component interactions in terms of sequences of 
events in linear time. LTL is an expressive formalism that is also 
supported by efficient techniques for on-the-fly model checking. 
In addition, LTL is one of the logics that is supported by the work 
on specification patterns [10], which we wish to utilize in our 
framework for providing users with assistance in expressing 
properties formally. This body of work has undoubtedly been 
inspired by the success and popularity of the SPIN model-
checking tool[16] that incorporates many of the recent advances 
in LTL model checking.  

Why not use existing state-based model checkers such as SPIN to 
analyze Software Architecture? The reasons are twofold. Firstly, 
we wish to retain the compositional character of process algebra 
descriptions in which sub-components can be composed to form 
behaviorally equivalent components with reduced state space. In 
process algebra, component behavior is specified directly in terms 
of actions and local state is not explicitly represented. Secondly, 
the atomic propositions of LTL properties in SPIN are predicates 
on state variables. Properties on events can only be specified 
indirectly in relation to changes in these state variables. A recent 
paper [27] presents an approach to specifying events in LTL 
properties. However, this approach still has the problem that 
events are specified indirectly in terms of edges. These edges are 
changes to the truth values of atomic propositions and relate to 
state variables rather than directly to actions.  
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In the following, Section 2 presents some background on LTL 
model checking. Section 3 presents an interpretation for LTL with 
actions as atomic propositions, and illustrates the limitations of 
this approach. A more flexible approach is developed in Section 4 
using fluents. The basic model checking procedure for LTL based 
on fluents (FLTL) is outlined in Section 5, and is subsequently 
refined in Section 6. Section 7 discusses the implementation of 
FLTL model checking in the LTSA tool, and Section 8 closes the 
paper with conclusions and future directions. 

2. BACKGROUND 
This section provides some background on Labeled Transitions 
Systems(LTSs), Linear-time Temporal Logic (LTL), and the 
automata-theoretic approach to model checking LTL properties. 

2.1 Labeled Transition Systems (LTSs) 
We use LTSs to model the behavior of communicating 
components in a concurrent system. Let Act be the universal set of 
observable actions, and let τ denote a local action that is 
unobservable to a component’s environment. An LTS M is a 
quadruple 〉〈 0,,, qAQ δ where:  

•  Q  is a finite set of states, 
•  ActA ⊆  is the communicating alphabet of M, 
•  QAQ ×∪×⊆ }τ{δ  is a labeled transition relation, 
•  Qq ∈0  is the initial state. 

We call an execution of M a sequence of actions (observable or τ) 
that M can perform starting at its initial state. We say that 

〉〈= 0,,, qAQM δ transits into 〉′〈=′ 0,,, qAQM δ with action a, 

denoted as MM a ′→ , if and only if .),,( 00 δ∈′qaq  

The hiding operator “\” takes an LTS 〉〈= 0,,, qAQM δ  and a set 
of actions ActH ⊆ , and returns 〉′−〈= 0,,,\ qHAQHM δ , 
where δ ′  is obtained from  δ by turning all transitions labeled 
with actions in H into τ transitions.  

The parallel composition operator “||” is a commutative and 
associative operator that combines the behavior of two LTSs by 
synchronizing the actions common to their alphabets and 
interleaving the remaining actions. Let 〉〈= 1

0
111 ,,,1 qAQM δ  

and 〉〈= 2
0

222 ,,,2 qAQM δ .Then ,,,,|| 021 〉〈= qAQMM δ where
21 QQQ ×= , 21 AAA ∪= , ),( 2

0
1
00 qqq = , and  δ is defined as 

follows, where a is an observable action or τ (the symmetric rules 
are implied by commutativity of || ):  

•  
2121

2
11

||||

,

MMaMM

AaMaM

′→

∉′→  

•  
2121

2211

||||

τ,,

MMaMM

aMaMMaM

′′→

≠′→′→
 

2.2 Linear Temporal Logic (LTL) 
Given a set of atomic propositions ℘ , a well-formed LTL formula 
is defined inductively using the standard Boolean operators, and 
the temporal operators X (next) and U (strong until) as follows: 

•  each member of ℘  is a formula, 
•  if ϕ and ψ are formulas, then so are ¬  ϕ, ϕ ∨  ψ, ϕ ∧  ψ, Xϕ, 

ϕ U ψ.  
An interpretation for an LTL formula is an infinite word w = 
x0x1x2… over 2℘ . In other words, an interpretation maps to each 
instant of time a set of propositions that hold at that instant. We 
write wi for the suffix of w starting at xi. LTL semantics is then 
defined inductively as follows: 

•   w |= p iff p ∈  x0,  for p ∈  ℘  
•   w |= ϕ ∨  ψ iff ( w |= ϕ ) or ( w |= ψ ) 
•   w |= ¬  ϕ iff not w |= ϕ 
•   w |= ϕ ∧  ψ iff  ( w |= ϕ ) and ( w |= ψ ) 
•   w |= X ϕ iff w1 |= ϕ 
•   w |= ϕ U ψ iff ∃  i ≥ 0, such that: 
            wi |= ψ and ∀  0 ≤ j < i , wj |= ϕ 

We introduce the abbreviations “true ≡ ϕ ∨  ¬ϕ ” and  
“false ≡ ¬ true”. Boolean operator ⇒ is defined as follows: 
 ϕ ⇒ ψ ≡ ¬ϕ  ∨  ψ. Temporal operators F (eventually), G 
(always), and W (weak until) are defined in terms of the main 
temporal operators as follows: Fϕ ≡ true U ϕ, Gϕ ≡ ¬F¬ϕ , and ϕ 
W ψ ≡ ((ϕ U ψ) ∨  Gϕ). 

