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LetG be a connected linear algebraic group over C and letH a closed algebraic
subgroup. A fundamental problem in the study of homogeneous spaces is to
describe, characterize, or classify those quotients G/H that are affine varieties.
While cohomological characterizations of affine G/H are possible, there is still
no general group-theoretic conditions that imply G/H is affine. In this article,
we survey some of the known results about this problem and suggest a way of
classifying affine G/H by means of its internal geometric structure as a fiber
bundle.

Cohomological characterizations of affine G/H provide useful vanishing
theorems and related information if one already knows G/H is affine. Such
characterizations cannot be realistically applied to prove that a given homo-
geneous space G/H is affine. Ideally, one would like to have easily verified
group-theoretic conditions on G and H that imply G/H is affine. Very few
positive results are known in this direction, the most notable of which is Mat-
sushima’s Theorem for reductive groups. For general linear algebraic groups
there is a natural generalization of Matsushima’s Theorem that provides a
necessary condition for G/H to be affine. While this criterion is also sufficient
for some special situations, it is not sufficient in general.

In the absence of general group-theoretic conditions for G/H to be affine,
it is worthwhile to understand the underlying geometric structure of an affine
homogeneous space G/H . Such a space is always isomorphic to a fiber bundle
over an orbit of a maximal reductive subgroup of G. The fiber is a smooth
affine variety diffeomorphic to an affine space C

n. Here several interesting
phenomena seem possible: either the fiber is truly an “exotic” affine space or
is in fact isomorphic to C

n. If exotic structures occur, they would also provide
counter-examples to the Cancellation Problem for affine spaces. So far, no
such exotic examples are known. If such structures are impossible, then an
affine homogeneous space G/H would always have the simple description of
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a homogeneous vector bundle. In this case, one can change groups, G/H =
Ĝ/Ĥ , where Ĝ and Ĥ are easily classified, giving an indirect group-theoretic
characterization for G/H to be affine.

1 Cohomological Characterizations

Recall that a subgroup H ⊂ G is called observable if every finite dimensional
rational H-module can be embedded as an H-submodule of a finite dimen-
sional rational G-module. This is equivalent to the condition that for any
rational H-module V , the induced module V

∣
∣G = {s : G → V | s(gh−1) =

h · s(g), ∀h ∈ H, ∀g ∈ G} surjects onto V under the evaluation map s→ s(1).
It is well-known thatH is observable in G if and only if G/H is quasi-affine [2].
The subgroup H is call strongly observable if, given any rational H module V ,
V is an H-submodule of a rational G-module W such that V H = WG. Finally,
H is called an exact subgroup of G if induction from rational H-modules to
rational G-modules preserves short exact sequences.

Theorem 1. [4, 13] The following are equivalent:

1. G/H is affine.
2. H is a strongly observable subgroup of G.
3. H is an exact subgroup of G.
4. H1(Ru(H),O(G)) = 0 (or, equivalently, H1(G/Ru(H),O) = 0) where
Ru(H) is the unipotent radical of H.

Such characterizations of affineness are basically “cohomological” in na-
ture. They are primarily used when one already knows that G/H is affine.
Verifying the properties themselves may be more difficult than directly prov-
ing that G/H is affine.

2 Group-theoretic Conditions

There is a practical need for easily verified conditions on the groups G and H
that guarantee the quotient G/H is affine. We shall now investigate some of
the known results in this direction.

2.1 Unipotent and Solvable Groups

If G is a unipotent linear algebraic group, then G/H ∼= C
n for any algebraic

subgroup H . More generally, if G is a solvable linear algebraic group, then
G/H ∼= C

n × (C∗)m. The corresponding statements for complex Lie groups
are not automatically true. For example ifG = C

∗×C
∗ andH = {(ez, eiz) | z ∈

C}, then G/H is a compact complex torus. Nevertheless, some generalizations
are possible, see [13].
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2.2 Reductive Groups

After these relatively simple cases, the best known group-theoretic criterion
for G/H to be affine goes back to Matsushima [8]:

If G is reductive then G/H is affine if and only if H is reductive.

Matsushima’s original theorem assumes G is a reductive complex Lie group
and characterizes when G/H is Stein. However, a reductive complex Lie group
G is in fact biholomorphically isomorphic to an algebraic group [6] andG/H is
affine if it is Stein [1]. Matsushima’s theorem has been generalized to reductive
algebraic groups over algebraically closed fields of positive characteristic, see
[11, 3].

2.3 General Linear Algebraic Groups

Any connected linear algebraic groupG has a decomposition into a semi-direct
product, G = M · Ru(G), where M is a maximal reductive subgroup M and
Ru(G) is the unipotent radical of G. A closed algebraic subgroup H has a sim-
ilar decomposition, H = L ·Ru(H) where L is a maximal reductive subgroup
of H (not necessarily connected). Since the maximal reductive subgroups of
G are conjugate, we may assume L ⊂ M . The group L is not important in
determining whether G/H is affine:

G/H is affine if and only if G/Ru(H) is affine.

This follows from the fact that L is reductive and G/Ru(H) → G/H is a
principal L-bundle, see [11]. We therefore focus our attention on Ru(H) and
its location in G.

