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ARTICLE INFO ABSTRACT

Available online 16 April 2009 Negative correlation learning (NCL) is a successful approach to constructing neural network ensembles.
In batch learning mode, NCL outperforms many other ensemble learning approaches. Recently, NCL has
also shown to be a potentially powerful approach to incremental learning, while the advantages of NCL
have not yet been fully exploited. In this paper, we propose a selective NCL (SNCL) algorithm for
incremental learning. Concretely, every time a new training data set is presented, the previously trained
neural network ensemble is cloned. Then the cloned ensemble is trained on the new data set. After that,
the new ensemble is combined with the previous ensemble and a selection process is applied to prune
the whole ensemble to a fixed size. This paper is an extended version of our preliminary paper on SNCL.
Compared to the previous work, this paper presents a deeper investigation into SNCL, considering
different objective functions for the selection process and comparing SNCL to other NCL-based
incremental learning algorithms on two more real world bioinformatics data sets. Experimental results
demonstrate the advantage of SNCL. Further, comparisons between SNCL and other existing incremental
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learning algorithms, such Learn + + and ARTMAP, are also presented.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many machine learning methods involve only a single training
session (i.e., batch learning), in which all the available data are
presented and learned concurrently. However, in real-world
applications, the data are usually not available at one time, but
chunk by chunk. In other words, a number of training data sets are
presented one after another. Therefore, it is desirable for a
learning algorithm to be capable of acquiring knowledge from
new data. Such a learning process is referred to as incremental
learning [8]. In general, it is suggested that an incremental
learning algorithm should enable the learner to use any new
training data to further improve its performance. This could
involve accommodating new classes of data that are introduced
with the new data [22,28]. Further, an incremental learning
algorithm is also expected to preserve previously learned knowl-
edge without access to the previous data, i.e., it should not suffer
from catastrophic forgetting [22,28].

In the literature, there are several incremental learning
algorithms. For example, Carpenter et al. proposed the adaptive
resonance theory modules map (ARTMAP) [3] and fuzzy ARTMAP

A preliminary version of this paper appeared as [13].
* Corresponding author.
E-mail addresses: ketang@ustc.edu.cn (K. Tang), sunnyboy@mail.ustc.edu.cn
(M. Lin), EL.Minku@cs.bham.ac.uk (F.L. Minku), x.yao@cs.bham.ac.uk (X. Yao).

0925-2312/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2008.09.022

[4] in 1991 and 1992, respectively. These algorithms work based
on the generation of new clusters in response to new data that is
sufficiently different from previous ones. Kasabov also proposed a
one-pass incremental learning algorithm, namely evolving fuzzy
neural network (EFuNN) [11]. Another important incremental
learning approach, the Learn + + [22], is based on the adaptive
boosting (AdaBoost) algorithm [27]. Furthermore, two recently
proposed methods, the evolved incremental learning for neural
networks (EILNN) [28] and the self-organizing neural grove
(SONG) [9] have also been shown to be effective for incremental
learning.

Originally proposed for batch learning tasks, negative correla-
tion learning (NCL) is a successful approach to designing neural
network (NN) ensembles [16,17]. In the literature, NCL has shown
a number of empirical successes on various applications, includ-
ing classification problems [16,17], regression problems [31], and
time-series prediction [14]. It has consistently demonstrated very
competitive results with other ensemble learning techniques such
as mixtures of experts, bagging, and boosting [2,15]. Motivated by
those successes, Minku et al. recently suggested that NCL might
also be a potentially powerful approach to incremental learning
[20]. The reason is, when using NCL to train an NN ensemble, the
individual NNs of the ensemble are highly different among one
another and at the same time have high accuracy. So, when new
training data are presented, the diversity among the individuals
makes them adapt to new data in different ways. Such difference
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may help (at least one) NN better adapt to the new data, and
thereby enhance the overall performance of the ensemble.

