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Abstract

Recently, the more widespread use of three-dimensional (3-D) imaging modalities,

such as magnetic resonance imaging (MRI), computed tomography (CT), positron

emission tomography (PET), and ultrasound (US) have generated a massive amount

of volumetric data. These have provided an impetus to the development of other

applications, in particular telemedicine and teleradiology. In these fields, medical

image compression is important since both efficient storage and transmission of data

through high-bandwidth digital communication lines are of crucial importance.

Despite their advantages, most 3-D medical imaging algorithms are

computationally intensive with matrix transformation as the most fundamental

operation involved in the transform-based methods. Therefore, there is a real

need for high-performance systems, whilst keeping architectures flexible to allow

for quick upgradeability with real-time applications. Moreover, in order to obtain

efficient solutions for large medical volumes data, an efficient implementation of

these operations is of significant importance. Reconfigurable hardware, in the form

of field programmable gate arrays (FPGAs) has been proposed as viable system

building block in the construction of high-performance systems at an economical price.

Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent

advantages such as massive parallelism capabilities, multimillion gate counts, and

special low-power packages.

The key achievements of the work presented in this thesis are summarised

as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been

proposed based on transpose-based computation and partial reconfiguration suitable

for 3-D medical imaging applications. These applications require continuous hardware

servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced.

Comparative study for both non-partial and partial reconfiguration implementation

has shown that DPR offers many advantages and leads to a compelling solution

for implementing computationally intensive applications such as 3-D medical image

compression. Using DPR, several large systems are mapped to small hardware
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resources, and the area, power consumption as well as maximum frequency are

optimised and improved.

Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)

with three design strategies has been proposed: direct implementation of pseudo-code

with a sequential or pipelined description, and block random access memory (BRAM)-

based method. An analysis with various medical imaging modalities has been carried

out. Results obtained for image de-noising implementation using FRAT exhibits

promising results in reducing Gaussian white noise in medical images. In terms of

hardware implementation, promising trade-offs on maximum frequency, throughput

and area are also achieved.

Furthermore, a novel hardware implementation of 3-D medical image

compression system with context-based adaptive variable length coding (CAVLC)

has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete

wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that

3-D IT demonstrates better computational complexity than the 3-D DWT, whilst

the 3-D DWT with LS exhibits a lossless compression that is significantly useful for

medical image compression. Additionally, an architecture of CAVLC that is capable

of compressing high-definition (HD) images in real-time without any buffer between

the quantiser and the entropy coder is proposed. Through a judicious parallelisation,

promising results have been obtained with limited resources.

In summary, this research is tackling the issues of massive 3-D medical volumes

data that requires compression as well as hardware implementation to accelerate the

slowest operations in the system. Results obtained also reveal a significant achievement

in terms of the architecture efficiency and applications performance.



Certificate of Originality

“I hereby certify that the work presented in this thesis is my original research and has

not been presented for a higher degree at any other university or institute”.

.........................................

(Afandi Ahmad – 0729168)

Afandi.Ahmad@brunel.ac.uk

23 July 2010

v



To everyone who supports me, it just begins...

vi



Acknowledgements

I gratefully acknowledge who has supported me throughout my PhD work and finally

the preparation of this thesis. In particular, I would like to thank my supervisor,

Dr Abbes Amira, for accepting me as a student, whilst I am in a dark tunnel. Abbes,

many thanks for your relentless commitment you have shown along this journey. You

could have taken the short cut, but you stood by me. I will always remember and look

to you as an example of how to work hard! I would also like to thank Dr Hassan Rabah,

Dr Yves Berviller and Dr David Smith for insightful guidance of my research studies.

All your effort shows me the real meaning of sincerity!

I would like to thank all the great friends I have had at Brunel, Ulster and

Nancy over the years: Ben, Abdallah, Michael, Hairol, Thian, Linda, Khalid, Shafinar

and Aida. Thank you all for providing many happy memories and truly friendship

colours. I wish to thank my sponsors, Ministry of Higher Education Malaysia (MOHE),

Universiti Tun Hussein Onn Malaysia (UTHM) and the British Council. I must also

thank to Faculty of Electrical and Electronic Engineering, especially to colleagues in

Department of Computer Engineering for their support.

I would achieve nothing without the encouragement and compassion I received

from my understanding wife, parents and all of my families. This thesis is dedicated

to them. Their love and support kept me going. I owe you!

vii



Author’s Publications

Journal Papers – Accepted

1. A. Ahmad, B. Krill, A. Amira, and H. Rabah, “Efficient Architectures for

3-D HWT using Dynamic Partial Reconfiguration”, Elsevier Journal of System

Architecture - Special Issue on Hardware/Software Co-Design, ISSN 1383-7621,

Volume 56, Issue 8, pp. 305–316, August 2010.

2. B. Krill, A. Ahmad, A. Amira, and H. Rabah, “An Efficient FPGA-based

Dynamic Partial Reconfiguration Framework for Image and Signal Processing

IP Cores”, Elsevier Journal of Signal Processing: Image Communication -

Special Issue on Breakthrough Architectures for Image and Video Systems, ISSN

0923-5965, Volume 25, Issue 5, pp. 377–387, May 2010.

3. P. Nicholl, A. Ahmad, and A. Amira, “A Novel Feature Vectors Construction

Approach for Face Recognition”, Springer Transactions on Computational

Science (TCS) - Special Issue on “Security in Computing”.

Journal Papers – In Revision

1. M. Guarisco, A. Ahmad, H. Rabah, A. Amira, and Y. Berviller, “3-D Medical

Image Compression System using CAVLC”, IEEE Transactions on Medical

Imaging.

viii



ix

Journal Papers – Under Review

1. M. Guarisco, A. Ahmad, H. Rabah, A. Amira, and Y. Berviller, “FPGA-based

Implementation of a CAVLC for 3-D Medical Compression”, IEEE Transactions

on Consumer Electronics”.

2. A. Ahmad, A. Amira, and M. Jiang , “Reconfigurable Architectures for 3-D

Medical Image Processing: Design Issue and Challenges”, ACM Computing

Surveys.

3. A. Ahmad, A. Amira, H. Rabah, and Y. Berviller, “An Efficient FPGA-based

Architecture of Finite Radon Transform for Medical Imaging Application”,

IEEE Transactions on Medical Imaging.



x

Conference Papers – Accepted

1. A. Ahmad, A. Amira, M. Guarisco, H. Rabah and Y. Berviller, “Efficient

Implementation of a 3-D Medical Imaging Compression System using CAVLC”,

The 2010 International Conference on Image Processing (ICIP), September

26th - 29th 2010, Hong Kong.

2. A. Ahmad, B. Krill, A. Amira, and H. Rabah, “3-D Haar Wavelet Transform

with Dynamic Partial Reconfiguration for 3-D Medical Image Compression”,

The IEEE Biomedical Circuits and Systems Conferences (BIOCAS), November

26th - 28th 2009, Beijing, China, pp. 137–140.

3. A. Ahmad and A. Amira, “Efficient Reconfigurable Architectures for 3-D

Medical Image Compression”, The 2009 International Conference on Field-

Programmable Technology (FPT), December 9th - 11th 2009, Sydney, Australia,

pp. 472–474.

4. H. Taha, A. Sazish, A. Ahmad, M. Sharif, and A. Amira, “Efficient

FPGA Implementation of a Wireless Communication System using Bluetooth

Connectivity”, The 2010 IEEE International Symposium on Circuits and

Systems (ISCAS), May 30th - June 2nd 2010, Paris, France, pp. 1767–1770.

5. A. Ahmad, A. Amira, Y. Berviller, and H. Rabah, “Rapid Prototyping of

Finite Radon Transform (FRAT) for Medical Imaging Applications”, The 2nd

European Workshop On Visual Information Processing (EUVIP), July 5th - 7th

2010, Paris, France.

6. B. Krill, A. Ahmad, A. Amira and H. Rabah, “New FPGA-Based Dynamic

Partial Reconfiguration Design Flow and Environment For Image Processing

Applications”, The 2nd European Workshop On Visual Information Processing

(EUVIP), July 5th - 7th 2010, Paris, France.



xi

7. A. Ahmad, B. Krill, A. Amira, and H. Rabah, “Dynamic Partial Reconfigurable

3-D Haar Wavelet Transform IP Cores Design”, The 2nd UK-Malaysia

Engineering Conference (UK-MEC), April 8th - 9th 2010, London, United

Kingdom, pp. 25–35. [Awarded as a best paper]

8. A. Ahmad and A. Amira, “FPGA-based Architectures for 3-D Medical

Image Compression”, The 1st Malaysia Glasgow Doctoral Colloquium (MGDC),

January 20th - 21st 2010, Glasgow, Scotland, pp. EA49–EA50.

9. A. Ahmad, A. Amira, Y. Berviller and H. Rabah, “FPGA-based Architectures

of FRAT for Medical Image Processing”, United Kingdom - Malaysia - Ireland

Engineering Science Conference (UMIES), June 23rd - 25th 2010, Belfast,

Northern Ireland.

Conference Papers – Under Review

1. A. Ahmad, A. Amira, Hassan Rabah, and Yves Berviller, “FPGA-based

Architectures of Finite Radon Transform for Medical Image De-noising”, The

2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2010),

December 6th - 9th 2010, Kuala Lumpur Malaysia.

2. A. Gupta, A. Ahmad, and A. Amira,, “Rapid Prototyping of a Wireless

Communication System using FPGA”, The 2010 IEEE Asia Pacific Conference

on Circuits and Systems (APCCAS 2010), December 6th - 9th 2010, Kuala

Lumpur Malaysia.

3. P. Nicholl, A. Ahmad, and A. Amira,, “Optimal Discrete Wavelet Transform

(DWT) Features for Face Recognition”, The 2010 IEEE Asia Pacific Conference

on Circuits and Systems (APCCAS 2010), December 6th - 9th 2010, Kuala

Lumpur Malaysia.



List of Abbreviations

µblaze Micro blaze

1-D One-dimensional

2-D Two-dimensional

3-D Three-dimensional

AG Address generator

AGWN Additive Gaussian white noise

ASIC Application specific integrated circuit

ALU Arithmetic logic unit

BLV Brent. Luk, Van

BPV Bit per voxel

BRAM Block random access memory

CABAC Context-based adaptive binary arithmetic coding

CAVLC Context-based adaptive variable length coding

CDF Cohen-Daubechies-Favreau

CIF Common intermediate format

CORDIC Coordinate rotation digital computer

CPU Central processing units

CR Compression ratio

CSD Canonical sign digit

CT Computed tomography

CUDA Compute unified device architecture

DA Distributed arithmetic

xii



xiii

DCM Digital clock management

DCT Discrete cosine transform

DDR-2 Double data rate

DFF D flip-flop

DFT Discrete Fourier transform

DHT Discrete Hartley transform

DMA Distortion minimisation algorithm

DPR Dynamic partial reconfiguration

DSP Digital signal processor

DWT Discrete wavelet transform

EAPR Early access partial reconfiguration

EDA Electronic design automation

ESCOT Embedded sub-band coding with optimal truncation

ESM Erlangen slot machine

EVD Eigen value decomposition

FIR Finite impulse response

FFT Fast Fourier transform

FIFO First in first out

FMRI Functional magnetic resonance imaging

FPGA Field programmable gate array

fps Frames per second

FRAT Finite Radon transform

FRIT Finite ridgelet transform

FWT Fast wavelet transform

GOP Group of pictures

GPGPU General-purpose computation on graphics processing units

GPP General purpose processor

GPU Graphics processing unit

HBWD Hierarchical block wavelet decomposition

HD High-definition



xiv

HDMI High-definition medical imaging

HDTV High-definition TV

HLL High-level language

HW Hardware

HWT Haar wavelet transform

HVS Human visual system

I/O Input/output

IOB Input/output block

ICAP Internal configuration access port

ILA Integrated logic analyzer

IT Integer transform

IRT Inverse Radon transform

JPEG Joint photographic experts group

LC Logic cell

LUT Look-up tables

MAV Median absolute value

MPGA Mask programmable gate array

MRI Magnetic resonance imaging

MSE Mean square error

NCD Native circuit description

NFS Networking file system

NMC Native macro circuit

NSWD Non-standard wavelet decomposition

NTSC National television system committee

OT Objective test

PAL Programmable arrays logic

PAL Phase alternate line

PAR Place and route

PC Personal computer

PCI Peripheral component interconnect



xv

PET Positron emission tomography

PLL Phase-locked-loop

PR Partial reconfiguration

PSNR Peak signal to noise ratio

QCIF Quarter common intermediate format

RAM Random access memory

RH Reconfigurable hardware

ROM Read only memory

ROI Regions of interest

RPM Reconfigurable processing modules

RT Radon transform

RTL Register-transfer level

RTR Run-time reconfiguration

SoPC Systems on a programmable chip

SPIHT Set partitioning in hierarchical trees

SRAM Static RAM

ST Subjective test

STFT Short time Fourier transform

SVD Singular value decomposition

SW Software

SWD Standard wavelet decomposition

UCF User constraint file

UK United Kingdom

US Ultrasound

VGA Video graphic array

VHDL Very-high-speed integrated circuit hardware description language

VLC Variable length coding

VLSI Very large scale integration

XE Xilinx edition



Table of Contents

Abstract iii

Declaration v

Acknowledgements vii

Author’s Publications viii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Three-dimensional (3-D) Medical Image Processing . . . . . . . . . . . 5

1.3 High-Performance Solutions for Medical Image Processing Applications 10

1.3.1 Digital Signal Processor (DSP) . . . . . . . . . . . . . . . . . . 11

1.3.2 Special Purpose Application Specific Integrated Circuit (ASIC)

Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Graphical Processing Unit (GPU) . . . . . . . . . . . . . . . . 13

1.3.4 Reconfigurable Hardware (RH): A Review of Field

Programmable Gate Array (FPGA) . . . . . . . . . . . . . . . 15

1.4 Design and Implementation Strategies . . . . . . . . . . . . . . . . . . 18

1.5 Motivation and Research Objectives . . . . . . . . . . . . . . . . . . . 19

xvi



Table of Contents xvii

1.6 Overall Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Related Work 25

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Medical Image Compression . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Reconfigurable Architectures . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 FPGA-based Architectures for 3-D Discrete Wavelet Transform

(DWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 FPGA-based Architectures for Finite Radon Transform (FRAT) 40

2.3.3 FPGA-based Architectures for Context-based Adaptive Variable

Length Coding (CAVLC) . . . . . . . . . . . . . . . . . . . . . 51

2.4 Dynamic Partial Reconfiguration (DPR) . . . . . . . . . . . . . . . . . 58

2.5 Limitation of Existing Work and Research Opportunities . . . . . . . 61

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Efficient Architectures for 3-D HWT using DPR 64

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Mathematical Background and Design Methodology . . . . . . . . . . 65

3.2.1 3-D Haar Wavelet Transform (HWT) and Matrix Transposition 65

3.2.2 Pipelined Direct Mapping Implementation . . . . . . . . . . . . 68

3.3 Proposed Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Proposed System Applications . . . . . . . . . . . . . . . . . . 69

3.3.2 3-D Haar Wavelet Transform (HWT) with Transpose-based

Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Table of Contents xviii

3.3.3 3-D Haar Wavelet Transform (HWT) with Dynamic Partial

Reconfiguration (DPR) . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Field Programmable Gate Array (FPGA) Implementation . . . 76

3.4.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 FPGA-based Architectures of FRAT for Medical Image De-noising 84

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Mathematical Background and Design Methodology . . . . . . . . . . 86

4.2.1 Radon Transform (RT) . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Finite Radon Transform (FRAT) . . . . . . . . . . . . . . . . . 88

4.2.3 Xilinx AccelDSP Design Flow . . . . . . . . . . . . . . . . . . . 89

4.3 Proposed System Implementations . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Systems Applications . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Proposed Architecture and Design Strategies . . . . . . . . . . 93

4.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Medical Image De-noising . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Software Simulation . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . 103

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 FPGA-based Implementation of a 3-D Medical Image Compression

System using CAVLC 106

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Algorithms and Methodology . . . . . . . . . . . . . . . . . . . . . . . 108



Table of Contents xix

5.2.1 3-D Integer Transform (IT) . . . . . . . . . . . . . . . . . . . . 108

5.2.2 3-D Discrete Wavelet Transform (DWT) . . . . . . . . . . . . . 111

5.2.3 Decomposition Strategies . . . . . . . . . . . . . . . . . . . . . 112

5.3 Proposed System Architectures . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Transform Block . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Quantisation and Reordering Block . . . . . . . . . . . . . . . . 116

5.3.3 Context-based Adaptive Variable Length Coding (CAVLC) Block117

5.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . 122

5.4.2 Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.3 Field Programmable Gate Array (FPGA) Implementation . . . 127

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Conclusions and Future Work 133

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Appendices 139

A Rapid Prototyping Board and FPGA Devices 139

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 XUPV5-LX110T Prototyping Board . . . . . . . . . . . . . . . . . . . 139

A.3 Virtex-5 Field Programmable Gate Array (FPGA) . . . . . . . . . . . 140

A.3.1 Configurable Logic Block (CLB) . . . . . . . . . . . . . . . . . 142



Table of Contents xx

A.3.2 Block Random Access Memory (BRAM) . . . . . . . . . . . . . 142

A.3.3 Digital Signal Processor (DSP) Element . . . . . . . . . . . . . 143

A.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B Xilinx ISE and FPGA Programming 146

B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.2 Implementing VHDL Design . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2.1 Xilinx ISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2.2 Field Programmable Gate Array (FPGA) Configuration . . . . 153

C Partial Reconfiguration (PR) in Xilinx FPGA Devices 155

C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.2 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C.3 Implementation Design Flow . . . . . . . . . . . . . . . . . . . . . . . 156

D Xilinx AccelDSP Synthesis Tool 160

D.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D.2 Design Flow and Operations . . . . . . . . . . . . . . . . . . . . . . . . 160

Bibliography 163



List of Figures

1.1 Number of new cases of all malignant neoplasms in UK 2007 (Excluding

non-melanoma skin cancer) [2]. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Medical image features. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Examples of medical images (a) Sagittal MRI knee image (b) Transaxial

CT lung slice (c) PET scan for lymphoma [22]. . . . . . . . . . . . . . 6

1.4 3-D medical image features. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 3-D medical image data processing. . . . . . . . . . . . . . . . . . . . . 7

1.6 Survey on medical image processing. . . . . . . . . . . . . . . . . . . . 8

1.7 DSPs features for performance accelerations. . . . . . . . . . . . . . . 11

1.8 Main disadvantages of ASICs. . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Architecture comparison (a) CPU (b) GPU [47]. . . . . . . . . . . . . 14

1.10 Xilinx’s FPGA structure with internal blocks. . . . . . . . . . . . . . . 17

1.11 Generic design and implementation strategies. . . . . . . . . . . . . . . 19

1.12 Overall design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.13 Overall research approaches and contributions. . . . . . . . . . . . . . 23

2.1 Structure of related research issues. . . . . . . . . . . . . . . . . . . . . 26

2.2 Compression system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Implementation based on parallel computing [7]. . . . . . . . . . . . . 28

xxi



List of Figures xxii

2.4 The 3-D DWT process. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Block architecture for the 3-D DWT [66]. . . . . . . . . . . . . . . . . 36

2.6 3-D DWT processor architecture [9]. . . . . . . . . . . . . . . . . . . . 37

2.7 Design of 3D-V temporal decomposition system [67]. . . . . . . . . . . 38

2.8 Hardware design for the 3-D Haar wavelet transform [68]. . . . . . . . 38

2.9 Proposed architectures (a) Generic transform architecture (b) Radon

transform module [73]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 (a) Reference FRAT architecture (b) Memoryless FRAT architecture [75]. 42

2.11 Block diagram of proposed FRAT implementation [72]. . . . . . . . . . 43

2.12 (a) Serial architecture (b) Parallel architecture [76]. . . . . . . . . . . . 44

2.13 (a) Reference architecture (b) FRIT architecture with the FRAT [71]. 45

2.14 Review of FRAT’s FPGA-based implementation. . . . . . . . . . . . . 47

2.15 FPGA implementation of the proposed wavelet-domain video denoising

algorithm [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.16 FPGA implementation of the SVD/EVD array [85]. . . . . . . . . . . 48

2.17 Block diagram of the proposed FPGA design [88]. . . . . . . . . . . . 50

2.18 CAVLC hardware architecture [100]. . . . . . . . . . . . . . . . . . . . 53

2.19 The proposed CAVLC architecture [101]. . . . . . . . . . . . . . . . . . 54

2.20 (a) Architecture of targeted many-core system (b) Data flow diagram

of the CAVLC encoder [102]. . . . . . . . . . . . . . . . . . . . . . . . 55

2.21 Framework of CAVLC encoder [104]. . . . . . . . . . . . . . . . . . . . 57

2.22 Overview of the partitioning scheme approaches (a) 1-D (b) Multi-1-D

(c) 2-D [112]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 3-D HWT expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



List of Figures xxiii

3.2 Decomposition based on tensor product of 1-D filters (a) Original image

volume (b) Image volume partitioned into 2× 2× 2 sub-blocks (c) One

overall low-pass coefficient is obtained from each sub-block after the

first decomposition stage (d) All sub-block averaging coefficients are

clustered to form new sub-blocks, which are then decomposed further

to obtain one overall low-pass coefficient (e) Image after two stage

decomposition on a 4× 4× 4 image volume. . . . . . . . . . . . . . . . 67

3.3 Transposition of a matrix. . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 1-D HWT flow diagram with N -inputs sample for direct mapped

architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Proposed system architectures (a) Compression system

overview (b) Architecture for 3-D HWT with transpose-based

computation (c) Input data for sub-images for [I]z (d) Transpose

matrix after T1 (e) Transpose matrix after T2. . . . . . . . . . . . . . . 70

3.6 Proposed reconfigurable and adaptive system architectures. . . . . . . 73

3.7 Proposed top architecture of 3-D HWT (a) Without DPR (b) With DPR. 74

3.8 Partial reconfiguration design flow (a) Steps for partial design

flow (b) Define static and reconfigurable modules. . . . . . . . . . . . . 75

3.9 Influence of transform size on area. . . . . . . . . . . . . . . . . . . . . 78

3.10 Influence of transform size on power consumption. . . . . . . . . . . . 79

3.11 Influence of transform size on maximum frequency for 1-D HWT modules. 79

3.12 Comparison on maximum frequency achievement for transpose function. 80

3.13 Comparison of chip layout for different Virtex-5 devices for N = 64. . 80

4.1 Transform flow graph (a) Ridgelet transform (b) Curvelet transform. . 85

4.2 Radon transform representation. . . . . . . . . . . . . . . . . . . . . . 87



List of Figures xxiv

4.3 Proposed system applications (a) Image de-noising (b) Compression

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Proposed reference architecture for the FRAT. . . . . . . . . . . . . . 94

4.5 Implementation strategies (a) Sequential (b) Pipelined (c) BRAM-based

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Script and function files for the sequential implementation. . . . . . . 97

4.7 Function operations with generated fixed point report. . . . . . . . . . 98

4.8 Project explorer with VHDL files generated. . . . . . . . . . . . . . . . 99

4.9 Gaussian noise reduction experimental results on MRI image (a) Original

(b) Noisy (c) De-noising. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.10 Original and blockiness images. . . . . . . . . . . . . . . . . . . . . . . 101

4.11 Analysis of PSNR with different block sizes (p). . . . . . . . . . . . . . 102

4.12 Chip layout for the sequential implementation. . . . . . . . . . . . . . 104

5.1 Coefficient orderings (a) Convolution-based (b) Lifting-based. . . . . . 112

5.2 Sub-band structure obtained via a three level SWD. . . . . . . . . . . 114

5.3 Proposed system overview. . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Butterfly architecture of 1-D IT. . . . . . . . . . . . . . . . . . . . . . 115

5.5 A simple lifting-based perfect reconstruction encoder. . . . . . . . . . 116

5.6 Block diagram of CAVLC architecture. . . . . . . . . . . . . . . . . . . 120

5.7 Encode level detail of the CAVLC architecture. . . . . . . . . . . . . 122

5.8 PSNR vs. BPV for CT. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 PSNR vs. BPV for MRI. . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.10 PSNR vs. BPV for PET. . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.11 Comparison of original and reconstructed CT, MRI and PET images

for the first slices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



List of Figures xxv

5.12 Compression system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.13 Power consumption comparison for the CAVLC architecture. . . . . . 131

A.1 Virtex-5 FPGA and XUPV5-LX110T platform block diagram [146]. . 140

A.2 Detailed description of XUPV5-LX110T platform components (front

view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3 Arrangement of slices within the CLB for Virtex-5 [146]. . . . . . . . . 142

A.4 Details of CLBs and slices for Virtex-5 [146]. . . . . . . . . . . . . . . 143

B.1 General design route from VHDL to prototyping board. . . . . . . . . 147

B.2 Sample window displaying ISE project navigator. . . . . . . . . . . 149

B.3 ModelSim simulator window. . . . . . . . . . . . . . . . . . . . . . . . 149

B.4 Setting the design options in ISE. . . . . . . . . . . . . . . . . . . . . . 150

B.5 Setting for UCF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.6 Floorplan for pin location constraints. . . . . . . . . . . . . . . . . . . 151

B.7 FPGA editor window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.8 Device configuration using iMPACT. . . . . . . . . . . . . . . . . . . . 153

B.9 Program succeeded to be downloaded. . . . . . . . . . . . . . . . . . . 154

B.10 Results verification using LEDs indicator. . . . . . . . . . . . . . . . . 154

C.1 Basic concept of partial reconfiguration. . . . . . . . . . . . . . . . . . 155

C.2 Design tools requirement in PR. . . . . . . . . . . . . . . . . . . . . . 157

C.3 General PR design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.4 Overview of PR software design flow. . . . . . . . . . . . . . . . . . . . 158

D.1 Advantages of AccelDSP synthesis tool. . . . . . . . . . . . . . . . . . 161

D.2 The AccelDSP ISE synthesis work flow. . . . . . . . . . . . . . . . . . 162



List of Tables

1.1 Summary of programming technologies [17]. . . . . . . . . . . . . . . . 4

1.2 Comparison of different implementation approaches. . . . . . . . . . . 5

1.3 Survey on medical image processing. . . . . . . . . . . . . . . . . . . 9

2.1 Device utilisation [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Summary of 3-D medical image compression systems. . . . . . . . . . 33

2.3 Comparative study of the 3-D DWT architectures and the FPGA

implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Summary of FPGA-based architectures of FRAT. . . . . . . . . . . . 46

2.5 Hardware implementation of medical image de-noising. . . . . . . . . 51

2.6 Equivalent gate for CAVLC items [103]. . . . . . . . . . . . . . . . . . 56

2.7 Summary of hardware implementation of CAVLC. . . . . . . . . . . . 58

3.1 Resources utilisation and overall proposed architectures performance

on XC5VLX110T-3FF113. . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Comparison of bitstream generated and configuration times towards

transform sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Device summary report of the proposed architecture on

XC5VLX30T-3FF323. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xxvi



List of Tables xxvii

4.1 PSNR quantitative results of noisy image with a Gaussian white noise

and MRI image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Comparison of performance with existing architectures for the case

p = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Comparison of PSNR values for CT images. . . . . . . . . . . . . . . . 104

5.1 Computational complexity of the main functional blocks with various

decomposition approaches. . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Images used for testing. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Hardware resources utilisation for each block. . . . . . . . . . . . . . 128

5.4 Resources utilisation and overall transform architectures performance

for N = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 FPGA implementation results of CAVLC. . . . . . . . . . . . . . . . . 130

5.6 Comparison of CAVLC architectures performance on FPGA platforms. 130

A.1 Comparison of selected Xilinx FPGA devices resources. . . . . . . . . 145

C.1 Description of files format for PR process. . . . . . . . . . . . . . . . . 159



Chapter 1

Introduction

1.1 Overview

Medical imaging as an indispensable part of medical management of diseases appears

as one of the most challenges areas and its full potential seems to be boundary-less.

