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Abstract. This paper presents ways to use subgroup discovery to generate actionable knowl-
edge for decision support. Actionable knowledge is explicit symbolic knowledge, typically
presented in the form of rules, that allows the decision maker to recognize some important
relations and to perform an appropriate action, such as targeting a direct marketing campaign,
or planning a population screening campaign aimed at detecting individuals with high disease
risk. Different subgroup discovery approaches are outlined, and their advantages over using
standard classification rule learning are discussed. Three case studies, a medical and two mar-
keting ones, are used to present the lessons learned in solving problems requiring actionable
knowledge generation for decision support.
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1. Introduction

Rule learning is an important form ofpredictivemachine learning, aimed at
inducing classification and prediction rules from examples (Michalski et al.,
1986; Clark & Niblett, 1989; Cohen, 1995). Developments indescriptive in-
duction(Wrobel & Džeroski, 1995) have recently also gained much attention
of researchers interested in rule learning. These include mining of associa-
tion rules (Agrawal et al., 1996), clausal discovery (De Raedt & Dehaspe,
1997; De Raedt et al., 2001), subgroup discovery (Wrobel, 1997; Wrobel,
2001; Kloesgen, 1996) and other approaches to non-classificatory induction.

This paper discusses actionable knowledge generation by means of sub-
group discovery. The termactionability is described in (Piatetsky-Shapiro &
Matheus, 1994; Silberschatz & Tuzhilin, 1995) as follows: “a pattern is inter-
esting to the user if the user cando something with itto his or her advantage.”
As such, actionability is a subjective measure of interestingness.
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The lessons in actionable knowledge generation, described in this paper,
were learned from three applications—a medical and two marketing ones—
that motivated our research in actionable knowledge generation for decision
support. In an ideal case, the induced knowledge should enable the decision
maker to perform an action to his or her advantage, for instance, by appro-
priately selecting customers for a marketing campaign, or by appropriately
selecting individuals for population screening concerning high disease risk.

In addition to actionable knowledge, this paper discusses also the im-
portance ofoperational knowledge, which is in our view the most valuable
form of induced knowledge. Operational knowledge enables performing an
action which can operate on the target population. If an operational rule is
effectively executed, this operation can change the rule coverage.

To clarify the terminology, let us discuss the actionability and opera-
tionality of three simplified rules below. LetB denote the class of people who
recognize and use brandBr, B those who do not recognize the brand, and←
the implication sign (used reversely, with rule conditions at the right- and the
conclusion at the left-hand side of the implication sign).

(1) B← a person received the catalog of productBr
(2) B← a person reads newspaperN & lives in areaA
(3) B← a person is younger than ageA & does not read magazineM

The first rule is operational, since, by using this knowledge, the decision
maker can perform an operation of sending out more catalogs, consequently
increasing the rule coverage (i.e., the part of the whole population that is
covered by the rule). The second rule is not operational, because the decision
maker can hardly do anything to change peoples’ reading habits. On the other
hand, the rule is actionable as it enables performing an action: to communi-
cate a message toB it is possible to advertise in newspaperN, or to attach
a leaflet to the copies ofN distributed in areaA, or even send a mailing to
the readers of newspaperN in areaA if their addresses can be obtained from
the publisher of the newspaper. In contrast to the second rule, the third rule
is neither actionable nor operational, as it is much harder to get addresses of
people who do not read the magazine. However, note that actionability of a
rule depends on the access to the relevant databases. If one had access to the
census data and newspaper readers’ addresses, the third rule would become
actionable as well.

The distinction between actionable and operational is particularly im-
portant in marketing, since an operational chunk of knowledge can be used
not only for targeting but also for enlarging the target. It can be observed
that operationality of induced descriptions is harder to achieve than their
actionability. If, for example, the learned concept includes customers of a
certain age and living in a certain area, this knowledge is actionable but not
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operational, as the rule includes attributes that cannot be manipulated. The
only thing one can do is to take it into account when targeting the commercial
message.

Consider another rule from the application of selecting individuals for
population screening concerning high risk for coronary heart disease (CHD):

CHD← body mass index> 25kgm−2 & age> 63 years

This rule is both operational and actionable. It is actionable as the general
practitioner can select from his patients the overweight patients older than
63 years. The rule is also operational, as overweight can be manipulated by
starting a diet, which can result in decreased rule coverage.

We provide arguments in favor of operational and/or actionable knowl-
edge generation through recently developed subgroup discovery approaches,
where a subgroup discovery task is defined as follows (Wrobel, 1997): given
a population of individuals and a property of those individuals we are inter-
ested in, find population subgroups that are statisticallymost interesting, e.g.,
are as large as possible and have the most unusual statistical (distributional)
characteristics with respect to the property of interest.

Notice an important aspect of the above definition: there is a predefined
property of interest, meaning that a subgroup discovery task aims at character-
izing population subgroups of a giventargetclass. This property suggests that
standard classification rule learning could be used for solving the subgroup
discovery task. However, the goal of standard rule learning is to generate
models, one for each class, consisting of rulesets describing class character-
istics in terms of properties occurring in the descriptions of training examples.
In contrast, subgroup discovery aims at discovering individual rules orpat-
ternsof interest, which must be represented in explicit symbolic form and
which must be relatively simple in order to be recognized as actionable by
potential users.

This paper is organized as follows. In Section 2 three real-life problems
providing the motivation for this work are outlined, followed by Sections 3
which presents the form of induced subgroups, measures of subgroup inter-
estingness and subgroup evaluation in ROC space. Sections 4–6 present three
recently developed subgroup discovery approaches, applied to three real-life
problem domains in medicine and marketing. The main goal of this paper is to
present the lessons learned from these applications and from the development
of novel subgroup discovery algorithms; these lessons are described in detail
in Sections 7 and 8, respectively. The paper concludes with a brief summary
and directions for further work.
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2. Motivation for subgroup discovery: Three case studies

For the work described in this paper the motivation comes from the need for
decision support in targeting a marketing campaign, or planning a population
screening campaign aimed at detecting individuals with high disease risk. For
instance, the problem of targeting a marketing campaign for a brand can be
addressed by finding population subgroups that will be interested in buying
the brand product. Finding population subgroups of this kind can be viewed
as a subgroup discovery task (Wrobel, 1997). In subgroup discovery we wish
to obtain subgroups of the population that are sufficiently large and have a
significantly different target class distribution than the entire population (e.g.,
subgroups of people for which brand recognition success rate is much higher
than average).

Coronary heart disease risk group detection.In the problem of detection
and description of coronary heart disease (CHD) risk groups (Gamberger &
Lavrǎc, 2002), described in Section 4, data collected in general screening
include medical history information and physical examination results, lab-
oratory tests, and ECG at-rest test results. In many cases with significantly
pathological test values (especially, for example, left ventricular hypertrophy,
increased LDL cholesterol, decreased HDL cholesterol, hypertension, and
intolerance glucose) the decision is not difficult. However, the hard problem
in CHD prevention is to find endangered individuals with slightly abnormal
values of risk factors and in cases when combinations of different risk fac-
tors occur. The induced risk group descriptions aim at helping the general
practitioners to recognize CHD and/or detect the illness even before the first
symptoms actually occur. The expert-guided discovery and use of induced
risk group descriptions developed in our research is aimed at enabling easier
detection of important risk groups in the population.

Decision support in a direct mailing campaign.The first marketing prob-
lem, described in Section 5, is the direct mailing problem (Flach & Gam-
berger, 2001). The starting point is a relational database obtained by inter-
viewing potential customers. The customers are described by their answers
concerning age, level of education, profession, place of living, preferences,
and habits like what TV programs they watch and what newspapers they read
regularly. The direct mailing problem is the problem of selecting potential
customer subgroups that can be targeted by mailing advertising campaigns.
In many respects, this problem is similar to the patient risk group detection
problem; the main difference is that in this application the goal is clearly
stated in the form of profit maximization.

Decision support in a public advertising campaign.The second mar-
keting problem, described in Section 6, is the problem of targeting a public
advertising campaign for a Slovenian natural non-alcoholic sparkling drink
brand (Cestnik et al., 2002). The same customer database as in the first mar-
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keting problem was used for data analysis. The task is to find significant
characteristics of customer subgroups who do not know a brand, relative to
the characteristics of the population that recognizes the brand. Again, the na-
ture of the problem is similar as in the above two applications; here, however,
the emphasis is on high uncertainty of the domain (unreliable data and prob-
abilistic nature of the decision making process). In marketing, for example,
it makes no sense saying that all the readers of a specific newspaper will
buy a certain product; however, it may be reasonable to conclude that the
probability of them buying the product is higher than average.