Although Minku et al. presented a comprehensive analysis on
NCL’s potential for incremental learning, less effort has been made
to design specific incremental learning algorithms based on NCL.
In [20], two approaches based on NCL are introduced: fixed size
NCL (FSNCL) and growing NCL (GNCL). In FSNCL, every time when
a new data set is presented, the whole ensemble is used to learn
the new data set. Its generalization will mostly lie on the last
presented data set. In other words, the previous training affects
little when applying the ensemble to testing data. Therefore,
FSNCL may severely suffer from catastrophic forgetting, and the
generalization performance may improve little or even decrease
during the incremental learning process. On the other hand, in
GNCL, every time when a new data set is presented, a new NN will
be created and incorporated into the ensemble. Only this NN is
trained using NCL to make it different from those previously
trained NNs, while the existing NNs are kept unchanged. By this
means, the generalization performance will improve observably
and there will be less catastrophic forgetting. However, since only
one NN is incrementally inserted in the ensemble, the GNCL does
not take advantage of using multiple NNs to learn new data, and it
may have low generalization performance in comparison with
FSNCL. Furthermore, as more and more data sets are presented,
the size of the ensemble will become too large and eventually be
computationally intractable.

In this paper, we propose a selective NCL (SNCL) algorithm for
incrementally training NN ensembles. The general idea of SNCL is
straightforward. We fix the size of the ensemble to a predefined
number. Every time a new data set is presented, the previous
ensemble is cloned and trained using NCL. The new trained
ensemble is then combined with the previous ensemble to form a
larger ensemble. Then, a selection algorithm is applied to prune
the combined ensemble to the predefined size.

The selection algorithm is the main difference between SNCL
and the algorithms GNCL and FSNCL, proposed in [20]. The
previous two approaches either preserve all NNs trained with
previous data (GNCL), or discard all of them (FSNCL), and both
preserve all the NNs trained with the new data set. Such strategies
are more or less blind because whether an existing NN should be
preserved or not may change over time and needs to be re-
assessed from time to time. Furthermore, the newest NNs do not
necessarily have better performance than previous NNs existing in
the ensemble. So, they should not always replace the previous
NNs. The selection process of SNCL puts both groups of NNs
together and assesses them unbiasedly—decision is made solely
based on the performance of the ensemble.

In our preliminary work, the general idea of SNCL has been
shown to outperform FSNCL and GNCL in three aspects [13].
Firstly, SNCL does not discard the previously trained NNs directly,
as the FSNCL does. So it will suffer less from catastrophic
forgetting. At the same time, its generalization performance will
no be worse than FSNCL, as we will demonstrate experimentally.
Secondly, it outperforms the GNCL on accuracy since multiple NNs
are introduced to learn the new data. Finally, its size does not
increase with the new coming data, which has not been addressed
in [20]. In this paper, we further investigate SNCL in the following
ways:

e After combining the newly trained ensemble with the previous
ensemble, an objective function needs to be designed for the
selection algorithm to prune the combined ensemble. Unlike
the preliminary work, we consider two objective functions
here, which are motivated by different considerations.

e To compare SNCL with FSNCL and GNCL, additional experi-
mental study is carried out on two additional data sets from

the bioinformatics domain. The results further demonstrate
the efficacy of SNCL.

e In addition to FSNCL and GNCL, SNCL is further compared to
other existing incremental learning methods, such as
Learn + 4, SONG, ARTMAP, and EILNN.

The rest of this paper is organized as follows. In Section 2, we
briefly describe NCL. In Section 3, details of the SNCL algorithm
are presented. Section 4 presents the experimental study and a
comparison between SNCL and other incremental learning
algorithms. Finally, we conclude this paper and discuss future
works in Section 5.

2. Negative correlation learning

This section briefly describes the basic ideas of NCL. Proposed
by Liu and Yao [16,17], NCL is a learning technique for training NN
ensembles. Suppose that we have a training set denoted by

D = {(X1,d1),...,(Xn,dn)}

where x € R?, is the p-dimensional training pattern, d is the target
output, and N is number of training patterns. NCL is defined for an
NN ensemble of the form:

1 M
F) = 17> Fi(n) (1)
i=1

where M is the number of the individual NNs in the ensemble,
F;(n) is the output of the ith NN on the nth training pattern, and
F(n) is the output of the ensemble on the nth training pattern.

