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Abstract

Poly-controlled partial evaluation (PCPE) is a flexible approach for specializing logic programs, which has
been recently proposed. It takes into account repertoires of global control and local control rules instead
of a single, predetermined, combination. Thus, different global and local control rules can be assigned to
different call patterns, obtaining results that are hybrid in the sense that they cannot be obtained using a
single combination of control rules, as traditional partial evaluation does. PCPE can be implemented as a
search-based algorithm, producing sets of candidate specialized programs (many of them hybrid), instead of
a single one. The quality of each of these programs is assessed through the use of different fitness functions,
which can be resource aware, taking into account multiple factors such as run-time, memory consumption,
and code size of the specialized programs, among others. Although PCPE is an appealing approach, it
suffers from an inherent blowup of its search space when implemented as a search-based algorithm. Thus,
in order to be used in practice, and to deal with realistic programs, we must be able to prune its search
space without losing the interesting solutions. The contribution of this work is two-fold. On one hand we
perform an experimental study on the heterogeneity of solutions obtained by search-based PCPE, showing
that the solutions provided behave very differently when compared using a fitness function. Note that this
is important since otherwise the cost of producing a large number of candidate specializations would not
be justified. The second contribution of this work is the introduction of a technique for pruning the search
space of this approach. The proposed technique is easy to apply and produces a considerable reduction
of the size of the search space, allowing PCPE to deal with a reasonable number of benchmark programs.
Although pruning is done in a heuristic way, our experimental results suggest that our heuristic behaves
well in practice, since the fitness value of the solutions obtained using pruning coincide with the fitness
value of the solution obtained when no pruning is applied.

Keywords: Partial Evaluation, Control Strategies, Resource Awareness, Program Optimization, Pruning
Techniques

1 Introduction

The aim of partial evaluation (PE ) is to specialize a program w.r.t. part of its

input, which is known as the static data[11]. The quality of the code generated

by partial evaluation greatly depends on the control strategy used. Unfortunately,

the existence of sophisticated control rules which behave (almost) optimally for all

programs is still far from reality. Poly-controlled partial evaluation [15] (PCPE )

attempts to cope with this problem by employing a set of global and local control

rules instead of a predetermined combination (as done in traditional partial eval-

uation algorithms). This allows using different global and local control rules for

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Ochoa and Puebla

different call patterns (atoms). Thus, PCPE can produce specialized programs that

are not achievable by traditional partial evaluation using any of the considered local

and global control rules in isolation.

In [15], two algorithms for implementing PCPE were introduced. One of them

uses a function called pick to decide a priori which (global and local) control strate-

gies are to be applied to every atom. The second one applies a number of pre-selected

control rules to every atom, generating several candidate specializations, and de-

cides a posteriori which specialization is the best one by empirically comparing

the final configurations (candidate specializations) using a fitness function, possibly

taking into account factors such as size of the specialized program and time- and

memory-efficiency of such a specialized program. Since choosing a good Pick func-

tion can be a very hard task, and in the need of a proof of concept of the idea of

PCPE, we have implemented the second algorithm (leaving the first one for future

work), although this algorithm is less efficient in terms of size of the search space.

Among the main advantages of PCPE we can mention:

It can obtain better solutions than traditional PE: In [15], preliminary ex-

periments showed that PCPE produced hybrid solutions with better fitness value

than any of the solutions achievable by traditional PE, for a number of different

resource-aware fitness functions. Hybrid solutions are not achievable by tradi-

tional partial evaluation, since different global and local control rules are applied

to different call patterns.

It is a resource-aware approach: in traditional PE, existing control rules focus

on time-efficiency by trying to reduce the number of resolution steps which are

performed in the residual program. Other factors such as the size of the compiled

specialized program, and the memory required to run the residual program are

most often neglected—some relevant exceptions being the works in [4],[3]—. In

addition to potentially generating larger programs, it is well known that partial

evaluation can slow-down programs due to lower level issues such as clause in-

dexing, cache sizes, etc. PCPE, on the other hand, makes use of resource aware

fitness functions to choose the best solution from a set of candidate solutions.