Below we describe in some more detail the motivation for subgroup
discovery in the two marketing problems, through a well-known market-
ing notion ofmarket segmentation. This notion—if viewed in more general
terms aspopulation segmentationwhich is more appropriate for the med-
ical application—explains the need for subgroup discovery in all the three
problems studied in this paper.

The market targeting task is that of selecting potential customer sub-
groups of the population that can be specifically targeted by advertising cam-
paigns. The core of a campaign usually consists of three phases: identification
of the goal of the campaign, selection of a target population, and communica-
tion of a desired message to the target population. The goal of the campaign
may be, for example, to gain new customers, or to reinforce existing cus-
tomers. Setting the goal determines the targeting strategy. In this study we
focus on the second phase of the marketing campaign: selecting a target
population.

The key question is how to help marketing analysts decide which seg-
ments of customers are the most promising with respect to the expected
results. One heuristic is to target the segment with the heaviest customers,
i.e., the customers with the highest expected purchase frequency and the
largest amount of money spent. Although this makes sense intuitively, there
are some strong indications that such an approach is not the most promising
one (Myers, 1996): one or more major competitors may have already targeted
this group successfully; the company product line is not well designed for this
group; in reality there are no heavy customers; the company is too small to go
after the heavy-customer segment; or the company wants to develop different
brand marketing campaigns for each usage group.

For these reasons, a straightforward decision to target the segment with
the heaviest customers is not always the best option. Consequently, the effort
to better understand other niches of the market segmentation is well justified.
Here, data mining tools can provide a crucial leverage.
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3. Subgroup discovery

This section gives a brief introduction to subgroup discovery, and describes
approaches to learning and evaluation.

3.1. SUBGROUP DISCOVERY AS RULE LEARNING

The result of standard rule induction is a classification model consisting of
a set of rules. In contrast with model induction, subgroup discovery aims at
finding patterns in the data, described in the form of individual rules. As in
classification rule learning, an induced subgroup description has the form of
a (backwards) implication:

Class←Cond

In terms of rule learning, the property of interest for subgroup discovery
is the target class (Class) that appears in the rule consequent, and the rule
antecedent (Cond) is a conjunction of features (attribute-value pairs) selected
from the features describing the training instances.

Subgroup discovery is a task at the intersection of predictive and de-
scriptive induction. By inducing rules from labeled training instances (labeled
positive if the property of interest holds, and negative otherwise), the process
of subgroup discovery is targeted at uncovering properties of a selected target
population of individuals with the given property of interest. In this sense,
subgroup discovery is a form ofsupervised learning. The fact that a sub-
group discovery task aims at characterizing population subgroups of a given
target class suggests that standard classification rule learning could be used
for solving the task. However, in many respects subgroup discovery is a form
of descriptive inductionas the task is to uncover individual rules orpatterns,
which must be relatively simple in order to be recognized as actionable by
potential users.

Standard classification rule learning algorithms cannot appropriately ad-
dress the task of subgroup discovery for at least two other reasons: first, they
usually apply the covering algorithm for ruleset construction, and second,
they use search heuristics aimed at optimizing ruleset accuracy; as will be
seen in this paper, these two reasons hinder the applicability of classifica-
tion rule induction approaches to subgroup discovery. Moreover, in subgroup
discovery one can often tolerate many more false positives (negative exam-
ples incorrectly classified as positives) than in a classification task. However,
both tasks, subgroup discovery and classification rule learning, can be uni-
fied under the umbrella ofcost-sensitiveclassification. This is because when
deciding which classifiers are optimal in a given context it does not matter
whether we penalize false negatives as is typically the case in classifica-
tion, or reward true positives as in subgroup discovery—it only matters for
determining the expected profit in a given context.
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Each rule describing a subgroup can be extended with the information
about the rulequality. In this paper, a standard rule describing a subgroup has
the following form:

Class←Cond[TPr,FPr] (1)

whereClassis the target property of interest,Cond is a conjunction of fea-
tures (attribute-values),TPr is the true positive rateor thesensitivity, com-
puted asp(Cond|Class) = n(Class·Cond)

Pos , andFPr is the false alarmor false

positive rate, computed asp(Cond|Class) = n(Class·Cond)
Neg . In these formulas

n(Class·Cond) is the number of true positivesTP (the number of covered in-
stances belonging toClass), n(Class·Cond) the number of false positivesFP
(the number of covered instances not belonging toClass), Posis the number
of positives (instances of the target class),Negthe number of negatives, and
N = Pos+Negis the size of the entire population.

In addition to earlier approaches to subgroup discovery (Kloesgen, 1996;
Wrobel, 1997; Wrobel, 2001), several novel subgroup discovery methods
have been developed. The algorithms, outlined in this paper, output subgroup
descriptions in different forms, attaching different quality measures.

− The CN2-SD algorithm (Lavrǎc et al., 2002; Lavrǎc et al., 2004), used in
the direct mailing application outlined in Section 5, induces subgroups
in the form of rules described in Equation (1).

− The SD algorithm (Gamberger & Lavrač, 2002), used in the coronary
heart disease risk group detection application outlined in Section 4, in-
duces rules of the formClass← Cond [TP,FP], where the features
forming rule conditions are called theprincipal factors. In subgroup
descriptions, the principal factors are supplemented by a list ofsupport-
ing factors, which denote features (attribute values) characterising the
subgroup (target class instances covered by the rule) by being statisti-
cally significantly different from the values characterising the reference
population (all non-target class instances). Notice that each supporting
factor itself can be viewed as a simple rule with one condition only. In
this respect, supporting factors are similar to decision stumps (Holte,
1993).

− In data analysis from highly uncertain data, it turns out that—instead of
using a subgroup discovery approach resulting in subgroup descriptions
in the standard rule form—it is beneficial to present a population sub-
group by listing its supporting factors only. This claim is supported by
the outcome of the marketing application outlined in Section 6 (Cest-
nik et al., 2002), where a population subgroup is presented by a list of
supporting factors. In addition, theopposing factors, characteristic for
the negation of the target concept, are also listed, which is in accordance
with the basic principles of Bayesian analysis (Berger, 1985).
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3.2. SUBGROUP EVALUATION MEASURES

As shown in Section 3.1, each rule describing a subgroup can be extended
with the information about the rule quality. While the basic information of
rule quality is usually attached to the induced rule itself, as output of the
learning algorithm, other quality measures are usually computed separately,
in order to evaluate the output of the induction process as a whole, enabling
the comparison of the performance of different algorithms.

One can distinguish betweenobjectivequality measures andsubjective
measures of interestingness (Silberschatz & Tuzhilin, 1995). Both the objec-
tive and subjective measures need to be considered in order to solve subgroup
discovery tasks. Which of the quality criteria are most appropriate depends
on the application. Obviously, for automated rule induction it is only the
objective quality criteria that apply. However, for evaluating the quality of
induced subgroup descriptions and their usefulness for decision support, the
subjective criteria are more important, but also harder to evaluate.

Below is a list ofsubjectivemeasures of interestingness:

− Usefulness.Usefulness is an aspect of rule interestingness which relates
a finding to the goals of the user (Kloesgen, 1996).

− Actionability.“A rule is interesting if the user can do something with it to
his or her advantage” (Piatetsky-Shapiro & Matheus, 1994; Silberschatz
& Tuzhilin, 1995).

− Operationality.In this paper we have introduced the notion of opera-
tionality, which is a special case of actionability. Operational knowledge
is the most valuable form of induced knowledge, as it enables perform-
ing an action which can operate on the target population. If an oper-
ational rule is effectively executed, this operation can affect the target
population and change the rule coverage.

− Unexpectedness.A rule is interesting if it is surprizing to the user (Sil-
berschatz & Tuzhilin, 1995).

− Novelty.A finding is interesting if it deviates from prior knowledge of
the user (Kloesgen, 1996).

− Redundancy.Redundancy amounts to the similarity of a finding with
respect to other findings; it measures to what degree a finding follows
from another one (Kloesgen, 1996), or to what degree multiple findings
support the same claims.

In listing the objectivequality measures—in line with the distinction
betweenpredictive inductionanddescriptive inductionmade in Section 1—
we distinguish between thepredictiveand descriptivequality measures. A
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typical predictive quality measure, measuring the quality of a ruleset, ispre-
dictive accuracyof a ruleset, defined as the percentage of correctly predicted
instances.1

In contrast with predictive quality measures, descriptive quality mea-
sures evaluate each individual subgroup and are thus appropriate for eval-
uating the success of subgroup discovery. The following measures turn out
to be most appropriate for measuring the quality of individual rules:rule
size, coverage, support, accuracy(in different contexts also calledprecision
or confidence), significanceand unusualness. The measures for evaluating
each individual rule can be complemented by their variants that compute the
average over the induced set of subgroup descriptions, which enables the
comparison of different subgroup discovery algorithms (see (Lavrač et al.,
2004) for the definitions of these measures).