NCL employs the standard back-propagation (BP) algorithm to
train the individual NNs in parallel. The key to the success of NCL
is the usage of a different error function. It is well known that for
an ensemble to generalize well, the individual NNs of it should be
both accurate and diverse. To encourage these, NCL uses the sum
of the mean squared error (MSE) and a penalty term as the error
function during the learning procedure. When the nth training
pattern is presented, the ith NN is trained to minimize the error
function:

Ei(n) = 3(Fi(n) — d(n))* + Ap;(n) (2)

where / is a positive parameter controlling the trade-off between
the MSE (accuracy) and the penalty term (diversity):

pi(n) = (Fi(n) — F()) > _(Fj(n) — F(n)) 3)
j#

It can be seen from Eq. (3) that the penalty term explicitly
encourages the ith NN to be negatively correlated with the rest NNs
in the ensemble. By this means, diversity among the individual
NNs is achieved. It can be seen that with 1 = 0 we would have an
ensemble exactly equivalent to training a set of NNs indepen-
dently of one another. When A is increased, more and more
emphasis is placed on seeking the negative correlation.

More recently, efforts have been made to carry out negative
correlation learning in different ways. For example, Chan and
Kasabov proposed the negative correlation learning via correla-
tion-corrected data (NCCD), which reduces network communica-
tion bandwidth of NCL so that NCL can be effectively implemented
on parallel computers [5]. As stated in the literature, many
learning problem requires taking into account different properties
of the final model, and it might be more appropriate to handle
them separately rather than combine them together as a single
objective [1,10]. Hence, Chandra [6] suggests to conduct NCL in a
multi-objective optimization manner, and thus the potential
difficulty of determining the optimal value for A is avoided. Both
[1,6] mainly concern about how to conduct NCL more effectively
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in the context of batch learning, but have not yet been extended to
the incremental learning domain. Besides, previous studies have
shown that setting A to 1 as a default works well for various
problems. Therefore, we restrict our study on incremental
learning to the original NCL algorithm [16,17] in this paper.

3. Incremental learning algorithm based on selective negative
correlation learning

3.1. The general approach

Although NCL has shown very successful performance in the
literature, most of it is achieved on batch learning problems, i.e.,
the complete training data set is available at once. The first
attempt to extend NCL to incremental learning problems is made
only in a very recent work [20]. As we discussed in the
Introduction section, the method for adapting NCL to incremental
learning task has not been fully exploited. In this section, we
propose an incremental learning algorithm (SNCL) based on a
selective algorithm.

Fig. 1 shows the architecture of SNCL. SNCL can be viewed as
having two components.

The first component is straightforward. When a new set of
training data is available, the previously trained ensemble is
cloned, and we further train this cloned ensemble with the new
training data, using the standard NCL. After that, the newly
trained ensemble is combined with the old ensemble to form a
“combined” ensemble. As we know, failing to preserve previously
learned knowledge is likely to cause catastrophic forgetting in
incremental learning. Since the previous data is no longer
accessible once the corresponding training phase has been
finished, we may only access the learned knowledge via previous
trained NN/ensemble. In the first component of SNCL, the
previously trained NNs not only influence training the new
ensemble, but are also explicitly preserved. Therefore, we expect
the first component of SNCL to contribute mainly to improve the
generalization performance (via standard NCL) and to alleviate
catastrophic forgetting.

New dataset

Cloned Ensemble

Previous Ensemble

|
|
|
|
New Ensemble :
|
|
|

selection

Fig. 1. Architecture of SNCL.

The second component of SNCL is motivated by the idea that
not all the individual NNs are beneficial to the ensemble’s
generalization performance. Such concept is widely known in
the batch learning literature. In [32], Yao and Liu showed that
constructing an ensemble with only a part of the individual NNs
may even lead to better generalization performance. This idea was
then theoretically verified in [33]. In [33], Zhou et al. also
suggested using a canonical genetic algorithm to select the useful
individual NNs, namely, genetic algorithm based selective en-
semble (GASEN). However, GASEN only considers batch learning
tasks, and we are unaware of any work integrating similar
paradigm into NCL. Alternatively, Liu et al. [18] employed a
clustering algorithm (k-means) to select representative NNs from
a population of NNs, which are trained by evolutionary algorithm
and NCL. However, it should be noted that a good individual NN of
an ensemble is not necessarily a representative one. Furthermore,
the success of a clustering algorithm heavily relies on an
appropriate measure of the similarity between individual NNs,
which may not be a trivial work. Therefore, we adapt the GA-
based approach to SNCL (i.e., use a GA-based selection algorithm
to prune those useless individuals).