It is more user-friendly: existing partial evaluators usually provide several global

and local control strategies, as well as many other parameters (global trees, com-

putation rules, etc.) directly affecting the quality of the obtained solution. For a

novice user, it is extremely hard to find the right combination of parameters in

order to achieve the desired results (reduction of size of compiled code, reduction

of execution time, etc.). Even for an experienced user, it is rather difficult to

predict the behavior of partial evaluation, especially in terms of space-efficiency

(size of the residual program). PCPE allows the user to simultaneously experi-

ment with different combinations of parameters in order to achieve a specialized

program with the desired characteristics.

It performs online partial evaluation: as opposed to other approaches (e.g.

[3]), PCPE performs online partial evaluation, and thus it can take advantage of

the great body of work available for online partial evaluation of logic programs.

Unfortunately, PCPE is not the panacea, and it has a number of disadvantages.

The main drawback of this approach is that, when implemented as a search-based
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algorithm, its search space suffers from an inherent exponential blowup since given

a configuration, the number of successors can be as high as the number of combi-

nations of local and global control rules considered. As a direct consequence, the

specialization time of PCPE is higher than its PE counterpart.

After getting acquainted for the first time with the basic idea of poly-controlled

partial evaluation, probably two questions come up immediately to our mind:

(i) does PCPE provides a wide range of solutions? I.e., is the set of obtained

solutions heterogeneous enough to offer us a wide set of candidate solutions to

choose from?

(ii) is PCPE feasible in practice? I.e., since there is an exponential blowup of

the search space, is it possible to perform some pruning in order to deal with

realistic programs without losing the interesting solutions?

Throughout this work we address these two questions, providing some experi-

mental results to help us justify our allegations.

2 Background

We assume some basic knowledge on the terminology of logic programming. See for

example [12] for details.

Very briefly, an atom A is a syntactic construction of the form p(t1, . . . , tn),

where p/n, with n ≥ 0, is a predicate symbol and t1, . . . , tn are terms. The function

pred applied to atom A, i.e., pred(A), returns the predicate symbol p/n for A.

A clause is of the form H ← B where its head H is an atom and its body B is a

conjunction of atoms. A definite program is a finite set of clauses. A goal (or query)

is a conjunction of atoms.

Two terms t and t′ are variants, denoted t ≈ t′, if there exists a renaming ρ

such that tρ = t′. We denote by {X1 7→ t1, . . . , Xn 7→ tn} the substitution σ with

σ(Xi) = ti for all i = 1, . . . , n (with Xi 6= Xj if i 6= j) and σ(X) = X for any other

variable X, where ti are terms. A unifier for a finite set S of simple expressions is a

substitution θ if Sθ is a singleton. A unifier θ is called most general unifier (mgu)

for S, if for each unifier σ of S, there exists a substitution γ such that σ = θγ.

2.1 Basics of Partial Evaluation in LP

Partial evaluation of LP is traditionally presented in terms of SLD semantics. We

briefly recall the terminology here. The concept of computation rule is used to select

an atom within a goal for its evaluation.

Definition 2.1 A computation rule is a function R from goals to atoms. Let G be

a goal of the form ← A1, . . . , AR, . . . , Ak, k ≥ 1. If R(G) =AR we say that AR is

the selected atom in G.

The operational semantics of definite programs is based on derivations [12].

Definition 2.2 [derivation step] Let G be ← A1, . . . , AR, . . . , Ak. Let R be a

computation rule and let R(G) =AR. Let C = H ← B1, . . . , Bm be a renamed
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apart clause in P . Then G′ is derived from G and C via R if the following conditions

hold:

θ = mgu(AR, H)

G′ is the goal ← θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak)

As customary, given a program P and a goal G, an SLD derivation for P ∪{G}
consists of a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence

C1, C2, . . . of properly renamed apart clauses of P , and a sequence θ1, θ2, . . . of

mgus such that each Gi+1 is derived from Gi and Ci+1 using θi+1.

A derivation step can be non-deterministic when AR unifies with several clauses

in P , giving rise to several possible SLD derivations for a given goal. Such SLD

derivations can be organized in SLD trees. A finite derivation G = G0, G1, G2, . . . , Gn

is called successful if Gn is empty. In that case θ = θ1θ2 . . . θn is called the computed

answer for goal G. Such a derivation is called failed if it is not possible to perform

a derivation step with Gn.

In partial evaluation, SLD semantics is extended in order to also allow incomplete

derivations which are finite derivations of the form G = G0, G1, G2, . . . , Gn and

where no atom is selected in Gn for further resolution. This is needed in order to

avoid (local) non-termination of the specialization process. Also, the substitution

θ = θ1θ2 . . . θn is called the computed answer substitution for goal G. An incomplete

SLD tree possibly contains incomplete derivations.