To explain rulesignificanceandunusualness, which are the most impor-
tant subgroup discovery measures, some of the other measures for evaluating
the quality of rules of the formClass←Condneed to be explained first.Cov-
erage p(Cond) is a measure ofgenerality, computed as the relative frequency
of all the examples covered by the rule.Support p(Class·Cond) is computed
as the relative frequency of correctly classified covered examples. Ruleaccu-
racy p(Class|Cond) (calledprecisionin information retrieval andconfidence
in association rule learning) is the fraction of predicted positives that are
true positives. Next, we defineaccuracy gain, p(Class|Cond)− p(Class), as
the difference between rule accuracyp(Class|Cond) and default accuracy
p(Class) achieved by the trivial ruleClass← true.

− Significance(or evidencein the terminology of (Kloesgen, 1996)) in-
dicates how significant a finding is compared to a null hypothesis of
statistical independence. In the CN2 algorithm (Clark & Niblett, 1989),
significance is measured in terms of the likelihood ratio statistic of a
rule:

Sig(Class←Cond) = 2∑
i

n(Classi ·Cond) · log
n(Classi ·Cond)

n(Classi)p(Cond)
(2)

where n(Classi)p(Cond) is the expected number ofClassi instances
among the ones satisfyingCondunder the null hypothesis of statistical
independence ofClassi andCond.2

1 For a binary classification problem, ruleset accuracy is computed asTP+TN
N .

2 Note that although for each generated subgroup description one class is selected as the
target class, the significance criterion measures the distributional unusualness unbiased to any
particular class; as such, it measures the significance of the rule condition only. In two-class
problems this statistic is distributed approximately asχ2 with one degree of freedom.
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− Unusualnessof a rule is computed by theweighted relative accuracyof
a rule (Lavrǎc, Flach, & Zupan, 1999), defined as follows:

WRAcc(Class←Cond) = p(Cond) · [p(Class|Cond)− p(Class)]

Weighted relative accuracy can be understood as trading off rulecover-
age p(Cond) andaccuracy gain p(Class|Cond)− p(Class).

As shown in Section 3.3,WRAccis appropriate for measuring the unusu-
alness of separate subgroups, because it is proportional to the vertical distance
of the subgroup to the ascending diagonal in ROC space. As such,WRAcc
also reflects rule significance—the largerWRAccis, the more significant the
rule is, and vice versa. As bothWRAccand rule significance measure the
distributional unusualness of a subgroup, they are the most important quality
measures for subgroup discovery.

Significance and unusualness can be used also as search heuristics in rule
construction. While significance only measures distributional unusualness,
computed in terms of correctly classified covered examples of all classes,
WRAcctakes explicitly the rule coverage into account, therefore we con-
siderunusualnessto be the most appropriate measure for subgroup quality
evaluation. As a result, we have replaced the rule significance heuristic in
CN2 by theWRAccheuristic in the implementation of the CN2-SD subgroup
discovery algorithm, used in the marketing application in Section 5.

3.3. SUBGROUP EVALUATION IN ROC SPACE

Receiver Operating Characteristic (ROC) analysis (Provost & Fawcett, 1998)
enables us to plot the performance of classifiers in ROC space, where the per-
formance of a classifier is characterized by its false positive rate (FPr), plot-
ted on theX-axis, and its true positive rate (TPr), plotted on theY-axis (see
Figure 1). Points on the ascending diagonal connecting (0,0) and (100,100)
correspond to classifiers that perform prediction by random guessing. Since
ROC analysis is applicable to subgroup discovery, we briefly describe it here.

In the perspective of predictive induction, each point in ROC space
represents a classifier. The ROC convex hull is a simple method to select
the best ones among a set of classifiers. The ROC curve is a piecewise lin-
ear curve connecting a selection of ‘best’ points (classifiers with the best
TPr/FPr tradeoff) in ROC space, such that all other classifiers are below
it. This convex hull supports the choice of a single best classifier, provided
that for a particular problem domain one knows the operating characteristics
determined by the class and cost distribution (see the ROC analysis for a
givenoperational contextin Section 5). Alternatively, the ROC methodology
allows, through the construction of a convex hull, to identify classifiers that
are optimal for variousTPr/FPr tradeoffs; as such, it identifies an integrated
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Figure 1. LabelsB1 andB2 denote suboptimal subgroups, andX1 andX2 denote two of
the seven subgroups (marked by +) forming the ROC convex hull. The ascending diagonal
connecting points (0,0) and (100,100) represents rule positions with zero significance.

set of solutions, together with their optimality conditions in terms ofTPr and
FPr, which provides decision support for classifier selection as well as model
combination.

In the context of descriptive induction, and subgroup discovery in par-
ticular, each point in ROC space represents a pattern (e.g., a rule). Thus,
individual subgroups can be plotted in ROC space. The ascending diagonal
represents subgroups with the same class distribution as the overall popula-
tion, i.e., subgroups without distributional unusualness, while the interesting
subgroups are those sufficiently distant from the diagonal.

There are essentially two ways to define the notion of ‘distance from
the diagonal’. The first is to select the subgroups on the convex hull, as de-
scribed before. This method selects subgroups that are optimal under varying
TPr/FPr tradeoffs. Figure 1 shows seven rules on the convex hull (marked
by +), includingX1 andX2, while two rulesB1 andB2 below the convex hull
are of lower quality in terms of theirTPr/FPr tradeoff.

In the second approach, distance from the diagonal is measured in geo-
metric terms. This requires that we apply a fixedTPr/FPr tradeoff. In par-
ticular, theWRAccmeasure gives equal weight to increasing the true positive
rate and decreasing the false positive rate. Specifically, in true/false positive
rate notation we haveWRAcc= p(Class) · p(Class) · [TPr−FPr].3 It follows
thatWRAcciso-performance lines are parallel to the diagonal (Flach, 2003;

3 This can be derived as follows:

WRAcc = p(Cond) · [p(Class|Cond)− p(Class)] = p(Class·Cond)− p(Class) · p(Cond)

= p(Class·Cond)− p(Class) · [p(Class·Cond)+ p(Class·Cond)]

= (1− p(Class)) · p(Class·Cond)− p(Class) · p(Class·Cond)

= p(Class) · p(Class) · p(Cond|Class)− p(Class) · p(Class) · p(Cond|Class)
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Fürnkranz & Flach, 2003). Consequently, a point on the lineTPr = FPr +a,
wherea is the vertical distance of the line to the diagonal, hasWRAcc=
a · p(Class) · p(Class). Thus, given a fixed class distribution,WRAccis pro-
portional to the vertical distancea to the diagonal.

4. First case study: Coronary heart disease risk group detection

Having covered the essentials of the subgroup discovery approaches, this sec-
tion presents one of the three case studies in which the subgroup discovery
approaches were used.

4.1. PROBLEM DEFINITION

Early detection of artherosclerotic coronary heart disease (CHD) is an impor-
tant and difficult medical problem. CHD risk factors include artherosclerotic
attributes, living habits, hemostatic factors, blood pressure, and metabolic
factors. Their screening is performed in general practice by data collection
in three different stages.

A Collecting anamnestic information and physical examination results, in-
cluding risk factors like age, positive family history, weight, height,
cigarette smoking, alcohol consumption, blood pressure, and previous
heart and vascular diseases.

B Collecting results of laboratory tests, including information about risk fac-
tors like lipid profile, glucose tolerance, and thrombogenic factors.

C Collecting ECG at rest test results, including measurements of heart rate,
left ventricular hypertrophy, ST segment depression, cardiac arrhyth-
mias and conduction disturbances.

In this application, the goal was to construct at least one relevant and inter-
esting CHD risk group for each of the stages A, B, and C, respectively.

A database with 238 patients representing typical medical practice in
CHD diagnosis, collected at the Institute for Cardiovascular Prevention and
Rehabilitation, Zagreb, Croatia, was used for subgroup discovery (Gamberger,
Lavrǎc, & Krstǎcić, 2003). The database is in no respect a good epidemiolog-
ical CHD database reflecting actual CHD occurrence in a general population,
since about 50% of gathered patient records represent CHD patients. Nev-
ertheless, the database is very valuable since it includes records of different
types of the disease. Moreover, the included negative cases (patients who do
not have CHD) are not randomly selected persons but individuals considered
by general practitioners as potential CHD patients, and hence sent for further
investigations to the Institute. This biased dataset is appropriate for CHD risk
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group discovery, but it is inappropriate for measuring the success of CHD
risk detection and for subgroup performance estimation in general medical
practice.