Compared to GASEN, SNCL adopts different objective functions
for the GA and an additional repair operator, which will be
described in details soon. It is worth noting that the selection
component is more important for incremental learning than for
batch learning. For an incremental learning task, when more and
more training data sets are available, the first component of SNCL
alone will eventually lead to an ensemble with computationally
prohibitive size, and many individual NNs of such an ensemble
might be redundant for achieving good generalization perfor-
mance. With a selection component, we manage to always control
the size of the ensemble at an acceptable level, while the
generalization does not deteriorate.

To summarize, the whole process of SNCL can be illustrated as
following:

(1) Let the training data sets be Tr Dy, Tr Do, ..
ensemble ens; with M NNs.
(2) Train ens; with Tr D; using NCL.
(3) Fori from 2 to s, repeat the following steps:
The previous ensemble ens;_; is cloned as ens,;.
e Train ens, with Tr D; using NCL.
e Combine ens;_; and ens.
e Apply the selection process to the combined ensemble to
get ens; with M NNs.
(4) Output the final ensemble ens;.

., Tr D;. Initialize an

3.2. The selection algorithm

This section describes the selection algorithm we used to get
the M NNs for the final ensemble, given the combined ensemble of
size 2M. In general, selection of the NN individuals can be
formulated as the following constrained optimization problem:

m“i,n Jw), W =[wi,w,,...,Wapy]

s.t. w; €{0,1}, Vi (4)
>wi=M
i

where J(w) is a predefined objective function, and it should be
carefully designed so that the final ensemble has good general-
ization performance. w is a 2M-dimensional binary vector, w; = 1
means that the ith NN is selected. As summarized in Fig. 2, a
GA-based algorithm is employed to solve the above optimization
problem.
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(1) Initialize the algorithm with the predefined ensemble size M, the size of
population pop size, the crossover probability p., the mutation probability
P, and the fitness function J(w).

(2) Randomly generate the initial population of w.

(3) Repeat the following steps for a predefined number of generations:

a. Evaluate fitness of the individuals of current population (here, an
individual refers to a candidate 2M-dimensional binary vector, not
an individual of the ensemble).

b. Use roulette selection to choose parent individuals, and produce off-
spring via 1-point crossover (with probability p.) and mutation (with
probability p,,).

c. Repair the population by greedy strategy:

If 32;w; > M, change one w; from 1 to 0 which will lead to the
smallest J(w), and repeat this process until 3; w; = M.
If 3 w; < M, change one w; from 0 to 1 which will lead to the
smallest J(w), and repeat this process until >jw; =M.

d. Replace the parent individuals with their off-springs.

(4) Output w" as the individual with the optimal fitness value. Those NNs

. ¢ X
corresponding to wi”" = 1 are used to construct the final ensemble.

Fig. 2. steps of the selection algorithm.

From Fig. 2, we can observe that the GA-based algorithm is a
hybridization of a canonical GA [7,19] and a repair operator.
Though the canonical GA itself is capable of conducting a global
search in the solution space, it may generate some infeasible
solutions that do not satisfy the constraint >_; w; = M. Hence, the
repair operator is required to fix those solutions. Assume that we
have an ensemble with more than M NNs (i.e.,, >°; w;>M). At each
iteration, the NN whose removal will lead to the smallest J(w) is
pruned. In case >°; w; <M, NNs are sequentially included into the
ensemble following a similar procedure.

The objective function J(w) is the other key component of the
selection algorithm. It must be carefully designed to guarantee
good generalization performance. In this work, we consider two
types of objective functions. The first one is the objective function
of NCL itself, and the second one is based on the ensemble’s
classification error only.