Doubtless, that medical imaging applications deal with massive amounts of data and

Lee et al. [1] disclose an interesting fact on this issue:

“The University of Washington Medical Centre, a medium-sized hospital with about

400 beds, performs approximately 80,000 studies per year. At 30 Mbytes per study,

the amount of digital images generated is 2.4 Tera (1012) bytes of data per year or

approximately 10 Gbytes per day”.

To further highlight the issues and challenges ahead in these areas, in 2007,

there were more than 155,000 cancer deaths in the United Kingdom (UK), and one in

four (27%) of all deaths in the UK were due to cancer. Moreover, with more than

200 different types of cancer, empirical data shown in Figure 1.1 exposes 289,000 new

cases of cancer diagnosed each year in the UK [2].

1
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Figure 1.1: Number of new cases of all malignant neoplasms in UK 2007 (Excluding
non-melanoma skin cancer) [2].

From medical technology perspective, there are various medical imaging

modalities, such as magnetic resonance imaging (MRI), ultrasound (US), computed

tomography (CT) and positron emission tomography (PET), which have been widely

used for cancer diagnosis. However, MRI in particular offers tremendous potential

for facilitating cancer screening and diagnosis, as well as for monitoring treatment,

especially for some types of brain and primary bone tumours, soft tissue sarcomas

and for tumours affecting the spinal cord [2]. On the other hand, a general shift from

two-dimensional (2-D) slices to three-dimensional (3-D) models of organs has been

observed [3]. Thus, it contributes for vast challenges in medical data management

operations.

As a result of increasing number of people to be diagnosed and of considerable

increase in the volume of medical image data generated in hospitals, medical image

compression is imperative [4]. Additionally, in numerous medical applications

both efficient storage and transmission of data through high-bandwidth digital
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communication lines are of crucial. Moreover, it is well known also that noise on

medical image resulting in low image quality, and yet limits the diagnostic effectiveness.

Therefore, the field of medical imaging introduces a complex problem [5]. In the case

of medical image compression for instance, it is mainly involves matrix transforms,

repeatedly on a large set of image data, often under real-time requirements. As a result,

there is a need for high-performance systems whilst keeping architectures flexible to

allow for quick upgradeability. A lot of effort in research and development has been

dedicated to computer and processor architectures suitable for such applications [6–10].

Spectrum of possible hardware solution has grown enormously. At one end of

the spectrum are processors such as general purpose processors (GPPs) or digital

signal processors (DSPs), which have an instruction-set architecture. They provide

the possibility of processing arbitrary computations due to their architectural concept.

Pursuant to the overhead paid for the flexibility, processors are rather inefficient

regarding performance and power consumption [11]. At the other end of the spectrum

is application specific integrated circuits (ASICs), which contain dedicated circuits

specialised to a particular set of functions. Thus, the architecture is optimally suited for

the functions at hand which is the reason of ASICs are efficient regarding performance

and power consumption, but they lack flexibility, as no programmable resources are

provided [11].

Due to the high demand of graphics processing of the video game industry,

graphics processing units (GPUs) have evolved into massively parallel computing

engines [12]. Moreover, the introduction of compute unified device architecture

(CUDA) by NVIDIA is a significant step to derive more research and development

in this area [13]. GPUs have become of choice for many computationally intensive

applications as it contains with many processing elements, high-memory bandwidth,

and programmability [6]. However, major obstacle of GPUs is concerned with less

efficient mapping parallel application in the GPU’s pixel processing data paths [12].

On the other hand, reconfigurable hardware (RH) and specifically field

programmable gate array (FPGA) is a solution that can offer high-throughput to
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numerous data-intensive applications with critical time constraints [11], [13], [14].

There are two basic categories of FPGAs in the market today: static random access

memory (SRAM)-based FPGAs and antifuse-based FPGAs [15]. In the first category,

Xilinx customers dominate over the half of the entire market at 51%, whilst the

strongest competitor is Altera with 34% [16]. For antifuse-based product, Actel,

Quicklogic and Cypress offer another available products [15]. To illustrate the

advantages offered by SRAM over antifuse-based FPGAs, Table 1.1 briefly summarises

the key features.

Table 1.1: Summary of programming technologies [17].

Feature SRAM Antifuse

Technology node State-of-the-art One or more generation behind

Reprogrammable Yes No

Volatility Yes No

Good for prototyping Yes No

Power consumption Medium Low

In this study, Xilinx FPGA devices have been selected to prototype the developed

architectures due to the promising results that have been achieved by previous research

group members in [18–20], in which some results can be further exploited. In addition,

the nature of the implemented algorithms and applications in this research investigation

require some flexibility, parallelism and performance in which the three features are

offered by reconfigurable hardware using FPGAs.

It is worth mentioning that modern FPGA devices also offer a large number of

look-up tables (LUTs), DSP blocks and a hierarchy of different memory sizes, providing

high-level of design flexibility. Furthermore, FPGA run-time reconfigurability allows

an excellent option for the design to be scalable and adaptive to different types of

input data.

The trade-offs of different implementation approaches are shown in Table 1.2, and

it can be evaluated using various metrics such as performance, cost, programmability,
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power and development time.

Table 1.2: Comparison of different implementation approaches.

Platform Performance Cost Power Flexibility Design effort

ASIC High High Low Low High

DSP Medium Medium Medium Medium Medium

GPP Low Low Medium High Low

GPU High Medium High Medium Medium

RH Medium/High∗ Medium High/Low# High Medium

Note:
∗Depends on technology and available embedded resources
#With Xilinx Spartan’s FPGA

1.2 Three-dimensional (3-D) Medical Image

Processing

Medical image processing is a niche area concerned with the operations and processes

to generate images of a human body for clinical purposes and covering potential areas

in medical image processing analysis such as image acquisition, image formation, image

enhancement, image compression and storage, and image-based visualisation [21].

In contrast to general image processing analysis that converts an image signal

into a physical image, various medical imaging modalities have been shown to be

useful for patient diagnosis [5]. An overview of MRI, CT and PET image features is

given in Figure 1.2, whilst some examples of MRI, CT and PET images are depicted

in Figure 1.3(a) – (c).

To date, modern medical imaging technologies are capable of generating high-

resolution 3-D images, and consequently, make medical image analysis tasks at least

one-dimension more compute-intensive than standard planar 2-D images [6]. In

brief, the higher computational cost appears in medical imaging analysis, introduces
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Medical image features

Used throughout the body 

with spatial resolution of 

approximately 0.5mm, which 

is better than most other 

tomographic techniques

Provides by far the best 

contrast resolution, allowing 

differences between two 

similar but not identical 

tissues to be distinguished 

MRI

Provides geometric 

superiority and slightly 

increased spatial resolution 

over MRI

CT exposes the patient to 

high doses of radiation and 

maybe invasive when the 

administration of contrast 

agent is required

CT

Compared to other imaging 

modalities, nuclear medicine 

scans have a low signal-to-

noise-ratio (SNR) and poor 

resolution, but an extremely 

high contrast-to-noise-ratio 

(CNR)

Inherent image contrast in 

PET is extremely high due to 

the lack of background signal 

that can be obtained from 

tissues, where radio-

pharmaceutical has not 

distributed

PET

Figure 1.2: Medical image features.

(a) (b)

(c)

Figure 1.3: Examples of medical images (a) Sagittal MRI knee image (b) Transaxial
CT lung slice (c) PET scan for lymphoma [22].

new technologies to be developed in many other areas, including computer graphics,

computer vision as well as biomedical signal processing [23].
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On top of that, a general shift from 2-D slices to 3-D models of organs has been

observed [3]. As a result of this trend, medical imaging procedures are increasingly

being used for guiding intervention, controlling therapy and monitoring the cause of

illnesses [3]. The uniqueness of 3-D medical images in various modalities including CT,

MRI, PET, US, and magnetic resonance angiography (MRA) have been addressed

in [24–27], and these features can be simplified and shown in Figure 1.4.

Voxel representation of 

a cube in object space

y

x

z

A large amount of data. Average CT procedure generates more 

than two millions voxels per patient per examinations
Data volume

Algorithms and 

computational cost

Algorithms used for 3-D imaging in the medical domain have great 

computational cost, even at moderate resolution

Representation

The display is not static. To increase clinical usefulness over 2-D 

representation, 3-D imaging capable of portraying the scene from 

all points of view

Operations
Wide range of operations required to form a high quality 3-D 

imaging accurately and interactively

Examples: Viewing underlying tissue

Isolating specific organs within the volume

Viewing multiple organs simultaneously

3-D medical imaging

Figure 1.4: 3-D medical image features.

Source

Beam

Motorised 

bed
Detector

Image processing/

visualisation workstations

∆z z

x

yh

w

d

0 1 2 3 n-1pixels

Details 3-D imaging

Figure 1.5: 3-D medical image data processing.
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In 3-D medical imaging modalities, the data produced usually consists

of a number of parallel slices for the body. As illustrated in Figure 1.5, most

generated medical volumes acquire one slice at a time, with the patient moved

along on a motorised bed between each slice. The resulting data set comprises n-slices

and each containing w × h pixels. The slices are separated by a distance ∆z pixels,

where ∆z is usually greater than one. The data is therefore, anisotropic, with inferior

resolution perpendicular to the slices than within them. The depth d of the data set

is (n− 1)∆z.

To paint a comprehensive picture of the central issues in 3-D medical image

processing, several survey papers have been collected and analysed, then illustrated as

a time line in Figure 1.6.

1988 1991 2000 2002 2003 2006

Orphanoudakis [29]

Coatrieux et al. [30] 

1990

Stytz et al. [26]

“Supercomputing in 

medical computing”

“Future trends in 3-D 

medical imaging”

“Three-dimensional 

medical imaging: 

algorithms and computer 

systems”

1998

Maintz & Viergever [31]

“A survey of medical 

image registration”

Duncan & Ayache [21]

“Medical image analysis: 

progress over two

decades and the 

challenges ahead”

2010

Sakas [3]

“Trends in medical 

imaging: from 2D to 3D”

Ritman [28]

“Evolution of medical

tomographic imaging -

as seen from

a Darwinian perspective”

Shams et al. [6]

“A survey of medical

image registration on 

multicore and the GPU”

Muraki & Kita [23]

“A survey of medical 

applications of 3-D

image

analysis and computer 

graphics”

Figure 1.6: Survey on medical image processing.

Consequently, Table 1.3 illustrates the classification of all these works based on

the following points:

1. Medical image processing applications – compression, segmentation, registration,

enhancement and de-noising, quantification;

2. System implementation – hardware design and development, software simulation

or algorithm development and optimisation; and

3. Types of images – 2-D or 3-D.
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Table 1.3: Survey on medical image processing.

Refs. Applications Image type Implementations

1 2 3 4 5 6 2-D 3-D HW SW General

[3] X X X

[6] X X X X

[21] X X X X X

[23] X X X X

[26] X X

[28] X X X

[29] X X

[30] X X X X

[31] X X X X

Note:
HW: Hardware, SW: Software, 1: Compression, 2: Segmentation, 3: Registration
4: Enhancement and de-noising, 5: Quantification, 6: Others

Based on the comprehensive survey that has been carried out in medical image

processing trend, the following key conclusions can be made:

1. 3-D medical images demonstrate a significant shift as a result of remarkable

advantages offered not only for diagnostic setting, but prominently in the aspects

of planning and surgical radiotherapeutical procedures [31];

2. As diverse as the important contribution in segmentation and registration

aspects, these applications have dominated most of the reported

works [6], [21], [23], [30], [31]; and

3. The advancement for both algorithms development and optimisation as well

as hardware implementation aspects lies as a result of intra-disciplinary

advancement that involves medical specialities, industrial development, physics,

engineering, computer science and mathematics [26], [28].
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A close examination of the algorithms used in real-time medical image processing

applications reveals that many of the fundamental actions involve matrix or vector

operations [5]. Most of these operations are matrix transforms including fast Fourier

transform (FFT), discrete wavelet transform (DWT) and some recently developed

transforms such as finite Radon, curvelet and ridgelet transforms which are used in

2-D or 3-D medical imaging [32].

Unfortunately, computational complexity for the matrix transform algorithms

is in the order from O(N × logN) for FFT to O(N2 × J) for the curvelet transform

(where N is the transform size and J is the maximum transform resolution level)

are computationally intensive for large size problems. For that reason, efficient

implementation for these operations are of interest not only because matrix transforms

are important in their own right, but because they automatically lead to efficient

solutions to deal with massive medical volumes [19].

As diverse as the spectrum that has been explained, hardware acceleration for

medical image processing has attracted much attention in research and development. In

the following section, discussions on the potential hardware platforms for consideration

in this research study are given.

1.3 High-Performance Solutions for Medical

Image Processing Applications

One of the primary methods in conventional computing for the execution of image

and signal processing algorithms is the use of GPPs. Processors execute a set of

instructions to perform a computation. By changing the software instructions, the

functionality of the system is altered without the hardware modification.

However, this flexibility does not contribute for significant overall performance.

The processor must read each instruction from memory, decode its meaning and only

then execute it. This result in a high execution overhead for each individual operation.
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Additionally, the set of instructions that may be used by a program is determined at

the fabrication time of the processor. Any other operations that are to be implemented

must be built out of existing instructions.

To achieve high-performance, image and signal processing applications

implementation have moved away from the traditional approach of general-purpose

computing towards systems containing specialist architectural support. A lot of

research has been carried out on architectural support including DSPs and special

purpose hardware [11]. An overview of possible platforms is given in the following

subsections.

1.3.1 Digital Signal Processor (DSP)

One method of increasing the performance of GPP is to attach a specialised processing

unit in the form of DSP. As illustrated in Figure 1.7, DSP has features that accelerate its

capability for high-performance, repetitive and numerically intensive task applications.

Various configurations 

of on-chip memory 

and peripherals 

tailored for DSP 

applications

Irregular instruction 

sets

Single-cycle, multiply-

accumulate capability

Specialised execution 

control

Capability Control

Configurations Instruction sets

Features that accelerate performance in DSP applications

Figure 1.7: DSPs features for performance accelerations.

High performance DSPs often have two multipliers that enable two multiply-

accumulate operations per instruction cycle. Moreover, DSPs generally feature

multiple-access memory architectures that enable DSPs to complete several accesses

to memory in a single instruction cycle. Furthermore, DSPs usually provide a loop

instruction that allows tight loops to be repeated without spending any instruction
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cycles for updating and testing the loop counter or for jumping back to the top of the

loop.

DSPs generally allow several operations to be encoded in a single instruction.

For example, a processor that uses 32-bits instructions may encode two additions and

multiplications, and four 16-bits data moves into a single instruction. Besides, DSP

instruction sets allow a data move to be performed in parallel with an arithmetic

operation. GPPs, in contrast, usually specify a single operation per instruction.

It is worth mentioning that the DSPs are also equipped with embedded fused

multiply/add which can be used for orthogonal transforms implementations such as

discrete cosine transform (DCT), discrete Hartley transform (DHT) as well as others

computation-intensive DSP functions like convolution, interpolation and adaptive

filtering [33]. As a result, DSPs have been successfully used in a wide range of image

processing applications [34–39].

1.3.2 Special Purpose Application Specific Integrated

Circuit (ASIC) Hardware

ASICs give better performance for particular applications, and they are designed

specifically to perform a specific computation. Owing to this feature, they efficiently

perform the given task according to the application’s design specification which may

be to optimise for one or more of design flexibility, performance, power consumption

and area [40–42]. However, after fabrication the circuit is unable to be altered. This

forces a redesign and a refabrication of any part of the chip which requires modification.

This is an expensive process, especially when one considers the difficulties in replacing

ASICs in a large deployed system [11]. The main disadvantages of this approach can

be summarised as shown in Figure 1.8.

A new breed of ASIC products, called “structured ASIC”, can reduce the

expenses by more than 90% for derivative chips, and speed up time-to-market [43].

The underlying concept behind structured ASICs is fairly simple. Although there
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Disadvantages of ASICs approach

Special purpose hardware 

has a long development time, 

from design through 

simulation and fabrication

Development time

It can also be expensive if it 

is a one-off solution or if the 

volume required cannot 

justify its fabrication costs

Cost

Once this special purpose 

hardware is built, it is not 

possible to change the 

hardware to accommodate 

slightly different needs

A new hardware is usually 

required for each new 

algorithm

Flexibility

Figure 1.8: Main disadvantages of ASICs.

are a wide variety of alternative architectures, they are all based on a fundamental

element called a “tile” by some or a “module” by others. This tile contains a small

amount of generic logic implemented either as gates and/or multiplexers and/or a LUT.

Depending on the particular architecture, the tile may contain one or more registers

and possibly a very small amount of local random access memory (RAM). An array

of these tiles is then pre-fabricated across the face of the chip [43], [44].

Structured ASICs also typically contain additional pre-fabricated elements,

which may include configurable general-purpose input/output (I/O), microprocessor

cores, gigabit transceivers and embedded block RAM. When compared with standard

cell-based ASICs, structured ASICs offer shorter turnaround time, and require less

cost for future functional changes. Structured ASIC technology is especially suitable

for platform ASIC designs that have integrated most of the intellectual property (IP)

blocks and leave some space for custom changes [45].

1.3.3 Graphical Processing Unit (GPU)

In these days, GPU computing has gained significant momentum and has evolved

into an established research area. Hardware vendors have recognised the benefits of

GPU computing and have provided high-level programming environments to express

parallelism more efficiently [46]. In comparison with central processing units (CPUs)

as shown in Figure 1.9(a) and (b), the GPUs architecture is to dedicate as much silicon
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area as possible to arithmetic logic units (ALUs). By eliminating all the scheduling

logic and caches, GPUs can exploit instruction-level parallelism, and hence reduce

memory latency in CPUs [47].
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Figure 1.9: Architecture comparison (a) CPU (b) GPU [47].

The popular association of GPUs is with accelerating graphics, but the new

architectures from manufactures such as NVIDIA corporation and ATI are capable of

performing general-purpose computing. There are two approaches [13] for general-

purpose computing using GPU: to pose the problem as a graphic problem and solve

it using a graphic language such as OpenGL or DirectX GPU programming, or to

program the GPU directly.

Even GPUs as commodity computer graphics chips are probably todays most

powerful computational hardware with cost, the main limitations and difficulties [48]

of this platform can be simplified as follows:

1. Applications:

The increasing flexibility of GPUs, coupled with some ingenious uses of

that flexibility by general-purpose computation on graphics processing units

(GPGPU) developers, has enabled many applications outside the original narrow
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tasks for which GPUs were originally designed, but many applications still exist

for which GPUs are not well suited;

2. Computing constructs:

The lack of integers and associated operations such as bit-shifts and bit-

wise logical operations (AND, OR, XOR, NOT) makes GPUs unsuitable for many

computationally intense tasks. Moreover, the lack of double precision prevents

GPUs from being applicable to many very large-scale computational science

problems; and

3. Non-graphics tasks:

The GPU uses an unusual programming model, so effective programming is

not simply a matter of learning a new language. Indeed, the computation must

be recasting into graphics terms by a programmer familiar with the design,

limitations, and evolution of the underlying hardware.

1.3.4 Reconfigurable Hardware (RH): A Review of Field

Programmable Gate Array (FPGA)

The recent advances in RH are for the most part derived from the technologies

developed for FPGAs in the mid 1980s [13]. FPGAs were originally created to serve as

a hybrid device between programmable arrays logics (PALs) and mask programmable

gate arrays (MPGAs). Like PALs, FPGAs are fully electrically programmable,

meaning that the physical design costs are amortised over multiple application circuit

implementations, and the hardware can be customised nearly instantaneously. Like

MPGAs, they can implement very complex computations on a single chip, since it

consists of an array of pre-fabricated transistors that can be customised during chip

fabrication [15]. MPGAs allow for user’s customisation by connecting the transistors

with custom wires.
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Because of these features, FPGAs have been viewed primarily as glue logic

replacement and a rapid prototyping vehicle. However, the flexibility, capacity

and performance of these devices have opened up completely new avenues in high-

performance computation, forming the basis of reconfigurable computing [11], [49].

The early FPGA devices from Xilinx, Altera and others provided relatively little

logic, but later generations provided enough logic for researchers to consider FPGAs

for direct implementation of computational algorithms in reconfigurable logic devices.

The densities of todays FPGAs have exceeded 150,000 6-input LUTs per device and

some have developed into devices that can be used to build complete systems on

a programmable chip (SoPC), providing such specialised features as DSP blocks, multi-

gigabit serial I/O, embedded microprocessors and embedded static RAM (SRAM)

blocks of various sizes.

Field Programmable Gate Array (FPGA) Structure

The basic architecture of FPGAs consists of three components: logic blocks, routing and

I/O blocks. Generally, FPGAs consist of an array of programmable logic blocks that

can be interconnected to each other as well as to the programmable I/O blocks through

some sort of programmable routing architecture. To be more specific, Figure 1.10

provides an overview diagram of Xilinx’s FPGA architecture.

A Basic Logic Block

As shown in Figure 1.10, a typical FPGA has a logic block with one or more 4-input

LUT, optional D flip-flop (DFF) and some form of fast carry logic. The LUTs allow

any function to be implemented, providing generic logic. The DFF can be used for

pipelining, registers, state holding functions for finite state machines, or any other

situation where clocking is required. The fast carry logic is a special resource provided

in the cell to speed up carry-based computations, such as addition, parity, wide logical

AND operations and other functions.
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4-LUT
FF

1

0

Latch

O/PI/P

Configuration bitstream

Configuration logic blocks (CLBs)

Programmable 

interconnect

Memory blocks
Digital clock 

management (DCM)

Input/Output blocks 

(IOBs)

Figure 1.10: Xilinx’s FPGA structure with internal blocks.

Routing

Most FPGA architectures organise their routing structures as a relatively smooth

sea of routing resources, allowing fast and efficient communication along the rows

and columns of logic blocks [49]. The logic blocks are embedded in a general routing

structure, with input and output signals attaching to the routing fabric through

connection blocks as shown in Figure 1.10.

Connection Blocks

The connection blocks provide programmable multiplexers, selecting which of the

signals in the given routing channel will be connected to the logic block’s terminals.

These blocks also connect shorter local wires to longer distance routing resources.

Signals flow from the logic block into the connection block and then along longer wires

within the routing channels [49].
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Switch Boxes

At the switch boxes, there are connections between the horizontal and vertical routing

resources to allow signals to change their routing direction. Once the signal has

traversed through routing resources and intervening switch boxes, it arrives at the

destination logic block through one of its local connection blocks.

In this manner, relatively arbitrary interconnections can be achieved between

the logic blocks in the system. Whilst the routing architecture of an FPGA is typically

quite complex, the connection blocks and switch boxes surrounding a single logic block

typically have thousands of programming points. They are designed to be able to

support fairly arbitrary interconnection patterns [49]. A detailed descriptions of the

FPGA devices that have been used in this research are presented in Appendix A.