In order to compute a partial evaluation (PE) [11], given an input program and a

set of atoms (goals), the first step consists in applying an unfolding rule to compute

finite incomplete SLD trees for these atoms. Then, a set of resultants or residual

rules are systematically extracted from the SLD trees.

Definition 2.3 [unfolding rule] Given an atom A, an unfolding rule computes a set

of finite SLD derivations D1, . . . , Dn (i.e., a possibly incomplete SLD tree) of the

form Di = A, . . . , Gi with computer answer substitution θi for i = 1, . . . , n whose

associated resultants are θi(A) ← Gi.

Therefore, this step returns the set of resultants, i.e., a program, associated to

the root-to-leaf derivations of these trees. The set of resultants for the computed

SLD tree is called a partial evaluation for the initial goal (query). The partial

evaluation for a set of goals is defined as the union of the partial evaluations for

each goal in the set. We refer to [8] for details.

In order to ensure the local termination of the PE algorithm while producing

useful specializations, the unfolding rule must incorporate some non-trivial mech-

anism to stop the construction of SLD trees. Nowadays, well-founded orderings

(wfo) [2,13] and well-quasi orderings (wqo) [16,9] are broadly used in the context of

on-line partial evaluation techniques (see, e.g., [6,10,16]).

In addition to local termination, an abstraction operator is applied to properly

add the atoms in the right-hand sides of resultants to the set of atoms to be partially

evaluated. This abstraction operator performs the global control and is in charge

of guaranteeing that the number of atoms which are generated remains finite. This

is done by replacing atoms by more general ones, i.e., by losing precision in order

to guarantee termination. The abstraction phase yields a new set of atoms, some
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of which may in turn need further evaluation and, thus, the process is iteratively

repeated while new atoms are introduced.

3 Poly-Controlled Partial Evaluation

Traditional algorithms for partial evaluation (PE) of logic programs (LP) are para-

metric w.r.t. the global control and local control rules 1 . In these algorithms, once

a specialization strategy has been selected, it is applied to all call patterns in the

residual program. However, it is well known that several control strategies exist

which can be of interest in different circumstances. It is indeed a rather difficult

endeavor to find a specialization strategy which behaves well in all settings. Thus,

rather than considering a single specialization strategy, at least in principle one can

be interested in applying different specialization strategies to different atoms (call

patterns). Unfortunately, this is something which existing algorithms for PE do not

cater for. Poly-controlled partial evaluation (PCPE) [15] fills this gap by allowing

the use of a set of specialization strategies instead of a predetermined one.

3.1 A Search-Based Poly-Controlled Partial Evaluation Algorithm

Algorithm 1 shows a search-based poly-controlled partial evaluation algorithm. In

this algorithm, a configuration Confi is a pair 〈Si, Hi〉 s.t. Si is the set of atoms

yet to be handled by the algorithm and Hi is the set of atoms already handled by

the algorithm. Indeed, in Hi not only we store atoms Ai but also the result A′
i of

applying global control to such atoms and the unfolding rule Unfold which has been

used to unfold Ai, i.e., members of Hi are tuples of the form 〈Ai, A
′
i, Unfold〉. We

store Unfold in order to use exactly such unfolding rule during the code generation

phase. Correctness of the algorithm requires that each A′
i is an abstraction of Ai, i.e.,

Ai = A′
iθ. Algorithm 1 employs two auxiliary data structures. One is Confs, which

contains the configurations which are currently being explored. The other one is

Sols, which stores the set of solutions currently found by the algorithm. As it is well

known, the use of different data structures for Confs provides different traversals of

the search space. In our implementation of this algorithm in CiaoPP [7], we have

used both a stack and a queue, traversing the search space in a depth-first and a

breadth-first fashion, respectively.

Given a set of atoms S which describe the potential queries to the program,

the initial configuration is of the form 〈S, ∅〉. In each iteration of the algorithm,

a configuration 〈Si, Hi〉 is popped from Confs (line 6), and an atom Ai from Si

is selected (line 7). Then, several combinations of global control (Abstract ∈ G)

and local control (Unfold ∈ U) rules, respectively, are applied (lines 11 and 12).