3.2.1. The error function of NCL

One of the main reasons for NCL'’s success is the use of Eq. (2)
as the novel error function. Hence, it is reasonable to expect
Eq. (2) to work well for the selection procedure, too. Concretely,
Eq. (2) calculates the error on a single training pattern, while we
sum it up over all training patterns, and get

2M N
Jow) =" "wiEn) (5)
i=1 n=1
According to Egs. (2) and (3), we get
1 2M N 2M N
Jw) =353 "> wiFim) —dm)* -3 > wiF(m) — Fim)*  (6)
n=1 i

i=1 i=1 n=1

Let an N x 2M matrix A denote the outputs of all NNs on all
patterns:

(Fam(1) — d(1))?
(Fam(2) — d(2))

(F2(1) — d(1))
(F2(2) — d(2))

(F1(1) — d(1))
(F1(2) — d(2))

(F1(N) — d(N))>  (Fo(N) — d(N))® (Fam(N) — d(N))*

(7)

then

2

N =
M

Il
-

N
S wilFim — vy’ = 5 €"Aw )
n=1

1

where e is a N-dimensional unit vector.

We denote
-
F @) = (Fi(n) Fa(n) ... Fapm(n)) (9)
and

1 F 2
(u F (W — Fap(1))
17 2
(u F QW — Fam(2))

1 F 2
(u F(Hw — Fx(1))
17 2
(u F QW —F»(2))

1 2
(u F(Ww — Fy(1))
17 2
(u F QW —F1(2))

17 ' 2 1 F : 2 17 : 2
(i F(NW —F1(N))* (7 F (N)w — F2(N)) (7 F (N)W — Fam(N))

(10)
then
N
2> (F(n) — Fim))* = Je"Bw (11)
iel n=1
Hence,
Jw) = leTAw — Ze"Bw (12)

Given the above formulation, the algorithm presented in Fig. 2 is
used to seek the optimum w.

3.2.2. Using the training error as the objective function

Eq. (11) involves several matrix computations and thereby will
be time consuming for large scale applications. This is partially
due to the calculation of the second term, which explicitly
requires the individuals to be diverse. Though diversity among
individual NNs is an important reason for the success of NN
ensemble, many previous works also showed that it might not be
always indispensable [12,30]. Therefore, it will be interesting to
ask whether the selection process can be carried out only based on
the classification accuracy, without calculating the correlations
between individual NNs. By this means, we aim at achieving good
generalization performance with less computational cost. Con-
cretely, we can directly evaluate a w’s fitness using the
corresponding ensemble’s training accuracy. If multiple ensem-
bles have the same training accuracy, their mean squared errors
on the CORRECTLY classified training patterns, denoted by ECP, are
calculated. The ECP can be viewed as the “confidence” of an
ensemble on its classification results. The smaller the MSE, the
more confident the ensemble is. Hence, the one with smaller ECP
is preferred.

The above scheme can be easily substituted the selection
algorithm with little effort, as described below:

In Steps 3a and 3b, we set the fitness of the individuals as their
corresponding training accuracy (i.e., one minus training error),
and conduct roulette selection.

In Step 3c, conduct the repair process based on training
accuracy. If more than one w;’s result in the same largest accuracy,
take the one corresponding to the smallest ECP.

In Step 4, choose the w with the highest training accuracy. In
case multiple w’s take the largest accuracy, the one corresponding
to the smallest ECP is chosen.

It should be noted that the above scheme is totally based on
the CURRENT training data. Hence, it might bias more to the
newly trained NNs, and lead to catastrophic forgetting. As to be
shown by experiments, this is what we should pay for the
alleviation of computational cost.



2800 K. Tang et al. / Neurocomputing 72 (2009) 2796-2805

4. Experiments
4.1. Experimental setup

To evaluate the proposed method, we experimentally compare
SNCL to FSNCL and GNCL. The difference between the two
objective functions was also studied. The experiments were
carried out on five data sets. Three of them are the main
benchmark classification data sets used by Minku et al. in [20],
namely the Letter, Vehicle, and Optical Digits data sets from the
UCI machine learning repository [21]. The other two, namely the
odorant binding proteins (OBP) data set [25] and the structurally
conserved residues (SCR) data set [26] were investigated in our
previous study. The OBP data set was generated based on a
number of odorant binding proteins are obtained from GenDiS
[23] and Pfam [29] databases, the task is to differentiate the
odorant binding proteins from those non-odorant binding do-
mains. The SCR data set was generated on the basis of protein
sequences obtained from MegaMotifBase database [24]. The task
is to identify structurally conserved residues on the sequences.
Table 1 presents a summary of the data sets. Every data set was
averagely divided into several subsets, one for testing and the