If Ru(H) ⊂ Ru(G), then, of course, G/Ru(H) ∼= M × Ru(G)/Ru(H) is
affine and so G/H is affine. However, Ru(H) ⊂ Ru(G) is not a necessary
condition for G/H to be affine. For example, let G be the semi-direct product
SL(2,C) ·U where U is the standard 2-dimensional representation of SL(2,C),
and let

H =
{[1 0

t 1

]

× (0, t) | t ∈ C

}
.

Then G/H ∼= SL(2,C)× C.
A necessary condition for G/H to be affine is not hard to discover, see

[4, 13].

Lemma 1. If G/H is affine then the intersection of Ru(H) with any reductive
subgroup of G is trivial.

Proof. Let M be a maximal reductive subgroup of G. We must show that
Ru(H) ∩Mg = 1 for all g ∈ G. Since G/H affine, so is G/Ru(H), and thus
any M -orbit of minimal dimension in G/Ru(H), being automatically closed,
is affine, see [10]. By Matsushima’s Theorem, the isotropy subgroup in M of
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such an orbit is reductive. However, it also is of the form M∩Ru(H)g for some
g ∈ G, and, being a subgroup of a the unipotent algebraic group Ru(H)g, is
unipotent. Therefore,M∩Ru(H)g = 1 and any M -orbit of minimal dimension
is isomorphic to M . Hence, all M -orbits have the same dimension. Therefore
every M orbit in G/Gu(H) is isomorphic to M and M ∩ Ru(H)g = 1 for all
g ∈ G. �	

The above lemma also holds when G/H is Stein [13]. Notice that the
lemma is a natural generalization of Matsushima’s Theorem in one direction:
if G is reductive and G/H is affine, then the lemma implies Ru(H) = 1 and
H is reductive. It is natural to explore whether the converse to Lemma 1
holds. For convenience, let us say that H satisfies Matsushima’s criterion in
G if the intersection of Ru(H) with any reductive subgroup of G is trivial, or
equivalently, if Ru(H) ∩Mg = 1 for all g ∈ G.

If H satisfies Matsushima’s Criterion, then, as we have seen in the proof
of the lemma, a maximal reductive subgroup M of G acts freely on G/Ru(H).
It is easy to see that this condition is equivalent to Ru(H) acting freely on
M\G from the right. Since M\G ∼= Ru(G) ∼= C

n, we are led to considering
free actions of unipotent groups on affine space. In fact, in this situation, the
actions are also triangular [14]. However, free unipotent triangular actions on
C

n can be badly behaved in general: the quotient may not be separated and
may not be affine even if it is separated [15]. Nevertheless, this point of view
does yield positive results in certain simple cases.

Theorem 2. [4, 14] Let G be a linear algebraic group and let H be a closed
subgroup. Assume that dimRu(H) ≤ 1 or dimRu(G) ≤ 3. Then G/H is affine
if and only if H satisfies Matsushima’s criterion.

Matsushima’s Criterion is not sufficient in general. The following example
was discovered by Winklemann [15]: Let M = SL(6,C) and let

G =
{
[

1 0
z A

]

| z ∈ C
6, A ∈M

} ∼= M × C
6. (1)

Let

H = Ru(H) =
{













1
0 1
0 0 1
0 t s 1
0 0 t 0 1
t t 0 0 0 1

s+ 1
2 t

2 1
2 t

2 0 0 0 t 1













∣
∣ s, t ∈ C

}
. (2)

It is not hard to verify that H satisfies Matsushima’s Criterion, and that
the quotient M\G/H exists and is a smooth contractible quasi-affine vari-
ety. However, direct calculation with invariants shows that X = G/H is not
affine. In fact, M\G/H is a smooth four-dimensional affine quadric with a
2-codimensional subspace removed.
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3 Geometric Description

We now take a closer look at the underlying geometry of an affine homogeneous
space G/H . As before, we let M be a maximal reductive subgroup of G and
let L ⊂ M be a maximal reductive subgroup of H . Let U = Ru(G) and
V = Ru(H) be the unipotent radicals of G and H , respectively. If G/H is
affine, then we know by Lemma 1 thatM acts freely on G/V and, equivalently,
that V acts freely on M\G = U . Since G/V is affine and M is a reductive
group acting freely, Hilbert’s theorem on invariants implies that the geometric
quotient M\G/V is affine. In fact, the local description of G/V → Y in terms
of “slices,” shows that the quotient map is a locally trivial principal bundle
with fiber M , see [7, 12]. Consider the following diagram

G
V−→ G/V

M


2



2M

U
V−→ Y

where the vertical maps are the quotients by M and the horizontal maps are
the quotients by V . Using local sections of G → Y , we see that the fibration
U → Y is also a locally trivial principal V -bundle. Thus, Y is the base of
a locally trivial fibration where both the total space U ∼= C

n and the fiber
V ∼= C

m are affine spaces.

Proposition 1. If G/H is affine, then G/V is M -equivariantly isomorphic
to M × Y and U is V -equivariantly isomorphic to Y × V .