2.3 Model checking LTL  
Model-checking, invented by Clarke and Emerson[6] and Queille 
and Sifakis [29], is an automated technique for checking a finite 
state system against some temporal logic specification. The 
standard automata-theoretic approach [35] to model checking 
LTL properties is based on the use of Büchi automata. 

A Büchi automaton (BA) is a 5-tuple 〉Σ〈= FqQB ,,,, 0δ , where 
Q is a finite set of states, Σ is a finite set of labels, QQ ×Σ×⊆δ  
is a labeled transition relation, q0∈ Q is the initial state, and F⊆ Q 
is a set of accepting states.  

An execution of B on an infinite word >< �210 aaa  over Σ is an 
infinite word >< �210 sss  over Q, such that: s0 = q0 and ∀  i∈ N, 
(si, ai , si+1)∈  .δ  An execution is accepting if some element of F 
occurs in it infinitely often. An infinite word w over Σ is accepted 
by the automaton B, if there exists some accepting execution of B 
on w. 

For any LTL formula over a set of propositions ℘ , a Büchi 
automaton can be constructed that accepts exactly those infinite 
words over 2℘  that satisfy ϕ. Based on this result, a finite-state 
system is checked against an LTL specification ϕ by computing 
the intersection of the system with a Büchi automaton 
corresponding to (¬ϕ ); the system satisfies ϕ if this intersection 
accepts no words, i.e., if its language is empty.  

3. ACTION LTL (ALTL) 
In the context of event-based behavior specifications, we must 
determine the meaning of the atomic propositions from which 
LTL formulas are built. Our first approach, following from the 
work of one of the authors[12] and used by Leuschel, Massart and 
Currie[24] in relation to CSP, is to directly associate propositions 
with actions. We term this approach ALTL to distinguish it both 



from the usual state-based interpretations for LTL and from our 
subsequent approach based on fluents.  

In ALTL, the set of propositions ℘  is the universal set of actions 
(or events) Act. An interpretation assigns to each time instant a set 
of actions that occur at that instant. In our interleaving model of 
concurrency where a single action can occur at a time, these sets 
are singletons. An infinite execution >< m210 aaa of an LTS 
defines an interpretation that assigns action ai to each time instant 
i∈ N. An LTS M satisfies an LTL property ϕ if and only if ϕ holds 
in all interpretations defined by executions of M. Note that, unlike 
standard trace theory [15], τ actions must be taken into account in 
this context, because they may be the cause of infinite stuttering, 
identified in process algebras as divergence. Initially, to simplify 
the presentation, we will assume that all actions in the system LTS 
are observable. We deal with LTSs with τ actions in Section 6.   

3.1 Limitation 
Although ALTL provides a clear and obvious interpretation for 
LTL formulas in the context of event-based system descriptions, it 
is limited in the ease with which properties can be specified. To 
illustrate this, we use an example arising from work on verifying a 
new decentralized style for organizing television control 
software[34].  Figure 1 shows a simplified fragment of the 
software architecture of a television organized using this style. 
Each component is responsible for controlling a part of the signal 
path in the television.  

TUNER
DRIVER

TUNER
CONTROL

SCREEN
DRIVER

SCREEN
CONTROL

tune endtune blank unblank

TUNER
DRIVER

TUNER
CONTROL

SCREEN
DRIVER

SCREEN
CONTROL

tune endtune blank unblank

 
Figure 1. Fragment of TV software architecture 

A required property of this system is that to avoid artifacts on the 
screen when changing channels, the screen must be blanked when 
the tuner is tuning into the new channel. The screen is blanked by 
the action blank and displays the new channel signal when the 
action unblank occurs. The tuner starts tuning into the new 
channel when initiated by the action tune and indicates that it has 
finished tuning by the action endtune. The required safety 
property can be stated quite simply in English: “If the tuner is 
tuning, then the screen must be blanked.” However, translating 
this into ALTL is less straightforward. If we make the assumption 
that the screen is initially blanked, the required property can be 
expressed as: 

NOARTIFACTS ≡ G( (unblank ⇒ (¬tune W blank))  ∧  
         (tune ⇒ (¬unblank W endtune))) 

If we assume that the screen is not initially blanked then the 
property becomes: 

 (¬tune W blank) ∧  G( (unblank ⇒ (¬tune W blank))  ∧  
         (tune ⇒ (¬unblank W endtune))) 

In the actual TV model, there is more than one method of 
initiating tuning and blanking and more than one way that these 
activities and states terminate. In addition, the property must be 
specified for architectures with multiple tuners and multiple 
output devices. The task of specifying the required property in 
ALTL quickly becomes unmanageable. The reason is that ALTL 
is limited to action propositions (only one of which can be true at 
any given instant). It is often non-trivial to express LTL properties 
directly in terms of actions, especially when these actions are used 
to define time intervals and relationships between them (e.g. no 
overlapping). Such intervals are often easier to define in terms of 
values of (system) state predicates that characterize them. For 
example, if we could observe a predicate TUNING of the tuner 
driver which was true when the driver was tuning and a predicate 
BLANKED of the screen driver which was true when the screen 
was blanked, we could express the desired property in LTL simply 
as G(TUNING  ⇒ BLANKED). This definition is a direct 
translation of the requirement stated in English above. The 
problem of observing state predicates in event-based system 
descriptions is addressed in the next section. 