others for step-by-step incremental learning. After every
incremental step, the ensemble is applied to the testing data
and testing accuracy is calculated. All NNs were encoded using a
1-of-m output representation for m classes. The output with the
highest activation designated the class. We set M to be 10 for both
FSNCL and SNCL, and for GNCL, one NN is added for each new
training subset. To make fair comparison, all the compared
algorithms share common learning rate (0.1) and 4 (1) on all
data sets. Table 2 presents the other parameters for NCL. As for the
GA used in SNCL, we set pop_size = 50, pc = 0.2, and pm = 0.01,
and the number of generations is 50.

4.2. Experimental results

The experimental results on the five data sets are shown in
Tables 3-5, where SNCL-NCL denotes that the error function of
NCL is used in the selection algorithm, and SNCL-TE denotes that
the training error is used for selection. All the results are the
average of 30 executions. Specifically, Table 3 presents the average
testing accuracies obtained using different algorithms, standard
deviations are also provided. Table 4 presents the average
decrement (degradation) of training accuracies on all training
data sets. The degradation on training data sets is a criterion to
judge whether an algorithm suffers from catastrophic forgetting.

TDZ':;"SLS Finally, training time of the algorithms is presented in Table 5.
) Next, we compare different algorithms from the perspective of
Data sets  Inputs Classes Training Incremental Testing generalization performance, degradation, and computational cost,
patterns step patterns respectively. In all the tables, bold letters were used to identify the
best approaches on each data set, when there was statistically
Letter 16 26 18,000 9 2000 onificant diff
Vehicle 18 4 630 3 216 significant difference.
Optical 64 10 1200 6 4420
it 4.2.1. Generalization performance
OBP 10 2 2031 5 1016 ANOVA d ifv whether th isticall
SCR 10 2 6042 6 11639 A te§ts were use to verify w ether t ere are stat1§t1c§ y
significant differences in testing accuracy (i.e., generalization
performance) using different incremental learning algorithms.
The results of a multiple comparison test based on the ANOVA
Table 2
Parameters for NCL. Table 5
Training time (in seconds) of four NCL-based incremental learning algorithms.
Data sets Hidden nodes Epochs
Letter Vehicle Optical Digits OBP SCR
Letter 20 250
Vehicle 10 1000 SNCL-NCL 18,937 274 396 608 604
Optical Digits 10 100 SNCL-TE 6867 240 192 534 332
OBP 20 500 FSNCL 5520 210 91 485 183
SCR 5 200 GNCL 1116 29 17 80 33
Table 3
Testing accuracy of four NCL-based incremental learning algorithm.
Letter Vehicle Optical Digits OBP SCR
SNCL-NCL 0.8712 = 0.0060 0.8162 +0.0116 0.9337 + 0.0027 0.9360 + 0.0053 0.9213 = 0.0022
SNCL-TE 0.8780 + 0.0059 0.8228 +0.0155 0.9321 + 0.0072 0.9336 + 0.0049 0.9201 + 0.0024
FSNCL 0.8845 -+ 0.0043 0.8144 +0.0114 0.9273 + 0.0025 0.9282 + 0.0048 0.9209 + 0.0013
GNCL 0.7412 + 0.0074 0.8213 +£0.0131 0.9252 + 0.0037 0.9347 + 0.0025 0.9206 + 0.0012
Table 4
Degradation of four NCL-based incremental learning algorithm.
Letter Vehicle Optical Digits OBP SCR
SNCL-NCL 0.0068 + 0.0037 0.0784 + 0.0087 0.0296 + 0.0034 0.0163 + 0.0048 0.0106 + 0.0021
SNCL-TE 0.0156 + 0.0032 0.0734 + 0.0099 0.0306 + 0.0065 0.0216 + 0.0049 0.0155 + 0.0016
FSNCL 0.0115 + 0.0020 0.0856 + 0.0074 0.0361 + 0.0020 0.0198 + 0.0073 0.0128 £ 0.0015
GNCL 0.0122 + 0.0055 0.0254 + 0.0073 0.0173 + 0.0060 0.0025 + 0.0031 0.0053 + 0.0010
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tests are shown in Fig. 3. We can observe that the two SNCL outperforms FSNCL on two data sets (optical digits and OBP),
approaches both outperform GNCL on the Letter and Optical Digits but is inferior to FSNCL on the Letter data set. Comparing the two
data sets, while no significant differences can be observed on the SNCL algorithms, SNCL-NCL is inferior to SNCL-TE on the Letter
remaining three data sets. Both SNCL-NCL and SNCL-TE data set, and they are comparable on the other four data sets.