1.4 Design and Implementation Strategies

In this research study, three design and implementation strategies have been used

as illustrated in Figure 1.11. The design flows for these strategies are presented in

Figure 1.12.

In Chapter 3, very-high-speed integrated circuit hardware description language

(VHDL) and partial reconfiguration tools have been used to implement 3-D Haar

wavelet transform (HWT). Four main stages involved: design entry, synthesis,

implementation and programming. In case of partial reconfiguration, design

partitioning, floor planning and budgeting are the main processes involved.

To deal with medical image de-noising as well as to evaluate the performance of

finite Radon transform (FRAT), Xilinx AccelDSP tool has been utilised in Chapter 4.

The design and implementation begin with an examination of floating point model

followed with fixed point and register-transfer level (RTL) generation as well as

synthesise and implementation processes.
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Finally, VHDL has been fully used again to execute the design and

implementation of 3-D compression system in Chapter 5. A detailed explanation for

each tool used in this study are presented in Appendix B, C and D.

Design description

VHDL

VHDL
Xilinx partial 

reconfiguration
Xilinx AccelDSP

FPGA rapid prototyping board

(a) (b) (c)

Figure 1.11: Generic design and implementation strategies.

1.5 Motivation and Research Objectives

FPGAs is an extremely powerful tool for several reasons. First and foremost, it allows

for truly parallel computations to take place in a circuit. Many modern GPPs and

operating systems can emulate parallelism by switching tasks very rapidly. Having

operations occur in a parallel fashion results in a much faster overall processing time.

This is the case even though the clock speed of the FPGA is lower than the GPPs.

With the availability of advances embedded resources on recent FPGAs devices

such as soft cores, dedicated logic and block multipliers, FPGAs are being increasingly

deployed in computationally intensive application areas. Moreover, prototyping is

also a compelling reason to use FPGAs in the initial design phase. The description of

a system can be written and actual hardware can be created to test, instead of simply
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relying on simulators inside of design. Moreover, the design flexibility available on

FPGAs also allows a design to be thoroughly tested and debugged before an ASIC is

created, saving on production costs.

FPGAs are everywhere. Companies use them on development boards to help

refine new chip designs. Students use them in the laboratory to run experiments.

Companies and universities are using them in cutting-edge research on topics ranging

from programming technology to real-time systems. The parts themselves are getting

so inexpensive that some companies do not even fabricate an ASIC, they simply

include the FPGA in their final product.

With the emergence of such reconfigurable hardware, it is not surprising that

there has been a considerable amount of research into the use of FPGAs to increase

the performance of a wide range of computationally intensive applications. One

such application that could greatly benefit from the advantages offered by FPGAs is

medical image processing. The regular nature of the complex computations performed

repeatedly within medical image processing operations are well suited to a hardware-

based implementation using FPGAs.

The application of 3-D medical image processing such as compression and

de-noising uses several building blocks for its computationally intensive algorithms to

perform matrix transformation operations. Moreover, complexity in addressing and

accessing large medical volumes data to be processed have resulted in vast challenges

from a hardware implementation point of view.

In order to cope with these issues, FPGAs with efficient reconfigurability

techniques should be employed to meet the requirements of these applications in

terms of speed, size (area), power consumption and throughput. Dynamic partial

reconfiguration (DPR) is a promising technique for reducing the hardware required

for implementing an efficient design for 3-D medical image processing application as

well as improving the performance of the system. With this technique, the design can

be divided into sub-designs that fit into the available hardware resources and can be
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uploaded into the reconfigurable hardware when needed [50].

The general goal of this research is concerned with the design and implementation

of efficient reconfigurable architectures for 3-D medical image processing, with more

emphasis on compression systems and image de-noising. Based on the potential

significant contributions in this area, the main objectives of the work presented in this

research can be broadly summarised as follows:

1. To design and implement efficiently 3-D HWT architecture using DPR –

efficiently can be used as a transform block in the proposed compression system;

2. To design and implement efficiently the finite Radon transform (FRAT) – to be

applied for medical image de-noising in pre-processing stage; and

3. To design and implement the 3-D medical image compression system using

context-based adaptive variable length coding (CAVLC) – to experimentally

demonstrate the whole compression system functionality.

1.6 Overall Contribution

To support the research objectives that have been listed in Section 1.5, Figure 1.13

shows the overall research strategies with potential contributions to be achieved in

this research. For the 3-D compression system, analysis of the transform block as

well as utilisation of CAVLC are expecting to generate promising outcomes. In terms

of transform block, an examination of different transform filters is anticipated to

demonstrate a significant contribution. Moreover, by implementing DPR technique,

better performance in terms of area, power consumption and maximum frequency is

predicted. Furthermore, an evaluation of the FRAT’s capability to deal with image

de-noising is presumed to exhibit another noteworthy analysis and discussion.
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1.7 Thesis Organisation

The structure of the remaining thesis is as follows. Chapter 2 takes a closer look

at the most recent architectures and systems for 3-D medical image compression,

reconfigurable architectures for DWT, FRAT, CAVLC as well as the DPR method.

Design and implementation of an efficient pipelined 3-D HWT architecture using

DPR are presented in Chapter 3. A comparative study for the impact of transform

sizes of architectures performance is also addressed.

In Chapter 4, medical image de-noising using the FRAT is given. Three design

strategies and analysis of FRAT’s performance for noise reduction in medical images

is also discussed.

To give a complete overview of this research study, Chapter 5 describes the

implementation of 3-D medical image compression system using CAVLC. In this

chapter, an evaluation of 3-D integer transform (IT) and DWT have been carried out

and discussion on the CAVLC architecture is also reported.

In Chapter 6, concluding remarks and possible refinement of the current research

are highlighted. Finally, possible future research directions in the field of design and

implementation of 3-D medical image compression systems is presented.



Chapter 2

Related Work

2.1 Overview

In this research study, medical image compression and reconfigurable architectures are

two major concerns. The ultimate aim of this chapter is to provide a comprehensive

summary of related work on efficient reconfigurable architectures for three-dimensional

(3-D) medical image compression. Figure 2.1 illustrates the structure of related

research issues presented in this chapter. In brief, the related work covered in this

chapter has been reviewed based on three main issues as follows:

1. Medical image compression:

As one of the rapidly growth areas in these days, medical image processing

has received impressive attention, and emerges as an interesting domain of

research. In particular, deeper exploration on medical image compression has

been carried out as a result of its significant contributions to overcome issues of

massive medical data generated and limited storage and bandwidth availability.

In Section 2.2, an ample examination of 3-D medical image compression

is described, for hardware implementation and algorithms development or

optimisation;

25
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Figure 2.1: Structure of related research issues.

2. Reconfigurable architectures:

Most of the effort towards the design and implementation in the form of field

programmable gate array (FPGA) architectures of discrete wavelet transform

(DWT) and finite Radon transform (FRAT) are explained in Section 2.3.

Moreover, further discussion of the hardware implementation for image de-

noising is also given. Furthermore, to accomplish a compression system

implementation, a critical analysis of FPGA-based architectures of context-based

adaptive variable length coding (CAVLC) is also reported; and

3. Dynamic partial reconfiguration (DPR):

The applications of medical image compression require several blocks for its

computationally intensive algorithms. Dynamic partial reconfiguration (DPR)

appears as a promising solution for reducing the hardware used, likewise,

improving the performance. To justify the advantages of DPR, related

discussions are also covered in Section 2.4.
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The rest of the chapter is organised as follows. Section 2.2 gives an overview of

the medical image compression, especially for 3-D modalities. Section 2.3 compiles the

related work for 3-D DWT, FRAT as well as CAVLC. An explanation for DPR is given

in Section 2.4. Discussion on limitation of existing work and research opportunities

are explained in Section 2.5. Finally, a brief summary is given in Section 2.6.

2.2 Medical Image Compression

Compression has three steps as shown in Figure 2.2. The first step is transform, which

represents the data in a different form, with no information lost. The second step,

quantisation, which maps data values to a finite set, where some information is lost.

The third step encodes the data in a more compact way.

Figure 2.2: Compression system.

In general, compression for non-medical image requires less critical performance

measures compared with medical images [51]. As an example, non-medical image

compression is normally based on compression ratio efficiency as well as taking

the advantage of the human visual system (HVS) model to produce desired effects.

However, for medical image compression specific performance measures are required

such as: algorithm complexity, lossless and lossy compression and reconstructed image

analysis [5]. Although the objective test plays a significant role, subjective test from

a radiologist is also needed [52]. This is important to ensure the generated medical

images not only contributes for better compression system, but also retains the medical

interest of the images.

A close examination of the existing 3-D medical image compression system [4]

reveals a huge gap, particularly for the hardware implementation, since most of the

existing works contribute to algorithms development and optimisation [53–59]. In the

following, an overview of these works is described, and the first two descriptions [7], [8]
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will address the contributions on the hardware implementation of 3-D medical image

compression, whilst the others focus on software simulation or algorithms development

and optimisation [53–59].

In [7], an implementation of 3-D medical image compression using wavelet

transform with parallel computing is presented. A medical image compression system

including the 3-D wavelet transformation, scalar quantisation and entropy coding is

developed, and yields a good reconstruction quality at a high compression ratio. In

this work, a parallel 3-D compression algorithm that uses multiple workstations on

a network to speed up the process as shown in Figure 2.3 is used.

Master

Slave

Slave

Slave

Networking file 

system (NFS) disk

3-D 

data

3-D blocks

Assignments

Physical 

connection

Figure 2.3: Implementation based on parallel computing [7].

In this implementation, the data is assigned using pre-determined-based

scheduling and one computer in the network is designated as the master server

to distribute the work load, managing the job arrangement as well as combining the

results. In particular, master computer evenly divides 3-D image data into a number

of blocks according to the number of slaves on the network and assigns jobs to the

slaves. The slaves work to receive commands, executing jobs and sending the results

back to the master. Furthermore, a networking file system (NFS) disk mounted on

the board is used for common storage. To evaluate the compression performance,

magnetic resonance imaging (MRI) data with dimensions of 256×256×124 and a pixel
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depth of 12-bits is used, whilst the peak signal to noise ratio (PSNR) and compression

ratio (CR) are deployed for objective assessment. Results shown that the 3-D wavelet

compression achieves good results with 40% to 90% higher than the two-dimensional

(2-D) wavelet compression and 80% to 90% efficiency for the parallel implementation.

After all, parallel computing clearly draw a significant idea to increase the compression

and decompression speed, as well as maintaining good achievements.

An implementation of the image compression technique of set partitioning

in hierarchical trees (SPIHT) on programmable hardware is presented in [8]. The

proposed design is implemented on Xilinx Virtex-4 (XC4VLX25) device and to

illustrate the area consumed, results obtained are listed in Table 2.1. To exploit the

correlation among the image pixels, lifting-based DWT architectures are employed.

In addition, an analysis on the storage elements required for the wavelet coefficients

is also discussed. Instead of the hardware implementation, this work also proposed

a modified SPIHT for encoding the wavelet coefficients. The modifications include

the simplification of coefficient scanning process, optimisation of a one-dimensional

(1-D) addressing method, and a fixed memory allocation. The proposed algorithm is

validated with both the 2-D Lena image and a 3-D MRI data set and results have

demonstrated a convincing compression performance with a high PSNR. However, no

particular innovation is reported for the hardware implementation.

Table 2.1: Device utilisation [8].

Parameters Utilisation %

Number of slices 7,021 out of 10,752 65
Number of slice flip-flops 1,439 out of 21,504 6
Number of 4-input LUTs 13,356 out of 21,504 62
Number of bonded IOBs 79 out of 242 32
Number of GCLKs 1 out of 32 3

Another issue on the compression methodology is presented in [53]. 3-D medical

image compression method for computed tomography (CT) and MRI that uses

a separable non-uniform 3-D wavelet transform is proposed. A separable 3-D wavelet
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transform with two wavelet filter banks are applied to an image set. The same filter

bank is used in each slice for all image sets, but the wavelet filter bank used in slice

direction is selected for each image set at various slice distances according to the best

compression results. The 9/7 tap filter bank, which is recognised as one of the best

filters for the purpose of image compression is used for the x and y directions. On the

other hand, the 9/7, Daubechies 4 and the Haar were selected for the z−direction. To

select an optimum wavelet filter for image sets at various slice thicknesses, different

wavelet kernels for different directions are used. Although there is no hardware

implementation discussed, interestingly, this work provides significant information

towards the influence of various filter banks and slice distances on the compression

performance.

An original 3-D coding scheme based on 3-D wavelet transform associated with

3-D lattice vector and uniform scalar quantisation is presented in [54] by Cattin et al.

This work is mainly on the algorithm development and it is fully adaptive to different

image modalities. This is due to the reason of a distortion minimisation algorithm

(DMA) utilisation that is capable to select the best set of quantisers. 3-D mini-pig

left ventricle angiography images are deployed for system evaluation using PSNR

and bit rate. Moreover, subjective test is also conducted with two experienced senior

radiologist to evaluate the quality of image for diagnosis purposes. In brief, both tests

provide a significant results that urge for future evaluation using large databases and

involving more radiologist for the subjective test.

An analysis of lossy-to-lossless compression medical volumetric data using 3-D

integer wavelet transforms is discussed by Xiong et al. in [60]. In the proposed system,

the front end adopts a memory-constrained integer wavelet transform implementation.

In addition, two entropy coding techniques: 3-D SPIHT and 3-D embedded sub-band

coding with optimal truncation (ESCOT) are applied and modified to suit with

volumetric medical data. Results obtained demonstrate the following findings: better

lossy compression performance, the memory-constrained integer wavelet transform

implementation eliminates PSNR drops at a group of picture (GOP) boundaries, and
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the 3-D ESCOT entropy coder achieves the best for lossy and lossless compression of

medical volumetric data. In a nutshell, the proposed coding system for lossy-to-lossless

compression is significant for transform block optimisation, hence contributes for

better outcomes of medical volumetric data analysis.

A progressive transmission lossless compression method for 3-D medical image

sets is reported in [55]. An automated filter-and-threshold based pre-processing

technique is used to remove noise outside the diagnostic region. To identify the

reference image for the entire 3-D medical image set, vector-based approach wavelet

decomposition is applied. Moreover, run-length and arithmetic coding are further used

to remove coding redundancy. Even the test data only for MRI images, the proposed

method is extensible to any class of medical imaging modalities. The main problem of

the work presented is on the transform block, specifically the advantages of integer

wavelet transformations in the compression system. Experimentally, the compression

results of using the proposed predicted wavelet compression method with and without

progressive transmission achieve better compression ratio than the predicted wavelet

compression method.

To extend the discussion on the transform block contribution, an approach for

medical image compression using 3-D discrete Hartley transform (DHT) is discussed

by Sunder et al. [56]. Two medical modalities including the MRI and X-ray angiogram

are used as a test data. To evaluate the compression performance, the objective test is

carried out. The performance of this transform is compared with 3-D discrete cosine

transform (DCT) and 3-D discrete Fourier transform (DFT). Experimental results

exhibit the 3-D DHT yields better compression efficiency in terms of PSNR and bit

rate compared with the other two transforms for MRI images at higher bit rates,

whereas at lower bit rates the 3-D DCT performs better. For the X-ray angiogram,

the 3-D DCT is found to be superior to the other two transforms.

A novel approach using sequential 3-D DCT in medical image compression is

presented in [57]. The basic idea of this work is to de-correlate similar pixel blocks

through 3-D DCT transformation. A number of adjacent pixel blocks are grouped
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together to form a 3-D data cube, and it then quantised and Huffman encoded. The

proposed sequential 3-D DCT is benchmarked against the baseline joint photographic

experts group (JPEG) compression algorithm, and it is proven with a promising better

performance.

In [58], a new compression scheme based on 3-D fast wavelet transform (FWT) is

presented and evaluated by Bernabe et al. To exploit the scarce presence of movement

as well as the spatial and temporal redundancies, the wavelet transform is performed

first in the time dimension and later in the space dimensions. The best trade-off

between quality and compression ratio based on different wavelet mother functions, the

percentile policy and the discarding of the less significant bits for thresholding are also

addressed. Moreover, the implementation of the proposed quantiser and an entropy

encoder based on a binary run-length code and a Huffman code reveal the compression

ratio improvement without affecting the video quality. Therefore, it leads to a good

compromise between compression ratio and quality of the reconstructed video.

In [59], a new lossy coding scheme based on 3-D wavelet transform

and lattice vector quantisation for volumetric medical images is addressed by

Gaudeau and Moureaux. A new code book enclosing a multi-dimensional dead zone

during the quantisation step, which enables for better correlation between neighbour

voxels is also explained. Additionally, an efficient rate-distortion model to simplify the

bit allocation is presented. To evaluate the system feasibility, CT and MRI volumetric

medical image data are used. Results gained exhibit a better overall quality of the

reconstructed images.

Table 2.2 presents all the existing systems discussed, and they are focusing

on software simulation or algorithms development and optimisation. Therefore, it

justifies the significant work to be carried out on the hardware development of 3-D

medical image compression.
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Table 2.2: Summary of 3-D medical image compression systems.

Refs. Data Compression Implementations Evaluations/Tests

Lossless Lossy Hardware Software Objective Subjective Others

[7] MRI X X X X

[8] 2-D Lena and MRI X X X X

[53] CT and MRI X X X

[54] Angiography X X X X

[55] MRI X X X

[56] MRI and angiogram X X X

[57] Medical images X X X

[58] Medical videos X X X

[59] CT and MRI X X X

[60] CT and MRI X X X X
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2.3 Reconfigurable Architectures

FPGA-based architectures for 3-D DWT, FRAT and CAVLC are discussed in the

following subsections.

2.3.1 FPGA-based Architectures for 3-D Discrete

Wavelet Transform (DWT)

The 3-D DWT must be separable, which means that the 3-D transform is accomplished

by a 1-D DWT in each dimension. The 3-D DWT is the application of a 1-D DWT

in three directions [7], [61]. As shown in Figure 2.4, first, the process transforms the

data in the x-direction. Next, the low and high pass outputs both feed to other filter

pairs, which transform the data in the y-direction.
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Figure 2.4: The 3-D DWT process.

These four output streams go to four more filter pairs, performing the final

transform in the z-direction. The process results in eight data streams. The

approximate signal, resulting from scaling operations only, goes to the next octave of

the 3-D transform. It has roughly 90% of the total energy [7]. Meanwhile, the seven

other streams contain the detail signals.
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According to Lee et al. [1], the 3-D DCT is more efficient than the 2-D DCT

for X-ray CT. Likewise, one would expect the 3-D DWT to outperform the 2-D DWT

for MRI. Wang and Huang [7] show the 3-D DWT to outperform the 2-D DWT by

40% to 90% in terms of compression ratio. The advantages of DWT over the DCT

can be summarised as follows:

1. The DCT difference coding is computationally expensive;

2. The wavelets do not generate blocking artefacts, which are unacceptable in

medical images; and

3. The DCT is not optimal for medical image compression, even if it performs well

on video [1], [4], [5], [62].

Currently, 3-D transforms have been implemented with other methods, such as

a network of computers [7], but a chip dedicated to this transform will give tremendous

results. Despite its complexity, there has been an interest in 3-D DWT implementation

on various platforms. Existing survey exhibits that the research can be classified

into three categories: architecture development [63–65] , architecture with FPGA

implementation [9], [10], [66–68], and finally architecture that has been implemented

on other silicon platforms [69]. Since the aim and contribution of this work are

on the reconfigurable architecture, the reviews and discussions will be focused on

FPGA-based implementation only.

In [66], a memory-efficient real-time architecture with an optimised memory

requirement to the order O(KN2 + (K − 2)×N) is proposed. The architecture as

illustrated in Figure 2.5 is considered as lower-power and works at a lower frequency

which fully utilises the advantages of multiplierless structure of filter design, parallelism

and pipelined structures of filter design. Canonical signed digit (CSD) multiplier is used

to realise the transform. In terms of operation, in one clock cycle, K number of data

points, each from one memory unit T0 to TK−1 are fetch for temporal decomposition.

The temporal decomposition unit, PET computes DWT of the corresponding data
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Figure 2.5: Block architecture for the 3-D DWT [66].

points, and stores back into the memory unit L and H. The proposed architecture

is implemented on Xilinx FPGA devices, and operating at 75 MHz. However, the

drawback of this architecture is the reduction in compression of video sequences and

modifications are required for better performance optimisation.

Two architectures are presented in [9] and [10] for bit-parallel and bit-serial

implementations, respectively. The architecture for bit-parallel as depicted in Figure 2.6

is based on distributed arithmetic (DA), and suitable for real-time medical imaging

applications. DA concept requires the following operations: read only memory (ROM)

accesses, addition, subtraction and shift operations of the input data sequence [70].

Utilisation of top-merged DA methodology in the design contributes to area

reduction in polyphase sub-filters, thus make it possible to map three pipelined sub-

filters into one FPGA for x, y and z-direction analysis. To reduce the required memory

size for intermediate results, the 128× 128× 128 volume is divided into eight blocks

of 68× 68× 68 pixels with fours-pixels overlap between adjacent blocks. In this case,

the size of intermediate random access memories (RAMs) is ten lines of 68 pixels

and ten blocks of 68 × 68 pixels. It is worth noting that the block arrow implies

a parallel input of nine-pixels for y and z-direction sub-filters. In terms of outputs,
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Figure 2.6: 3-D DWT processor architecture [9].

all polyphase sub-filters generate two outputs in every cycles for c(n, l) and d(n, l).

The proposed architecture is implemented using very-high-speed integrated circuit

hardware description language (VHDL) and synthesised on Xilinx Virtex-E FPGAs.

With the advantages offered by the DA design technique, the architecture was proven

as area-efficient high-throughput with the processor running at a frequency up to

85 MHz and capable of process five levels DWT analysis of a 128×128×128 functional

magnetic resonance imaging (FMRI) volume image in 20 ms.

Another hardware design and implementation of a new efficient 3-D DWT for

video compression application is discussed in [67] by Ismail et al. The top level of

system implementation is shown in Figure 2.7 with the “3D V system” and a memory

block. The “3D-V system” consists of a control unit, some counters and a block of

“Conv 1d”. The block of “Conv 1d” is simply the 1-D DWT filter bank with direct-

and transposed-form finite impulse response (FIR) filter structures.

In this work, comparison for both filter structures is carried out and after

the FPGA implementation, transposed-form FIR filter generates better achievement

of latency and chip area. Thus, it is selected as filter structure in the “Conv 1d”

block. The design is implemented on a device from Altera. It exhibits low memory
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Figure 2.7: Design of 3D-V temporal decomposition system [67].

demands and shorter latencies for the compression and decompression processes. The

advantages of the design are as follows: it is generic to any wavelet filter coefficients

and scalable to fit for any frame size of the video sequence.

Haar wavelet transform (HWT) implementation on FPGA platform as

illustrated in Figure 2.8 is proposed for video segmentation in traffic monitoring

by Salem et al. [68].
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In this work the 3-D wavelet transform is used to detect moving objects or object

groups as regions of interest (ROI). For the implementation, 12 basic components

are used in three layers. The inputs are eight data points for a spatial-temporal

cube, whilst the outputs are the eight coefficients, the conventional eight sub-bands

of the 3-D transform. Notation “A” refers to the approximation operation, which is

addition and right shifting. On the other hand, “D” represents the detailed operation

(subtraction and right shifting).

The implementation demonstrates the system capability to deliver through

100 Mbit ethernet the acquired images. Moreover, the achievement of the primary

segmentation is in rate of 25 frame per second (fps) phase alternate line (PAL),

or 30 fps national television system committee (NTSC), which is the acquisition

rate achieved by the digital camera. Furthermore, the design consumes 63% of slice

utilisation, and the maximum operating frequency is 100 MHz.

Table 2.3 summarises the existing FPGA implementations of 3-D DWT [9], [66–

68], in terms of FPGA devices, filter that has been used, as well as the design

parameters of area and maximum frequency.

Table 2.3: Comparative study of the 3-D DWT architectures and the FPGA
implementations.

Parameters Architectures and FPGA Implementations

[9] [66] [67] [68]

FPGA V300EFG256 XCV50TQ144 EPF10K200 XC2VP30

Filter Daubechies Daubechies Daubechies Haar

Arith. tech. DA CSD N/A N/A

Area (slices) 1,271 738/768 LCs = 7.94% 8,663/13,696

Max. freq. (MHz) 85.00 75.00 N/A 101.25

Note:
LCs: Logic cells, Arith. tech.: Arithmetic techniques
Max. freq.: Maximum frequency, N/A: Not applicable
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Due to the fact that the implementation of 3-D DWT on FPGA is still an active

research area, for any comparative study the following justifications need to be taken

into consideration:

1. Proposed architectures in [9], [66–68] were targeted for different FPGA platforms

and applications, and using various design techniques. Moreover, with different

FPGA resources, process technology and circuit topology available on each

device, it draws inconsistent comparison and performance evaluation; and

2. With different design techniques and target applications, each architecture

performs with different performance trade-offs.

2.3.2 FPGA-based Architectures for Finite Radon

Transform (FRAT)

The contributions of transform domains in various applications including image de-

noising, enhancement and compression are undebatable facts. As an example, the

wavelet transform has been extensively used as a solution to the problem of the

short time Fourier transform (STFT), and excels in isolation discontinuities and

spikes [71]. However, the wavelet suffers from inflexible directionality, as it does not

isolate the smoothness along edges. This demerit of wavelet is well addressed by

the ridgelet and curvelet transforms, as they extend the functionality of wavelets to

higher dimensional singularities, and it is proven as an effective tool to perform sparse

directional analysis [71]. The basic building block of these transforms is the FRAT.