4. FLUENT LTL (FLTL) 
To reason about the effects of actions on the state of a system, we 
adopt the idea of a fluent from research in Artificial 
Intelligence[32]. A fluent is anything whose value is subject to 
change over time, although here we deal only with propositional 
fluents. The notion is best explained by an informal definition due 
to Miller and Shanahan[25] from the Event Calculus originally 
introduced by Kowalski and Sergot[18] as a logic program 
framework for reasoning about actions and their effects. Miller 
and Shanahan informally define propositional fluents as follows: 
“Fluents (time-varying properties of the world) are true at 
particular time-points if they have been initiated by an action 
occurrence at some earlier time-point, and not terminated by 
another action occurrence in the meantime. Similarly, a fluent is 
false at a particular time-point if it has been previously terminated 
and not initiated in the meantime.”  

Our use of fluent is consistent with this definition. We define a 
fluent Fl by a pair of sets, a set of initiating actions IFl and a set of 
terminating actions TFl: 

Fl ≡ 〈 IFl , TFl 〉  where IFl , TFl  ⊂  Act and IFl ∩ TFl  = ∅  

In addition, a fluent Fl may initially be true or false at time zero as 
denoted by the attribute InitiallyFl.  

The set of atomic propositions from which FLTL formulas are 
built is the set of fluents Φ. Therefore, an interpretation in FLTL 
is an infinite word over 2Φ, which assigns to each time instant the 
set of fluents that hold at that time instant. Similarly to ALTL, any 
infinite word >< m210 aaa  over Act also defines an FLTL 
interpretation >< m210 fff  over 2Φ as follows: 

∀ i∈ N, ∀  Fl ∈  Φ, Fl ∈  fi  iff either of the following holds 

− ),0( FlkFl TaikNkInitially ∉≤≤⋅∈∀∧   

− )),()()((: FlkFlj TaikjNkIaijNj ∉≤<⋅∈∀∧∈∧≤∈∃  

In other words, a fluent holds at a time instant if and only if it 
holds initially or some initiating action has occurred, and in both 



cases, no terminating action has yet occurred. Note that the 
interval over which a fluent holds is closed on the left and open 
on the right, since actions have immediate effect on the values of 
fluents. This is slightly different from the fluents of Miller and 
Shanahan, which are open on the left and closed on the right[25]. 
Since the sets of initiating and terminating actions are disjoint, the 
value of a fluent is always deterministic with respect to a system 
execution. Note that the frame problem as it relates to fluents in 
the Event Calculus[25] is not relevant here as we have a fixed set 
of well defined actions and each fluent is completely defined by a 
fixed subset of these actions. 

In contrast to ALTL, in which no two action propositions can be 
true at the same instant, it is clear that two fluents can hold 
simultaneously. In FLTL, we can concisely express the 
NOARTIFACTS property of section 3.1, when the screen is 
initially blanked, as: 

TUNING ≡ 〈{tune},{endtune}〉    InitiallyTUNING = false 
BLANKED ≡ 〈{blank},{unblank}〉 InitiallyBLANKED = true  

NOARTIFACTS ≡ G(TUNING  ⇒ BLANKED) 

4.1 Actions and Fluents 
Fluents have been carefully designed to provide a uniform 
framework supporting both action- and fluent-based property 
specifications, as well as their combination. Specifically, every 
action a implicitly defines a fluent whose initial set of actions is 
the singleton {a} and whose terminating set contains all other 
actions in the alphabet of the system A⊆ Act : 

Fluent(a) ≡ 〈{a}, A – {a}〉    Initiallya = false  

From the definition, it should be clear that Fluent(a) becomes true 
the instant a occurs and becomes false with the first occurrence of 
a different action. We can thus define properties that combine 
actions with fluents.  

It is often more succinct in defining properties to declare a fluent 
implicitly for a set of events as in: 

Fluent(S) ≡ 〈S, A – S 〉   InitiallyS = false   
                                       where S = {a0, a1, … an} 

This is equivalent to a0∨  a1∨  …∨  an where ai represents the 
implicitly defined Fluent(ai). Set-based fluents also lead to fewer 
fluent automata generated during model checking (section 5). 

In the next sections, we outline how FLTL model checking is 
implemented in the LTSA tool, and give examples of using the 
LTSA concrete syntax for fluents and properties. 