multiple comparison of means on Letter multiple comparison of means on Vehicle
SNCL-NCL | o ] SNCL-NCL | N ]
SNCL-TE IR . SNCL-TE } —_— .
o i °
o o]
< £
@ @
1S 1S
FSNCL | e FSNCL | —_— e 1
GNCL | = ] GNCL | —_—— ]
0.72 0.74 0.76 0.78 0.8 0.82 084 0.86 0.88 0.9 0.805 0.81 0.815 0.82 0.825 0.83
test accuracy test accuracy
multiple comparison of means on Optical Digits multiple comparison of means on OBP
SNCL-NCL | e ] SNCL-NCL | —— :
SNCL-TE | —e— : . SNCL-TE | —e— 1
o o
< <
@ @
1S 1S
FSNCL | e : : g FSNCL f ———— : : E
GNCL | ——o— ] GNCL | —_— ]
0.922 0.924 0.926 0.928 0.93 0.932 0.934 0.936 0.938 0.926 0.928 093 0.932 0.934 0.936 0.938 0.94
test accuracy test accuracy

multiple comparison of means on SCR

SNCL-NCL |

SNCL-TE

method

FSNCL

GNCL |

0.9195 0.92 0.9205 0.921 0.9215  0.922
test accuracy

Fig. 3. Multiple comparison tests of the testing accuracy of four NCL-based incremental learning algorithms.
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Therefore, we can conclude that the SNCL generally outperform
both FSNCL and GNCL in terms of generalization performance,
while the usage of different objective functions does not lead to
significant difference.
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4.2.2. Degradation

The average degradations of each algorithm on the five data
sets are presented in Table 4. The larger the degradation, the more
likely that an algorithm suffers from catastrophic forgetting.
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Fig. 4. Multiple comparison tests of the degradation of four NCL-based incremental learning algorithms.
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ANOVA tests were also used to identify statistically significant
differences. The results are shown in Fig. 4. It can be observed that
both SNCL-NCL and SNCL-TE always suffered more catastrophic
forgetting than GNCL in all cases with the exception of the Letter
data set. In comparison to FSNCL, SNCL-NCL is significantly better
on all the five data sets. SNCL-TE won on the Vehicle and Optical
Digits data sets, while lose on the Letter and SCR data sets.
Further, as we expected, SNCL-TE suffered more catastrophic
forgetting than SNCL-NCL on three data sets, while no statistically
significant differences were observed on the other two data sets.

4.2.3. Computational time

The training time of all the approaches is presented in Table 5.
Since the GNCL trains a single network at each incremental step, it
is definitely faster than the other methods. The main difference
between FSNCL and SNCL is that SNCL incorporates the selection
process. From the table, we can observe that such a selection
process is quite time consuming, especially for SNCL-NCL. For
example, the selection process even took much longer time than
the training process itself. In comparison, the selection process of
SNCL-TE is much less costly. Regarding the testing time, FSNCL,
SNCL-NCL and SNCL-TE take the exactly same time, because they
consist of same number of individual NNs. On the other hand, the
testing time of GNCL will increase when new incremental training
subsets have been presented, and eventually be more costly than
the other approaches.

4.3. Comparison to other approaches

Since several existing approaches have shown good perfor-
mance on incremental learning. It is interesting to further
compare SNCL to them. The comparison between SNCL and
Learn + + algorithms on Vehicle and Optical Digits data sets is
presented in Table 6. The results of Learn + + were directly taken
from the original publication [22,20]. From Table 6, it can be
observed that SNCL achieved lower testing accuracy than Learn +
+ on the Vehicle data set, while performed better on the Optical
Digits data set. In comparison, SNCL generally suffers more from
catastrophic forgetting, which seems to suggest that Learn + + is
better than SNCL on this aspect. However, having a closer look at
the training accuracy (i.e., the average accuracy of the final
ensemble on all previous training data subsets), we may find that
SNCL still maintains significant higher training accuracy than
Learn + +. Therefore, from the perspective of preserving high
accuracy on previous training data, SNCL can be said to
outperform Learn + +.