4.2. SUBGROUP DISCOVERY WITH THESD ALGORITHM

The subgroup discovery algorithm, Algorithm SD (Gamberger & Lavrač,
2002), is publicly available as part of the on-line Data Mining Server (DMS)
athttp://dms.irb.hr . The algorithm assumes that the user selects one
class as atarget class, and learns subgroup descriptions of the formClass←
Cond [TP,FP]. The result is a set of best rules, induced by heuristic beam
search for rules with a maximalq value, where the quality functionq = TP

FP+g
is defined by setting a value of the user-defined generalization parameterg
(selection of largerg will result in a larger number of examples covered by the
induced rule, the default beingg = 1). Functionq defines a tradeoff between
true positivesTP and false positivesFP covered by the rule. By searching
for rules with high qualityq, the algorithm tries to find rules that cover many
target class examples and a low number of non-target examples.

Algorithm SD is similar to association rule learning in the sense that in
order for a rule to be included in the induced ruleset, the rule must satisfy the
minimal support requirement. Typically, Algorithm SD generates many rules
of high qualityq satisfying the requested condition of a minimal number of
covered target class examples, defined by the algorithm’smin support pa-
rameter. Accepting all these rules is generally not desirable because (a) it is
difficult to make decisions based on a large sets of rules, and (b) experiments
demonstrated that there are subsets of very similar rules which use almost
the same features and have similar prediction properties (define similar sub-
groups). A solution to this problem is to reduce generated rulesets to include
only a relatively small number of rules which are as diverse as possible. The
DMS approach to rule subset selection (Gamberger & Lavrač, 2002) accepts
as diverse those rules that cover diverse sets of target class examples. The
approach can not guarantee statistical independence of the selected rules, but
ensures their diversity. The rule subset selection algorithm is similar to the
weighted covering algorithm implemented in CN2-SD (briefly described in
Section 5.3).

4.3. RESULTS OF PATIENT RISK GROUP DETECTION

The process of expert-guided subgroup discovery was performed as follows.
For every data stage A, B and C, DMS was run for valuesg in the range
0.5 to 100 (values 0.5, 1, 2, 4, 6, ...), and a fixed number of selected output
rules equal to 3. The rules induced in this iterative process were shown to the
expert for selection and interpretation. The inspection of 15–20 rules for each
data stage triggered further experiments, following the suggestions of the
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Table I. Induced subgroups in the form of rules. Rule conditions are
conjunctions of principal factors. Subgroup A1 is for male patients,
subgroup A2 for female patients, while subgroups B1, B2, and C1
are for both male and female patients. The subgroups are induced
from different attribute subsets (A, B and C, respectively) with
differentg parameter values (14, 8, 10, 12 and 10, respectively).

Expert Selected Subgroups

A1 CHD ← positive family history &

age over 46 year

A2 CHD ← body mass index over 25kgm−2 &

age over 63 years

B1 CHD ← total cholesterol over 6.1mmolL−1 &

age over 53 years &

body mass index below 30kgm−2

B2 CHD ← total cholesterol over 5.6mmolL−1 &

fibrinogen over 3.7gL−1 &

body mass index below 30kgm−2

C1 CHD ← left ventricular hypertrophy

medical expert to limit the number of features in the rule body and avoid the
generation of rules whose features would involve expensive and/or unreliable
laboratory tests.

In the iterative process of rule generation and selection, the expert has
selected five most interesting CHD risk groups. Table I shows the induced
subgroup descriptions in a simplifiedClass←Condform, without the infor-
mation on theirTP andFP values. As mentioned in Section 3.1, the features
appearing in the conditions of rules describing the subgroups are called the
principal factors. The described iterative process was successful for data at
stages B and C, but it turned out that medical history data on its own (stage A
data) is not informative enough for inducing subgroups, i.e., it failed to fulfil
the expert’s subjective criteria of interestingness. Only after engineering the
domain, by separating male and female patients, interesting subgroupsA1
andA2 have actually been discovered.

Separately for each data stage A, B and C, we have investigated which
of the induced rules are the best in terms of theTPr/FPr tradeoff in ROC
space4, i.e., which of them are used to define the ROC convex hull. At stage
B, for instance, seven rules (marked by +) are on the convex hull of the ROC
space shown in Figure 1. Two of these rules,X1 andX2, are listed in Table II.

4 Actually, the SD algorithm looks for the best subgroups in theTP/FP space, equivalent
to theTPr/FPr space, as it performs heuristic search using theq heuristic which takes into
accountTP andFP, instead ofTPr andFPr, respectively.
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Table II. Two of the best induced subgroups induced for stage B,X1 andX2,
induced using theg values 4 and 6, respectively. The position of subgroups in
the ROC space are marked in Figure 1.

Best Induced Subgroups

X1 CHD ← age over 61 years &

tryglicerides below 1.85mmolL−1 &

high density lipoprotein below 1.25mmolL−1

X2 CHD ← body mass index over 25 &

high density lipoprotein below 1.25mmolL−1 &

uric acid below 360mmolL−1 &

glucose below 7mmolL−1 &

fibrinogen over 3.7gL−1

Notice that the expert-selected subgroups B1 and B2 are significant, but are
not among those lying on the convex hull in Figure 1. The reason for selecting
exactly those two rules at stage B are their simplicity (consisting of three
features only), their generality (covering relatively many positive cases) and
the fact that the used features are, from the medical point of view, inexpensive
laboratory tests. Moreover, the two rules B1 and B2 were deemed interesting
by the expert.

Additionally, rules B1 and B2 are interesting because of the feature
body mass index below 30 kgm−2, which is intuitively in contradiction with
the expert knowledge that both increased body weight as well as increased
total cholesterol values are CHD risk factors. It is known that increased body
weight typically results in increased total cholesterol values while subgroups
B1 and B2 actually point out the importance of increased total cholesterol
when it is not caused by obesity as a relevant disease risk factor.

4.4. STATISTICAL CHARACTERIZATION OF SUBGROUPS

The next step in the proposed subgroup discovery process starts from the
discovered subgroups. In this step, statistical differences in distributions are
computed for two populations, the target and the reference population. The
target population consists of true positive cases (CHD patients included into
the analyzed subgroup), whereas the reference population are all available
non-target class examples (all the healthy subjects). Statistical differences in
distributions for all the descriptors (attributes) between these two populations
are tested using theχ2 test with 95% confidence level (p = 0.05).

To enable testing of statistical significance, numerical attributes have
been partitioned in up to 30 intervals so that in every interval there are at least
5 instances. Among the attributes with significantly different value distribu-
tions there are always those that form the features describing the subgroups
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Table III. Statistical characterizations of induced
subgroup descriptions (supporting factors).

Supporting Factors

A1 • psychosocial stress

• cigarette smoking

• hypertension

• overweight

A2 • positive family history

• hypertension

• slightly increased LDL cholesterol

• normal but decreased HDL cholesterol

B1 • increased triglycerides value

B2 • positive family history

C1 • positive family history

• hypertension

• diabetes mellitus

(the principal factors), but usually there are also other attributes with statis-
tically significantly different value distributions. These attributes are called
supporting attributes, and the features formed of their values that are charac-
teristic for the discovered subgroups are calledsupporting factors.

Supporting factors are very important for subgroup descriptions to be-
come more complete and acceptable for medical practice. Medical experts
dislike long conjunctive rules which are difficult to interpret. On the other
hand, they also dislike short rules providing insufficient supportive evidence.
In this work, we found an appropriate tradeoff between rule simplicity and
the amount of supportive evidence by enabling the expert to inspect all the
statistically significant supporting factors, whereas the decision whether they
indeed increase the user’s confidence in the subgroup description is left to the
expert. In the CHD application the expert has decided whether the proposed
supporting factors are meaningful, interesting and actionable, how reliable
they are and how easily they can be measured in practice. Table III lists the
expert selected supporting factors.

5. Second case study: Decision support in a direct mailing campaign

One of the most important tasks of a marketing expert is to efficiently target
a subset of the population for advertising a specific product or service (Berry
& Linoff, 2000). Usually, there is a trade-off between (a) the cost of commu-
nicating a message to the entire population, and (b) lower revenues caused by
selecting too narrow a population segment, which may result in missing some
of the potential customers. Since the nature of the decision-making problem
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is quite complex, common solutions usually rely on statistical analysis of data
gathered from surveys.

In this section we present a method resulting in the maximization of
the expected profit of a marketing campaign. This method is based on ROC
analysis and is illustrated by the case study of direct mailing to consumers
that do not yet recognize a particular yoghurt brand.