An orthonormal, digital and fully invertible form of ridgelets, called the finite

ridgelet transform (FRIT) [71], [72] and the FRIT allows superior compaction over

wavelets as a result of its directional nature. Therefore, better performance can be

achieved in image compression and de-noising applications [71].

Since medical images contain several objects and curves, doubtless the curvelet

and ridgelet as well as the basic building block of the FRAT play a major role for
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better image analysis. By offloading the intensive processing procedures of these

transforms into a properly hardware platform, computational acceleration can be

achieved, meanwhile maintaining the outcomes quality. In the following, several

hardware implementations of FRAT are discussed and evaluated.

In [73], two architectures are proposed, a generic and standard FRAT based

pseudo-code. Figure 2.9(a) shows a generic architecture that uses a combination of

look-up tables (LUTs), matrix of accumulators, and multiplexers to perform the FRAT

with time complexity O(p4), where p is the block size in pixels. The second FRAT

architecture as depicted in Figure 2.9(b) is based on the standard FRAT pseudo-code

presented in [74] has a core time complexity of O(p4 · (p+ 1)).
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Figure 2.9: Proposed architectures (a) Generic transform architecture (b) Radon
transform module [73].
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In this architecture, the “Radon transform module” contains a “FRAT calculator”

which uses address generators, accumulators, random access memories (RAMs) and

local control logic to perform the FRAT iteratively. The work shows that by offloading

some of the processing work into a properly configured FPGA, speeds can be achieved

in excess of one hundred times faster than current high end servers.
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Figure 2.10: (a) Reference FRAT architecture (b) Memoryless FRAT
architecture [75].

Two architectures of FRAT’s FPGA-based implementation are described in [75].

The first architecture as shown in Figure 2.10(a) is a direct hardware implementation of
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a suitable modified variant of the standard FRAT pseudo-code [74], is called a reference

FRAT architecture. This reference architecture comprises an address logic initialiser

(ALI), multiplexer, accumulators and two memory blocks for storing transform vectors.

The second architecture as illustrated in Figure 2.10(b) is denoted as a memoryless

FRAT architecture which operates in a parallel manner with p times the throughput

of the first architecture. The ALI, wide multiplexer and adder blocks are used as

sub-blocks in this architecture. The ALI drives the address generators (AGs) that in

turn generate signals to control the address bus. Moreover, the multiplexer operates

on all the p2 pixels simultaneously, hence, scalability may not be inherently feasible

as a result of its wiring complexities. The proposed architectures use 7 × 7 size

image blocks and are prototyped for processing common intermediate format (CIF)

image sequence. The simulation and synthesis results on Xilinx Virtex-II FPGA show

that the core speeds of the two proposed architectures are around 100 and 82 MHz,

respectively.
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Figure 2.11: Block diagram of proposed FRAT implementation [72].

In [72], the proposed FRAT architecture as shown in Figure 2.11 is a direct

hardware implementation of the pseudo-code that uses ALIs and a controller to

control the accumulators and the memory blocks. The ALI along with controller

block constitute the AG that generates addresses, i.e., Lk,l for memory blocks. The

accumulator is a LO – bit accumulator that accumulates the lth pixel value for the

kth Radon projection. The controller block organises the flow of this process with input

and output data flow. To validate the performance, the design is ported to a Xilinx

Virtex-II FPGA chip using Handel-C. Moreover, there is no specific optimisations to
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the Radon block, since this work is mainly for FRIT implementation.
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Figure 2.12: (a) Serial architecture (b) Parallel architecture [76].

In [76], two power efficient intellectual property (IP) core architectures for the

FRAT with time complexities O(p2(p+ 1)) and O(p2), respectively, are proposed. The

first architecture is a serial architecture based on the FRAT pseudo-code and optimised

for FPGA implementation. The second architecture is based on a parallelised version

of the FRAT pseudo-code and consists of a combination of read only memory (ROM)

based control logic and array based buffers for input/outputs (I/Os). Both are
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illustrated in Figure 2.12(a) and (b), respectively.

In the first architecture, one input pixel is processed in each clock cycle. The

merit of a serial input architecture is that the FRAT block can be easily included

into a sequence of image processing/compression steps such as the ridgelet or curvelet,

without imposing any restrictions on the nature of the inputs. No clock cycles are

wasted in buffering the whole input block, and the input section can be pipelined. The

controller has p+ 1 counters, which generate the address and the read/write status of

the output buffer. Each accumulator reads the contents of the specified location from

the output buffer, adds the data from the input port, and writes it back to the same

location of the output buffer, all within the same clock cycle, with p2 clock cycles. For

the second architecture, the input buffer is a linear distributed RAM with p2 address

locations, with p as the block size. On the contrary, the output buffer is a linear array

of shift registers with p locations. Both architectures are implemented on the Virtex-E

FPGA series, and prototyped on the Celoxica RC1000 development board.
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The most recent implementation of the FRAT is described in [71]. A novel

parameterisable, scalable and high-performance core of the FRAT sub-block is

presented as shown in Figure 2.13(a) and (b). To provide with design reusability, the

core of the FRAT is developed using Handel-C and an efficient VHDL core from Xilinx

CoreGen. Two main strategies are imposed in this architecture: remapping the FRAT

pseudo-code in the order of input signals and implementing a systolic array to store

the address de-referencing values rather than using multiplexer or counter chains. The

design is prototyped on the Celoxica RC1000 board containing the Xilinx XCV2000E

FPGA, and results obtained reveal the design time and area complexity are O(p2)

and O(2p2), respectively.

In addition to the summary of existing FRAT implementation on FPGA that

have been discussed [71–73], [75], [76], Table 2.4 lists the important issues, such as the

FPGA devices involved, programming approaches as well as the target applications.

Table 2.4: Summary of FPGA-based architectures of FRAT.

Refs. FPGA Devices Programming Approaches Target Applications

[71] Virtex-E Handel-C and CoreGen Image processing
[72] Virtex-II Handel-C Image processing
[73] Virtex-E N/S Image processing
[75] Virtex-II Verilog Image processing
[76] Virtex-E Handel-C Image processing

Note:
N/S: Not stated

In terms of programming approaches, Handel-C is used in [71], [72] and [76],

whilst the target FPGA devices change inline with the FPGA technology advancement.

For the target applications, previous works reported are mainly for general image

processing. It can be seen from the test images used for the proposed architecture

validation. To clearly show the innovation and improvement from the existing

implementation of FRAT on the FPGA, each contributor with their important features

and invention are depicted in the research time line as shown in Figure 2.14. In short,

the research time line is also important to draw the research gap as well as to avoid



2.3. Reconfigurable Architectures 47

2003

Wisinger & Mahapatra [73]

FPGA-based image 

processing with curvelet 

transform

FRIT architecture: time 

complexity O(p
4
)

FRAT architecture: time 

complexity O(p
4
·(p+1))

2004 2005 2008

Rahman & Badawy [75]

Architectures of FRAT

Reference architecture (direct 

pseudo-code implementation)

Memoryless architecture

Uzun & Amira [72]

Architectures of ridgelet 

transform

Straightforward hardware 

implementation

No optimisation for Radon 

block

Chandrasekaran & Amira [76]

Power efficient architectures 

for FRAT

Serial architecture: time 

complexity O(p
2
·(p+1)

Parallel architecture: time 

complexity O(p
2
)

Chandrasekaran et al. [71]

Parametrisable,  scalable  

and  high performance of 

FRAT core

Time complexity O(p
2
)

Figure 2.14: Review of FRAT’s FPGA-based implementation.

any research duplication.

Hardware Implementation of Image De-noising

Despite the fact that the software experimentation of image de-noising [77–83] has

gained much effort from the research community, it is worth noting that very few

effort in hardware implementation.

In [84], the parallel implementation of an advanced wavelet-domain noise filtering

algorithm, which uses a non-decimated wavelet transform and spatially adaptive

Bayesian wavelet shrinkage is discussed. The proposed wavelet-domain video de-

noising algorithm using FPGA is given in Figure 2.15.
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Figure 2.15: FPGA implementation of the proposed wavelet-domain video denoising
algorithm [84].
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In this implementation, two independent modules are working in parallel, and

each module is implemented in a different FPGA. The idea of using two FPGAs is

to execute the wavelet decomposition of an input TV frame as well as the inverse

wavelet transform of the previous TV frame. These two modules can switch their

roles in time. The wavelet-domain de-noising block is located in front of the inverse

wavelet transform. The implemented arithmetic is de-centralised and distributed over

two FPGAs. The standard composite television video stream is digitalised and used

as a source for real-time video sequences. The results demonstrate the effectiveness of

the developed scheme for real-time video processing. As the system implemented is

computationally demanding with a de-noising filter algorithm, the solution based on

two different FPGAs in this implementation is inefficient, hence, partial reconfiguration

could be taken into account for better system implementation as well as maintaining

the performance.
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Figure 2.16: FPGA implementation of the SVD/EVD array [85].

An FPGA implementation of a block singular value decomposition (SVD)

method for image de-noising is presented in [85]. This method exploits the fact that

only the smallest SVD eigen values are affected by the noise and therefore, can be

discarded leading to an efficient non-linear image filtering. An efficient architecture for

SVD based on the Brent. Luk, Van (BLV) loan systolic array is proposed as depicted

in Figure 2.16, and comprises a control unit, an input and output interface, and the
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SVD/eigen value decomposition (EVD) array.

The control unit generates commands to the processors and controls all the I/O

operations between the FPGA and the off-chip memory as well as the host personal

computer (PC). The operation of the system implementation as follows. The data

matrices are read/written from/to the off-chip memory element by element, thus

the I/O requirement is independent from the matrix size. Shift buffers are used

as the input and output interfaces, and it is used to transfer data and instruction

in serial from the control unit to the systolic array, and the output data from the

systolic array to the control unit. The coordinate rotation digital computer (CORDIC)

algorithm [86] is used for the implementation of plane rotations. From the hardware

implementation perspectives, the systolic array is promising approach for consideration.

It is proven that the architecture exhibits three times more efficient and faster than

the existing BLV structure. In this implementation, RC1000 rapid prototyping board

and high-level language for hardware design, Handel-C are fully used.

Another implementation of a flexible hardware architecture for performing the

DWT on a digital image is addressed in [87]. With lifting schemes, the proposed

architecture provides advantages: small memory requirements, fixed-point arithmetic

implementation, and a small number of arithmetic computations. In terms of image

de-noising experimentation results, simple wavelet technique demonstrates in improved

images up to 27 dB PSNR. The DWT core is modeled using MATLAB and VHDL,

and implemented on Xilinx FPGA devices. Results for the hardware implementation

show around 15,000 gates are utilised, at 2.185 MHz maximum clock speed and 24 mW

power consumption. In brief, this work gives a significant idea of lifting schemes to be

considered for the image de-noising design and implementation.

A hardware architecture for video noise estimation is discussed in [88] by

Lapalme et al. Although the implementation is about noise estimation, the problem

of noise estimation as well as noise elimination is remaining in the same boundary.

Figure 2.17 shows the top-level architecture of the system on Virtex-II (XC2V4000)

FPGA device. The aim of this architecture is to process two consecutive fields
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Figure 2.17: Block diagram of the proposed FPGA design [88].

simultaneously by acquiring data within “Module A” and processing data within

“Module B” and “C”. This concept implies a “ping-pong” structure and refers to the

back and forth processing scheme to enable the parallel processing. To store and

read data concurrently, simultaneous but separate accesses of two external memory

components (“Bank 1” and “2”) are being used. “Module A” generates the variance,

σ2Bh, the sample mean, µBh, and the homogeneity measures, ξBh, of each block

contained in a field. In case of “Module B” and “C”, these two modules responsible for

sorting the homogeneity values of the previous field, and works to find the logarithmic

value of the variances by querying the logarithmic LUT, respectively. The logarithmic

values are compared to an application-dependent threshold and the remaining valid

variances are added and averaged to generate the final variance, σ2n. The advantages

of this architecture are the design which is uniformly pipelined, and digital clock

managers (DCMs) are used to accelerate the sorting mechanisms clock frequency, as

well as to maximise the parallelism of arithmetic operations to achieve the real-time

requirements. In terms of hardware implementation strategy, the use of VHDL generics
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and packages contributes to scalable architecture that can accommodate different filter

sizes. Moreover, the experimental results reveal that the noise variance generated was

proven to be accurate in comparison to the original software simulation findings.

To conclude, Table 2.5 lists the summary for hardware implementations of

image and video de-noising; classified in terms of algorithms or methods implemented,

FPGA devices and target applications. Design strategies that have been manipulated

such as systolic array, FPGA resources optimisation and generics design style provide

a significant guidance for future work to be carried out on hardware implementation

of image de-noising using the FRAT in Chapter 4.

Table 2.5: Hardware implementation of medical image de-noising.

Refs. Algorithm/Method Platform Target Applications

[84] Advanced wavelet- XC2V6000-5 Video de-noising
domain noise filtering

[85] SVD XCV2000E-6 Image processing
[87] Cohen-Daubechies-Favreau XCV300 Image processing

(CDF) 5/3 and CDF 9/7 DWT
[88] Structure-oriented XC2V4000 Interlaced phase

noise estimation alternate line (PAL)
video sequence

2.3.3 FPGA-based Architectures for Context-based

Adaptive Variable Length Coding (CAVLC)

CAVLC that has been adopted in H.264/AVC plays an important role in compression,

especially for high resolution demand applications [89], [90]. CAVLC is used to encode

residual quantised integer DCT coefficients and based on the previously encoded data,

CAVLC can adaptively choose one of the several variable length coding (VLC), and then

encode the current input signal efficiently by using various syntax elements [91], [92].

By assigning shorter codewords to infrequently occurring symbols, CAVLC can

significantly reduce data redundancy and finally lead to higher coding efficiency even

at low-bit rates with the cost of increased computational complexity. With the cost to
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pay for high computational demand, it is essential to have a hardware implementation

of the process required [89], [90].

In H.264 standard, the integer transform (IT) operates on residual blocks after

motion-compensated prediction or intra-prediction. The residual block is obtained

by subtracting the prediction block from the current blocks. Better compression can

be achieved with successful prediction, that reduces the energy in the residual with

fewer bits. Several research [93–95] propose hybrid schemes using both DWT and

DCT for medical image compression. The DCT is applied to the DWT details, which

generally have zero mean and small variance, thereby achieving better compression

performance.

An existing implementation based on ESCOT and SPIHT are reported in

[96–98]. A coding system for lossy-to-lossless compression of medical volumetric data

is proposed in [96] by Xiong et al. Results obtained in [96] demonstrate that the

intra-band coding of 3-D ESCOT [97] performs about 1 dB better than the inter-band

coding of 3-D SPIHT [98] at 0.1 and 0.5 bit/voxel, with the expense of 50% more

complexity. The commonly used implementation of 3-D SPIHT uses three linked

lists and requires two passes [99]. However, these properties are not well adapted to

a parallel low-power FPGA implementation, particularly for the utilisation of partial

reconfiguration. To address these issues, the work presented in Chapter 5 describes

a parallel implementation of the CAVLC coder that is applied to the coefficients

resulting from the transform block. In the following, several existing FPGA-based

implementation of CAVLC are examined.

FPGA- and application specific integrated circuit (ASIC)-based implementation

of a high-performance and low-power hardware architecture for real-time

implementation of CAVLC are proposed in [100]. Verilog is used to implement the

architecture and it is targeted for a low-power H.264 video coding system in portable

applications. Xilinx Virtex-II device is employed for FPGA prototyping at 76 MHz,

and the design is verified to work at 233 MHz in 0.18µm ASIC implementation.

As shown in Figure 2.18, the architecture performs CAVLC for a macroblock, in
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the worst case, in 2,880 clock cycles. In this system, Coeff Token “Table Selection

Unit” calculates the parameter “nC” based on the number of non-zero coefficients in

the left-hand and upper previously coded blocks, “nA” and “nB” respectively. The

parameter “nC” is a function of the number of non-zero coefficients in neighbouring

blocks and used for CAVLC when choosing an appropriate LUT. Experimentally, the

FPGA and ASIC implementations are capable of coding 22 and 67 video graphics

array (VGA) frames 640× 480 per second, respectively. Although this work targeting

a low-power application, there is no specific discussion on low-power design techniques.
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Figure 2.18: CAVLC hardware architecture [100].

A CAVLC encoder design for real-time mobile video applications is discussed

in [101] by Rahman and Badawy. The block diagram of the proposed architecture is

shown in Figure 2.19. In this architecture, the bit width of the transform coefficient

is 13-bits. Luma/Chroma selector signal is set high for chroma block input or low

otherwise, whilst NU and NL are the number of coefficients of the upper and left

block of the input luma block, respectively. NU valid and NL valid are the input flags

that indicate the availability of these neighbouring blocks. IP valid is set high for a

single clock cycle when the input luma/chroma block is available. The OP valid is

set high when valid data is available at the OP data output. When the processing of

the current block is complete, the Done block signal is set high and the coder waits

for the next block input. The proposed architecture is realised as a very large scale
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integration (VLSI) architecture of the CAVLC coder for the H.264/AVC baseline

profile entropy coder and implemented on Xilinx Virtex-II (2V3000FG6764) FPGA.

Results obtained show the design offers area saving by reducing the size of the statistic

buffer. Moreover, the split VLC tables simplify the process of bitstream generation

as well as reducing some area. This design is targeted for a real-time mobile video

applications and simulation results demonstrate the architecture capability to process

CIF/quarter common intermediate format (QCIF) frame sequences in real-time at

50 MHz with 6.85-K logic gates.
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Figure 2.19: The proposed CAVLC architecture [101].

A high-performance parallel CAVLC encoder implemented on a fine-grained

many-core system are shown in Figure 2.20(a) and (b) [102]. The system is composed

of 164 simple 16-bits digital signal processors (DSPs), three hardware accelerators, and

three 16-KB integrated big memories, all connected by a reconfigurable mesh network.

Processors can directly communicate with their four nearest-neighbour processors, or

distant processors using long-distance-capable configurable links. In terms of data flow

of the proposed CAVLC encoder, the input residual coefficients are sent to the zig-zag

and CAVLC scanning block for the first phase processing. After that, corresponding

data elements are distributed to five different encoding units in parallel, and the

final codes are assembled and packed by the packing unit. It is worth noting in this

implementation, arithmetic table elimination and compression techniques are employed.

Therefore, the data flow of the CAVLC encoder is partitioned and mapped to an array

of 15 small processors. As this design is targeted for high-definition television (HDTV)
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application, the parallel workload of each processor is characterised and balanced to

achieve throughput optimisation. Results achieved show that the proposed parallel

CAVLC encoder reaches the real-time processing requirement of 30 frames per second

(fps) for 720p HDTV. In terms of throughput and area utilisation, the proposed

architecture has 4.86 to 6.83 times a higher throughput and requires far smaller chip

area than the existing implementation on the general-purpose processors. Moreover,

comparison with common DSP exhibits that the proposed design has approximately

1.0 to 6.15 times higher throughput as well as consuming less than six times a smaller

area.
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A full-hardware implementation of CAVLC targeted for real-time processing

of 1920× 1080 frame is addressed in [103] by Kim et al. The proposed architecture

works to encode one block per 16 clock cycles, and it is implemented on Xilinx FPGA

using Verilog. Equivalent gate counts for the implementation is shown in Table 2.6.

Experimentally, this architecture enables real-time processing for 1920× 1080 high-

definition (HD) video frame with 30 fps, using 100 MHz clock.

Table 2.6: Equivalent gate for CAVLC items [103].

CAVLC items Equivalent Gate

Scanning 1,362
nCGen 16,294
Coefftoken 298
Levels 2,249
TotalZeros 564
RunBefore 1,361
PackData 9,265

Another FPGA-based of CAVLC implementation is described in [104]. A parallel

architecture of CAVLC encoder as shown in Figure 2.21 is implemented on FPGA

of Cyclone II EP2C20F484, and the speed of the coding module is up to 165 MHz.

The proposed architecture is focusing on the algorithm optimisation and there is

no experimental validation with a real-time system. As an example, for the sake of

enhancement of efficiency for VLC code table choosing, “nc” module is optimised and

addressed in this study.

In this implementation, an inverse scan of zig operates for every 4×4 block. “T1

Counter” calculates and examines the number of Tail one coefficients and Level

coefficients included by 4×4 block. Next, the detected Tail one symbol is written

into Trailones Reg and “Level” symbol is written into “SIPO Level” buffer, which

makes preparations for the implementation of “T1 Encoder” and “Level Encoder”

parallel coding subsequently. After that, the number of every zero coefficients after

the first Total coeffs in a 4× 4 data block scan-order is calculated by “TZ Counter”.

Then, “Run Counter” calculates the number of zero after every Total coeffs in a 4×4
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Figure 2.21: Framework of CAVLC encoder [104].

data block, and then sends the outcome to the “SIPO Runbef” buffer, which makes

preparations for “Run-before” character coding afterwards. Finally, the code stream

is disseminated through “MUX” module.

In brief, the examination of existing FPGA-based implementations for CAVLC

is summarised in Table 2.7. Since the software implementation of CAVLC does not

fulfill the real-time processing requirement as well as the growing demand in high-

quality and low-bit rates in various applications, hardware implementation is gaining

popularity. However, most of the work reported only focuses on the CAVLC itself.

Thus, there is a huge potential to further research on the CAVLC implementation for

compression system, especially for 3-D medical image compression system.
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Table 2.7: Summary of hardware implementation of CAVLC.

Refs. Platform Target Applications

[100] FPGA and ASIC VGA frames
[101] FPGA CIF/QCIF video sequences
[102] DSP 720p HDTV
[103] FPGA HD1080i
[104] FPGA N/A

2.4 Dynamic Partial Reconfiguration (DPR)

In SRAM-based FPGAs, full-device reconfiguration is required upon power-up [105].

The process of initialisation involves the FPGAs to be programmed with a configuration

bitstream file. Partial reconfiguration concept appears after intialisation and works to

modify a fraction of the resources by programming the FPGA with a partial bitstream

file. Obviously, a full bitstream size is very massive whereas a partial bitstream may

represents only 2% of the full bitstream [50], [105–107]. With smaller bitstreams,

several advantages can be achieved: reduced reconfiguration time, reduced storage

requirements, and dynamic allocation of functionality.

DPR is a technique that offers in changing the configuration of a part of a

circuit while the rest of it executes its task [108]. During the last decade, DPR

has been widely studied in various fields: the development of Erlangen slot machine

(ESM), in FPGA-based reconfigurable computer [109], in automotive applications for

video-based driver assistance applications [110] and a waveform-like reconfiguration

for DPR in [111].

In partial reconfiguration modules, the number and sizes of the tiles and the

arrangement within a partially reconfigurable region (PR region) can be defined as

follows: 1-D, multi-1-D and 2-D partitioning [112] and an overview of the partitioning

schemes is illustrated in Figure 2.22(a) – (c).

From designer and FPGA technology perspective, partial reconfiguration enables

designers to realise the implementation of multiple modules in complex system on one
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Base region PR region Tile PR module Free cell Allocated cell

(a) (b) (c)

Figure 2.22: Overview of the partitioning scheme approaches (a) 1-D (b) Multi-1-D
(c) 2-D [112].

FPGA device where a static area must be defined for components communication,

while full reconfiguration implementation treat the entire FPGA as one module [106].

Xilinx provides many FPGA devices that support active partial reconfiguration,

ranging from the Spartan-3 device to the latest Virtex-5 device. The active or dynamic

reconfiguration allows the modification of a part of the FPGA while the remaining

part of the device is active [113]. Thanks to the internal configuration access port

(ICAP) the reconfiguration management can be implemented in the FPGA so that

the final system is self-reconfigurable [114], [115].

Basically, a dynamically and partially reconfigurable system based on commercial

FPGAs is composed of a static part and different dynamic parts. The communication

between these parts requires the use of bus macros. In Virtex-II family this bus macros

are implemented using tri-state buffers which is not very effective. A new alternative

based on slice macro in form of predefined routed macro has been introduced in

more recent devices (Virtex-4, 5 and 6) [116]. These macros are placed at the edge

of boundaries separating dynamic and/or static region modules and allowing the

communication between different regions of the FPGAs.

A novel FPGA-based scalable architecture for DCT using DPR is presented

in [106]. The proposed scalable architecture is based on DA technique, and it works

in two different modes to reduce computational complexity and power consumption.

It has been reported that with DPR mechanism, the processing elements of the DCT
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architecture can be changed easily and the scalable architecture can be adjusted to

perform different types of DCT zonal coding.

Moreover, the scalable architecture can also reconfigure the unused DCT

computation with the motion estimation module to fully utilise DPR advantages. The

proposed architecture provides significant results for partial reconfiguration process

with better saving of power consumption by 3.03%, reduce the processing clock cycles

and the reconfiguration overhead by 39.5% and 50% respectively. These achievements

motivate a strong justification to further explore the 3-D HWT implementation

with both partial and non-partial reconfiguration processes and to evaluate their

performance in terms of area, power consumption and maximum speed.

In addition to the previously reviewed work on DPR, there exist two other

significant references discussing the advantages and challenges in DPR [117], [118].