Table 6
Comparison between two SNCL approaches and Learn + +.

Vehicle Optical Digits

Testing accuracy

SNCL-NCL 0.8162 0.9337

SNCL-TE 0.8228 0.9321

Learn + + 0.8300 0.9270
Training accuracy

SNCL-NCL 0.8645 0.9651

SNCL-TE 0.8821 0.9651

Learn + + 0.8267 0.9400
Degradation

SNCL-NCL 0.0784 0.0296

SNCL-TE 0.0734 0.0306

Learn + + 0.0733 0.0033

In [20], it was shown that SONG algorithm is comparable to
FSNCL and GNCL in terms of generalization performance. Since
SNCL shows better generalization performance than the previous
NCL-based approaches, we conservatively conclude that SNCL is
also comparable to SONG. In addition to Learn + + and SONG,
there are also some other incremental learning approaches that
are worthy of mention, such as the ARTMAP [3,4], EFUNN [11] and
EILNN [28]. Unfortunately, experimental results of the former two
approaches are not available in the literature, and EILNN was only
verified on the Optical Digits data set with a different experi-
mental protocol (3823 patterns were used for training and
validation, and 1797 patterns for testing). Hence, we only compare
SNCL to those methods qualitatively here. Both ARTMAP and
EFuNN create new clusters if the new data is sufficiently different
from the previous data. For this reason, both of them highly rely
on precise measurement of the difference between patterns. This
is usually a non-trivial task and is sensitive to noises and the order
of presentation of the data. On the other hand, SNCL trains new
NNs with the whole new training data set, and thereby does not
suffer from such problem. EILNN makes use of evolving neural
network to handle incremental learning tasks. An evolutionary
algorithm is used to adapt the NNs’ parameters, such as the
learning rates, initial weight distributions and error tolerance. The
main problem with EILNN is that the evolution process requires
the presentation of all training data sets, though each NN is
trained with one data set at a time (i.e., incrementally). Hence,
EILNN does require access to previous training data, while SNCL
does not.

5. Conclusions and future work

In this paper, a selective negative correlation learning
approach, which is specifically designed for incremental learning
tasks, is proposed. Every time when a new data set is presented,
the previously trained ensemble is cloned, and trained using NCL.
After training, the new ensemble is combined with the previously
trained ensemble, and a GA-based selection algorithm is utilized
to prune the ensemble to a predefined size. Though the general
idea of SNCL has been briefly proposed earlier in [13], this paper
investigates the SNCL in more details. Specifically, two types of
objective functions were investigated within the proposed SNCL
framework: NCL error function and the training error. The
corresponding algorithms are named SNCL-NCL and SNCL-TE
and were experimentally compared to two existing NCL-based
incremental learning approaches, namely FSNCL and GNCL, on
three UCI data sets and two real-world bioinformatics data sets.
Comparisons between SNCL and other well known incremental
learning approaches are also presented.

Experimental results show that SNCL is capable of achieving
better generalization performance than the other NCL-based
approaches and the Learn + + algorithm. Besides, SNCL suffers
less from catastrophic forgetting than FSNCL. Finally, SNCL always
controls the size of ensemble at an acceptable level, while the
generalization does not deteriorate. Such a property is very
important for applications with huge amount of training data.
When comparing the two SNCL algorithms, we found that SNCL-
TE suffers more from catastrophic forgetting, while SNCL-NCL is
much more time consuming.

The main drawback of SNCL is that it involves much longer
training time than FSNCL and GNCL. The reason is that SNCL
adopts a GA-based method in the selection phase, which is very
time consuming. Hence, a potential direction for future research is
to consider efficient selection algorithm for SNCL. Furthermore,
we have not evaluated SNCL from the aspect of accommodating
new classes that may be introduced with new data, neither do we
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design specific schemes for that. We will also investigate this
issue in our future work.
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