5.1. THE DECISION MAKING CONTEXT

In direct mailing, a mailing is sent out to all people in a subgroup of the
general population, for which the expected profit from sending a mailing is
larger than the actual mailing cost.

The direct mailing problem can be viewed as a generic decision-making
problem in which profit and cost of an individual marketing action (sending
out a mailing, in this case) are taken into account, and the goal is to distinguish
between the negatives and the positives defined below. Thenegativesare peo-
ple who will not spend additional money on the product, even if they receive
the mailing (for instance because they are not interested in the product, are
using a product from a competitor, or are already using the product. Thepos-
itivesare people who might spend money on the product if they knew about
it. A direct mailing problem is guided by two parameters: a marginal costc
per mailing, and an average profitp per true positive, i.e., potential customer
reached by the mailing. Average profit includes the cost of the mailing, and a
certain response percentage among the true positives. So, for instance, if 1%
of the positives reached by the mailing become customers and spend $1000
each, while the marginal cost per mailing is $1, then average profitp is $9.

The default decision a marketing analyst can take is to send a mailing to
everybody in the population, resulting in a default profit:pro f it = p ·Pos−
c ·Neg, wherePos (Neg) is the number of people that responded positively
(negatively) to the marketing campaign, andN = Pos+Negis the size of the
entire population. More generally, the expected profit is

pro f it = p·TP−c·FP = p·TPr ·Pos−c·FPr ·Neg (3)

Who is (and who is not) a potential customer in a given application is a
matter of choice of the marketing analyst, given the decision makingcontext,
which is in this problem defined by the four-tuple(c, p,Pos,Neg). Note that
the default profit may be negative, if positives are rare and/or mailings are
expensive. Hence, in general one should not use the default strategy but try to
detect population subgroups for which sending a mailing improves upon the
default profit (or yield positive profit if the default profit is negative).
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5.2. PROBLEM DEFINITION

The dataset investigated in this work is a relational database obtained by in-
terviewing potential customers. It consists of customers’ answers about how
they recognize, use and appreciate tested brands. Questions that are interest-
ing for the marketing analyst, whose task is to design a marketing campaign,
are: Which brands have the potential to improve their recognition or usage
rate? What are the characteristics of the people appreciating or using a spe-
cific brand? What is the nature of the relationship between brand recognition
and brand usage?

The problem addressed in this section is the selection of potential cus-
tomer subgroups from the general population that can be successfully targeted
by advertising campaigns. In this task, the customers can be classified into
two groups according to whether or not they recognize the brand. In our
approach, the group of people who do not know the brand is selected as the
target (‘positive’) class for the data mining process. The task is (a) to find
their significant characteristics, relative to the characteristics of the popula-
tion that recognizes and regularly uses the brand (‘negative’ class) and (b)
to determine if and how an advertising campaign could increase the expected
brand recognition, and consequently, the profit of the company. Moreover, the
goal is also to optimize the cost of the campaign.

We have designed a special questionnaire to gather data for the given
marketing problem. In the design phase we first made sure that every input
variable, required for the analysis, could be obtained from the completed
questionnaires. However, we found that there is often a tradeoff between the
desired quantity of answers from each respondent and the ability of the re-
spondent to provide high quality answers. Therefore, we invested large efforts
to optimize the demands of the questionnaire on customers, which resulted in
increased quality of the gathered data. Specifically, we dealt with three issues:
avoiding questionnaire fatigue, measuring recognition of brand names with
words and pictures, and validating the brand name recognition.

The aim of the questionnaire was to evaluate 300 given brand names.
The obvious idea of asking every respondent to evaluate each brand name
would result in loss of concentration and would eventually decrease the qual-
ity of obtained results. So, we decided to leverage the burden by allowing
each respondent to evaluate only 15 randomly selected brands. Further opti-
mization was obtained by the use of genetic algorithms to improve the odds
of brand names from similar categories to appear on the same questionnaire.
As a result, the accuracy of mutually comparing competitors improved, which
was of high interest for the end-user.

Every brand under study had a name and a logo. When asking respon-
dents to recognize brands, we first assessed their recognition of written brand
name. On the second screen, they were presented with the corresponding
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graphical logos and again asked to state their recognition. So, we were ac-
tually able to measure the correlation between the brand name and its logo
recognition, which turned out to be very valuable in subsequent studies. How-
ever, for the purpose of subgroup discovery we relied solely on the logo
recognition.

The input data consists of two relational tables: (1) the general cus-
tomer responses and demographic facts, and (2) the responses about specific
brand names. The first table contains customer responses to general questions
and demographic facts. A unique key Q identifies each customer. There are
2013 records (customers) in the table. The customers are described by their
age, level of education, occupation, address, consumer preferences and habits
(for example the TV programs they watch and the newspapers they read
regularly). In total, the table consists of 55 attributes.

The second table contains questionnaire responses about specific brand
names. There are 300 different brand names analyzed in the survey; and to
avoid response fatigue, each customer was given only a subset of 15 brand
names to evaluate with respect to their recognition, reputation and usage.
Therefore, the second table contains Q as a foreign key and D as a key for a
specific brand. In addition, there are three attributes that represent how the re-
spondent recognized, used and valued the product representing the questioned
brand. There are in total 2013· 15 = 30195 answers (database records).

In order to obtain a single table from the first two tables, we extended
the first table with 300 attributes derived from the second table representing
the frequency of consumption of each particular brand. The frequency of con-
sumption of a particular brand B has values from 1 to 5, 1 meaning that the
customer does not know the brand (therefore does not use it), and 5 meaning
that he or she regularly uses it.

In summary, the final data table that is used in subgroup discovery con-
sists of 2013 records (customers) described by 55 attributes from the first
table, followed by 300 binary attributes describing the usage of the corre-
sponding brands. In the direct mailing application described in this section,
the target class is formed as a single column representing one selected brand
(the class ‘does not use the yoghurt brand’ being labeled classpositive, and
‘uses the yoghurt brand’ being labeled classnegative, due to the desire of
targeting a marketing campaign to predict potential customers who do not
yet use the brand). Note that the marketing application of Section 6 the tar-
get class was a combination of several columns (brands) included in the
description of the target concept.

In this application, the need for data preprocessing arose from the fact
that the concept ‘user of brand B’ can only be determined for a limited num-
ber of respondents: i.e., only those that were originally asked this question.
As every respondent was only asked to evaluate 15 brands out of 300, only
one customer in every 20 was asked about the recognition and reputation of a
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specific brand. So, each record contains only 15 actual frequency consump-
tion values; the rest of 285 attribute values were unknown. To address this
problem we used the probabilistic classification rule-learning algorithm CN2
(Clark & Niblett, 1989; Clark & Boswell, 1991) to construct a classifier that
was used for missing value imputation: to fill in the class label data about
using/non-using a specific brand. The input variables for each classifier were
the attributes that originated from the first table and were therefore known for
every record. As CN2 allows for probabilistic predictions, probability of class
assignment was used as a class value as follows: value 1 for the probabilities
in the range [0, 0.2], value 2 for (0.2, 0.4], ..., and value 5 for the probabilities
in the range (0.8, 1]. Finally, the original frequency of brand consumption
answer was split into two values (binarization) and the probabilistic answers
were discretized. Binarization was performed as follows. We replaced an-
swers 4 and 5 by class label ‘uses the yoghurt brand’, and answers 1, 2 and 3
by class label ‘does not use/know the yoghurt brand’.

The outcome of the data preprocessing step, which was performed by
applying a rule learner to predict the missing values in the dataset, are uncer-
tain predictions. Low statistical significance of predictions is also due to the
inherent nature of the domain (targeting a population in marketing) which is
inexact and probabilistic. So, it usually suffices to induce a rule stating that,
for example, the readers of a specific newspaper will buy a certain product
with probability higher than average.

5.3. SUBGROUP DISCOVERY WITHCN2-SDAND PROFIT

MAXIMIZATION

Algorithm CN2-SD (Lavrǎc et al., 2002) adapts classical classification rule
learning algorithm CN2 (Clark & Niblett, 1989) to subgroup discovery. The
CN2 algorithm uses thecovering algorithmfor ruleset construction. How-
ever, in covering algorithms only the first few induced rules may be of interest
as subgroup descriptors with sufficient coverage. Subsequently induced rules
are induced from biased example subsets, i.e., subsets including only positive
examples not covered by previously induced rules. This bias constrains the
population for subgroup discovery in a way that is unnatural for the sub-
group discovery process which is, in general, aimed at discovering interesting
properties of subgroups of the entire population. In theweighted covering
algorithmused in CN2-SD, positive examples covered by the induced rule are
not deleted from the current training set. Instead, their weights are modified
so that the probability that an example with a modified weight will be covered
by subsequent rules is decreased. Initial example weights of all target class
examples are set to 1, while in the following iterations weights of positive
examples covered by the constructed rule decrease according to the formula

1
i+1, wherei is the number of rules covering the example. Example weights
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are also taken into account when evaluating the weighted relative accuracy
heuristic used in CN2-SD rule construction.