Shoa and Shirani [117] thoroughly explain different issues in run-time reconfiguration

(RTR) systems, and list the implemented systems which support RTR reconfiguration

as well as discussing different applications of, and the improvements achieved by

applying RTR. An evaluation of DPR for signal and image processing is presented

in [118]. The authors present the advantages and limitation of DPR in professional

electronics applications and guidelines to improve its applicability. The advantages

addressed are as follows: task speed, power reduction, survivability, mission,

environment and adaptive algorithm change, online system as well as hardware

virtualisation. Furthermore, the missing elements of the design flow to use in DPR

are identified and explained.

As the demand of resources utilisation as well as maintaining the outcomes

analysis in any highly-demanding intensive application, DPR has been taken into

consideration as a promising method in 3-D medical image compression, and it will

be described in detail in Chapter 3.
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2.5 Limitation of Existing Work and Research

Opportunities

As can be seen from the preceding sections, there still remains a huge gap for further

research in exploiting reconfigurable computing for 3-D medical image compression.

Three major limitations of the existing work can be identified as follows:

1. Medical image compression has not been intensively addressed in the existing

3-D DWT implementation. The Daubechies filter has been extensively used in

several implementations [9], [10], [66], [67], whilst Haar filter remains open for

further experimentation. Since the 3-D medical image compression introduces

high computational demands, DPR that offers better hardware configuration is

the best option to be considered. To the best of knowledge, there are no research

publications available on DPR utilisation for medical imaging applications;

2. Although impressive image processing performance has been achieved with

ridgelet, curvelet and Radon transforms, the complexity of their implementation

still remains as a heavy burden on standard microprocessors, where large

amounts of data needs to be processed. Surveying the literature, very limited

FPGA-based implementation has been found, and interestingly, there is no

discussion reported on medical image de-noising hardware implementation using

the FRAT. Therefore, the design and implementation of the FRAT as a basic

building block of ridgelet and curvelet transform, are strategic and very promising

opportunity; and

3. Image compression is one of the well establish research area. However, medical

image compression especially dealing with 3-D modalities is considered as a pre-

mature research area. Moreover, even there is more and more new compression

method have been proposed as well as the algorithm optimisation, very limited

hardware implementation of 3-D medical image compression is discovered.
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Furthermore, utilisation of CAVLC in 3-D medical image compression is

also a convincing area.

Based on the existing work limitations, the objectives of the work presented in this

thesis can be summarised as follows:

1. Designing and implementing of efficient and novel architectures for 3-D HWT

using different design methodology for 3-D medical imaging application;

• Evaluating the performance achievement of DPR methods for 3-D medical

image processing applications;

• Comparing the performance of partial and non-partial implementation of

3-D HWT for 3-D medical volumes; and

• Investigating the influence of 3-D medical volumes transform size on

the hardware performance, such as area, maximum frequency and power

consumption.

2. Designing and implementing of efficient and novel architectures for the FRAT

implementation, specifically for medical image de-noising;

• Analysing the design trade-off for three implementation strategies on

the hardware performance in terms of throughput, area and maximum

frequency;

• Evaluating the capability of the FRAT for medical image de-noising in

pre-processing stage of the complete medical image compression system;

• Evaluating the impact of block sizes on the PSNR values in medical images;

and

• Comparing the performance of software simulation and hardware

implementation for various medical image modalities, and examining the

capability of rapid prototyping using the Xilinx AccelDSP tool.
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3. Designing and implementing of an efficient 3-D medical image compression

system using CAVLC;

• Evaluating the performance of IT and DWT for the transform block in

the 3-D compression system;

• Evaluating different processed medical image modalities after software

simulation and hardware implementation; and

• Comparing the performance of the transform block and the proposed

CAVLC architecture implementation in terms of area, power consumption

and maximum frequency.

2.6 Summary

This chapter reviews a number of significant architectures and systems for two main

research problems: reconfigurable architectures and 3-D medical image compression.

In addition, the advantages and drawbacks of the existing architectures have been also

highlighted as well as limitations of the existing work were addressed. It is the ultimate

aim of the research work presented in this thesis, to address the limitations presented

in the previous section with an efficient means of providing efficient reconfigurable

architectures for 3-D medical image compression.



Chapter 3

Efficient Architectures for 3-D

HWT using DPR

3.1 Overview

The application of three-dimensional (3-D) real-time medical image processing uses

several building blocks for its computationally intensive algorithms to perform matrix

transformation operations. Moreover, complexity in addressing and accessing large

medical volumes data and massive amount of data to be processed have resulted in

vast challenges from a hardware implementation point of view. In order to cope with

these issues, field programmable gate arrays (FPGAs) with efficient reconfigurability

mechanisms should be employed to meet the requirements of these applications in

terms of maximum speed, size, power consumption and throughput.

Dynamic partial reconfiguration (DPR) is a promising mechanism for reducing

the hardware required for implementing an efficient design for 3-D medical image

processing application as well as improving the performance, speed and power

consumption of the system. With this technique, the design can be divided into

sub-designs that fit into the available hardware resources and can be uploaded into the

reconfigurable hardware when needed. As the first configuration finishes its operations,

64
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the next configuration can be uploaded to the hardware [106]. In short, by timesharing,

large designs can be implemented on limited hardware resources.

The work presented in this chapter is concerned with an efficient architecture

for 3-D Haar wavelet transform (HWT) with transpose-based computation using

DPR technique. The proposed architectures will be deployed in a reconfigurable

environment for adaptive medical image compression. An in depth evaluation of these

architectures in terms of area, power consumption and maximum frequency is also

carried out. Influence of the transform size on the hardware performance for both

proposed architectures is addressed [50].

This chapter begins with an overview of the mathematical background for HWT,

matrix transposition and pipelined direct mapping implementation in Section 3.2.

Section 3.3 exposes the proposed architecture of 3-D HWT with DPR mechanism.

Experimental results, comparison and analysis are presented in Section 3.4. Finally,

a brief summary is given in Section 3.5.

3.2 Mathematical Background and Design

Methodology

Mathematical background and design methodology for the implementation of 3-D

HWT are presented in the following subsections.

3.2.1 3-D Haar Wavelet Transform (HWT) and Matrix

Transposition

The wavelet transform is a mathematical tool with a great variety of possible

applications. As the simplest wavelet transform, the Haar wavelet ψhaar, is

discontinuous, symmetric wavelet in the Daubechies family, and the only one has

an explicit expression. The scale function φhaar, is a simple average function. The
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wavelet and the scale functions can be expressed as follows:

ψhaar(t) =


1

−1

0

if 0 ≤ t < 1
2

if 1
2 ≤ t < 1

otherwise

(3.1)

φhaar(t) =

 1

0

∀ 0 ≤ t < 1

otherwise

(3.2)

In addition, the HWT wavelet is simple and computationally cheap because it

can be implemented by a few integer additions, subtractions, and shift operations [119].

This wavelet was selected because of its simplistic nature, and mathematical features.

The mathematical features of the basis are as follows: the most simplistic wavelet

basis, can be implemented using pairwise averaging and differencing, both unitary

and orthogonal, and also it has compact support. Therefore, this wavelet basis is by

no means the most suitable to achieve close to optimal compression performance in

3-D medical image compression application.

cLLL = (c000 + c001 + c010 + c011 + c100 + c101 + c110 + c111)/8
cLLH = (c000 + c001 + c010 + c011 − c100 − c101 − c110 − c111)/8
cLHL = (c000 + c001 − c010 − c011 + c100 + c101 − c110 − c111)/8
cLHH = (c000 + c001 − c010 − c011 − c100 − c101 + c110 + c111)/8
cHLL = (c000 − c001 + c010 − c011 + c100 − c101 + c110 − c111)/8
cHLH = (c000 − c001 + c010 − c011 − c100 + c101 − c110 + c111)/8
cHHL = (c000 − c001 − c010 + c011 + c100 − c101 − c110 + c111)/8
cHHH = (c000 − c001 − c010 + c011 − c100 + c101 + c110 − c111)/8

Figure 3.1: 3-D HWT expression.

The one-dimensional (1-D) HWT can be extended naturally into higher

dimensions simply by taking tensor products of 1-D filters [120]. This approach

is fundamentally based on the partitioning concept of the image into small blocks

containing eight voxels. Consider a block with dimensions of 2× 2× 2, and are labeled

as ci,j,k, 0 ≤ i, j, k ≤ 1. In this case, “0” represents low-pass filtering and “1” for

high-pass filtering. The Haar transform in 3-D is expressed as in Figure 3.1 and the
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decomposition of this small block is expressed with cLLL represents the overall average

or successive low-pass filtering coefficient, and the remaining seven values are detail,

or wavelet coefficients, determined by the order of filtering.

Figure 3.2: Decomposition based on tensor product of 1-D filters (a) Original image
volume (b) Image volume partitioned into 2×2×2 sub-blocks (c) One overall low-pass
coefficient is obtained from each sub-block after the first decomposition stage (d) All
sub-block averaging coefficients are clustered to form new sub-blocks, which are then
decomposed further to obtain one overall low-pass coefficient (e) Image after two stage
decomposition on a 4× 4× 4 image volume.

As an example, the coefficient of cLHL is obtained by applying the low-pass

filter L, high-pass filter H and then the low-pass filter L, along the three principle

axes, respectively [119]. In a more realistic example, taking an image with dimension

of 8 × 8 × 8, the image volume is partitioned into a series of sub-blocks as defined

previously. After the decomposition of each of these sub-blocks the 64 overall averaging

coefficients are combined to form eight new 2× 2× 2 sub-blocks and the next level

in the decomposition hierarchy. The complete decomposition end when only one

overall averaging coefficient and five hundred and eleven detail coefficients remain.

For an n× n× n image volume, log2n iterations are required to perform a complete
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decomposition and an illustration of the method is presented in Figure 3.2(a) – (e).

The implementation of the proposed 3-D HWT architecture requires three 1-D

HWT and two transpose modules in between. Matrix transposition can be viewed as

changing the storage of matrix elements from the row-major order to the column-major

order, or vice versa. Mathematically, it can be expressed by Equation 3.3 for all

i, j = 0...N − 1, where aij is the coefficient of the matrix. An example is shown in

Figure 3.3.

aij = aji (3.3)

Transposition
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21 22 2
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N

N

N NN

a a a

a a a

a a

 
 
 
 
 
 
  

11 21 1

12 22 2

1

N

N

N NN

a a a

a a a

a a

 
 
 
 
 
 
  

Figure 3.3: Transposition of a matrix.

3.2.2 Pipelined Direct Mapping Implementation

The 1-D HWT flow diagram with N -inputs sample for pipelined direct mapping

implementation is shown in Figure 3.4 with “Avg.” and “Diff.” notation refer for

average and differencing, respectively. The registers, adders and difference blocks

are triggered at the rising edge of the clock. At the first clock edge, the data are

loaded and on the second edge they will be retrieved from the registers to the adder

and the difference blocks. At the third clock edge, the adder and the difference

blocks perform their respective operations as described in Equation 3.4 and 3.5, where

i = 0...
(
N
2 − 1

)
.
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Avg. Avg. Avg. Avg. Diff. Diff. Diff. Diff.

Outputs vector

o(0) o(1) o(2)

Avg. Avg. Diff. Diff.

Avg. Diff.

i(N-1)...

N-inputs sample

i(0) i(1) i(2)

o(N-1)...

Registers

Registers

Registers

Registers

Figure 3.4: 1-D HWT flow diagram with N -inputs sample for direct mapped
architecture.

Hi =

(
a2∗i + a2∗i+1

2

)
(3.4)

H(
N
2 +i

) = (a2∗i − a2∗i+1) (3.5)

3.3 Proposed Architectures

An overview of the proposed system applications and an explanation for both 3-D

HWT architectures are discussed in the following subsections.

3.3.1 Proposed System Applications

Figure 3.5(a) illustrates an application overview of the proposed medical image

compression system including the transform, quantisation and entropy coding blocks.
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In each block, buffers have been used for storing intermediate results to be processed.

Since the application targeted for 3-D medical images, the transform block in this

system including the 3-D HWT. The DPR is used for two reasons. The first, is to have

the possibility to exchange the type of algorithm (Haar, Daubechies, biorthogonal 9/7

... etc.) thus making the architecture flexible. The second is to find the best trade-offs

between area, power consumption and hardware performance.

3-D Transform 

(HWT)

Quantisation/

selection

Entropy coding 

(CAVLC/VLC…)

Buffers Buffers

Output: Bitstream 

(Compressed 

medical images)

Input: 3-D images
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Figure 3.5: Proposed system architectures (a) Compression system
overview (b) Architecture for 3-D HWT with transpose-based computation (c) Input
data for sub-images for [I]z (d) Transpose matrix after T1 (e) Transpose matrix
after T2.

3.3.2 3-D Haar Wavelet Transform (HWT) with

Transpose-based Computation

System Architecture

The proposed system for 3-D HWT with transpose-based computation is illustrated

in Figure 3.5(b). The whole chain to calculate the 3-D HWT gets an input as a 3-D

image with N ×N ×N point and outputs the coefficients of the N ×N ×N point. To
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simplify the hardware design, the 3-D HWT is split into three 1-D HWT calculation

cascaded together with transpose modules in between. This is achieved by performing

the first 1-D HWT along the rows (columns) of the array followed by 1-D HWT along

the columns (rows) of the transformed array. The third 1-D HWT is performed on

corresponding pixels in each of the N sub-images that constitute the third dimension.

All transpositions modules with two memory banks is used to store the transposed

coefficients into memory with a fetch unit module that reads back the coefficients for

the next 1-D HWT calculation.

3-D Haar Wavelet Transform (HWT) and Transpose

The proposed 3-D HWT implementation works as follows. The input to the first 1-D

HWT is read row by row, the 1-D HWT is performed on each input vector as they

are provided and the calculated values are sent to the transpose module T1 which

calculated the memory addresses for the transposition and stores the data into memory.

The transpose T1 acts as a memory forwarder and performs matrix transpose, since

row vectors are provided by the 1-D HWT. After transposition of the resultant matrix,

another 1-D HWT is performed on the coefficients which are stored in memory to

yield the two-dimensional (2-D) HWT coefficients.

This is the conventional row-column 2-D HWT computation. The 2-D HWT

computation is performed on each sub-image [I]z for z ∈ [0, 1...7], where [I]0 is the

first sub-image and [I]7 is the eighth sub-image of the input volume as shown in

Figure 3.5(c) with notation of Izxy. The output coefficients of the 2-D DWT are send to

the second transpose, T2. As described before, all coefficients are stored into memory

and the transpositions of T2 are stored after transformation into memory. As shown

in Figure 3.5(d) and (e), T z1,xy and T z2,xy represents the coefficients after performing

transposition T1 and T2 respectively. As an example, the HWT computations for the

first transpose are T z1,00 =
Iz00+I

z
01

2 for averaging and T z1,04 = Iz00 − Iz01 for differencing,

and these two operations are based on Equation 3.4 and 3.5. The Algorithm 3.1 gives

the complete description of the 3-D HWT process.
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Algorithm 3.1 The 3-D HWT pseudo-code

1: for slice = 1 to noslices do
2: for row = 1 to norows do
3: Apply a 1-D HWT column-wise

4: end for
5: end for
6: for slice = 1 to noslices do
7: for col = 1 to nocols do
8: Apply a 1-D HWT row-wise

9: end for
10: end for
11: for col = 1 to nocols do
12: for row = 1 to norows do
13: Apply a 1-D HWT slice-wise

14: end for
15: end for

The Haar function is able to calculate a given vector with the cycle rate of N2 +4

cycles (eight cycles for N = 8) as shown in Equation 3.6. Each transposition clock cycle

as in Equation 3.7 with memory writes is able to operate with N cycles (eight cycles

for N = 8). A sub-image is calculated in one clock cycle as shown in Equation 3.8

and the required 3-D image calculation clock cycle rate is given by Equation 3.9.

Fch =
N

2
+ 4 (3.6)

Fct = N (3.7)

Fcsubimg
= N ∗ [6 ∗ (Fch + Fct)] (3.8)

Fcimg = N ∗ Fcsubimg
(3.9)
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3.3.3 3-D Haar Wavelet Transform (HWT) with

Dynamic Partial Reconfiguration (DPR)

Proposed Architecture

Figure 3.6 illustrates the proposed idea of reconfigurable and adaptive system

architectures using DPR. It composes of several reconfigurable processing modules

(RPM), a reconfigurable interface, an off-chip memory and micro blaze (µblaze) and

the system connected to the host personal computer (PC) via peripheral component

interconnect (PCI) express. µblaze is a soft processor core designed for Xilinx

FPGAs [116]. The reconfigurable processing modules allow hardware acceleration and

can be reconfigured based on the system demand, whilst the communication interface

is used to build the interconnection between RPM and the other components.

Interfaces

SDRAM Interfaces

B
u
s

Off Chip

Figure 3.6: Proposed reconfigurable and adaptive system architectures.

Both proposed architecture implementation on the FPGA are given in

Figure 3.7(a) and (b). The DPR framework consists of two reconfigurable areas

and a static area. One DPR area is used for the 1-D HWT and the second is used for

the different transposition modules. The 1-D HWT DPR area is directly connected

to the transpose DPR area. The static area consists of the data fetch unit and the

memory controller (Wishbone compliant). On the other hand, the implementation of

3-D HWT without DPR defined the entire FPGA devices as one module as oppose to

the implementation with DPR mechanism.
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Figure 3.7: Proposed top architecture of 3-D HWT (a) Without DPR (b) With
DPR.

Reconfigurable and Static Area

The proposed system is implemented with the partial reconfiguration suite from

Xilinx (ISE 9.2PR and PlanAhead 10.1) [116]. It uses the module-based DPR where

configuration frames are reconfigured and bus macros are used to connect the DPR

areas with the static area [121]. The partial reconfiguration design flow is illustrated

in Figure 3.8(a) and (b) for all the steps required and modules definition illustration.

This methodology has the restriction that all design files and reconfigurable

modules must be available to the build environment to build partial modules. The main

advantage of DPR is that an implementation of a given design can be integrated into

a smaller FPGA. This reduces cost, package size and power. Also, power consumption
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Figure 3.8: Partial reconfiguration design flow (a) Steps for partial design
flow (b) Define static and reconfigurable modules.

and logic size can be reduced by cascading operation/calculation modules.

In the 3-D HWT case, the transposition module and the 1-D HWT module

can be changed. The transposition module will be changed during image calculation

three times for each sub-image. First, transposition T1 performs the row to column

transposition which are active till a sub-image is transposed. After the T1 sub-image

transposition, the DPR area is reconfigured with the T2 transposition which saves

the sub-images. This described operation will be repeated for all sub-images. After

all sub-images are computed and transposed with T2, the transposition DPR is

reconfigured with the straight transposition and the last 1-D HWT is performed on all

T2 sub-images. The HWT DPR area can be reconfigured to switch between different

pixel sizes. The pixel size N dependency is propagated from the HWT module to all

connected modules, this gives the advantage that no other logic changes are necessary.
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The DPR module connections are performed with simple bus interfaces. Data

fetch unit and HWT DPR area are connected with a defined data bit width bus,

a request line and back signal free. The fetch unit sends data and the request to

the HWT core as long the free signal is active. HWT and transposition module are

connected with the defined data bit width bus and an enable signal. Each cycle where

the enable is active data will be transposed and written into the memory.

3.4 Experimental Results and Analysis

FPGA implementation and further discussion of the results are given in the following

subsections.

3.4.1 Field Programmable Gate Array (FPGA)

Implementation

Xilinx early access partial reconfiguration (EAPR) design flow [121] has been used as

a design flow reference and the proposed two architectures have been implemented on

the Xilinx Virtex-5 (XC5VLX110T-3FF1136). Table 3.1 lists the overall performance

results for both proposed architectures for N = 8 and 128. The implementation of

3-D HWT with DPR mechanism provides significant results with better saving of area

and reduce the power consumption by 47.07% and 9.77%, respectively. In terms of

maximum frequency, DPR mechanism yielding 51.10% better maximum frequency

than without DPR.

Table 3.2 lists a comparison between non-partial and partial reconfigurations

scenarios. In the case of non-partial reconfiguration, a full bitstream need to

be generated and stored for each 3-D HWT configuration. A full bitstream of

3,889,941 bytes is required for 3-D HWT configuration and the shortest configuration

time needed is also the worst at 4.8 ms. On the contrary, a full partial bitstreams

generated are significantly smaller and hence reducing the storage space required to
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Table 3.1: Resources utilisation and overall proposed architectures performance on
XC5VLX110T-3FF113.

Parameters Proposed 3-D HWT

Without DPR With DPR

N = 8 N = 128 N = 8 N = 128

Area (slices) 3,180 39,261 1,882 20,779

(4.60%) (56.80%) (2.72%) (30.06%)

Power consumption (mW) 1102.64 1872.83 1094.48 1689.84

Maximum frequency (MHz) 206.00 170.13 371.15 347.92

Table 3.2: Comparison of bitstream generated and configuration times towards
transform sizes.

N (transform size) Without DPR With DPR

BS (bytes) CT (ms) BS (bytes) CT (ms)

8 3,889,941 4.8 191,024 0.23

16 3,889,941 4.8 287,573 0.36

32 3,889,941 4.8 313,101 0.39

64 3,889,941 4.8 507,677 0.63

Note:
BS: Bitstream, CT: Configuration time

store the various bitstreams. The results show that the file size of transform size

(N = 64) for full partial bitstreams is reduced about 86.95% of a full bitstream and

the configuration time also reduced by 86.88%. In summary, by comparing the file

sizes of the bitstreams, it is obvious that partial reconfiguration has more efficient

bitstream and as proven, smaller bitstream decreases the configuration time.
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3.4.2 Discussions

Result and Analysis

For the FPGA implementation purposes, there are different transform sizes

(N = 8, 16, 32, 64 and 128) have been used to evaluate the relationship of the

transform sizes on the area (slices), power consumption (mW) and maximum speed

(MHz). The ideas of various transform sizes used also act as a good mechanism based

on the large medical volumes data involves in real-time 3-D medical image processing

applications.

Influence of transform size on area, power consumption and maximum frequency

is depicted in Figure 3.9 – 3.11, respectively. Results indicate that the proposed 3-D

HWT with transpose-based computation requires more area to be implemented while

by using DPR mechanism, the area saving can be achieved between 40.82% to 47.18%

and the relationship of the area is increasingly proportional to the transform sizes.

The power consumptions can be estimated by the large areas required by non-partial

reconfiguration consumes up to 1872.83 mW for N = 128 and by performing partial

reconfiguration it saves power consumption by 0.74% to 9.77%.
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Figure 3.9: Influence of transform size on area.
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Figure 3.10: Influence of transform size on power consumption.
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Figure 3.11: Influence of transform size on maximum frequency for 1-D HWT
modules.

To evaluate the performance of the proposed architectures in terms of maximum

frequency, Figure 3.11 depicted the idea of transform sizes relationship with its

maximum achievable operating frequencies and resulting that with DPR, better

maximum frequency can be achieved. Since the static build consists of all transpositions

and the 1-D HWT function, the design requires more space on the whole FPGA.

Moreover, the signals for the different transpositions have to be multiplexed and

increases the routing and signal number. This will end in a slower frequency as the

DPR design. Furthermore, the partial design can only performed with the slowest
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clock speed of the slowest module. In the proposed system the maximum frequency

is 356.90 MHz, since the transposition T2 has the slowest frequency as shown in

Figure 3.12.
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Figure 3.12: Comparison on maximum frequency achievement for transpose function.
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Figure 3.13: Comparison of chip layout for different Virtex-5 devices for N = 64.
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Moreover, in order to visualise the impact of non-partial and partial

reconfiguration for the proposed architecture, chip layouts on different FPGA devices

of Virtex-5 are shown in Figure 3.13. With DPR mechanism, the area for static and

reconfigurable area can be specified and can be clearly seen in the layouts generated.

Comparative study for both non-partial and partial reconfiguration processes shows

a significant conclusion concerning the advantages offered by DPR especially in

processing large medical volumes. Analysis for the performance achieved for different

parameters such as area utilised, power consumes and maximum frequency achieved

clearly reveals that with DPR, complex designs can be implemented on limited

hardware resources and hence lead to better performance achievements.

Advantages of Partial Reconfiguration

Non-partial reconfiguration can be defined as an arrangement process of all utilised

resources on the FPGA and it offers full-device reconfiguration. With this approach,

any design errors can be resolved by refining the bitstream of the design. An FPGA

with full-device configuration allows the chip to be configured by specific design at

one time and at another time the chip is configured with another design.

From hardware resources point of view, reconfiguration mechanism offers

utilisation of the total number of resources on the FPGA by loading each design

separately, while without reconfiguration both designs are loaded together. Therefore,

the total of resources usage cannot exceed the available number of resources available

on the FPGA.

Indeed non-partial reconfiguration suffers for limited hardware resources issue,

partial reconfiguration provides all the advantages that have been offered by full-

device reconfiguration with two additional advantages concerning its execution process

and bitstreams size generated. Since the unchanged portion of the FPGA is not

affected, smaller bitstream file size generated than a full bitstream, application of 3-D

real-time medical imaging with requirement of its modules to continuously operates
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can be implemented on the same chip as modules. With the size of the bitstream is

directly proportional to the number of resources that have been configured, partial

reconfiguration contributes for less space required in operation configurations.

In terms of configuration time, there are four major phases in the reconfiguration

process: clearing configuration memory, initialisation, bitstream loading and device

startup. As complex as the phases in configuration processes may seem, a smaller

bitstream sizes resulting a shorter configuration time.