Each application builds an SLD-tree for A′
i, a generalization of Ai as determined

by Abstract, using the corresponding unfolding rule Unfold. Once the SLD-tree τi

is computed, the leaves in its resultants, i.e., the atoms in the residual code for

A′
i are collected by the function leaves (line 14). Those atoms in leaves(τi) which

are not a variant of an atom handled in previous iterations of the algorithm are

added to the set of atoms to be considered (Si+1) and pushed on Confs. We use

1 From now on, we call any combination of global and local control rules a specialization strategy.
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Algorithm 1 Search-Based Poly-Controlled Partial Evaluation Algorithm

Input: Program P

Input: Set of atoms of interest S

Input: Set of unfolding rules U
Input: Set of generalization functions G
Output: Set of partial evaluations Sols

1: H0 = ∅
2: S0 = S

3: create(Confs); Confs = push(〈S0, H0〉, Confs)

4: Sols = ∅
5: repeat

6: 〈Si, Hi〉 = pop(Confs)

7: Ai = Select(Si)

8: Candidates = {〈Abstract,Unfold〉 | Abstract ∈ G,Unfold ∈ U}
9: repeat

10: Candidates = Candidates − {〈Abstract,Unfold〉}
11: A′

i = Abstract(Hi, Ai)

12: τi = Unfold(P, A′
i)

13: Hi+1 = Hi ∪ {〈Ai, A
′
i,Unfold〉}

14: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈ Hi+1 . B 6≡ A}
15: if Si+1=∅ then

16: Sols = Sols ∪ {Hi+1}
17: else

18: push(〈Si+1, Hi+1〉,Confs)

19: end if

20: until Candidates = ∅
21: i = i + 1

22: until empty stack(Confs)

B ≡ A to denote that B and A are variants, i.e., they are equal modulo variable

renaming. The process terminates when the stack of configurations to handle is

empty, i.e. all final configurations have been reached. The specialized program cor-

responds to
⋃

〈A,A′,Unfold〉∈Hn
resultants(A′, Unfold), where the function resultants

is parametric w.r.t. the unfolding rule.

Note that in this algorithm, once an atom Ai is abstracted into A′
i, code for A′

i

will be generated, and it will not be abstracted any further no matter which other

atoms are handled in later iterations of the algorithm. As a result, the set of atoms

for which code is generated are not guaranteed to be independent. Two atoms are

independent when they have no common instance. However, the pairs in H uniquely

determine the version used at each program point. Since code generation produces

a new predicate name per entry in H, independence is guaranteed, and thus the

specialized program will not produce more solutions than the original one.

As mentioned in [15], one could think of a similar algorithm deciding a priori a

control strategy to be applied to each atom. This algorithm would be more similar

to the traditional PE algorithm, employing possibly different control rules for differ-
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:- module(_,[rev /2] ,[]).
:- entry rev([_,_|L],R).

rev ([] ,[]).
rev([H|L],R) :-

rev(L,Tmp),
app(Tmp ,[H],R).

app([],L,L).
app([X|Xs],Y,[X|Zs]) :-

app(Xs ,Y,Zs).

(a)

Input query #solutions

rev(L,R) 6

rev([ |L],R) 48

rev([ , |L],R) 117

rev([ , , |L],R) 186

rev([ , , , |L],R) 255

rev([1|L],R) 129

rev([1,2|L],R) 480

(b)

Fig. 1. The nrev example and the number of solution generated by PCPE

ent atoms. Unfortunately, it is not clear how this decision can be made, so instead

Algorithm 1 generates several candidate partial evaluations and then decides a pos-

teriori which specialized program to use. Clearly, generating all possible candidate

specialized programs is more costly than computing just one. However, selecting

the best candidate a posteriori allows to make much more informed decisions than

selecting it a priori.

3.2 Exponential Blowup of the Search Space

Given that Algorithm 1 allows different combinations of specialization strategies,

given a configuration, there are several successor configurations. This can be in-

terpreted as, given G={A1, . . . , Aj} and U={U1, . . . , Ui}, there is a set of trans-

formation operators TA1

U1
, . . . , TA1

Ui
, . . . , T

Aj

Ui
. Thus, in the worst case, given a set

of unfolding rules U = {Unfold1, . . . ,Unfoldi}, and a set of abstraction functions

G = {Abstract1, . . . , Abstractj}, there are i × j possible combinations. As already

mentioned, this represents an inherent exponential blowup in the size of the search

space, and it makes the algorithm impractical for dealing with realistic programs.