5. MODEL CHECKING FLTL 
Let M be a finite-state system whose executions define infinite 
words over 2℘ , where ℘  is a set of propositions. As mentioned, 
the standard procedure for model checking M against some LTL 
property ϕ over ℘ , consists of the following steps: 

1. construct a Büchi automaton B for ¬ϕ ; 

2. check emptiness of the synchronous product of B with M 
(corresponds to the intersection of the two automata. 

In our framework, we need to model check LTSs against 
specifications expressed in FLTL. However, the words produced 

by executions of LTSs are defined over the set of actions Act, 
whereas the properties are defined over the set of fluent 
propositions Φ. This apparent mismatch is not a real problem 
since, as observed in section 4, an infinite word over actions also 
defines an FLTL interpretation. We are therefore able to define a 
procedure for checking FLTL properties of LTSs, without 
extending the LTS model.  

To bridge the gap between state-based models and event-based 
models such as LTSs, De Nicola and Vaandrager introduced 
doubly labeled transition systems (DTSs) [9], which were used by 
Ramakrishna and Smolka in [30]. DTSs have actions labeling 
transitions and propositions labeling states and thus provide a 
concise formalism for relating actions to state. In our approach, 
fluents define state labels implicitly. Naturally, fluents cannot be 
used to express arbitrary state predicates. However, since they are 
defined separately, the model of the system remains a simple LTS. 
In addition, we have developed an FLTL model checking 
procedure that is based only on LTSs. As such, it requires little 
modification to the existing implementation of the LTSA tool, 
which has efficient representations and algorithms for 
manipulating LTSs. Our model checking procedure avoids the 
need for augmenting LTSA with a synchronous product operation. 
It consists of constructions that are generic, and that could 
therefore be introduced in other LTS based analysis tools. 

5.1 Generating a Büchi automaton      

TUNING∧¬ BLANKED

true
true

TUNING∧¬ BLANKED

true
true  

Figure 2. Büchi automaton for ¬G(TUNING  ⇒⇒⇒⇒ BLANKED) 

Let ϕ be an FLTL property for a system. The first step of our 
approach is to generate a Büchi automaton for ¬ϕ . We use the 
algorithm LTL2BUCHI[13], which is an improvement over 
previous tableau-based constructions by Gerth, Peled, Vardi and 
Wolper [11] and Daniele, Giunchiglia and Vardi[8]. The result is 
a Büchi automaton whose alphabet Σ is the powerset of fluents 
2Φ. For example, Figure 2 depicts the Büchi automaton obtained 
for the formula ¬G(TUNING ⇒ BLANKED). In our illustrations 
of automata, a label x∈ 2Φ is represented as a conjunction of terms, 
with one term pi for each fluent Fli∈Φ , such that pi = Fli if Fli∈Φ , 
and pi = ¬Fli otherwise. Also, a transition labeled “true” can be 
fired irrespective of the current values of fluents. For the 
automaton of Figure 2, each “true”  transition is an abbreviation 
for a transition for each label in 2Φ: (¬TUNING ∧  ¬BLANKED), 
(¬TUNING ∧  BLANKED), (TUNING ∧  ¬BLANKED), and (TUNING ∧  
BLANKED). 

5.2 Adding Fluent Labels 
Let )||||( m1 MMM o=  be a system with alphabet AM, which 
consists of a set of m processes M1…Mm. In order to model check 
M, we augment it by adding to each composite state a set of self-
transitions labeled with the values from 2Φ of fluents that hold at 



that state. This is achieved by the parallel composition of M with a 
set of fluent automata. 

Fluent automata 
For each fluent Fl ≡ 〈 IFl , TFl 〉 InitiallyFl  where IFl, TFl  ⊂  Act, we 
construct a fluent automaton, which is an LTS 

〉〈= 0,,, qAQFFl δ defined as follows: 

•  },{ ft qqQ =  

•  Φ∪∪= 2FlFl TIA  
•   )},,(),,,(|{      tttf qaqqaqIa Fl∈∀=δ  

  )},,(),,,(|{  ftff qaqqaqTa Fl∈∀∪  

  )},,(|,2{  ff qxqxFlx ∉∈∀∪ Φ    

  )},,(|,2{  tt qxqxFlx ∈∈∀∪ Φ  
•  tf 00  else false,   if qqInitiallyqq Fl ===  

The fluent automaton for the fluent TUNING from section 3 is 
depicted in Figure 3, where ¬TUNING is an abbreviation for the 
set of labels {¬TUNING∧¬ BLANKED, ¬TUNING∧ BLANKED} and 
TUNING is an abbreviation for the set of labels 
{TUNING∧¬ BLANKED, TUNING∧ BLANKED}. 

tune

endtune

{endtune, ¬TUNING } {tune, TUNING }

tune

endtune

{endtune, ¬TUNING } {tune, TUNING }
 

Figure 3.   Fluent automaton for TUNING initially false. 

The automaton has two states, one in which the fluent does not 
hold and one in which it does. The initial state of the automaton is 
determined by the value of the attribute InitiallyFl. The automaton 
moves into the holding state when an action from its initiating set 
occurs and to the not holding state when an action from its 
terminating set occurs. In other words, the automaton relates 
actions to the truth-value of the fluent and those values are 
represented by the self-transitions labeled from 2Φ. So if 

n1 FlFl m  represent the fluents in Φ, the composition 

)||||||||||(
n1m1 FlFl FFMMMF mm=   

achieves the desired effect of adding to each composite state in M, 
self-transitions labeled with the fluents that hold in that state. 
Effectively these transitions simulate the state labeling of DLTs. 
Note that for model checking, the composition of the system and 
the fluent automata can be explored on-the-fly.     