In the proposed 3-D HWT architecture with transpose-based computation, the

implementation of 1-D HWT and transpose treat the entire Virtex-5 as one module

as oppose to the second architecture with DPR mechanism. As shown in Table 3.3,

results obtained show that the proposed architecture can be implemented on smaller

Xilinx FPGA devices. With DPR, number of slices registers used is significantly

reduced. As the implementation without DPR used the whole devices as one module,

the proposed design and implementation suffers from the overmapped problem.

Table 3.3: Device summary report of the proposed architecture on
XC5VLX30T-3FF323.

Parameters Proposed 3-D HWT

Without DPR With DPR

Number of slices 27,886 (145%) Haar static = 178 (1%)

registers (Overmapped) Haar partial = 14,469 (75%)

Tr. img2subimg (T2) = 267 (1%)

Tr. row2col (T1) = 235 (1%)

3.5 Summary

Two architectures for 3-D HWT have been proposed in this chapter based on transpose

computation and partial reconfiguration. Comparative study for both non-partial and
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partial reconfiguration processes has shown that DPR offers many advantages and lead

to a promising solution for implementing computationally intensive applications such

as 3-D medical image compression. Using DPR, several large systems are mapped to

small hardware resources and the area, power and maximum frequency are optimised

and improved.



Chapter 4

FPGA-based Architectures of

FRAT for Medical Image

De-noising

4.1 Overview

In general, an image may be degraded by various types of noise that arise during

image acquisition or transmission and the most common type of noise is the additive

one [122]. Noise reduction is very important, as various types of noise is generated by

medical imaging equipment, consequently, limits the effectiveness of medical image

diagnosis [80], [82].

Objects and curves are the main components in medical images. To produce

better analysis of medical images, curvelet as well as ridgelet are the two main

transforms that have been widely used. Moreover, the basic building block of these

two transforms is finite Radon transform (FRAT) as shown in Figure 4.1. As an

example for the curvelet transform, Figure 4.1(b) illustrates the decomposition of the

original image into sub-bands, followed by the spatial partitioning of each sub-band.

84
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The ridgelet transform is then applied to each block [19].

(a)

Input 

image

Spatial domain FRAT domain FRIT domain

i

j l

k

m

k

1-D DWT

Input 

image

l

k

m

k

2-D WT

FRAT domain

FRIT domain

(b)

Figure 4.1: Transform flow graph (a) Ridgelet transform (b) Curvelet transform.

Curvelet, ridgelet and the FRAT emerge as a compelling aid to defeat the

wavelet’s limitation such as inflexible directionality. However, the FRAT algorithm is

demanding, as it is inherently serial, iterative and has long latency. To overcome these

restrictions, hardware implementation of FRAT is an interesting domain of study,

especially for medical imaging application. Existing limited hardware implementation

of the FRAT [71–73], [75], [76] in medical imaging application opens a huge gap to be

filled.
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This chapter presents the design and implementation of FRAT on field

programmable gate array (FPGA) for medical image de-noising using Xilinx AccelDSP

tool. The design and implementation of the FRAT is carried out in the pre-

processing stage form image de-noising, before the complete implementation of the

three-dimensional (3-D) compression systems.

Three design strategies have been proposed: direct implementation of pseudo-

code with a sequential and pipelined description, and block random access memory

(BRAM)-based method. Analysis for both software simulation and hardware

implementation with different medical image modalities has been carried out and

discussed. An evaluation of FRAT’s capability on medical image de-noising is also

addressed.

The organisation of this chapter is as follows. An overview of the algorithms

used and the design flow for the methodology are presented in Section 4.2. Section 4.3

explains the proposed system implementation in two aspects: system applications and

architectures. Experimental results, comparison and analysis for medical image de-

noising, software simulation and hardware implementation are explained in Section 4.4.

Finally, summary is given in Section 4.5.

4.2 Mathematical Background and Design

Methodology

Mathematical background and design methodology for the implementation of FRAT

using Xilinx AccelDSP are explained in the following subsections.

4.2.1 Radon Transform (RT)

Mathematically, the Radon transform (RT) in two dimensions is the integral transform

comprising of a function over straight lines. If a straight line is represented
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parametrically by Equation 4.1,

s = x cos θ + y sin θ (4.1)

where s is the shortest distance from the straight line to the origin, and θ is the angle

which the line makes with the y-axis. Pictorially, it can be also illustrated as shown

in Figure 4.2.

 

f(x,y)

A’

x

s

θ

cos θ sin θ 
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A

Figure 4.2: Radon transform representation.

The Radon transform function R[f ](θ, s) can be given as follows:

R[f ](θ, s) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − s)dxdy (4.2)
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where δ is the Dirac impulse function with the following properties.

δ(x) =

 +∞,

0,

x = 0

x 6= 0
(4.3)

Based upon Equation 4.1 and 4.3, then the inverse Radon transform (IRT) is given in

Equation 4.4, which is used for image reconstruction.

f(x, y) =

∫ 2π

0
R[f ](α, x cosα+ y sinα)dα (4.4)

4.2.2 Finite Radon Transform (FRAT)

The FRAT is defined as summations of image pixels over a certain set of lines. Those

lines are defined in a finite geometry in a similar way to the lines for the continuous

RT in the Euclidean geometry.

Consider a cyclic group Zp denoted by Zp = (0, 1, ..., p−1) such that p is a prime

number. Let the finite grid Z2
p be defined as the Cartesian product of Zp × Zp. This

finite grid has (p+ 1) non-trivial sub-groups, given by:

Lk,l = {(i, j) : j = (ki+ l)(modp), i ∈ Zp}, k < p (4.5a)

Lp,l = {(l, j) : j ∈ Zp} (4.5b)

where each sub-group Lk,l, is the set of points that define a line on the lattice Zp. The

Radon projection of the function f on the finite grid Z2
p is given by:

rk[l] = FRATf (k, l) =
1
√
p

 ∑
(i,j)∈Lk,l

f(i, j)

 (4.6)

From Equations 4.5 and 4.6, it can be seen that the function f is treated as

a periodic function. Therefore, the digital representation of the line displays a “wrap
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around” effect. Analogous to the continuous case, as in Euclidian geometry, any two

lines intersect at only one point in the finite grid Z2
p . Hence, the inverse transform,

the finite back projection (FBP) is given by:

FBPr(i, j) =
1
√
p

 ∑
(k,l)∈Pi,j

rk[l], (i, j) ∈ Z2
p

 (4.7)

where Pi,j = (k, l) : l = (j − ki)(modp), k| ∈ Zp ∪ (p, i).

Substituting Equation 4.6 in 4.7, Equation 4.9 proves that the FBP provides

a perfect inversion for the FRAT [74]. Also, the algorithm for the FBP and FRAT

are synonymous. As a result, the same architecture can be used to implement both

the forward and inverse transforms. The computation of FRAT is listed by the

pseudo-code given in Algorithm 4.1.

FBPr(i, j) =
1

p

 ∑
(k,l)∈Pi,j

∑
(i′,j′)∈Lk,l

f [i′, j′]

 (4.8)

FBPr(i, j) =
1

p

 ∑
(i′,j′)∈Zp

f [i′, j′] + pf [i, j]

 = f [i, j] (4.9)

4.2.3 Xilinx AccelDSP Design Flow

To ease the process of transforming a MATLAB [123] floating point design into

a hardware module, Xilinx introduced the Xilinx AccelDSP software for rapid

prototyping of an algorithm in MATLAB into hardware [124]. The main feature

of the Xilinx AccelDSP can be summarised as follows:

1. A synthesisable register transfer level (RTL) design can be obtained from the

floating point M-code;

2. A set of test-bench can be automatically generated; and
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Algorithm 4.1 Pseudo-code for the FRAT

1: for k = 0 : (p− 1) do
2: n = k;
3: for j = 0 : (p− 1) do
4: if n < 0 then
5: n = n+ p;
6: end if
7: l = n− 1;
8: for i = 0 : (p− 1) do
9: l = l + 1;

10: if l > p then
11: l = l − p;
12: end if
13: FRAT(k, l) = FRAT(k, l) + f(i, j);
14: end for
15: end for
16: end for
17: for j = 0 : (p− 1) do
18: for i = 0 : (p− 1) do
19: FRAT(p, j) = FRAT(p, j) + f(i, j);
20: end for
21: end for

3. Capability to invoke high description language (HDL) simulation, synthesis and

implementation tools.

Verification in each stage is very significant. The Xilinx AccelDSP verifies the

generated module in each step to be as true as the previous one, or to be subjectively

acceptable with a minor difference during the conversion from floating point design to

fixed point [124], [125].

There are two main parts in M-code: a script and function file [124]. In addition,

there are three functions of script files. It creates stimuli, feeds the stimuli to the

function in a streaming loop and verifies the output from the function. On top of

that, the script file also serves as a source file for future test-bench auto generation.

Furthermore, the function file comprises the actual function to be translated into

HDL, and it is written as an ordinary MATLAB function with an interface of input

and output variables.

In this study, the Xilinx AccelDSP has been selected, since it can automatically

converted from high-level languages (HLLs) to RTL HDL, and even directly to FPGA
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configuration bitstream [125]. This feature is important to reduce the design cycle as

well as to allow more optimisation to be carried out on the algorithmic and architectural

levels. More details about Xilinx AccelDSP can be found in Appendix D.

4.3 Proposed System Implementations

Proposed system applications and an overview of the architecture with the design

strategies are described in the following subsections.

4.3.1 Systems Applications

Figure 4.3 illustrates an application overview of our proposed three-dimensional (3-D)

compression system including the transform, quantisation and entropy coding blocks

with the pre-processing block.
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Figure 4.3: Proposed system applications (a) Image de-noising (b) Compression
system.

It is well known that noise on medical image resulting in low image quality, and

yet limits the diagnostic effectiveness. Therefore, noise reduction for medical images

is significantly vital for the pre-processing stage before compression systems as shown

as shown in Figure 4.3(a). In the real implementation, the proposed method can be

modeled as follows:
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Y = IRT (RT (X +N)) (4.10)

and X, N , and Y are refer to the raw medical image, the noise introduced by equipment

and the output image, respectively. From Equation 4.10 and assuming that the RT is

linear, it implies that:

Y ≈ X + IRT (N) (4.11)

and the noise in medical image is approximately:

IRT (N) ≈ Y −X (4.12)

Medical acquisition technologies and systems introduce noise and artefacts in

the images that should be attenuated by de-noising algorithms [81], likewise, the

de-noising process must ensure the anatomical details retains for critical computer-

aided analysis of the images. In the medical imaging system, noise can be classified

as additive or multiplicative [80], and in this study, additive Gaussian white noise

(AGWN) is used to describe noisy signals. Speckle and Poisson noise are two types of

multiplicative noise and their variance is not constant but depends on the parameters

to be estimated [81].

In this study, three steps are involved in image de-noising as follows:

Step 1

Adding a Gaussian white noise to the image, then applying the FRAT to the

noisy image;

Step 2

Calculating the threshold and thresholding the FRAT coefficients with the

universal thresholding; and
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Step 3

Inverse transform of the thresholded coefficients.

To compute the kth Radon projection for noise removal in FRAT domain, the

kth row of the array and all pixels of the original image need to be passed once and use

p histogrammers with one for every pixel in the row. At the end, all p histogrammed

values are divided by p to get the average values for thresholding process. This

averaging process removes the noise in the images.

It is worth noting that the thresholding plays a significant role in the de-noising

process [126] and finding an optimum threshold is a tedious process. Noise in medical

images can be removed using thresholding approaches by partitioning image intensities.

This concept attempts to identify an intensity value that can separate the signal into

a desired number of classes. By clustering all pixels with intensities larger than the

threshold value into one class and all others into another, image de-noising can be

achieved [5]. Universal threshold as proposed by Donoho and Johnstone in [127] is

defined as follows:

λ = σn
√

log 2N (4.13)

where N refers to the image size and σn is the noise standard deviation. To estimate

the standard deviation of AGWN, the median absolute value (MAV) of the coefficients

at the finest scale is first calculated and the standard deviation of noise is then

estimated [83].

4.3.2 Proposed Architecture and Design Strategies

Figure 4.4 shows the reference architecture for the FRAT based on the FRAT’s

pseudo-code. To exploit the hardware resources available, the operations of the various

counters used to track the addresses of the output vectors are parallelised and pipelined.

This has been carried out by changing rollover conditions and count limits suitably.
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Figure 4.4: Proposed reference architecture for the FRAT.

The number of counters required remains the same, and only the triggering

conditions, order and reset logic are modified suitably. It must be highlighted that

whilst the algorithm is still serial and cycles through p ·(p+1) iterations, the number of

steps in the algorithm have been reduced, thereby improving latency. The architecture

has serial inputs/outputs (I/Os) and a serial core. The total latency of the core is

O(p2(p+ 1)). The input section consists of a one-dimensional (1-D) random access

memory (RAM) of width eight bits and a depth of p2.

Although each input image block is a square tile of side p, buffering it in a 1-D

RAM reduces the computational complexity of the control logic associated with data

access. This is because, a two-dimensional (2-D) RAM is implemented on FPGA

as a number of 1-D RAMs and uses additional multiplexing logic to de-reference

the address locations. The FRAT operation requires reading and writing from the

same memory location within a single clock pulse. This is compactly and effectively

implemented using a dual ported RAM at the output section instead of an array based

buffer. The output buffer is a 1-D dual port RAM of width log2(p · 255) and depth p.

Only a single FRAT vector is buffered and the final values are written to the output
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port in serial fashion at the end of each iteration. At the end of (p+ 1) iterations, the

entire image block is transformed to the FRAT domain.

Based on the FRAT architecture, three design strategies have been proposed as

shown in Figures 4.5(a) – (c), with “R”, “E” and “W” refer to “Read”, “Enable” and

“Write” processes, respectively.
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Read, Compute BRAM1, Write BRAM21
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Figure 4.5: Implementation strategies (a) Sequential (b) Pipelined (c) BRAM-based
method.

For the sequential fashion, the following modes involve:

Mode 1

Transfer data, a block of p× p pixels, pixel by pixel;

Mode 2

Compute FRAT; and

Mode 3

Transfer results, a block of p× p pixels, pixel by pixel.
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On the other hand, the pipelined implementation modes are as follows:

Mode 1

Transfer data in pipelined fashion, read a block of p× p pixels, seven column,

column by column (seven pixels at a time) simultaneously write a block of

p+ p× p pixels, seven column, column by column (seven pixels at a time); and

Mode 2

Compute FRAT.

In case of BRAM-based method, processes involved can be described as:

Mode 1

Compute the FRAT block in BRAM 1, and write the computed FRAT block in

BRAM 2; and

Mode 2

Compute the FRAT block in BRAM 2, and write the computed FRAT block in

BRAM 1.

To illustrate the processes involved, Figure 4.6 shows a part of script and

function files for the sequential implementation. Detail function operations as well as

the generated fixed point report are presented in Figure 4.7. Moreover, to illustrate

the Xilinx AccelDSP capability to convert automatically from HLL to RTL HDL,

Figure 4.8 presents the project explorer with VHDL files generated.

4.4 Results and Analysis

Three types of images [22] have been used for software simulation and hardware

implementation: medical resonance imaging (MRI) scan of human brain 940× 940,

chest body CT 128× 128, and positron emission tomography (PET) scan of normal

human brain 109×109. To evaluate the quality of processed images and to demonstrate
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Figure 4.6: Script and function files for the sequential implementation.
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Figure 4.7: Function operations with generated fixed point report.
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Figure 4.8: Project explorer with VHDL files generated.
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the effectiveness of FRAT, peak signal to noise ratio (PSNR) has been calculated to

quantitatively estimate the noise suppression.

4.4.1 Medical Image De-noising

To analyse the effectiveness of the FRAT in medical image de-noising, a Gaussian

white noise with mean (µ) zero and various standard deviation (σ) has been added to

the experimental images. By utilising FRAT in medical image noise reduction, results

obtained have shown promising achievement. The de-noising results obtained reveal

that the FRAT implementation is effective to reduce Gaussian noise.

Table 4.1 shows quantitative results for MRI images, while Figure 4.9(a) –

(c) presents a significant achievement of 13.25% Gaussian de-noising for the MRI

image using the FRAT. Better PSNR values have been achieved with smaller block

size show a relationship of the block sizes which illustrates the relationship between

the block size and the image blockiness problem. The smaller block size reduced the

results of image blockiness in the Radon domain. Therefore, the FRAT representation

of additive Gaussian noise reveals a better achievement with smaller block size as

shown with p = 7.

Table 4.1: PSNR quantitative results of noisy image with a Gaussian white noise
and MRI image.

De-noising (dB)

σ Noisy (dB)

Block sizes (p)

7 17 31

0.01 31.15 43.60 39.51 36.48

0.02 30.63 41.68 37.75 34.67

0.04 30.30 39.34 35.47 32.38

0.08 30.06 36.98 32.95 31.14

0.16 29.91 34.48 30.44 30.29
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Image noisy with σ = 0.16

29.91 dB

Image de-noising by FRAT, p = 7 

(a)

34.48 dB

(b) (c)

Figure 4.9: Gaussian noise reduction experimental results on MRI image (a) Original
(b) Noisy (c) De-noising.

4.4.2 Software Simulation

Figures 4.10(a) – (h) show the FRAT domain visualisation of MRI and PET slices.

The averaging impact of the FRAT on the image blockiness in the transform domain

can be observed as p increases.

Original test images

MRI

(a) (b) (c)

p = 7 p = 17

(e) (f) (g)

PET

(d)

p = 31

(h)

Blockiness

Figure 4.10: Original and blockiness images.
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It is worth noting that the FBP is a mathematically perfect inversion for the

FRAT, and the PSNR depends only on the accuracy required. The truncation or

rounding step that follows the FRAT, determines the PSNR values. As it is usually

used as a sub-block in other transforms such as finite ridgelet transform (FRIT) and

curvelets, and it is followed by a wavelet stage in these transforms, the rounding or

truncation process can easily be incorporated along with the wavelet block with no

extra computational effort by suitably modifying the wavelet coefficients.

However, to illustrate the effect of bit-width limitations on the PSNR, Figure 4.11

shows the relationship of the PSNR values for the reconstructed medical images with

various block sizes (p). Results obtained exhibit that the PSNR of the reconstructed

image drops by 7.93, 21.70 and 21.80 dB for MRI, CT and PET, respectively when

the block size increases from p = 7 to 31. This is because as p increases, the rounding

error becomes more significant. Using a divider with greater precision can reduce the

rounding error.
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Figure 4.11: Analysis of PSNR with different block sizes (p).
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4.4.3 Hardware Implementation

For all three cases of hardware implementation: sequential, pipelined and BRAM-based

method, pseudo-codes have been implemented in MATLAB and the Xilinx AccelDSP

has been used for architecture and synthesis exploration. The designs have been

implemented on Virtex-5 (XC5VLX110T) FPGA devices. As the prime aim of this

chapter is to examine the best hardware implementation applied for medical image

de-noising, results for both medical image de-noising as well as the software simulation

justify the hardware implementation with p = 7. Comparison of performance metrics

for the proposed FRAT architectures with existing work is presented in Table 4.2.

Table 4.2: Comparison of performance with existing architectures for the case p = 7.

Type Platform Design F T A

Virtex-E [71] 94.46 45.01 245

[76] 69.00 6.90 345

Virtex-II [71] 79.973 37.32 215

Sequential [75] 100.1 9.87 159

[72]: A1 112.87 11.13 198

[72]: A2 67.3 6.64 131

Virtex-5 Proposed (1) 174.30 0.12 669

Proposed (2) 127.80 8.52 2,704

Pipelined Virtex-5 Proposed (1) 161.40 13.31 2,044

Proposed (2) 103.50 48.30 5,286

BRAM-based Virtex-5 Proposed (1) 188.90 6.30 637

Note:
F: Maximum frequency (MHz),T: Maximum throughput (MSPS), A: Area (slices)
Proposed (1): Loops rolled, Proposed (2): Loops unrolled
A1: Architecture 1, A2: Architecture 2

Results achieved for the hardware implementation demonstrate various trade-offs

with sequential and pipelined descriptions yielding better achievement for maximum

frequency and throughput, respectively. Moreover, BRAM-based method also reveals

less area occupied and better maximum frequency. To visualise the design and

implementation of the FRAT, Figure 4.12 illustrates the chip layout for sequential
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implementation on XC5VLX110T FPGA device.

FRAT

Input block

Output block

Figure 4.12: Chip layout for the sequential implementation.

A detail comparison for both hardware implementation and software simulation

with test medical images has been carried out. As shown in Table 4.3, software

simulation achieved better PSNR over hardware implementation with the percentage

different 12.92%, 21.47% and 33.09% for p = 7, 17 and 31, respectively. This is due

to the use of floating point in MATLAB, which yields better PSNR values compared

with fixed point model in the hardware implementation.

Table 4.3: Comparison of PSNR values for CT images.

PSNR (dB)

Experiments

Block sizes (p)

7 17 31

Hardware implementation 46.30 38.13 30.30

Software simulation 53.71 48.56 45.29
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4.5 Summary

In conclusion, an FPGA-based architecture with three different design strategies has

been proposed and an analysis with various medical imaging modalities has been

conducted. Image de-noising implementation using the FRAT exhibits a significant

achievement to reduce a Gaussian white noise in medical images. An evaluation of

the implementation results indicates promising trade-offs achievement in terms of

maximum frequency, throughput and area. Chapter 5 will look into the design and

implementation of medical imaging compression system on FPGA, where the FRAT

can be used as a pre-processing block to improve the compression performance.



Chapter 5

FPGA-based Implementation of

a 3-D Medical Image

Compression System using

CAVLC

5.1 Overview

Previous Chapter 4 discusses the capability of finite Radon transform (FRAT) for

medical image de-noising in pre-processing stage before the compression. In this

chapter, an implementation of three-dimensional (3-D) medical image compression on

field programmable gate array (FPGA) is discussed.

The field of medical image compression introduces a complex problem. For

certain image modalities, it is undesirable to lose information and the disregarding

of certain image details through the use of lossy compression can consequently

affect the outcome of patient diagnosis, hence lead to both critical human and legal

consequences [5]. Higher compression ratios can be achieved using a lossy compressor

106
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such as wavelet techniques [128], thus it allows a function to be described in terms of

a coarse overall shape with details that range from broad to narrow.

H.264/AVC is one of the new emerging video compression standard that

manipulates a combination of novel advanced coding technologies based on the mature

hybrid block-based coding framework [129]. In the last step of H.264/AVC, either

of the entropy coding techniques namely context-adaptive variable-length coding

(CAVLC) or context-based adaptive binary arithmetic coding (CABAC) is used [130].

CAVLC utilisation demonstrates higher coding efficiency even at low-bit rates as well

as reduce the data redundancy, whilst CABAC that is used specifically for lossless

compression of images suffers with higher computational demand. To achieve better

compression efficiency, CAVLC is fully utilised in this study and FPGA platform is

used to accelerate the computational complexity of the 3-D compression processes [89].

This research aims at developing a novel implementation of three-dimensional

(3-D) medical image compression system using CAVLC. An efficient hardware

implementation for the transform block by optimising integer transform (IT) and

discrete wavelet transform (DWT) has been proposed and evaluated. Software

simulation as well as hardware implementation have been deployed using different

medical image modalities. An in depth evaluation of the transform and CAVLC

implementation in terms of area, power consumption and maximum frequency is also

addressed.

The composition of this chapter as follows. Section 5.2 gives an overview

of the algorithms and methodology. Section 5.3 explains the proposed system

architecture including transform, quantisation and CAVLC blocks. Software simulation

and hardware implementation results with analysis and discussion are discussed in

Section 5.4. Finally, a brief summary is given in Section 5.5.
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5.2 Algorithms and Methodology

Algorithms and design methodology for 3-D IT, DWT and the decomposition strategies

are presented in the following subsections.

5.2.1 3-D Integer Transform (IT)

The 3-D discrete cosine transform (DCT) is used in video compression if there

is a strong correlation between the adjacent pixels in a frame (spatial correlation), and

the correlation between the pixels of the same position in adjacent frames (temporal

correlation).

The principle is based on the idea that a video sequence could be seen as a tri-

dimensional block, where the third dimension is the time. 3-D DCT is also applied for

volume compression in medical imaging, and in this case the principle is the spatial

correlation between the adjacent voxels in a volume.

Mathematically, the 3-D type-II DCT of X(i, j, k), of size N ×N ×N , can be

defined as:

Y (u, v, w) =

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

X(i, j, k)C(i, u)C(j, v)C(k,w) (5.1)

where,

C(p, q) =


1√
N

, q = 0√
2
N cos

(
(2p+1)qπ

2N

)
, q 6= 0

(5.2)

The two-dimensional (2-D) IT is a derivative of the 2-D DCT and has been

adopted in the latest H.264/AVC standard for coding image blocks in residual

data (texture). The associated integer arithmetic guarantees fast and accurate

coding/decoding.
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Though IT is a derivative of DCTs, in H.264, to maintain integer arithmetic

capability, the post and pre-scaling factors of transform process are integrated into

the forward and inverse quantiser stages, respectively, for reducing the total number

of multiplications and avoiding the loss of accuracy.

Since the 3-D DCT is a separable transform, it can be implemented as a series of

one-dimensional (1-D) transforms (or as a 2-D transform followed by a 1-D transform).