The ROC convex hull method, which is used in CN2-SD to evaluate and
select best subgroups is in this application enhanced with the aim of profit
maximization in a given context, defined by the four-tuple(c, p,Pos,Neg)
(see Section 5.1).

In the rest of this section we give an outline of the approach to profit
maximization (Flach & Gamberger, 2001). Maximum profit can be obtained
when all potential customers are targeted without any expense lost on non-
potential customers. This situation corresponds to the ideal subgroup with
TPr = 1 andFPr = 0, whereTPr andFPr stand for true positive rate and
false positive rate, respectively. In this case, the associated profit isp ·Pos,
wherep is the average gain per true positive. By manipulating Equation (3)
in Section 5.1 we see that lines with equal profit in ROC space are defined by
the equation:

TPr =
c·Neg
p·Pos

FPr +
pro f it
p·Pos

(4)

This means that in a given context(c, p,Pos,Neg), rules with different values
(TPr,FPr) will have the same profit values if lying on the same line with the
intended slope in ROC space, where the intended slope is given byc·Neg

p·Pos.
All subgroups, evaluated in ROC space, which lie on the same equal

profit line, will obviously result in an equal total amount of profit. Subgroups
above (below) this line will result in a higher (lower) profit. As suggested by
Equation (4), it is sufficient to work withnormalized profitrather than abso-
lute profit in order to select the optimal subgroup, where normalized profit is
defined as profit divided byp ·Pos. For instance, a normalized profit of 40%
may mean that we reached 50% of positives, but 1/5 of the profit was spent
on the negatives addressed; or it may mean that we in fact reached 40% of the
positives and no negatives. From the perspective of profit maximization, both
situations are equivalent.

Notice that the slope of equal profit lines is completely defined by pa-
rameters determining the context(c, p,Pos,Neg). A rule, which is optimal for
the given context, is determined by the point on the ROC convex hull that has
an equal profit line as its tangent (if a segment of the convex hull has the same
slope as the equal profit lines, either point on the end of the segment can be
selected).

In the direct mailing application, the candidate subgroups were induced
by the CN2-SD subgroup discovery algorithm. To decide which subgroup to
target in order to maximize the expected profit for the given yoghurt brand,
the marketing analyst computed the intended slope, which determined the
optimal subgroup to be targeted in the direct mailing campaign.
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6. Third case study: Decision support in targeting an advertising
campaign

Instead of trying to describe a subgroup by a rule, as done in Sections 4 and
5 where SD and CN2-SD were used for subgroup discovery, an alternative
approach is to present a population subgroup by listing only the supporting
factors and the opposing factors. Listing of supporting factors in line with
the approach presented in Section 4, where supporting factors are used to
reinforce the medical expert’s confidence in a subgroup, once constructed by
a subgroup discovery algorithm.

6.1. UNCOVERING SUPPORTING FACTORS FOR A SINGLE TARGET

CONCEPT

As in Section 5, the dataset investigated in this section is the relational database
consisting of customers’ answers about how they recognize, use and appreci-
ate tested brands.

In this study, a population subgroup is presented by listing its supporting
factors as well as itsopposing factors, which follows the basic principles
of Bayesian analysis (Berger, 1985). These factors are found in such a way
that they respectively maximize or minimize the conditional probability of
conceptX under consideration; the opposing factors forX are the supporting
factors forX. Only the factors with statistical significance higher than 99%
are selected as influential and are included in the listings.

This novel approach to subgroup discovery, appropriate for data analysis
from uncertain data, was used in the decision support application designed to
target an advertising campaign for a given natural non-alcoholic sparkling
beverage brand (Cestnik et al., 2002). For confidentiality reasons it will be
called brandX. More specifically, the task is to identify the characteristics of
those consumers that do not yet recognize and/or use brandX.

In our case, we first have the concept of ‘user of brandX’. This group
of customers can be characterized by the supporting factors listed in Table IV
for the target class denoted asX, while the non-users of brandX are listed for
the class denoted byX.

The marketing expert found such simple disjunctive descriptions very
intuitive and easy to apply in practice, especially in the cases where the corre-
sponding subgroup can be named with a suitable metaphor (see Section 7.1).
It seems that such a disjunctive approach is particularly suitable in marketing
(and possibly related domains), where the task is to increase the probability of
a certain event (order, buy, reply) in a target population and not to accurately
describe a portion of the target population.
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Table IV. Induced subgroup descriptions through statistical characterizations (sup-
porting factors) for the concept ‘drinker of brandX’ and the negation of this
concept.

Supporting Factors

X • the customers are from a central Slovenian region

• label ‘monitored food’ is neither important nor unimportant

• they regularly read theDaily Newsnewspaper and/or theYouthmagazine

• their education degree is higher or equal to the university degree

X • availability of a product in different quantities is not important

• product price is not so important

6.2. UNCOVERING SUPPORTING FACTORS FOR A COMBINED TARGET

CONCEPT

In the above approach to extracting the supporting factors for a simple target
group, the population was segmented into the consumers of brandX and those
who do not yet recognize or use brandX. Based on the discussion with the
marketing expert, it was decided that the target population should be further
segmented to drinkers of other non-alcoholic sparkling beverages, and others
that do not drink any beverages of this kind. The latter can be excluded from
our target subgroup since it is fair to assume that they are not inclined to use
the product generically. In other words, the aim of the campaign is to contact
the users of competitive brands and present them with the qualities of product
X. However, the marketing expert in our team emphasized the existence of
one particular brand (named brandY) that was so firmly positioned in the
market that it was wise to exclude the users of this brandY from the target
population. In fact, it was reasonable to expect that the regular drinkers of
brandY were very unlikely to change their prevalent behavior no matter what
the arguments in favor of brandX were presented to them.

Let us restate our target population. The combined target concept con-
sists of people who do not yet know or use brandX, but drink other non-
alcoholic sparkling beverages, with the exception of those who regularly drink
brandY. One approach to describe this target population is to use the com-
bination of the supporting factors describing the above three concepts indi-
vidually. Thus, in addition to learning the concept ‘non-user of brandX’, we
applied the same approach to supporting factors discovery for the concepts
‘user of non-alcoholic sparkling beverage brands’, and ‘non-user of brandY’.
For each of these concepts, the supporting factors were computed and used to
describe both the target concept and its converse.

Alternatively, we can also directly find the supporting factors for the
combined concept: ‘non-user of brandX & user of non-alcoholic sparkling
beverage brands & non-user of brandY’. This is only possible due to the
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Table V. Induced subgroup descriptions through statistical characteriza-
tions (supporting factors) for the combined concept and the negation of the
combined concept.

Supporting Factors

Com • availability of a product in different quantities is not important

• good commercials are not important

• different tastes of a product are not important

• the good name of a product is not important

• popularity of a product is not important

• they regularly readEvening News

Com • good commercials are important

• they readDaily News, Sunday News, Youthand/orOur Home

• the good name of a product is important

• they regularly read more than 4 newspapers

• they are from the central Slovenian region

• their education level is higher or equal to a university degree

data preprocessing phase in which we have learned labels for the missing
concepts. Note that in the original dataset the concepts ‘non-user of brand
X’ could only be determined for one out of 20 respondents who were asked
this question. The same holds for two other concepts: ‘non-user of brandY’
and ‘user of non-alcoholic sparkling beverage brands’. Combining two sparse
concepts with the logical operator & would result in only one customer out
of 400 to be used for the analysis. Therefore, in order to combine several
different concepts it has been necessary to augment the concepts to all respon-
dents, which was done by filling in the missing values, using the probabilistic
classification rule learning algorithm CN2, as mentioned in Section 5.2.

After data preprocessing we were able to directly find supporting factors
for the combined target conceptnon-user of brand X & user of non-alcoholic
sparkling beverage brands & non-user of brand Y(conceptCom). The factors
describing the customers that belong to the combined concept are listed in Ta-
ble V, which also lists the supporting factors that speak against the combined
concept (conceptCom).

One important observation to be made is that the supporting factors of
the combined target concept are not necessarily part of the three basic con-
cept descriptions. For example, the factor of reading more than 4 newspapers
did not appear in any of the basic concept descriptions. However, there are
also some factors that can be traced from the combined concept to the basic
ones. For instance, the consumers from the central Slovenian region tend to
be excluded from the combined concept, because they tend to be more than
average consumers of brandX.
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7. Lessons learned from subgroup discovery applications

Lessons learned from the applications indicate that subjective measures of
interestingness such as the ability to trigger metaphoric descriptions of sub-
groups and subgroup actionability are very important when deciding which
subgroups to select. We have also learned many lessons concerning ques-
tionnaire design and data preprocessing needed for appropriately defining the
target concept.