Of course, several optimizations can be done to the base algorithm shown above,

in order to deal with this problem. A first obvious optimization is to eliminate

equivalent configurations which are descendants of the same node in the search tree.

I.e., it is often the case that given a configuration Conf there are more than one TA
U

and TA′

U ′ with (A, U) 6= (A′, U ′) s.t. TA
U (Conf) = TA′

U ′ (Conf). This optimization is

easy to implement, not very costly to execute, and reduces search space significantly.

However, even with this optimization, a simple experiment shows the magnitude

of this problem. Let us consider the program in Listing 1(a), which implements a

naive reverse algorithm.

In this experiment, let us choose the set of global control rules G={dynamic,

hom emb}. The hom emb global control rule is based on homeomorphic embed-

ding [8,9] and flags atoms as potentially dangerous (and are thus generalized) when

they homeomorphically embed any of the previously visited atoms at the global con-

trol level. Then, dynamic is the most abstract possible global control rule, which

abstracts away the value of all arguments of the atom and replaces them with

distinct variables. Also, let us choose the set of local control rules U={one step,

df hom emb as}. The rule one step is the simplest possible unfolding rule which

always performs just one unfolding step for any atom. Finally, df hom emb as is an
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unfolding rule based on homeomorphic embedding. More details on this unfolding

rule can be found in [14]. It can handle external predicates safely and can perform

non-leftmost unfolding as long as unfolding is safe (see [1]) and local (see [14]).

In CiaoPP [7], the description of initial queries (i.e., the set of atoms of interest

S in Algorithm 1 ) is obtained by taking into account the set of predicates exported

by the module, in this case rev/2, possibly qualified by means of entry declarations.

For example, the entry declaration in Listing 1(a) is used to specialize the naive

reverse procedure for lists containing at least two elements.

Table (b) of Figure 1 shows the number of candidate solutions generated by

Algorithm 1 (eliminating equivalent configurations in the search tree), for several

entry declarations. As can be observed in the table, as the length of the list pro-

vided as entry grows, the number of candidate solutions computed quickly grows.

Furthermore, if the elements of the input list are static, then the number of candi-

dates grows even faster, as can be seen in the last two rows in Table 1, where we

provide the first elements of the list. From this small example, it is clear that, in

order to be able to cope with realistic Prolog programs, it is mandatory to reduce

the search space. In Section 5 we propose a technique to do so.

4 Heterogeneity of PCPE Hybrid Solutions

As mentioned before, Algorithm 1 produces a set of candidate solutions. Of these,

a few of them are pure, in the sense that they can be obtained via traditional PE

(i.e., they apply the same control strategy to all atoms in the residual program), and

the rest are hybrid, in the sense that they apply different specialization strategies

to different atoms. In this section, we try to determine how heterogeneous are the

fitness values of the different solutions obtained by PCPE.

4.1 Choosing Adequate Sets of Global and Local Control Rules

The question of whether the solutions obtained by PCPE are heterogeneous w.r.t.

their fitness values depends, in a great deal, on the particular choice of specializa-

tion strategies to be used, as well as on the arity of the sets G and U of control

rules. We can expect that by choosing control rules different enough, the candidate

solutions will be also very different, and viceversa. To see this, think for a moment

that we choose U = {det, lookahead} where both det and lookahead are purely

determinate [6,5]—i.e., they select atoms matching a single clause head—, the dif-

ference being that lookahead uses a ”look-ahead” of a finite number of computation

steps to detect further cases of determinacy [6]. Given that both rules are based

on determinate unfolding, and this is considered a very conservative technique, it is

highly probable that this particular choice of local control rules will not contribute

to finding heterogeneous solutions. A better idea will be then to choose one un-

folding rule that is conservative, and another one that is aggressive. An example

of an aggressive local control rule would be one performing non-leftmost unfolding.

The same reasoning can be done when selecting the global control rules, we could

select one rule that is very precise—while guaranteeing termination—, and a very

imprecise global control rule.