The 3-D IT as shown in the Algorithm 5.1 can be derived from the 3-D DCT and

implemented in the same manner.

Algorithm 5.1 The Forward 3-D IT

1: for slice = 1 to noslices do
2: for row = 1 to norows do
3: Apply a 1-D integer transform column-wise

4: end for
5: end for
6: for slice = 1 to noslices do
7: for col = 1 to nocols do
8: Apply a 1-D integer transform row-wise

9: end for
10: end for
11: for col = 1 to nocols do
12: for row = 1 to norows do
13: Apply a 1-D integer transform slice-wise

14: end for
15: end for

The simplified representation of the 2-D IT for N = 4 and the output Y of the

IT core can be defined in matrix representation as follows:

Y = (C X CT )� Ef (5.3)

where C and Ef are given by:

C =



1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1


(5.4)
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Ef =



a2 ab/2 a2 ab/2

ab/2 b2/4 ab/2 b2/4

a2 ab/2 a2 ab/2

ab/2 b2/4 ab/2 b2/4


(5.5)

and,

a =
1

2
b =

√
1

2
cos
(π

2

)
(5.6)

b =

√
1

2
cos(

π

2
) (5.7)

The symbol � indicates that each element of (C X CT ) is multiplied by the scaling

factor in the same position in matrix Ef , whilst CT is the transpose of C.

Many video coding standards use a transform coding of the prediction residual.

In previous standards, a DCT was used, but in the recent coding standard H.264, a new

scheme of transform is used and called IT because of a separable IT with similar

properties as a 4×4 DCT is used. As for DWT or DCT, IT performs a transformation

between spatial and frequency domain in order to grab the most significant information

of the picture in a particular place of each 4×4 block. This process improves drastically

the entropy coding efficiency. The fundamentals difference between IT and DCT are

as follows:

1. IT is based on integer coefficients, all operations can be performed using integer

arithmetic and by the way, loss of accuracy is avoided;

2. The implementation can be made only with adders and shifters; and

3. A multiplication for scaling is implemented in the quantiser directly reducing

the number of operation in the IT.
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5.2.2 3-D Discrete Wavelet Transform (DWT)

The Haar wavelet mathematical background as has been explained in Chapter 3, is

simple and computationally cheap, and can be implemented by a few integer additions,

subtractions, and shift operations. It yields a multi-resolution representation for

discrete data. The potentiality of the 3-D Haar wavelet in approximation of 3-D

volumes was earlier discussed by Bajaj et al. in [119]. This wavelet filter has been

selected as a consequence of its simplistic nature and mathematical features.

The factorisation of the Haar wavelet coefficients into lifting steps is expressed

as follows:

d1,l = s0,2l+1 − s0,2l (5.8)

s1,l =
s0,2l + s0,2l+1

2
(5.9)

where the original signal of interest is denoted by (s0,j)j . (s1,j)j and (d1,j)j represent

the low and high-pass coefficients after the wavelet transform. To obtain lossless

compression, the Haar transform must support integer-to-integer mappings. This can

be achieved by flooring the right hand side of Equation 5.9.

Decomposition strategy based on integer lifting offering the following advantages

over classical wavelet construction utilising convolution:

1. Lifting allows for an in-place implementation of the wavelet transform, similar

to that of the fast Fourier transform (FFT). The wavelet transform is calculated

without the allocation of auxiliary memory;

2. Lifting allows for the construction of non-linear wavelet transforms. For example,

wavelet transforms that map integers to integers, important for lossless image

coding and hardware implementations;

3. Lifting allows for the construction of wavelets without making use of the
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Fourier transform. This means wavelets can be built, which are not necessarily

translations and dilations of one function, so called second generation wavelets;

4. Every transform constructed using lifting is immediately invertible, where

the inverse transform has the same computational complexity as the forward

transform. This is performed by reversing the operation order and inverting all

signs; and

5. Lifting exposes the inherent parallelism in the wavelet transform. All operations

in one lifting step can be computed in parallel, whilst the only sequential part

is the order of the lifting operations.

Utilising the lifting scheme (LS), the order of the decomposed coefficients differs

from the one that obtained via convolution. The decomposed stream is then reordered

to regain the sub-band structure required for encoding. The coefficient orderings for

both techniques are shown in Figure 5.1.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 D1,0 D1,1

S2,0 D2,0 D1,0 D1,1

S0,0 S0,1 S0,2 S0,3

S1,0 D1,0 S1,1 D1,1

S2,0 D1,0 D2,0 D1,1

(a) (b)

Figure 5.1: Coefficient orderings (a) Convolution-based (b) Lifting-based.

5.2.3 Decomposition Strategies

Both the non-standard wavelet decomposition (NSWD) and hierarchical block wavelet

decomposition (HBWD) are frequently used for the compression of 3-D image

volumes [119], [131]. The standard wavelet decomposition (SWD), however, has

never been used for this purpose due to its unsuitability to generate appropriate
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coefficients for entropy coding. This strategy, which is similar to the NSWD reflects the

interactions between all pairs of scales, whereas the NSWD uncouples the interactions

between the scales [132], [133].

The 3-D SWD is a novel extension of the 2-D SWD developed by

Beylkin et al. [132] and this algorithm is described as follows:

1. A one level 1-D DWT is applied to each row of voxel values within the volume.

This process splits the original image volume into two, one half representing

a low-pass filtering coefficients and the other high-pass coefficients. The row

length is then halved and this transform reapplied, the process being repeated

until the required number of decomposition levels for the image is reached;

2. A one level DWT is applied to each column of the volume obtained as a result

of Step 1. By repeatedly halving the column size and reapplying the 1-D DWT,

the desired level of decomposition is once more achieved; and

3. A one level DWT is applied to all z−axis projections within the volume obtained

as a result of Step 2. This is applied iteratively, halving the breadth as the

number of decomposition levels increase, until the complete x-level 3-D SWD is

obtained.

Figure 5.2 shows the sub-band structure achieved using a three level SWD, whilst

Algorithm 5.2 gives the pseudo-code for the 3-D forward SWD. This decomposition can

be inverted by initially calculating the dimensions of the finest sub-band and processing

each axis in reverse order, using the same inherent looping structure. Each axis is

processed independently, where recomposition is achieved fully in one orientation

before the next is processed. The total recomposition along each orientation is obtained

by iteratively applying the one step inverse 1-D DWT and doubling the individual

orientation length. It is noted that the decomposition strategy that has been applied

for 3-D IT is the same as the decomposition strategy that has been applied for the

3-D DWT.
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Figure 5.2: Sub-band structure obtained via a three level SWD.

Algorithm 5.2 The Forward 3-D SWD

1: for level = 1 to nolevels do
2: for slice = 1 to noslices do
3: for row = 1 to norows do
4: Apply a one level 1-D DWT column-wise

5: end for
6: nocols = nocols/2
7: end for
8: end for
9: for level = 1 to nolevels do

10: for slice = 1 to noslices do
11: for col = 1 to nocols do
12: Apply a one level 1-D DWT row-wise

13: end for
14: norows = norows/2
15: end for
16: end for
17: for level = 1 to nolevels do
18: for col = 1 to nocols do
19: for row = 1 to norows do
20: Apply a one level 1-D DWT slice-wise

21: end for
22: noslices = noslices/2
23: end for
24: end for

5.3 Proposed System Architectures

BuffersInput: 3-D Block 

Output: 

Bitstream

 

 

 

CAVLC
Quantisation/

selection

3-D Transform

(IT/DWT)

Buffers Buffers

Figure 5.3: Proposed system overview.

Figure 5.3 illustrates an overview of the proposed medical image compression

system using CAVLC including the transform and quantisation blocks. In each block,
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buffers have been used for storing intermediate results to be processed. Since the

application targeted for 3-D medical images, the transform block in this system

including the 3-D IT and DWT (with Haar filter). The novelty in this proposed

architecture highlighted by the utilisation of CAVLC hardware implementation and

the possibility to reconfigure the system to choose between 3-D IT or the HWT.

5.3.1 Transform Block

Integer Transform (IT)

The architecture of 3-D IT can be realised as the architecture of 1-D IT and the

butterfly expression of the four pixels 1-D IT as depicted in Figure 5.4.

X[0]

X[1]

X[2]

X[3]

Y[0]

Y[2]

Y[1]

Y[3]

-1

-2

2

-1

-1

Figure 5.4: Butterfly architecture of 1-D IT.

It is composed of two stages regular butterfly architecture. The dashed lines

refer to the subtractions, and the numbers represent the coefficients to be multiplied.

To reduce the hardware complexity as well as to improve the area utilisation, the

multiplication can be replaced by shifters and adders. The computation of IT can be

divided into two stages: horizontal and vertical transform, and each process can be

regarded as four 1-D vector transforms. Therefore, one full 4× 4 IT contains eight 1-D

transforms. At the same time, the butterfly computation process of 1-D transform

needs eight “add” operations and two “shift” operations. Therefore, the computation

of one full 4× 4 IT requires 64 “add” operations and 16 “shift” operations. In this

work, with a volume of 4 × 4 × 4 voxels, the transformation can be performed by

applying a 2-D IT over 4 slices of 4×4 voxels, followed by 1-D IT. The total number of
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operations is 4×64+32 = 288 “add” operations and 4×16+8 = 72 “shift” operations.

Discrete Wavelet Transform (DWT) with Lifting Scheme (LS)

With an efficient integer wavelet decomposition to implement sampled filter banks

that have an integer output, the LS has gained much interest in wavelet-based image

representation especially for both high-throughput and low-power applications [134].

Moreover, it is also a better approach and more flexible than the convolution

methodology, and capable of define a wavelet basis on an interval without using

the Fourier transform concept [135], [136]. The LS that has been proposed by Herley

and Swelden [137], [138] is a fast and efficient method to construct two-channel filter

banks. The LS as depicted in Figure 5.5 with P as the prediction filter, U for update

filter and R the rounding system.

Z
-1

↓ Ɖ

↓

P1

R U1

R

Ɖ

X

+

+

-

+X0

X1 X’1

X’0

Figure 5.5: A simple lifting-based perfect reconstruction encoder.

Generally, this scheme consists of splitting the image in separate components,

estimating components from others and further adding two components filtered version

of other components [135]. The term “prediction”, refers to the step with estimating

the intensity of a coefficient, while the step related with smoothing the coefficients is

called as “update”.

5.3.2 Quantisation and Reordering Block

Quantisation is a very simple function that related with quantisation parameter

that affects the coefficient value at the output module. Since it allows for hardware
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simplification without multiplication and division operations, proposed quantisation

architecture in [139] has been fully utilised as a design reference in this work.

5.3.3 Context-based Adaptive Variable Length Coding

(CAVLC) Block

Architecture

Variable length coding (VLC) plays an important role in video and image compression

applications. By assigning shorter codewords, VLC can removes redundant data

efficiently. The recently developed video coding standard H.264/AVC significantly

outperforms previous standards such as H.263 and MPEG-4 in terms of coding

efficiency.

In H.264/AVC, a special VLC method named as CAVLC is used to encode

residual, zig-zag ordered 4× 4 (and 2× 2) blocks of transform coefficients. According

to the previously encoded data, CAVLC can adaptively choose one of the several

VLC tables, and then encode the current input symbol efficiently by using various

syntax elements. For quantised IT coefficients, most non-zero coefficients are centered

in low-frequency. In high-frequency, most coefficients are zero and other non-zero

coefficients are −1 or +1. CAVLC uses these characteristics to compress the data and

increases the coding efficiency. The coding processes of CAVLC are as follows:

1. Scanning the quantised IT coefficients in zig-zag order;

2. Encoding the number of non-zero coefficients and the number of trailing

coefficients (which value is −1 or +1), adaptively selecting the coding table

according to the number of non-zero coefficients of left and upper blocks;

3. Encoding the sign of trailing coefficients;

4. Encoding the level information for other non-zero coefficients; and
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5. Encoding the run information before each non-zero coefficient. It shows that the

number of non-zero coefficients of current block will affect the selection of the

coding table in other block; any change of it can affects the other block. Also,

any change of trailing ones will cause the change of the non-zero coefficients. It

will eventually affects the video quality and the bit-rate. So, the best method

is not to change the number of non-zero coefficients of current block and the

trailing ones.

The modules that compute and generate the bitstream, receive their coefficients

from a transformation (IT or DWT), followed by a quantiser and reorganised

through a zig-zag scanning. In general, CAVLC encodes each block in five independent

steps. In the first step, it generates CoeffToken that encodes both the total number

of non-zero coefficients (TotalCoeffs) and the number of trailing −1 or +1 values

(TrailingOnes) in a block. CoeffToken also depends on the number of non-zero

coefficients in the left-hand and upper of the previously coded blocks.

The second step allows the encoding of the TrailingOnes and represents the

sign of each coefficient by a single bit. The TotalZeros parameter encodes the amount

of all zeros preceding the highest non-zero coefficient, followed by the actual encoding

of the non-zero coefficients contained in the block. It is worth noting that, at this step

the proposed architecture contributes by removing the look-up tables (LUTs) and

generating the code from simple values, the coefficient sign and its absolute value.

In the next step, the encoding number of zeros in the block that related to the

non-zero coefficients is carried out. Finally, it is necessary to indicate in the final

bitstream the location of these zeros among the non-zeros coefficients. This step

is called Run Before, because it gives the number of zeros preceding each non-zero

coefficient within the zig-zag reorganised block. The corresponding syntactic element

is calculated in the compression sub-module as Encode RunZeros. Each of these

steps is represented by a syntactic element and by concatenating the values, the final

bitstream is generated.
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Most approaches encode symbols sequentially. In these approaches, the execution

time of the VLC encoding for a given block depends on the quantisation parameter

and the type of video [101], [140]. The corresponding architectures introduce a random

execution time that requires an intermediate buffer in upstream of the entropy

encoder between the encoder and the quantiser. Indeed, variable execution time

implies a variable input rate, whereas the output rate of the quantiser is fixed.

Therefore, it is required to have a buffer and a controller to synchronise the buffer

with the CAVLC encoder.

CAVLC is the entropic coder of H.264 in the base profile. It takes advantage

of several statistic events that occur the most frequently in the coefficient blocks to

encode. For an efficient implementation of this function as well as to optimise the

execution time, a parallel architecture has been selected. The majority of the CAVLC

hardware implementations encode the coefficient values in an iterative way in order to

save the silicon area. The number of iterations, and consequently the time of global

calculation, is hence dependent on the number of non-zeros coefficients that belong to

the block to be encoded. During the implementation, it is noted on a multi-processor

system that this particular task requires numerous operations and the execution time

is significantly modified according to the number of non-zero coefficients.

The originality of the proposed architecture as shown in Figure 5.6 is based

on a well-balanced use of massive parallelism that contributes for fast calculation as

well as fixed execution time. The architecture is also fully combinational and does

not need any controller. Only the loading time of the block is performed sequentially

with 16 clock transitions needed to load the 16 coefficients of the block in the memory,

the encoding has been executed in one clock transition, at the cost of a reduced

maximal frequency due to an important critical path. However, this is negligible as

the proposed architecture is capable even at a very low frequency (4 MHz).
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Figure 5.6: Block diagram of CAVLC architecture.

Operations

In Figure 5.6, a first phase of pre-treatment Variable Extraction can be

distinguished, which introduces a latency of a few cycles. At this stage, there are

data selections for the repartition to different encoding blocks. These data could

be coefficients or intermediate results of non-zero coefficients (Total Coeff) or the

number of zeros (Total Zeros). This pre-treatment is performed continuously by

updating the output values for each new coefficient input. The expected values

are obtained after 16 coefficients are processed and only then, the architecture

delivers a valid bitstream for the block. It is then necessary to make a selection at the

output of the encoder. Each of the tasks delivering a syntactic element is carried out

in parallel, as they are independent of each other. The last module that generates the

bitstream concatenates the syntactic elements issued from the preceding modules.

The CAVLC bitstream is encoded by coefficients blocks, in addition to encoding

parameters that allow a reduction of the bitstream size. Thus, variables that have

been defined in the algorithmic part of this chapter have to be encoded. Each of the

sub-modules uses pre-determined tables that accelerate the values encoding. Only the

EncodeLevel module, that processes coefficient values and Encode RunZeros require

more complex calculations.
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The number of non-zeros coefficients can be varied from 0 to 16 per block and

most of the common architectures use an iterative computation on these numbers. This

necessitates a controller and leads to a variable execution time that is unpredictable.

For each coefficient, the code-word depends on both of its value and the preceding

coefficients value. Indexes are used and will be incremented or not for the following

coefficient encoding depending on the coefficient value. These indexes are calculated

beforehand and then distributed to the 16 processing modules. Each module uses

these indexes and the corresponding coefficient value, to find out the code-word to be

used.

The sub-module Table generation contains the algorithm of the code-word

generation. The code-words are calculated by two parameters: size and value. Using

these two parameters, the bitstream generator can reconstitute the global bitstream.

The same principle of parallelism has been used, in order to calculate syntactic elements

of RunBefore, with the noteworthy difference that predefined tables is used to identify

the value and size of each element. These tables are duplicated in each module in

order to overcome the overloaded issue, and in contrast with the case where a single

table is available for all 16 modules. As the number of the value is relatively restricted

for these tables, the extra cost of memory is negligible.

A different approach by systematically performing in parallel the calculations

of level encoding as shown in Figure 5.7 has been proposed. It obtained the totality

of the codes in one clock transition regardless the number of the coefficients needed to

be processed, and processes the iteration in 16 identical modules. These modules are

purely combinational and allow encoding in a fixed time, which some of the modules

are not being used and continue to function, whilst their results are not going to be

taken into account. As an example, for seven non-zeros coefficients in the block imply

that nine modules are not going to be used, but they will execute the calculation on

the values which most likely, are coming from the preceding blocks.

Due to the treatment for each coefficient in a block is mainly parallelised, all

module that has been placed after the variable extractor process all the 16 coefficients



5.4. Results and Analysis 122

Coeff0 Coeff1 Coeff2 Coeff15

Memory block

V
a
lu
e

L
T
1

S
iz
e

...

...

SE generation SE generation SE generation SE generationX 16

Figure 5.7: Encode level detail of the CAVLC architecture.

(as a whole block) in only one clock cycle. To encode of a 1920× 1080 at 30 frames

per second (fps), a throughput of 63 Mpixels is needed. Hence, this is the reason of

the variable extractor runs at 63 MHz as one pixel (or coefficient) is treated per cycle.

As the majority of CAVLC modules can process 16 coefficients per cycle, clock can be

reduced by 16 and majority of the architecture runs at only 4 MHz.

5.4 Results and Analysis

Software simulation and hardware implementation with the results analysis are

presented in the following subsections.

5.4.1 Computational Complexity

This section describes the computational complexity of different decomposition strategy

for the proposed transform block. For this task, the Haar wavelet basis is employed,

enabling a simple calculation of total arithmetic operations to be performed.

In all decomposition strategy testing using the Haar basis, only addition,

subtraction and division operations are required. For more complex filters,

multiplications can be converted to “add” and “shift” operations using Booth’s

algorithm [141], as on certain hardware and software architectures, multiplication

operations are more costly than additions and shifts.
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Using a two level decomposition for a 4× 4× 4 image volume, the number of

addition and shift operations required for each transform is given in Table 5.1 with

the main functional blocks and the following conclusions can be made:

1. Decompositions based on the LS, even with the required reordering for this

application, are far superior to their convolution based equivalent decompositions.

The use of lifting over the convolution enables a reduction in shift operations

by 50%; and

2. 3-D IT performs with better computational complexity by 22.2% for total

arithmetic complexity operations.

Table 5.1: Computational complexity of the main functional blocks with various
decomposition approaches.

Decomposition Type Adds Shifts Comparator Multiplier Total

3-D SWD (Convolution) 288 288 N/A N/A 576

3-D SWD (LS) 288 144 N/A N/A 432

3-D IT 96 32 N/A N/A 128

Intra-prediction 59 10 6 N/A 75

Quantisation 15 N/A N/A 9 24

CAVLC 111 4 72 16 203

5.4.2 Objective Evaluation

Objective evaluation performance for a range of bit-rates assessed using peak signal

to noise ratio (PSNR) and mean squared error (MSE) [53], [56–58]. Since more than

one definition of PSNR exists, the one that has been employed in this study is:

PSNR(dB) = 20log10

 Maximum voxel
√

MSE

 (5.10)
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and,

MSE =
1

N
×
∑
i

∑
j

∑
k

[f(i, j, k)− F (i, j, k)]2 (5.11)

where N is the total number of voxels, F (i, j, k) is the voxel value at point (i, j, k) in

the reconstructed image and f(i, j, k) is the voxel value at point (i, j, k) in the original

image. For the bits per voxel (BPV), the bit rate (BR) is defined as:

BR(BPV) =
Size of compressed 3−D image (bits)

Total no. of voxels

(5.12)

Simulation has been performed using MATLAB and details of the experimental

test data [22] that have been used are described in Table 5.2.

Table 5.2: Images used for testing.

Image Bit-Depth Dimensions Description

CT 8 128× 128× 239 CT volume with

active lung tumor

MRI 12 256× 256× 60 MRI scan of human brain

with active cerebral lesion

PET 16 91× 91× 109 PET scan of

normal human brain

Each of the test images are compressed in a lossy manner with a range of

bits-rates using various decomposition strategies for both IT and DWT. The quality

of the reconstructed images is then measured using PSNR metric and BPV, as a result

of easy quantification for compression efficiency. Since the gray-scale images have

been used for simulation, BPV is equal to eight for an eight-bits grey-scale image

for a non-compressed frame. The results for each image from 0 to 6 BPV are given

graphically in Figure 5.8 – 5.10 for DWT using convolution or LS and IT.
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Figure 5.8: PSNR vs. BPV for CT.
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Figure 5.9: PSNR vs. BPV for MRI.

From the simulation results obtained, the following conclusions can be drawn:

1. In all cases, the DWT with LS performs a lossless compression on all images.

However, the other two transforms yield some data loss;

2. In the case of CT images, it can be observed that the IT with CAVLC is the

best solution to perform a good compression, but even without quantisation,

compression is not lossless;

3. In the case of MRI images, the DWT with LS performs better results than the
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Figure 5.10: PSNR vs. BPV for PET.

IT and generates an efficient compression rate; and

4. In the case of PET images, the scheme is sensibly the same as for the CT images.

Figure 5.11(a) – (l) illustrates the comparison for the first medical volumes slices

of the original and all the reconstructed slices for CT, MRI and PET images using

3-D DWT with LS, convolution and 3-D IT. It is noted that 3-D IT provides better

results for CT and PET images, whilst LS exhibits better results in MRI image. Some

factors such as sharpness and global frequencies that present in the frame, influence

the compression ratio and quality.

It is worth mentioning that 3-D IT is always better than other transform due

to the combination of intra-prediction, DCT-like transform and CAVLC that capable

of reduce the spatial redundancy. However, DWT performs significant results for

a lossless compression with high quality and significantly useful for medical image

compression application. In simulation results, lossless compression can be achieved

clearly by increasing the BR.
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(b)(a) CT (c) (d)

(f)(e) MRI (g) (h)

(j)(i) PET (k) (l)

Original image 3-D DWT (LS) 3-D DWT convolution 3-D IT

Reconstructed image

Figure 5.11: Comparison of original and reconstructed CT, MRI and PET images
for the first slices.

5.4.3 Field Programmable Gate Array (FPGA)

Implementation

The proposed FPGA-based architectures of a compression system for 3-D medical

images using CAVLC have been synthesised using very-high-speed integrated circuit

hardware description language (VHDL) and implemented on Xilinx University Program

XUPV5-LX110T Development System with Virtex-5 XC5VLX110T device. Table 5.3

provides the details of results for each block and resources utilisation in terms of

register, look-up table (LUT), digital signal processor (DSP) 48E and buffers. Results

obtained reveals that intra-prediction and transform are the most consuming blocks in

terms of registers and LUTs, respectively. Moreover, the frequency selection module

is very negligible contrary to the other modules.
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Table 5.3: Hardware resources utilisation for each block.

Blocks Hardware Resources Utilisation

Registers LUTs DSP 48Es Buffers

Transform 797 3,359 N/A 1

Quantisation N/A 175 3 N/A

CAVLC 37 2,555 N/A 4

Intra-prediction 4,018 225 N/A N/A

Figure 5.12: Compression system.

A complete functional 3-D medical image compression system as shown in

Figure 5.12 has been implemented and medical images to be processed were stored

in external double data rate (DDR-2) memory. The implemented system has been

successfully demonstrated its functionality to compress and decompress with 60 fps

for 640 × 480p format. Indeed the video graphic array (VGA) frames have been

used for demonstration, the proposed system can be performed for a high-definition

(HD) 1080p format at 63 MHz frequency. With parallelisation that has been applied,

it is noted that the CAVLC block runs at 16 MHz.
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Transforms Block

Comparison of the results obtained for both 3-D IT and 3-D HWT of the transform

block implementation is listed in Table 5.4. In this case, N implies the transform size

that reflecting the size of volume data in 3-D medical imaging modality. Results shown

that the implementation of 3-D IT as a transform block requires more 70.51% and

3.52% for area and power, respectively, whilst 3-D HWT exhibits a better maximum

frequency performance.

Table 5.4: Resources utilisation and overall transform architectures performance for
N = 4.