5.3  Synchronous product 
As discussed, model checking involves computing the 
synchronous product of the system with a Büchi automaton. In 
our context, this product requires that for each step that system M 
takes (i.e. transition labeled with an action from AM), the Büchi 
automaton BΦ over 2Φ also take a step according to the fluent 
values resulting from that transition. These fluent values, as 
described above, are represented by self-transitions on each state 

of the augmented system MF. To compute the synchronous 
product, we use conventional parallel composition and a 
synchronizer automaton constructed as follows.  

Synchronizer automaton 
For a set of fluents Φ and a system with alphabet ,MA  such that 

),,( MFlMFl ATAIFl ⊆∧⊆Φ∈∀  the synchronizer automaton is 
an LTS 〉〈=Φ 0,,, qAQSync

MA δ  where: 

•  },{ 10 qqQ =  

•  Φ∪= 2MAA  

•  )},,(|2{)},,(|{ 0110 qxqxqaqAa M
Φ∈∀∪∈∀=δ  

Figure 4 depicts the synchronizer for the example formula 
¬G(TUNING ⇒ BLANKED) for a system alphabet {tune, 
endtune, blank, unblank, anon} where anon is some other action 
that the system performs but is not used in defining fluents. 

true

{tune, endtune, blank, unblank, anon}

true

{tune, endtune, blank, unblank, anon}

 

Figure 4. Synchronizer automaton 

The required synchronous product between the augmented system 
MF with Büchi automaton BΦ can now be formed by the 
following parallel composition: 

)||||||||||||||(
n1m1 ΦΦ= BSyncFFMMMFB

MAFlFl mm  

Following [12], we mark accepting states in BΦ by adding a self-
transition labeled @B. In essence, after every transition of system 
M, the synchronizer automaton forces the Büchi automaton BΦ to 
observe the fluent values in the resulting state and take a step 
accordingly. 

5.4 Model checking 
For model checking, since BΦ accepts the complement of the 
language accepted by the FLTL property formula, we need to 
check that the language accepted by MFB is empty. This consists 
of checking that MFB does not contain any strongly connected 
component that is reachable from the initial state and contains an 
accepting state.  We use Tarjan’s depth first search algorithm [19] 
for computing strongly connected components. MFB is not 
explicitly constructed but explored “on-the-fly”.  

The LTSA tool includes a technique that combines an assumption 
of fair choice of transitions with the use of action priority to 
specify scheduling conditions[14]. This technique requires 
computing terminal sets of states, i.e., strongly connected 
components in which there are no transitions from a state in the 
component to a state outside the component. To be compatible 
with this technique, the Büchi automata that we use for model-
checking must be complete [12]. A Büchi automaton BΦ over 2Φ 
is complete if in every state there is an enabled transition for every 
label in 2Φ. An automaton BΦ can be easily completed by adding a 
non-accepting “sink” state sk, and then introducing transitions to 



sk for all undefined transitions in each state of the automaton. The 
Büchi automaton of Figure 2 is complete, so it does not require 
this additional “sink” state. 

6. TESTER AUTOMATON 
The procedure outlined in the previous section has a number of 
deficiencies: the use of a synchronizer automaton and parallel 
composition to form the synchronous product doubles the number 
of states that must be explored during model checking, and 
representing fluent values by sets of transitions causes an 
unnecessarily large number of transitions to be explored. 
Moreover, the problem of dealing with unobservable actions as 
mentioned in section 3 is not addressed. To deal with these issues, 
we partition the composition to form a “tester automaton”. This is 
a Büchi automaton BAM that recognizes infinite words over the 
alphabet AM⊆ Act of the system.  

The composition MFB which we constructed in the previous 
section can be factored as follows: 

Φ
ΦΦ= 2\)||||||||(

n1
BSyncFFB

MAFlFlAM �  

)||||( m1 MMM �=  

We form the “tester” automaton BAM from the parallel 
composition of the fluent automata, the synchronizer and the 
Büchi automaton BΦ. Since the alphabet AM of the system M does 
not contain any of the labels in 2Φ, we can safely hide these 
actions in the composition BAM. It is now possible to explicitly 
construct the LTS for BAM and then optimize it before composing 
it with the system.  

Firstly, we remove the unnecessary intermediate states in which 
the Büchi automaton has not yet observed the state resulting from 
a transition on some action in AM. This is performed by coalescing 
states separated by the τ transitions caused by hiding the labels in 
2Φ. Specifically, due to the use of a synchronizer, any execution 
of BAM will consist of a sequence: 

 M
aa Aaaqqqq ∈→→→→ �� ,,   where, 10

τ
32

τ
10

10  

To eliminate intermediate states of BAM, for any two consecutive 
transitions (qi, a, qj),( qj, τ, qk) in its LTS, we first replace these 
transitions with a single transition (qi, a, qk), and then remove the 
resulting unreachable state qj. 