8



Ochoa and Puebla

Benchmark Input Query
speedup

Vers Fitness Mean St Dev Diam

example pcpe main( , ,2, ) 27 1.56 0.87 0.21 0.99

permute permute([1,2,3,4,5,6],L) 70 1.31 1.15 0.48 1.16

nrev rev([ , , , |L],R) 255 1.09 0.66 0.15 0.51

advisor what to do today( , , ) 14 1.68 1.31 0.67 0.97

relative relative(john,X) 61 18.01 3.45 4.84 16.37

ssuply ssupply( , , ) 31 5.15 1.84 1.82 4.72

transpose transpose([[ , , , , , , , , ], , ], ) 154 2.62 0.87 0.30 2.13

overall 87.4 4.49 1.45 1.21 3.83

Table 1
PCPE statistics over different benchmarks (speedup)

4.2 Heterogeneity of the Fitness of PCPE Solutions

Once we select an appropriate set of control rules for PCPE, we need to deter-

mine whether the fitness of the solutions we obtain are heterogeneous. With this

purpose, we have ran some experiments over a set of benchmarks and different fit-

ness functions, in order to collect statistical facts such as Standard Deviation and

Diameter that can help us to determine how different are the obtained solutions.

In our experiments, as mentioned in Section 3, we have used a set of global con-

trol rules G={dynamic, hom emb} and a set of local control rules U={one step,

df hom emb as}. Besides, we used different fitness functions already introduced in

[15]. For reasons of space, we will show some of the results obtained when using the

following fitness functions:

speedup compares programs based on their time-efficiency, measuring run-time

speedup w.r.t. the original program. When using this fitness function, the user

needs to provide a set of run-time queries with which to time the execution of

the program. Such queries should be representative of the real executions of the

program 2 . This fitness function is computed as

speedup=Torig/Tspec,

where Tspec is the execution time taken by the specialized program to run the

given run-time queries, and Torig the time taken by the original program.

reduction compares programs based on their space-efficiency, measuring reduction

of size of compiled bytecode w.r.t. the original program. It is computed as

reduction=(Sorig − Sempty)/ (Sspec − Sempty),

where Sspec is the size of the compiled bytecode of the specialized program, Sorig

is the size of the compiled bytecode of the original program, and Sempty is the

size of the compiled bytecode of an empty program.

In Table 1 we can observe, for a number of benchmarks, the collected statistics

when using speedup [15] as a fitness function. As mentioned before, the number

of versions obtained is tightly related to several factors, such as the number and

kind of control rules used, as well as the initial input queries used to specialize each

program. For this particular experiment, PCPE generated a mean of 87 candidate

solutions per benchmark. In most cases we can observe that both the fitness of the

2 Though the issue of finding representative run-time queries is an interesting research topic in its own
right, it is out of the scope of this paper to automate such process.
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best solution and the mean fitness are over 1, meaning that a speedup is achieved

when comparing the obtained solutions w.r.t. the original program. In some cases,

the mean speedup is below 1, indicating that many of the solutions are bad and get

a slowdown w.r.t. the original program. Let us take transpose, for example. In this

particular benchmark, we can see that most of the 154 final solutions are slower

than the original program, meaning that it is easy to specialize this program with

different control strategies and obtain a solution that runs slower than the original

program. Note however, that the best solution obtained by PCPE is 2.62 faster

than the original program.

In order to answer our initial question, i.e., whether does PCPE provide a wide

range of solutions, the columns we are interested in looking at are St Dev and

Diameter. St Dev stands for standard deviation, and measures how spread out the

values in a data set are. Diameter measures the difference of fitness among (any

of) the best solution(s) when compared to (any of) the worst solution(s). Note that

many of the solutions found by PCPE can have the same fitness value. Values closer

to 0 in St Dev would indicate that most solutions are similar and their fitness value

is similar to the mean fitness value. However, the mean St Dev is 1.21, showing that

in general solutions are spread out, i.e., they are different when compared against

each other, even though very little static information is provided to the PCPE

algorithm (as shown in the column Input Query of Table 1). This fact is evident

when we look at the fitness of the different solutions in a graphical way. In Fig. 2

we can observe, for the nrev benchmark, as defined in Listing 1(a), how the fitness

of all solutions are quite distributed across the mean value. We have chosen this

benchmark because it is the one with the lowest Standard Deviation value, and with

the highest number of versions obtained. Also, we can see that many solutions share

the same fitness value, and that in some way they are grouped together, indicating

that it should be possible to find ways to collapse those solutions into one, pruning

in this way the search space. Regarding the Diameter column, we can observe that

the mean diameter is 3.83, indicating that there is an important difference between

the worst and the best solutions.