Parameters Transform Architectures

3-D IT 3-D HWT

Area (slices) 5,307 (7.68%) 1,562 (2.26%)

Power consumption (mW) 459.09 442.91

Maximum frequency (MHz) 128.00 223.56

Context-based Adaptive Variable Length Coding (CAVLC) Block

Table 5.5 presents the implementation results of the CAVLC encoder different modules

with the pre-treatment module as a master in the architecture. It runs at a maximum

frequency of 152 MHz and generates a clock signal for the sub-modules that operates

at frequency 16 times lower. As a result of parallelism, in one clock cycle these

sub-modules provide the value of each syntactic element for a block of 16 coefficients.

Comparative study with the existing work in [142] demonstrates that the

proposed architecture can save either the internal random access memory (RAM)

or registers in the interface, between the quantiser and the entropy coding block.

Moreover, thanks to the parallelisation of most computations, only the first part
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Table 5.5: FPGA implementation results of CAVLC.

CAVLC/Processes Hardware Resources Utilisation

Registers LUTs BUFG/BUFGCTRLs

Pre-processing 32 28 1

Memory480 5 75 45

CoeffToken N/A 1 N/A

TotalZeros N/A 52 N/A

MemoryEL N/A 16 1

MemoryERZ N/A 16 1

EncodeLevel N/A 1,906 N/A

EncodeRunZero N/A 417 N/A

(variable extraction) of the architecture requires a frequency of 63 MHz as shown in

Table 5.6.

In the CAVLC architecture, there are two levels: the first level computes some

information for the current block, whilst the second level computes the syntactic

element according to the variables in the first level. The proposed architecture is

divided in half to detail the frequencies used with one or the other stages of the

pipeline, in order to highlight the fact that most of the elements of the architecture

work at a very low frequency.

Table 5.6: Comparison of CAVLC architectures performance on FPGA platforms.

Parameters Comparison Study

[101] Proposed (stage1/stage2)

FPGA Virtex-II Virtex-5

Gate count 6,855 28,152 (351/27,801)

Clock frequency (MHz) 50 63/4
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Results obtained for the power consumes as shown in Figure 5.13, exhibit

that the proposed architecture generates an efficient power usage. In brief, the total

consumption is only decreased of 13%, whilst the dynamic power is also decreased by

85% for the same performance.
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Figure 5.13: Power consumption comparison for the CAVLC architecture.

5.5 Summary

In this chapter, a novel hardware implementation of 3-D medical image compression

system with CAVLC has been proposed. Analysis and performance evaluation of the

3-D images have been carried out for both aspect, computational complexity and

quality. The evaluation of different transform filters has shown that 3-D IT generates

better performance with regards to the computational complexity, whilst the DWT

with LS provides a lossless compression that is significantly useful for medical image

compression.

An architecture that is capable of compress high-definition images in real-time

has been proposed. Through a judicious parallelisation, promising results have been

obtained with limited resources. Furthermore, the architecture needs a relatively low
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working frequency of 63 MHz for some pre-treatment and of only 4 MHz for the rest

of the encoder.

Finally, the proposed architecture consumes 1.8 times less energy per processed

block with the 3-D HWT than with the 3-D IT. This could be useful to make some

trade-offs between compression ratio as well as energy consumption and even a good

case for the use of run time reconfiguration (RTR).



Chapter 6

Conclusions and Future Work

6.1 Overview

This thesis has investigated issues and challenges of efficient reconfigurable architectures

for three-dimensional (3-D) medical image compression. To date, the more widespread

used of 3-D modalities in medical diagnosis have generated a massive amount of

volumetric data. Moreover, other applications such as telemedicine and teleradiology

require medical volumes to be transmitted from one station to another. Therefore, an

efficient volumetric data transmission with limited bandwidth and storage is important.

Although tremendous advantages offered by 3-D modalities, it is worth mentioning that

the algorithms are computationally intensive and require hardware implementation

to accelerate the process. In this research study, medical image compression for 3-D

modalities is the main focus as well as the design and implementation of the algorithms

using field programmable gate array (FPGA). In the rest of this chapter, results

obtained throughout this research study are summarised and evaluated. Moreover,

some possible routes to be explored for a future extension of this work are also

provided.

133
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6.2 Achievements

The main objectives of this work are discussed in Chapter 1 and 2. They are derived

from limitations of some of the current issues in design and implementation of 3-D

medical image compression system. Each of these objectives is now revisited in order

to determine whether it has been met by this research.

1. Has this research investigated the efficient implementation of

reconfigurable architectures for 3-D Haar wavelet transform (HWT)

in medical image processing applications?

This research has thoroughly investigated the efficient implementation of

3-D HWT for medical image processing. It has examined the contribution of

dynamic partial reconfiguration (DPR) technique to deal with computational

intensive 3-D medical image processing applications. As the transform size imply

the complexity of medical volumes, the impact of transform size on architecture

performance has also been examined. By implementing DPR technique in this

research study, better area utilisation and minimum power consumption can be

achieved as well as better maximum frequency [50], [107], [143].

2. Has the research developed a novel implementation of the finite

Radon transform (FRAT) for medical image de-noising?

The design and implementation of FRAT’s field programmable gate array

(FPGA)-based architecture for medical image de-noising has been developed.

Since the image de-noising is crucial in pre-processing stage of a compression

system, three design strategies to accelerate the computational process as well as

maintaining the outcomes have been investigated. Moreover, to reduce the design

cycle and to allow more effort to be carried out for architecture optimisation,

Xilinx AccelDSP tool has been employed. Research findings of this work exhibit

the design trade-offs for the hardware implementation. Furthermore, relationship

of the block sizes with the image analysis has also been discovered. In terms

of application, the proposed design and implementation of FRAT’s on FPGA
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demonstrates its capability to reduce a Gaussian white noise in medical images.

3. Has the compression system using context-based adaptive variable

length coding (CAVLC) been developed for 3-D medical images?

To evaluate the complete compression system, design and implementation of

3-D medical image compression system using CAVLC have been proposed. An

evaluation for both software simulation and hardware implementation has been

carried out for integer transform (IT) and discrete wavelet transform (DWT).

On top of that, efficient architecture of CAVLC with parallelism optimisation

has also been proposed. Through a judicious parallelisation, promising results

have been obtained with limited resources [144].

6.3 Limitations

The objectives stated in Chapter 1 and 2 have been successfully fulfilled.

However, a number of restrictions and limitations have been identified during this

research.

1. Magnetic resonance imaging (MRI), computed tomography (CT) and positron

emission tomography (PET) have been used as test images for the system

implementation evaluation. Other medical modalities such as ultrasound (US)

and angiogram should be taken into account to further examine the proposed

design and implementation. To validate the implementation outcomes, clinical

judgement from the experts will be very useful.

2. The maximum transform size that implies the medical volumes data is limited

for 128 × 128 × 128. To further increase the transform size, FPGA board

configuration as well as considering an external memory are required. Moreover,

matrix partitioning technique can be taken into consideration as a part of

solution to partition the matrix into smaller sizes.
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3. Real hardware implementation of the proposed architectures have been deployed

on the Xilinx University Program XUPV5-LX110T Development System with

Virtex-5 (XC5VLX110T-3FF1136) FPGA. It is notably that proposed designs

and implementations are platform independent, and can be implemented easily

on the most recent FPGAs. Moreover, by using the resources available on the

recent platforms, better performance can be achieved. But, due to time and

funding limitations, real implementations on these platforms were unable to be

carried out.

6.4 Future Work

The following are suggestions for future work, which build upon the ideas and concepts

presented in this thesis.

1. Tackling the issues of power dissipation and energy efficiency:

The migration from application specific integrated circuits (ASICs) to FPGAs

for a variety of applications brings along with it a number of issues to be

resolved, including techniques for minimising power dissipation. Since FPGAs

are now being increasingly employed in various applications, higher power

dissipation results can make the chip run slower. If power dissipation exceeds

the specification for a pin-package, the chip may get permanently damaged.

Power dissipation is not only interesting from a packaging perspective, but also

in determining the battery life of portable devices.

2. Exploring the implementation of floating-point cores:

In the most previous implementations of architectures on FPGAs, floating-point

arithmetic has not been used due to the considerable additional complexity

and area needed. With recent and future FPGAs, the floating-point arithmetic

operation can be efficiently used and implemented for architectures presented

in this thesis.
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3. Investigating other partitioning strategies on multi-FPGA platforms:

Very large medical volumes can be accommodated by developing architectures

based on partitioning strategies and algorithms. The partitioning can be

performed at the algorithm level as well as the hardware level on multi-FPGA

based hyper-computer platforms [145]. The reconfigurable hyper-computer

allows high memory bandwidth, fast processing element inter-communication

speeds, and fast external input/output (I/O) capabilities.

4. Exploring the wireless transmission of medical volumes:

Although high-definition medical imaging (HDMI) wireless communication

modules is now under development, it is worth mentioning that further

investigation in the domain of 3-D volume analysis is of significant importance.

Video transmission over wireless networks can be very useful, but also very

challenging. Hardware implementation using FPGA with a capability to send

and receive data in the wireless domain is significant, especially for telemedicine

and teleradiology applications. In these applications, limited storage and

bandwidth availability are of crucial. Therefore, medical image compression

with efficient design and implementation for wireless domain can be further

investigated.

5. Investigating heterogeneous system using graphical processing unit (GPU)-

FPGA:

An investigation into the used of heterogeneous system using GPU-FPGA

is essential, since both platforms offer great mutual advantages for high

computational demanding applications, such as medical image processing

applications. Design trade-offs such as flexibility, performance and power

consumption can be further analysed.

6. Implementing FRAT in the proposed compression system:

Using FRAT as a basic building block for ridgelet transform to be deployed in the

proposed medical image compression system is another interesting examination.
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Since ridgelet transform is excellent for objects and curves representation, an

examination of its capability is a very promising research area.



Appendix A

Rapid Prototyping Board and

FPGA Devices

A.1 Overview

This appendix provides an overview of Xilinx University Program XUPV5-LX110T

Development System and a brief discussion about the Virtex-5 field programmable

gate array (FPGA) device. Comparative study of the FPGA resources for Virtex-5

with other FPGA devices such as Virtex-4, Virtex-E and Spartan-3L is also presented.

Review and comparison cover the following features: configurable logic blocks (CLBs),

digital signal processor (DSP) element, and the processor. Finally, a comparison table

describing different resources available in different FPGA platforms is presented. This

comparison enables the hardware designer to select the appropriate resources for a

better hardware optimisation.

A.2 XUPV5-LX110T Prototyping Board

There are various rapid prototyping boards available in the market. Xilinx University

Program XUPV5-LX110T Development System can be considered as a good option

139
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due to the following features: cost, easy to operate and performance. Throughout

this project, XUPV5-LX110T platform has been used to experimentally prototype

the architectures as well as carried out the evaluation of the proposed system’s

applications. Figure A.1 shows a block diagram of the XUPV5-LX110T platform

board, whilst Figure A.2 shows real top views of the platform with label of each

component/peripheral.
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Figure A.1: Virtex-5 FPGA and XUPV5-LX110T platform block diagram [146].

A.3 Virtex-5 Field Programmable Gate Array

(FPGA)

The Virtex-5 family provides powerful features in the FPGA market, and it has

been used for synthesis and design prototyping throughout this research. With
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Figure A.2: Detailed description of XUPV5-LX110T platform components (front
view).

65-nm state-of-the-art copper process technology, Virtex-5 FPGAs contain many

hard-intellectual property (IP) system level blocks, including powerful 36-Kbits block

random access memory (BRAM)/first in first out (FIFO), second generation 25× 18

digital signal processor (DSP) slices, select I/O technology with built-in digitally

controlled impedance, ChipSync source-synchronous interface blocks, system monitor

functionality, enhanced clock management tiles with integrated digital clock managers

(DCMs) and phase-locked-loop (PLL) clock generators, and advanced configuration

options [146].
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A.3.1 Configurable Logic Block (CLB)

A CLB element contains a pair of slices and for each CLB element is connected to

a switch matrix for access to the general routing matrix as depicted in Figure A.3. Every

slice contains four logic-function generators (or look-up tables), four storage elements,

wide-function multiplexers, and carry logic. These elements are used by all slices

to provide logic, arithmetic, and read only memory (ROM) functions. Additionally,

some slices support two additional functions: storing data using distributed RAM and

shifting data with 32-bits registers. As illustrated in Figure A.4, the Virtex-5 family

is the first FPGA platform to offer a real 6-input look-up table (LUT) with fully

independent (not shared) inputs, and it leads to significant advantages for hardware

optimisation [146].

Slice (1)

Slice (0)

Switch 

matrix

CLB

COUT COUT

CIN CIN

Figure A.3: Arrangement of slices within the CLB for Virtex-5 [146].

A.3.2 Block Random Access Memory (BRAM)

The BRAM base size in the Virtex-5 family has increased to 36-Kbits, from 18-Kbits

in the Virtex-4 family. This makes it easier to build larger memory arrays in

Virtex-5 devices. Moreover, the 36-Kbits block RAM can be configured as either two

independent 18-Kbits RAMs, or one 36-Kbits RAM, hence, there is essentially no
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Figure A.4: Details of CLBs and slices for Virtex-5 [146].

penalty for building many 18-Kbits or smaller RAM arrays on-chip. The Virtex-5

family BRAM can be operated in simple dual port mode to effectively double the

BRAM bandwidth. Simple dual port mode allows the Virtex-5 family BRAM width

to be expanded beyond 32-bits up to as much as 72-bits per BRAM.

A.3.3 Digital Signal Processor (DSP) Element

The Virtex-5 DSP48E slice includes all Virtex-4 DSP48 features with a variety of

new feature. With new cascade paths, the Virtex-5 DSP48E slice features with

a wider 25 × 18 multiplier and an add/subtract function that has been extended

to function as a logic unit. This logic unit can perform a host of bitwise logical

operations when the multiplier is not used. In addition, the DSP48E slice includes

a pattern detector and a pattern bar detector that can be utilised for convergent

rounding, overflow/underflow detection for saturation arithmetic, and auto-resetting

counters/accumulators. Moreover, the single instruction multiple data (SIMD) mode

of the adder/subtractor/logic unit is also new feature to the DSP48E slice and this

mode is available when the multiplier is not used [147].
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A.4 Comparison

Based on the survey that has been carried for Virtex-E, Virtex-4, Virtex-5 and

Spartan-3L FPGA, Table A.1 gives a brief summary and comparison between each

device in terms of the CLB, BRAM, DSP and reduced instruction set computing

(RISC) processor. In conclusion, the following notes can be made:

1. The BRAM is usually portioned in large arrays separate from the logic regions

of the chip. It greatly increases FPGA processing capability by allowing for

fast data storage. The increasing of RAM base size contributes to build larger

memory arrays;

2. The multipliers on FPGA are highly optimised speciality blocks that greatly

increase the speed and space efficiency of multiplication operations. The

increasing of multiplier width leads to fewer cascade stages and yielding higher

overall performance and utilisation; and

3. The 6-input LUT in Virtex-5 leads to several benefits: with wider functions

directly in the LUT, the number of logic levels between registers is reduced and

lead to better performance. Moreover, power consumption is also reduced as

the larger LUT reduces the amount of required interconnect (routing resources).
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Table A.1: Comparison of selected Xilinx FPGA devices resources.

Parameter Virtex-E Virtex-4 Virtex-5 Spartan-3L

Slices 4 4 2 4
LUTs 4 8 8 8
Flip-flops 8 8 8 8

CLB Clocks, Clock-enables, Reset N/A four each two each four each
Distributed RAM 64-bits 64-bits 256-bits 64-bits
Shift Register Length N/A 64-bits 128-bits 16-bits
Multiplexers N/A 16 - 1 2 × (16 - 1) 1 × (16 - 1)

BRAM Base size N/A 18-Kbits 36-Kbits N/A
Modules N/A DSP48 DSP48E N/A

DSP Multiplier width N/A 18 × 18-bits 25 × 18-bit 18 × 18-bits
Operating frequency N/A 500 MHz 550 MHz N/A

RISC processor N/A PowerPC Power 440 N/A

Note:
N/A: Not applicable, PowerPC: IBM PowerPC RISC processor Core (FX only), Power440: Power440 microprocessors
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Xilinx ISE and FPGA

Programming

B.1 Overview

Design procedures involved in field programmable gate array (FPGA)-based logic

design can be summarised as shown in Figure B.1. Generally, five steps involved:

1. Design description:

Two main strategies can be used: a hardware description language (HDL), such

as very-high-speed integrated circuit hardware description language (VHDL) or

Verilog, and a schematic editor. In the case of Xilinx tools particularly, CoreGen

can be also instantiated for both design descriptions, either with an HDL or

a schematic editor.

2. Netlist generation:

Netlist can be defined as a description of the various logic gates in the design and

represents their interconnection. Logic synthesis program is used to transform

the design description into a netlist.
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ENTITY ge IS

PORT( x, y       : IN BIT;

gt , eq    : OUT BIT);

END ge;

ARCHITECTURE behavioral OF ge IS

BEGIN

PROCESS (x, y)

BEGIN

gt <= x AND NOT y;

eq <= (NOT x AND NOT y) 

OR (x AND y);

END PROCESS;

END behavioral;
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Timing 
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Development System

Bitstream

Logic 

simulation

Figure B.1: General design route from VHDL to prototyping board.

3. Mapping and routing:

An FPGA topology is structured by configurable logic blocks (CLBs), which

can be further decomposed into look-up tables (LUTs) that perform logic

operations. The CLBs and LUTs are interwoven with various routing resources.

The mapping tool acts to collect the netlist gates into groups that fit into the

LUTs, and then place and route (PAR) tool assigns the groups to specific CLBs

while opening or closing the switches in the routing matrices to connect them

together.
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4. Bitstreams generation:

Once the implementation phase is complete, a program extracts the state of the

switches in the routing matrices and generates a bitstream, with the ones and

zeroes correspond to open or close switches.

5. Rapid prototyping:

The bitstream is downloaded into a physical FPGA chip and the electronic

switches in the FPGA open or close in response to the binary bits in the bitstream.

Upon completion of the downloading, the FPGA will perform the operations

based on the design description specified by an HDL code or a schematic.

B.2 Implementing VHDL Design

This section gives an overview of the VHDL design implementation in FPGA chips

using Xilinx ISE Design Suite 10.1 and ModelSim Xilinx Edition (XE) III 6.4b.

B.2.1 Xilinx ISE

ISE design suite controls all aspects of the design flow for Xilinx FPGAs. Through

the Project Navigator as shown in Figure B.2, all the design entry and design

implementation tools can be accessed. To illustrate the simulation results, Modelsim

as shown in Figure B.3 has been used. In the following, different important steps are

described.

Specifying Design Options

The Design Goals and Strategies Editor as shown in Figure B.4 allows the design

goal and strategies to be defined. A series of categories, each containing property for

a different aspect of design implementation can be seen.
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 Source pane

 
 Process pane

 
 Transcript pane

 
 
Editor pane

Figure B.2: Sample window displaying ISE project navigator.

 
 Source pane

 
 Transcript pane

 
 Editor pane

Figure B.3: ModelSim simulator window.

Design Translation

During translation, the NGDBuild program performs the following functions:

1. Converts input design netlists and writes results to a single merged NGD netlist.

The merged netlist describes the logic in the design as well as any location and

timing constraints;
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Figure B.4: Setting the design options in ISE.

2. Performs timing specification and logical design rule checks; and

3. Adds the user constraints file (UCF) to the merged netlist.

Timing Constraints

The UCF provides a mechanism for constraining a logical design without returning

to the design entry tools. The Constraints Editor and Floorplan are tools that

enable entry of timing and pin location constraints as shown in Figure B.5 and B.6,

respectively.
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Figure B.5: Setting for UCF.

Figure B.6: Floorplan for pin location constraints.

Mapping, Place and Route (PAR)

Since all implementation strategies have been defined (properties and constraints),

the next design step of mapping is performed. After the mapped design is evaluated,

the design can be placed and routed. One of two PAR algorithms is performed during

the PAR process:

1. Timing driven PAR is run with the timing constraints specified in the input

netlist and/or in the constraints file; and

2. Non-timing driven PAR is run, ignoring all timing constraints.
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Verification of Place and Route (PAR)

The FPGA editor as shown in Figure B.7 reads and writes native circuit description

(NCD) files, native macro circuit (NMC) files, and physical constraints files (PCF). It

performs the following tasks:

1. PAR critical components before running the automatic PAR tools;

2. Finish placement and routing, if the routing program does not completely route

your design;

3. Add probes to the design to examine the signal states of the targeted device;

4. View and change the nets connected to the capture units of an integrated logic

analyser (ILA) core in the design;

5. Run the BitGen program and download the resulting bitstream file to the

targeted device; and

6. View and change the nets connected to the capture units of an ILA core in your

design.

Figure B.7: FPGA editor window.
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B.2.2 Field Programmable Gate Array (FPGA)

Configuration

To properly synthesise the design, pins definition on the chip for all the inputs and

outputs are required. In general, pin assignment could be assigned without restriction,

but for any specific prototyping board it is required to make sure that the pin

assignments match the switches, buttons, light emitting diodes (LEDs) and so on.

To download the bitstream generated into the FPGA, configure a device

(iMPACT) underneath the Generate Programming File selection needs to be selected

and results should be illustrated as shown in Figure B.8 and B.9, respectively. After all,

test and validation of the design implementation can be carried out on the prototyping

board using LEDs or other peripheral options as shown in Figure B.10.

Figure B.8: Device configuration using iMPACT.
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Figure B.9: Program succeeded to be downloaded.

Figure B.10: Results verification using LEDs indicator.



Appendix C

Partial Reconfiguration (PR) in

Xilinx FPGA Devices

C.1 Overview

To date, a technology called partial reconfiguration (PR) has been widely applied

with several Xilinx field programmable gate arrays (FPGAs). PR is a concept that

manipulates the FPGA technology flexibility as it allows modification to be carried

out of an operating FPGA design by loading a partial bit file [148]. As illustrated in

Figure C.1, the logic in the FPGA is defined into two different types: reconfigurable

and static logic.

x4.bit

x3.bit
Static

Reconfigurable logic

Block “x”

FPGA

x1.bit

x2.bit

Figure C.1: Basic concept of partial reconfiguration.
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With PR concept, the static logic remains functioning, and it is completely

unaffected by the loading of a partial bit file, while the reconfigurable logic is replaced

by the contents of the partial bit file. The function to be implemented in reconfigurable

logic block “x” is modified by downloading one of the several partial bit files, x1.bit,

x2.bit, x3.bit and x4.bit. There are many reasons of PR to be fully deployed on

a single FPGA device is advantageous. These include:

1. Area:

Reducing the size of an FPGA device required for implementing a given function

with consequent reductions in cost and power consumption; and

2. Flexibility:

Providing flexibility in the choices of algorithms or protocols available to

an application.

C.2 Design Requirements

Xilinx design suite accommodates all design tools to execute any PR project. In this

study, Xilinx service pack 9.2i for PR tools has been used. Summary of the tools

required for PR project execution is depicted in Figure C.2.

C.3 Implementation Design Flow

A general modular design flow for PR project implementation is given in Figure C.3.

It is worth noting that the process of implementing a partially reconfigurable FPGA

design is similar to implementing multiple non-PR designs that share common

logic [148]. However, design partitions are to ensure that the common logic between

the multiple designs is identical. Figure C.4 illustrates this concept and gives an

overview of design structure and file formats. Moreover, Table C.1 provides a list of

the useful file that needs to be handled throughout the PR execution.
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Figure C.2: Design tools requirement in PR.
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Figure C.3: General PR design flow.
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Table C.1: Description of files format for PR process.

Extension Description

*.vhd VHDL design file and serve as input for a
synthesis tool like Xilinx XST.

*.ngc XST netlist and this file is the result
of a synthesis using XST.

*.ngd Design file. This binary file contains a logical
description of the design in terms of both its
original components and hierarchy and the NGD
primitives to which the design is reduced.

*.pcf Physical constraints file. An ASCII text file
containing the constraints specified during
design entry expressed in terms of physical elements.

*.ncd Native circuit description. A physical description
of a of the design terms of the components
in the target Xilinx device.

*.par PAR report including summary information of
all placement and routing iterations.
original components and hierarchy and the NGD
primitives to which the design is reduced.

*.pad A file containing input/output (I/O) pin assignments
in a parsable database format.

*.bit A binary file that contains proprietary
header information as well as configuration data.

*.msk A binary file that contains the same
configuration commands as a *.bit file, but has
mask data and routing iterations.
The configuration data is used for
verification purpose.



Appendix D

Xilinx AccelDSP Synthesis Tool

D.1 Overview

AccelDSP is one of the digital signal processing (DSP) synthesis tool by Xilinx with

an easy-to-use graphical user interface (GUI) that provides a promising solution to

transform a MATLAB floating-point design into a hardware module that can be

implemented on a Xilinx field programmable gate array (FPGA). The AccelDSP tool

is also integrated with other design tools such as MATLAB, Xilinx ISE tools and

other industry-standard hardware description language (HDL) simulators and logic

synthesisers [124].

D.2 Design Flow and Operations

An overview of features and advantages offered by AccelDSP synthesis tool is given in

Figure D.1.

To implement the project, two “.m” files. required: script and function m-file.

The script m-file is used to apply stimulus and plot results, whilst the function m-file

is to realise the function of the project.
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Figure D.1: Advantages of AccelDSP synthesis tool.

In terms of design flow, verification is made in several steps in the AccelDSP work

flow and an overview of the work flow is given in Figure D.2.
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