Subsequently, we minimize the resulting LTS with respect to 
strong bisimulation. The tester automaton obtained is a Büchi 
automaton that recognizes sequences of actions from the alphabet 
AM. As before, accepting states in BAM are marked by a self-
transition labeled @B. 

Although there is a danger of intermediate state-space explosion 
in computing the tester automaton BAM, it has the following 
advantages. Significant reductions are obtained if the initiating 
and terminating sets of different fluents are not disjoint. For 
example, this is always the case for the terminating sets of action 
fluents. In addition, the cost of a “step” in exploring the state 
space of MFB is proportional to the number of automata in the 
composition since in each composite state we need to look at 
which actions are enabled in each automaton. Consequently, 
computing and optimizing BAM speeds up the model checking. 

Figure 5 illustrates the tester automaton generated by the LTSA 
for ¬G(TUNING ⇒ BLANKED) with alphabet {tune, endtune, 
blank, unblank, anon}. 
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Figure 5. Tester automaton for  ¬G(TUNING  ⇒⇒⇒⇒ BLANKED) 

6.1 Safety Properties 
Following the formal definition from  Alpern and Schneider [2] 
and the approach presented in [3], a safety property stipulates that 
some “bad thing” does not happen. If a “bad thing” happens in an 
infinite sequence, then it must also do so after some finite prefix 
and must be irremediable. In the case of a tester process, which 
recognizes violating sequences as it is generated from the 
negation of a property, a finite sequence of actions is recognized if 
it ends in an accepting state and there is no action that can cause 
the tester process to leave that accepting state. We call such 
accepting states terminal. State 3 of Figure 5 is an example of a 
terminal accepting state.  
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Figure 6. Deterministic tester for ¬G(TUNING  ⇒⇒⇒⇒ BLANKED) 

If all the accepting states of a tester automaton are terminal then 
the property it represents is a pure safety property. We can replace 
the accepting states with ERROR states, in which case model 
checking reduces to a simple reachability search for ERROR 
states[5]. Further, since the tester automaton is only required to 
detect finite sequences, we can usually further minimize the tester 
automaton using trace equivalence, which involves standard 
determinization and minimization for finite state automata[17]. 
Applying this to the example of Figure 5 results in the tester 
automaton of Figure 6, in which state (-1) is the ERROR state. 

6.2 Partial Order Reduction 
The tester automaton as described so far is constructed with 
respect to the alphabet AM⊆ Act of the system, since AM is used in 
defining the synchronizer automaton and fluent automata. This 
has two disadvantages: firstly, we must reconstruct the tester when 
we wish to check a system with a different alphabet even when the 



actions we use to define fluents do not change and secondly, more 
seriously, it causes a problem with partial order reduction. This 
latter problem is clearly articulated by Valmari[33]. In essence, 
synchronizing the tester automaton with every action of the 
system makes all transitions dependent on each other and, 
consequently, prevents any reduction obtainable from the use of 
independency in computing ample sets[28] during partial order 
reduction. In our example tester depicted in Figures 5 & 6, in 
which the action anon represents the set of system actions not 
directly used in the definition of fluents, it can be seen that a self-
transition labeled with this action is enabled in every state.  

To address these problems and also deal with τ transitions in the 
system, we represent all actions in the system (including action τ) 
that are not used in the definition of fluents, by a single action 
“*”. If AF is the set of actions appearing in fluent definitions, then 
the alphabet used in the construction of the synchronizer is AF 
∪ {*}. Steps on action * in the synchronizer represent stuttering 
steps in the system with respect to fluent values, but since such 
stuttering may be infinite, they must be taken into account in 
model checking. The resulting synchronizer is then used in the 
construction of the tester automaton, which is performed as 
defined earlier in this section. However, to allow the tester to 
observe actions associated with “*” we define a slightly modified 
parallel composition operator “ *|| ”, as follows.  

For a system 〉〈= MMMM qAQM 0,,, δ  and a tester automaton 
〉〈= TTTT qAQT 0,,, δ such that AT –{*}⊆  AM, the modified parallel 

composition M||*T is an LTS 〉〈 0,,, qAQ δ , where Q=QM× QT , A 
= AM, q0=(q0M, q0T), and  δ is defined as follows, where a is an 
observable action or τ:  

•  
TMaTM

TaTMaM

′′→

′→′→

** ||||

, (note that T has no τ transitions) 

•  
TMaTM

AaTTMaM T

′′→

∉′→′→

**

*

||||

   ,,
 

Similarly to the conventional parallel composition operator, 
operator “||*” synchronizes transitions labeled with common 
actions in the alphabets of the two LTSs. Additionally, transitions 
in system M labeled with actions in ( AM – AT ) or τ synchronize 
with * transitions in T, if such transitions are enabled. Since T is a 
complete automaton, the second rule will always apply when the 
first one does not, so the tester observes every step of the system. 
The modified operator is not meant to be commutative or 
associative since it is only used to combine tester with system. 