These preliminary results are encouraging, showing that PCPE is capable of

obtaining several heterogeneous solutions, most of them not being achievable by

traditional partial evaluation. Similar results have been obtained for other fitness

functions (not shown here due to lack of space). Though it is clear we need to prune

the search space in order to make this approach practical, we should do it with care,

in order to not to prune the good solutions.

5 Pruning the Search Space: SPRS Heuristic

In spite of the possibility of eliminating redundant configurations and non-promising

branches, it is worthwhile to explore in practice the use of poly-controlled partial

deduction with more restrictive capabilities in order to reduce the cost of exploring

the search space. For instance, rather than allowing all possible combinations of

specialization strategies for different atoms in a configuration, we can restrict our-

selves to configurations which always use the same specialization strategy for all

atoms which correspond to the same predicate. This restriction will often signifi-
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cantly reduce the branching factor of our algorithm since, handling of an atom Ai

will become deterministic as soon as we have previously considered an atom for the

same predicate in any configuration which is an ancestor of the current one in the

search space, i.e., it is compulsory to use exactly the same specialization strategy

as before. We call this approach SPSR, standing for Same Predicate, Same Rules.

We will refer to configurations which satisfy this restriction as consistent, and as

inconsistent to those which do not. Though this simplification may look too restric-

tive at first sight, it is often the case in practice that there exists a specialization

strategy which behaves well for all atoms which correspond to the same predicate,

in the context of a given program.

We will modify Algorithm 1 in such a way that only consistent configurations are

further processed. For this we need to store for every atom in every configuration

the global control rule used to generalize such an atom. We now provide a formal

definition of consistent configurations w.r.t. to the SPSR heuristic.

Definition 5.1 [consistent configuration] given a configuration Conf = 〈S, H〉,
we say that Conf is consistent iff ∀〈A1, A

′
1, G1, U1〉 ∈ H, ∀〈A2, A

′
2, G2, U2〉 ∈

H, pred(A1) = pred(A2) ⇒ (G1 = G2 ∧ U1 = U2)

Note that the definition of consistent configuration can be applied to interme-

diate configurations (not only to final ones). Thus, if a given configuration Conf is

inconsistent, it will be pruned, i.e., it will not be pushed on Confs. By doing this

we are pruning not only this configuration, but also all the successor configurations

that would have been generated from it. This means that early pruning will achieve

significant reductions of the search space.

6 Experimental Results

Since the SPSR heuristic prunes the search space in a blind way, i.e., without making

any evaluation of the candidates being pruned, there is a possibility of pruning the

optimal solutions. In order to determine if this is the case, we have extended the

experiments shown in Sec. 4, adding the results obtained when applying the SPSR

heuristic to the example programs.

In Table 2, we show the number of versions obtained by PCPE, the fitness value

of both the optimal solution(s) obtained by PCPE, and the best solution obtained by

traditional PE (together with the control strategy CS used to obtain such value 3 ),

the mean value of all solutions, their standard deviation and their diameter, when

using speedup as a fitness function. We compare in all cases the values obtained

by the original PCPE approach (in row orig under colum Heur) versus the values

obtained by PCPE when pruning its search space by means of the SPSR heuristics

(in row spsr).

As shown in the table, the search space is significantly reduced when applying

SPSR, and the mean number of versions is reduced from 87 candidate solutions to

only 14. However, there are some benchmarks for which no pruning of the search

space is achieved, as is the case of example pcpe and ssupply. This is due to the

3 We use the following notation for denoting pairs of control rules: ho={hom emb,one step},
hd={hom emb,df hom emb as}, do={dynamic,one step}, dd={dynamic,df hom emb as}

12
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Benchmark Heur Versions
Fitness