Proof. The principal V -bundle U → Y is topologically trivial because the
structure group is contractible, and this immediately implies that the bundle
is holomorphically trivial [5]. To see that it is also algebraically trivial, we pro-
ceed by induction on dimV . If dim V = 1, then the triangular action of V on U
is equivalent to a translation, see [4, 14] which implies U ∼= Y×V . If dimV > 1,
then there is a normal subgroup V1 ⊂ V such that dimV/V1 = 1. The bundle
G/V1 → G/V with fiber V/V1

∼= C is trivial because H1(G/V,O) = 0. In
particular, G/V1 is affine, and hence the quotient Y1 = M\G/V1 exists and is
affine. Since H1(Y,O) = 0, the principal V/V1-bundle Y1 → Y is also trivial.
By induction, U ∼= Y1 × V1, and therefore, U ∼= Y × V/V1 × V1

∼= Y × V .
Finally, composing a global section Y → U with the projection G → G/V
gives a global section Y → G/V , and this implies G/V is M -equivariantly
isomorphic to M × Y . �	

3.1 Cancellation Problem

The Cancellation Problem is the following: if C
n ∼= Y × C

m, is Y ∼= C
n−m?

Since U ∼= C
n and V ∼= C

m, the isomorphism U ∼= Y × V of Proposition 1



174 Dennis Snow

gives an example of the Cancellation Problem. This problem remains unsolved
in general, but has a positive answer if dimY ≤ 2 [9].

Obviously, Y is a smooth contractible affine variety. If dimY ≥ 3, then Y
is in fact diffeomorphic to C

n−m, [16]. If Y is not algebraically isomorphic to
C

n−m then Y is called an exotic affine space. Exotic affine spaces are known
to exist, although no examples are known in the context of the Cancellation
Problem, [16]. The relative simplicity of the subgroup H in (2) leads one to
believe that it may indeed be possible to create exotic affine spaces of the
form Y = M\G/V = U/V which would provide a negative answer to the
Cancellation Problem at the same time.

3.2 Homogeneous Bundle Structure

The isomorphisms of Proposition 1 provide a natural bundle structure on an
affine homogeneous space G/H .

Theorem 3. Let L be a maximal reductive subgroup of H and let M be a
maximal reductive subgroup of G containing L. If X = G/H is affine then X
is isomorphic to a homogeneous bundle over M/L, X ∼= M ×L Y → M/L,
with fiber Y a smooth contractible affine variety.

Proof. The reductive group L acts by conjugation on both U = Ru(G) and
V = Ru(H) and these actions are isomorphic to a linear representations.
By Proposition 1, the V -equivariant isomorphism U ∼= Y × V yields a V -
equivariant map s : U → V satisfying s(uv) = s(u)v for all u ∈ U , v ∈ V .

If we average s over a maximal compact subgroup K of L,

ŝ(u) =
∫

k∈K

k−1s(kuk−1)k dk, u ∈ U

(where dk is some invariant measure onK), then ŝ is still V -equivariant. More-
over, since K is Zariski-dense in L, ŝ(lul−1) = lŝ(u)l−1 for all l ∈ L, u ∈ U .
If we identify Y with the L-invariant subvariety ŝ−1(1) ⊂ U , we obtain a
natural action of L on Y and the isomorphism U ∼= Y × V is L-equivariant.
Moreover, the right L action on G/V preserves the decomposition of Proposi-
tion 1, G/V ∼= M ×Y , so that G/H is isomorphic to the homogeneous bundle
M ×L Y = M × Y/ ∼ where (m, y) ∼ (ml−1, l · y), for all m ∈ M , y ∈ Y ,
l ∈ L. �	

If the homogeneous bundle of Theorem 3 is a homogeneous vector bundle,
then it is possible to “change” the groups G and H so that their maximal
reductive subgroups and unipotent radicals are aligned.

Theorem 4. Let X = G/H be affine and let X = M ×L Y → M/L be
the homogeneous bundle of Theorem 3. If Y is isomorphic to a linear repre-
sentation of L, then there exist linear algebraic groups Ĝ = M · Ru(Ĝ) and
Ĥ = L · Ru(Ĥ) such that G/H ∼= Ĝ/Ĥ and Ru(Ĥ) ⊂ Ru(Ĝ).
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Proof. By Theorem 1, the sections H0(M/L,X) ∼= Y
∣
∣M generate the bundle.

Therefore, there exists a finite dimensional M -submodule U ⊂ H0(M/L,X)
that spans the vector space fiber Y over the identity coset z0 ∈ M/L. The
semi-direct product Ĝ = M ·U then acts on X = M ×L Y by (m,u) · [m′, y] =
[mm′, y + u(m′)] for all m,m′ ∈ M , y ∈ Y , and u ∈ U . (Recall that the
section u is an L-equivariant map u : M → Y , u(ml−1) = lu(m) for all
m ∈M , l ∈ L.) This action is clearly transitive, because the sections U span
Y over the identity coset z0 ∈ M/L. The isotropy subgroup of the point
[1, 0] ∈ M ×L Y is easily computed to be the semi-direct product Ĥ = L · V
where V = {u ∈ U | u(L) = 0}. �	
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