7.1. SUPPORTING FACTORS AND METAPHORIC DESCRIPTIONS OF

SUBGROUPS

In addition to confirming the appropriateness of if-then rules as a subgroup
representation formalism, the following lessons were learned.

Lesson 1: Provide sufficient supporting evidence
One of the lessons learned in the medical application is that the final sub-
group description is primarily based on the features defining the subgroup:
the so-calledprincipal factors. However, equally important are thesupport-
ing factors, uncovered by statistical analysis as having significantly different
values for instances in the subgroup in comparison with the set of negative
instances. The inclusion of supporting factors into the induced description
is important for its actionability, enabling easier recognition of target cases,
and providing for some redundant information that supports the classification.
This lesson has triggered the development of the subgroup discovery ap-
proach appropriate for domains with high uncertainty (outlined in Section 6)
where subgroups are described only by the supporting and opposing factors.

Lesson 2: Metaphoric descriptions provide crucial leverage
When describing subgroups with a set of supporting factors it is important
to be able to substitute a set of factors with a proper metaphor. For example,
the first five factors in Table V describing the target population (the com-
bined conceptCom) can be, according to the marketing expert, formulated as
store-brand consumers. Store-brand consumers do not buy established popu-
lar brands. They settle for no-brand products that are usually sold under the
store brand name, sold in simple packaging and offer good quality for a rea-
sonable price. Such consumers can be addressed by low-profile advertising.
According to the marketing expert the discovery of this piece of knowledge is
substantial for the marketing analyst when planning and directing a marketing
campaign.

The above use of metaphoric knowledge demonstrates how, with the
use of background expert knowledge, non-actionable descriptors can turn
into an actionable or even operational ‘chunk’ of knowledge that can be
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used in decision support. The description of the combined concept, which
at first glance seemed useless, gained considerable value when represented
by a single metaphor.

7.2. SUBJECTIVE MEASURES OF INTERESTINGNESS AND

ACTIONABILITY OF INDUCED SUBGROUP DESCRIPTIONS

Lessons learned in the subgroup discovery applications concern also increased
awareness of the importance ofsubjectivemeasures of interestingness. For
automated rule induction only the objective quality criteria apply. However,
for evaluating the usefulness of induced subgroup descriptions for decision
support, the subjective criteria are more important, but also harder to evaluate.

Lesson 3: Subgroup descriptions should be actionable
In the medical problem of detection and description of coronary heart dis-
ease risk groups we have learned that in this type of problem, there are no
predefined specificity or sensitivity rule quality levels to be satisfied. The
actionability of induced subgroup descriptions depends mainly on (a) whether
the attributes used in the induced rules can be easily and reliably measured,
and (b) how interesting/unexpected the subgroup descriptions in the given
population are. Evaluation of such properties is completely based on expert
knowledge and the success of the search depends on the expert’s involvement,
while the aim of machine learning based subgroup detection is to enable the
domain expert to effectively search the hypothesis space, ranging from very
specific to very general rules.

Lesson 4: Operational knowledge can operate on the target population
In addition to the subjective measures of interestingness introduced by other
authors (usefulness, actionability, unexpectedness and redundancy), we have
proposed another measure calledoperationality. If an operational rule is ef-
fectively executed, the performed operation can change the rule coverage.

We have discussed the notions of actionability and operationality on
several examples and pointed out the importance of distinguishing between
the two. For instance, the supporting factors induced in the application of
targeting potential clients of a natural non-alcoholic sparkling drink differ
in how actionable or operational they really are. If the description includes
readers of a specific newspaper, it is actionable and not operational, since the
information can be used by the decision maker for targeting whereas there is
not much that she can do about the target audience of the newspaper. Also, if
one of the characteristics of the target population is that people in the target
group do not value good commercials, one cannot reach them by making bad
commercials. On the other hand, if they think that healthy food is important or
that attractive product packaging is important, one can address their need by
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stating the healthy ingredients of the product or by improving its packaging,
which may lead to increased coverage of the target group.

In general, operationality of induced descriptions is harder to achieve
than actionability. If, for example, the learned concept includes customers of
a certain age and living in a certain area, those are the attributes that can-
not be manipulated. The only thing one can do is to take them into account
when targeting the commercial message. The induced concept description is,
therefore, actionable but not operational. Alternatively, if the learned concept
includes customers that were sent promotional material, then the induced
description is operational because we can actively increase the coverage of
the subgroup by sending out some additional catalogs.

7.3. QUESTIONNAIRE DESIGN AND DATA PREPROCESSING

In questionnaire design for the two marketing applications we dealt with three
issues: avoiding questionnaire fatigue, measuring recognition of brand names
with words and pictures, and validating the brand name recognition.

Lesson 5: Avoid questionnaire fatigue
The most important lesson learned in questionnaire design was how to avoid
questionnaire fatigue which would have occurred if a respondent had to eval-
uate each of the 300 brand names. A remedy was to randomly select just
15 brand names for evaluation, but this resulted in sparse data. In further
data processing, this sparseness was overcome by missing value imputation
through probabilistic value prediction by a classification rule learning algo-
rithm.

Lesson 6: Target class definitions can be complex
Another lesson deals with the choice of the target class. While in the medical
application the choice was intuitive (the positive class being the target), the
target class definition was less obvious in the two marketing applications. In
the direct mailing application, the label ‘does not use the selected yoghurt
brand’ has the role of the target class labeled positive, and ‘uses/knows the
yoghurt brand’ is the negative class.

In the campaign of targeting potential clients of a natural non-alcoholic
sparkling drink, the target class is more complex, consisting of people who do
not use or know of the brand, but who do drink other non-alcoholic sparkling
drinks, except those people who are regular drinkers of a world-famous brand.
Why should consumers of world-famous brands be excluded from the tar-
get? According to the marketing expert, these consumers are very unlikely
to change their habits; therefore it makes no sense to direct a campaign at
these consumers. Moreover, in the discussion with the marketing expert it
became clear that the negative class should not be formed of all the other con-
sumers. Limiting the population to non-alcohol drinkers makes more sense
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for uncovering specific properties of the target population. If, for example,
alcohol drinkers were included in the class negative, the subtle differences
between people who do not use brandX, but do drink other non-alcoholic
drinks would be lost in much stronger regularities discriminating non-alcohol
drinkers to those drinking alcohol drinks. Note that even subtler properties
could be uncovered if the entire population were limited to consumers of
non-alcoholic dark-colored sparkling drinks, since the color of the analyzed
brand is dark.

8. Lessons learned from the development of subgroup discovery
algorithms

We argue that learners that induce discriminant descriptions are inappropriate
for subgroup discovery. Next, despite the fact that rule learners induce char-
acteristic descriptions, we show that their use for subgroup discovery is hin-
dered if rule learning is performed within the covering algorithm for ruleset
construction. Moreover, we show the appropriateness of the rule unusualness
heuristic (WRAcc) and the ROC methodology for subgroup discovery.

Lesson 7: Distinguish between discriminant and characteristic descriptions
In symbolic predictive induction, the two most common approaches are rule
learning and decision tree learning. Let us first show that classification rules
serve two different purposes: characterization and discrimination.

The usual goal of classification rule learning is to generate separate mod-
els, one for each class, inducing class characteristics in terms of properties
occurring in the descriptions of training examples. Therefore, classification
rule learning results incharacteristic descriptions, generated separately for
each class by repeatedly applying the covering algorithm.

In decision tree learning, on the other hand, the rules which can be
formed from paths leading from the root node to class labels in the leaves
representdiscriminant descriptions, formed from properties that best discrim-
inate between the classes. As rules formed from decision tree paths form dis-
criminant descriptions, they are inappropriate for solving subgroup discovery
tasks which aim at describing subgroups by their characteristic properties.

8.1. INAPPROPRIATENESS OF THE STANDARD COVERING ALGORITHM

The reasons for the inappropriateness of classification rules for subgroup dis-
covery, which are due to the induction methods used, are listed below. These
shortcomings of classification rule learning are illustrated on a ‘classical’ and
well-known rule learner CN2, which we have analysed and upgraded to a
subgroup discovery algorithm CN2-SD, outlined in Section 5.3.
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Lesson 8: Standard covering algorithm is biased
Classification rules forming characteristic descriptions are expected to be
appropriate for subgroup discovery. However, the fact that they have been
generated by a covering algorithm (used in AQ (Michalski et al., 1986),
CN2 (Clark & Niblett, 1989; Clark & Boswell, 1991), and most other rule
learners) hinders their usefulness for subgroup discovery. Only the first few
rules induced by a covering algorithm may be of interest as subgroup descrip-
tions with sufficient coverage. Subsequent rules are induced from smaller and
strongly biased example subsets, excluding the positive examples covered
by previously induced rules. This bias prevents the covering algorithm from
inducing descriptions uncovering significant subgroup properties of the entire
population.