Mean
St
Dev

Diameter
PCPE CS PE

example pcpe
orig 27 1.56

hd 1.37
0.87 0.21 0.99

spsr 27 1.60 0.86 0.23 1.11

permute
orig 70 1.31

hd 1.06
0.91 0.48 1.16

spsr 9 1.29 1.02 1.01 1.01

nrev
orig 255 1.03

hd 1.03
0.64 0.15 0.51

spsr 9 1.06 0.71 0.19 0.55

advisor
orig 14 1.68

hd 1.55
1.21 0.67 0.97

spsr 8 1.66 1.49 0.86 1.06

relative
orig 61 18.01

hd 15.30
3.45 4.84 16.37

spsr 11 17.96 8.00 9.36 16.95

ssuply
orig 31 5.15

hd 5.15
1.52 1.82 4.72

spsr 31 5.13 1.53 1.82 4.51

transpose
orig 154 2.62

hd 2.60
0.87 0.30 2.13

spsr 6 2.54 1.08 0.57 1.60

overall
orig 87.4 4.49

4.01
1.35 1.21 3.83

spsr 14.4 4.44 2.09 2.01 3.82

Table 2
Comparison of search-pruning alternatives(speedup)

fact that these programs contain very few atoms in their candidate specializations,

and all of such configurations are consistent, satisfying the SPSR restriction.

In our experiments, when pruning is done, the St Dev grows, indicating that we

are pruning solutions sharing the same fitness value. By looking at the fitness values,

we can presume that the best solution is preserved, in spite of performing a blind

pruning (the slight difference between fitness values of orig and spsr is probably

due to noise when measuring time). Note that, in most cases, PCPE outperforms

traditional PE. Interestingly, it is clear that for these benchmarks the best strategy

for PE is hd. We can observe also that the mean fitness is higher when pruning is

performed, which could indicate that bad solutions are pruned away.

In Table 3 we show the same information as above, but for the reduction fitness

function. We have also added an extra column Sols showing the number of best

solutions found by PCPE (note that this column does not make any sense when

time-efficiency is measured, because this measurement is subject to noise). By

looking at the fitness value, we can see that the best solution is preserved, in spite

of performing a blind pruning. But according to the Sols column, we are pruning

away the redundant best solutions, and leaving only one of them. Clearly, the

number of versions pruned by SPSR does not depend on the fitness function used,

since the fitness function is used after generating all solutions in order to determine

which candidates are the best ones.

With regard to the fitness value, it is interesting to note that the strategy do,

i.e., dynamic as a global control and one step as a local control, produces a pro-

gram that is very similar to the original one (probably having some variable and

predicate renaming). This means that in situations where the original program has

few predicates, it is difficult to obtain a residual program smaller than the origi-

nal program. This is reflected in the benchmarks permute, nrev, relative and

transpose, where the best control strategy is do and the fitness value is close to 1.

However, note that PCPE still obtains better solutions in the cases of permute and

13
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Benchmark Heur Versions Sols
Fitness

Mean
St
Dev

Diameter
PCPE CS PE

example pcpe
orig 27 1 1.22

hd 1.15
0.82 0.19 0.82

spsr 27 1 1.22 0.82 0.19 0.82

permute
orig 70 6 1.15

do 0.98
0.61 0.27 1.15

spsr 9 1 1.15 0.63 0.34 1.15

nrev
orig 255 3 0.98

do 0.98
0.32 0.15 0.79

spsr 9 1 0.98 0.55 0.25 0.71

advisor
orig 14 1 1.69

hd 1.68
1.03 0.34 1.41

spsr 8 1 1.69 0.94 0.38 1.41

relative
orig 61 2 1.17

do 0.98
0.67 0.25 1.04

spsr 11 1 1.17 0.80 0.28 1.04

ssuply
orig 31 1 11.26

hd 11.26
1.61 1.79 10.32

spsr 31 1 11.26 1.61 1.79 10.32

transpose
orig 154 5 0.98

do 0.98
0.39 0.19 0.75

spsr 6 1 0.98 0.63 0.26 0.70

overall
orig 87.4 2.71 2.63

2.57
0.77 0.45 2.32

spsr 14.4 1.00 2.63 0.85 0.49 2.30

Table 3
Comparison of search-pruning alternatives(reduction)

relative, clearly through a hybrid solution.

It is also interesting to see that the diameter is preserved most of times, indi-

cating that both the best and worst solutions are preserved. However, in nrev and

transpose the diameter decreases a bit, and since the best solution is preserved,

this means we are pruning the worst solutions in these cases.

In summary, SPSR seems to be a very interesting pruning technique, since it

significantly reduces the search space of PCPE, it seems to preserve the best solu-

tions (at least for the tested benchmarks), and can allow us to use PCPE in order

to attack more interesting benchmarks, and also to provide more static information

to the algorithm. It remains as future work to develop other techniques for pruning

the search space in PCPE, that can ensure that the optimal solution is preserved.
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