An advantage of tester automata that use * transitions is that they 
are independent of the system, and can be reused across systems 
with the same set of fluents. Moreover, it is now possible to 
introduce an optimization to alleviate the problem discussed 
above related to partial order reduction. Let q be a state in T that 
has a self-transition (q, *, q), such that there exists no transition 
from q to a different state labeled with *. The same effect of any 
such transitions can be achieved by removing the transition from 
the tester T, and adding the following rule to the definition of 
operator “ *|| ”:  

•  
TMaTM

AaTMaM T

**

*

||||

,,

′→

∉→¬′→
 

where the notation →¬ *T  means that there is no transition 
labeled with * enabled in T. The result of removing such 
transitions weakens the dependence between M and T, and 
permits partial order reduction. Partial order reduction is only 
enabled in LTSA for LTL-X properties. These are properties that 
do not contain operator X and are therefore closed under 
stuttering [19], as required for partial order reduction. 

7. FLTL in the LTSA  
The Labelled Transition System Analyser (LTSA) is a general 
purpose tool for exploring event-based system specifications. 
Systems are described using FSP, which is a process algebra 
notation for describing finite state processes. In addition, models 
can be constructed from a set of scenarios described by message 
sequence charts. The tool supports interactive model exploration, 
domain specific animation[23], compositional reachability 
analysis and verification with respect to safety properties specified 
as automata[5] and progress properties specified as action 
sets[14].  The tool has now been augmented with the FLTL 
model-checking procedure described in the previous section. In 
the following, we use examples to illustrate the use of the FLTL 
features. 

7.1 Fluents and FLTL properties 
The concrete syntax for FLTL formulas used in the LTSA follows 
as closely as possible the LTL syntax used in SPIN. The following 
operators are defined: 

Unary operators (unop): Binary operators(binop): 
[] always (G) U strong until
<> eventually (F) W weak until
X next time && logical AND
! logical negation || logical OR

-> implication 
<-> equivalence

Note that we will be representing logical OR as ||OR here to avoid 
confusion with the parallel composition operator. An FLTL 
formula is defined as Φ := True | False  | prop | (Φ) | unop Φ | 
Φ binop Φ, where prop is a fluent, an action or a set of actions as 
defined in section 3. Fluents are specified as shown by a pair of 
actions (or actions sets). An initialization clause is optional. If 
missing, the fluent is assumed to be initially false.  

The concrete syntax for the property NOARTIFACTS introduced 
in section 3.1, for the case where the screen is initially blanked is: 

fluent BLANKED =
<blank,unblank> initially True

fluent TUNING = <tune,endtune>
assert NOARTIFACTS = [](TUNING -> BLANKED)

Note that, since the screen is initially blanked, we need to 
explicitly set the value of fluent BLANKED to true. In addition, 
we can define an equivalent property with actions: 



assert ActionNA =
[]((unblank -> (!tune W blank))

&& (tune -> (!unblank W endtune)))

A simple liveness property that asserts that the screen is always 
eventually unblanked can be expressed using the action unblank: 

assert UNBLANK = []<>unblank

UNBLANK
*

{*, unblank}

unblank

unblank
0 1 2

UNBLANK
*

{*, unblank}

unblank

unblank
0 1 2

 
Figure 7. Tester automaton for []<>unblank 

The tester automaton generated from this property is shown in 
Figure 7. Note that the tester corresponds to the negation of the 
property, as required by model checking. The automaton 
illustrates that * actions are necessary in state 0. They allow the 
tester to non-deterministically move to the accepting state, that 
corresponds to the moment that unblank stops occurring for ever. 
An * self-transition at state 1 has been removed by our 
optimization. With our modified parallel composition operator, if 
at that stage the system executes an infinite sequence of actions 
that are not unblank, this will be detected as a property violation 
in the composition of the system with the tester.  
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{endtune, 
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tune endtune

tune {endtune, tune}
0 1 2

TUNER

{endtune, 
tune}

tune endtune
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Figure 8. Tester automaton for [](tune -> <>endtune) 

In contrast, the tester generated for the response property: 

assert TUNER = [](tune -> <>endtune)

depicted in Figure 8 has no * transitions. In this case, only the 
action tune can take the automaton into the accepting state. Again, 
the automaton stays in the accepting state if the system executes 
an infinite sequence of actions that are not endtune.  

Finally, it is possible to combine properties as in: 

assert SCREEN = (NOARTIFACTS && UNBLANK)

7.2 Indexed Fluents 
We have found it convenient to declare indexed sets of fluents. 
For example, CRITICAL[i] is true when process p[i] enters a 
critical section and false when it exits: 

const N = 4
fluent CRITICAL[i:1..N] =

<p[i].enter, p[i].exit>

Mutual exclusion between two processes p[1] and p[2] can simply 
be expressed as: 

assert MUTEX =
[]!(CRITICAL[1] && CRITICAL[2])

We can also express a mutual exclusion property for N processes: 

assert MUTEX_N =
[]!(allOr[i:1..N-1]

(CRITICAL[i] && CRITICAL[i+1..N]))

Here we use an or replicator where:  
allOr[i:1..N] C[i] ≡ C[1] ||OR …||OR C[N]  

Moreover, the LTSA supports fluent propositions of the form: 
FL[i:1..N] ≡ FL[1] ||OR …||OR FL[N]  