In CN2, the induced rules can be ordered or unordered. Ordered rules
are interpreted as a decision list (Rivest, 1987) in a straight-forward man-
ner: when classifying a new example, the rules are sequentially tried and
the first rule that covers the example is used for prediction. Ordered rules
may be very appropriate for classification, but an individual rule does not
represent a separate ‘chunk’ of knowledge about the problem, which makes
decision lists inappropriate for discovering interesting subgroup properties of
the entire population. The ordering problem is solved in CN2 by its ability
of inducing unordered rulesets, where rules can be interpreted individually,
however, when used for classification even unordered rules can not be used
separately from each other without losing information. Other problems that
are due to the fact that rules were induced by the covering algorithm also
remain, including a large number of rules, low coverage and low significance
(see the discussion on the significance of CN2 rules in Section 8.2).

Lesson 9: Weighted covering algorithm is advantageous
The above-mentioned shortcomings of classification rule learning algorithms
for subgroup discovery are overcome by the subgroup discovery algorithms
SD and CN2-SD outlined in this paper. One of their features is the use of
a weighted covering algorithm, where subsequently induced rules with high
coverage allow for discovering interesting subgroup properties of the entire
population. In addition to improved coverage, comprehensibility, compact-
ness and significance of rules, the advantage of subgroup discovery is also its
ability of handling skewed distributions (empirical evidence for this claim is
provided in (Lavrǎc et al., 2004).

8.2. OBJECTIVE QUALITY MEASURES ANDROC ANALYSIS

While the subjective interesting measures are crucial for the expert evaluation
of induced subgroup descriptions, objective quality measures are crucial for
automated rule induction and the comparative evaluation of different sub-
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group discovery algorithms. Classification rule learners consider rule accu-
racy/precision to be one of the most important evaluation measures; on the
other hand, we consider rulesignificanceand unusualnessto be the most
important quality measures for subgroup discovery.

Lesson 10: Low coverage, support and significance of CN2 rules
In one variant of the CN2 rule learner, the search procedure used in sin-
gle rule learning performs beam search employing rule accuracy/precision
p(Class|Cond) as a heuristic function. Since the main goal of this heuristic is
accuracy optimization, the heuristic leads to the induction of specific rules,
consisting of conjunctions of many features. Consequently, induced rules
have low coverage. Accurate rules may be very useful for classification, but
an individual rule does not represent a separate ‘chunk’ of knowledge about
the problem, due to low coverage and low support.

A variant of CN2 guarantees that induced rules are significant by em-
ploying the significance stopping criterion in single rule construction. An-
other variant of CN2 uses significance as a search heuristic. Empirical eval-
uation in (Clark & Boswell, 1991) shows that applying a significance test
reduces the number of induced rules, while slightly decreasing the predictive
accuracy. If the significance test is used within the covering algorithm, only
the first few rules induced by a covering algorithm will be subgroup descrip-
tions with sufficient significance w.r.t. the entire population. Since subsequent
rules are induced from smaller and strongly biased example subsets, these
are significant for subpopulations, but tend to be less significant or even
insignificant w.r.t. the entire population.

Lesson 11: Appropriateness of WRAcc as a rule quality measure
It is generally accepted that objective quality measures can be successfully
used for rule selection and evaluation in the context of the ROC methodology.
Rule unusualness, measured by weighted relative accuracyWRAcc, and rule
significance both measure the distributional unusualness of a subgroup. It was
shown in Section 3.3 thatWRAcciso-performance lines are parallel to the
ROC diagonal, and that, given a fixed class distribution,WRAccis propor-
tional to the vertical distance to the diagonal. As such,WRAccis appropriate
for measuring the unusualness of separate subgroups. Moreover,WRAccalso
reflects rule significance: the largerWRAccis, the more significant the rule
is, and vice versa. However, while significance only measures distributional
unusualness, computed in terms of correctly classified covered examples of
all classes,WRAcctakes explicitly the rule coverage into account, therefore
we considerunusualnessto be the most appropriate measure for subgroup
quality evaluation. As such, theWRAccheuristic can be used in the search
for optimal subgroups, and as a measure for evaluating the quality of induced
subgroup descriptions.
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Lesson 12: The final decision should be made by the expert
Although in objective terms the best subgroups are those on the ROC convex
hull, the expert may decide to choose suboptimal subgroups, as they are more
interesting according to some subjective measure of interestingness. ROC
analysis and search for optimal subgroups in the ROC space is of ultimate
importance for automated subgroup discovery. However, in expert-guided
subgroup discovery for subgroups with high CHD risk in Section 4, ROC
analysis was used for expert-guided search of the space of interesting sub-
groups, and for the evaluation of the expert-selected subgroups in comparison
with the best induced subgroups forming the ROC convex hull.

9. Summary and further work

This paper presents three approaches to subgroup discovery and their appli-
cation to a medical problem and two marketing problems.

An important aspect, to which we have devoted ample attention, was
the development of evaluation criteria for measuring the success of subgroup
discovery. To this end, much attention was devoted to theobjectivemea-
sures of quality of induced patterns, used both in the process of induction
as heuristics for guiding the search for patterns, as well as in the evalua-
tion of induced patterns in ROC space. One of the heuristics appropriate for
subgroup discovery is the weighted relative accuracy heuristic used in this
work which trades off the generality of a rule (p(Cond), i.e., rule coverage)
and its relative accuracy (p(Class|Cond)− p(Class)). Various similar rule
evaluation measures and heuristics have been studied for subgroup discovery
by (Kloesgen, 1996; Wrobel, 1997), aimed at balancing the size of a group
(referred to as factorg) with its distributional unusualness (referred to as
factor p). The properties of functions that combine these two factors (the
so-called ‘p-g-space’) have been extensively studied (Kloesgen, 1996).

Besides theobjectivemeasures of subgroup quality, this paper discusses
also numeroussubjectivemeasures of interestingness. We have specifically
addressed pattern actionability and operationality, while other interestingness
measures evaluated by the experts and used in the process of expert-guided
subgroup discovery were discussed in less detail.

The paper conveys the lessons learned from the applications of subgroup
discovery for decision support in solving real-life problems, and the lessons
learned in the development of recent subgroup discovery algorithms. Despite
the fact that some of the described shortcomings of classification rule learners
are specific to CN2, similar shortcomings could be given for other classifica-
tion rule learners, even if we chose to analyse RIPPER (Cohen, 1995) or some
other more sophisticated classification rule learner whose goal is to maximize
the classification accuracy. In future work, we plan to compare our subgroup
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32 Nada Lavrǎc, Bojan Cestnik, Dragan Gamberger and Peter Flach

discovery approaches with SLIPPER (Cohen & Singer, 1999), a successor of
RIPPER, which may turn out to be of interest for subgroup discovery due
to its similarity with the CN2-SD algorithm (the most important difference
being the way examples are reweighted).

We also plan to develop other subgroup discovery approaches, includ-
ing the approaches that adapt standard association rule learning to subgroup
discovery. In association rule learning (Agrawal et al., 1996), each rule is an
individual pattern, describing an individual ‘chunk’ of knowledge, equipped
with two standard quality measures: support and confidence. As shown in
(Kavšek, Lavrǎc, & Jovanoski, 2003), association rule learning can naturally
be adapted to subgroup discovery. Results of subgroup discovery algorithm
APRIORI-SD are similar to those of subgroup discovery algorithm CN2-SD
(Lavrǎc et al., 2004), while experimental comparisons with CN2, RIPPER
and APRIORI-C demonstrate that subgroup discovery algorithms CN2-SD
and APRIORI-SD produce substantially smaller rulesets, where individual
rules have higher coverage and significance.

Another line of development will be the incorporation of subgroup dis-
covery approaches into the inductive database and constraint-based data min-
ing framework. In this approach, heuristic search for subgroup descriptions
will be replaced by complete search within the given language and qual-
ity constraints. Special attention will be devoted also to the development of
novel applications of subgroup discovery, with the emphasis on the experi-
ments demonstrating the success of subgroup discovery in terms of various
subjective measures of interestingness such as operationality, actionability,
unexpectedness, redundancy, novelty and usefulness.
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S. Džeroski & N. Lavrǎc (Eds.),Relational Data Mining. Springer-Verlag.
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