An and replicator is used to define the required liveness property: 

assert LIVE_MUTEX =
allAnd[i:1..N] []<>CRITICAL[i]

The use of index ranges allows the concise expression of 
properties. For example, the safety property for a system of 
readers and writers in which either multiple readers or a single 
writer can access a shared resource can be expressed as: 

const N = 3

fluent READING[i:1..N] =
<startRead[i], endRead[i]>

fluent WRITING[i:1..N] =
<startWrite[i], endWrite[i]

// readers and writers cannot access at the same time
assert READ_WRITE =
[]!(READING[1..N] && WRITING[1..N])

// only a single writer can access at one time 
assert ONE_WRITE =

[]!allOr[i:1..N-1]
(WRITING[i] && WRITING[i+1..N])

// the required Readers-Writers safety property is 
assert RW_SAFE = (READ_WRITE && ONE_WRITE)

Table 1 - Tester automata size (#states) 

Property N BΦΦΦΦ BA Safe(BA) 
MUTEX_N 2 2 5 4 
 3 2 9 5 
 4 2 17 6 
 5 2 33 7 
LIVE_MUTEX 2 6 8 - 
 3 8 11 - 
 4 10 14 - 
 5 12 17 - 
RW_SAFE 2 4 22 7 
 3 4 74 12 
 4 4 769 21 
 5 4 1058 38 

 
Table 1 displays the size of the tester automata for the above 
properties for different values of N. The column headed BΦ gives 
the number of states of the Büchi automata generated by 
LTL2BUCHI, the one labeled BA gives the number of states of the 
corresponding tester automata and Safe(BA) the number of states 
after making safety properties deterministic and minimal. In the 
case of safety properties, the table indicates that computing tester 
automata may suffer from intermediate state-space explosion, as 
mentioned in section 6. However, this is compensated by the 



reduction achieved by minimization according to trace 
equivalence. Note that for a value of N=5, the RW_SAFE property 
requires 10 fluent automata for its construction (i.e. 
READING[1..5] and WRITING[1..5]). Consequently, where 
possible, it is worth checking safety properties independently 
from liveness properties since the safety property reduction cannot 
be applied to combined properties, for example to (LIVE_MUTEX 
&& MUTEX_N). 

7.3 Counterexamples 
Although tester automata retain no information concerning the 
fluents from which they are formed, we have found it provides 
useful diagnostic information to reconstruct the value of fluents 
from error traces when displaying counterexamples. This is 
accomplished by computing fluent values after each action in the 
trace. The example below is a counter example produced from the 
MUTEX property. The trace is annotated with the names of 
fluents that are true at the time an action occurs: 

Trace to property violation in MUTEX:
p[1].mutex.down
p[1].enter CRITICAL[1]
p[2].mutex.down CRITICAL[1]
p[2].enter CRITICAL[1] && CRITICAL[2]

Analysed in: 20ms

8. CONCLUSION 
The usefulness of LTL to specify properties in event-based system 
models is acknowledged by Leuschel, Massart and Currie[24] in 
the context of CSP. They take the approach outlined in section 3 
of associating primitive propositions with events. Paun and 
Chechik[27] make a convincing case for supporting events in LTL 
specifications of state-based system models. In this paper, we 
describe the use of fluents as a means of including propositions 
related to state in LTL properties of event-based systems. Fluents 
permit the concise specification of properties concerned with 
state. They provide an elegant way of specifying properties that 
combine propositions over the occurrence of actions or events 
with propositions over the states that these actions bring about. 
Moreover, the paper has outlined an approach for model checking 
FLTL properties, based on the use of Büchi automata.  

The FLTL model-checking approach presented should be 
applicable to other LTS based analysis tools. The inefficient 
representation of fluent values as sets of transitions is 
compensated for by the construction of tester automata that 
remove these transitions before model checking.  The formation 
of a tester automaton also permits the application of optimizations 
such as the recognition and minimization of safety properties. 
This procedure relies on the LTL to Büchi automata translation 
procedure producing automata with only terminal accepting states 
for safety properties. This will not be the case for all safety 
properties, however, our experience so far is that it applies to a 
sufficiently large class of properties, in particular invariants, to 
make it worthwhile. 

Critical to the success of any LTL model-checking procedure is 
the use of partial-order reduction for those properties that are 
closed under stuttering. We have outlined how the use of the ||* 
operator permits partial order reduction by weakening the 
dependence between tester actions and other system actions. The 
use of this operator has the additional advantage that it makes 

tester construction independent of the systems to which they are 
applied. In other words, we can modify the system model without 
rebuilding the tester so long as the actions associated with the 
property remain in the alphabet of the system. Space has allowed 
us to only sketch the relationship with partial order reduction. At 
the moment, when exploring the state space during model 
checking, we take the conservative approach of fully expanding 
any state in which an “*” action is enabled. We are currently 
exploring conditions under which this can be relaxed to achieve 
more reduction. 

In conclusion, we have used fluents as a way of reasoning about 
state in event based system models. We are already finding other 
uses for fluents; in specifying preconditions for scenarios and in 
specifying performance measures for stochastic models. 
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