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ABSTRACT

Clustering data streams has become a hot topic in the era
of big data. Driven by the ever increasing volume, velocity
and variety of data, more efficient algorithms for clustering
large-scale complex data streams are needed. In this pa-
per, we present a parallel algorithm called PaStream, which
is based on advanced Graphics Processing Unit (GPU) and
follows the online-offline framework of CluStream. Our ap-
proach can achieve hundreds of times speedup on high-speed
and high-dimensional data streams compared with CluS-
tream. It can also discover clusters with arbitrary shapes
and handle outliers properly. The efficiency and scalabil-
ity of PaStream are demonstrated through comprehensive
experiments on synthetic and standard benchmark datasets
with various problem factors.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
1.5.3 [Clustering]: Algorithms

General Terms

Algorithms, Experimentation

Keywords

PaStream, data stream, clustering, GPU

1. INTRODUCTION

Data stream is a special form of data,which is very com-
mon in the real world. Unlike traditional static data stored
in databases or data warehouses, data stream is a dynamic,
continuous, massive, unbounded and rapid sequence of data.
Examples of data stream include multimedia data, trajec-
tory data, web click data and financial data[4, 23].
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Due to the characteristics of data stream, it is infeasible
to control the order in which elements arrive, nor is it pos-
sible to store all elements of a data stream. Consequently,
each new element in the data stream should be processed
instantly when it arrives and there is no enough time to
examine it more than once. Furthermore, the memory re-
quirement should be confined finitely, although new data
elements arrive continuously [16, 17].

Clustering is a popular technique of data mining, which
aims at discovering groups of similar data elements measured
by a given set of criteria [21]. Most traditional clustering al-
gorithms do not apply to data streams because of the one
pass constraint and storage limitation. Barbard [6] summa-
rized three basic requirements for clustering data streams:
compactness of representation, fast and incremental process-
ing of new data points, clear and fast identification of out-
liers. Aggarwal et al. [2] further claimed that the quality of
clusters should be assured when the data evolves consider-
ably over time and the capability of discovering clusters over
different portions of stream should also be maintained. A
number of stream clustering algorithms have been proposed,
which more or less meet the above requirements. However,
in recent years, people are faced with some new challenges
in data stream mining.

With the rise of big data, the volume and speed of data
streams are far beyond the capacity of most algorithms run-
ning on traditional computing architecture and infrastruc-
ture. For example, the vast amount of security monitoring
data in a city needs to be analyzed in real time so that
we can timely handle emergencies. So it is increasingly ur-
gent to explore new efficient data stream mining algorithms
based on more powerful hardware. The emerging hetero-
geneous platforms such as GPU, Hadoop, FPGA and DSP
bring us powerful tools to cope with massive and complex
big data. Among them, GPU is a lightweight, efficient and
promising platform for both personal supercomputing and
large scale supercomputing.

In this paper, we present PaStream, a parallel algorithm
framework for clustering very high speed and high dimen-
sional data streams with arbitrary cluster shapes based on
NVIDIA GPUs. PaStream follows the basic online-offline
framework of the well-known CluStream [2]. For the online
part, we propose a parallel mechanism to fully exploit the
computing power of GPUs, making PaStream hundreds of
times faster than CluStream on maintaining micro-clusters.
For the offline part, we extend one of the latest clustering al-
gorithms [25] so that it can be used to cluster micro-clusters
and find macro-clusters of arbitrary shapes and handle out-



liers properly. Furthermore, it is accelerated using GPUs
and can achieve dozens of times speedup. In summary,
the key contributions in PaStream include a new parallel
approach to online micro-cluster maintenance and a more
powerful method for offline macro-cluster creation.

The remainder of this paper is organized as follows. In
Section 2, we review existing work on data stream clustering,
and analyse their strengths and weaknesses. We also give
an introduction of the CUDA programming model based on
NVIDIA GPUs. An overall description of PaStream is given
in Section 3. We present the details of the GPU-based algo-
rithm for online micro-clustering in Section 4 and a powerful
new approach to offline macro-clustering in Section 5. Sec-
tion 6 reports the performance of our algorithm and com-
pares it with CluStream. The conclusion and future work of
this paper are presented in Section 7.

2. RELATED WORK

2.1 Data Stream Clustering

Zhang et al. [30, 31] proposed BIRCH to efficiently clus-
ter data in very large databases. The algorithm builds a
CF Tree to incrementally and dynamically cluster incoming
multi-dimensional metric data points. It can typically find
a good clustering pattern with a single scan of the data and
refine the quality further with a few additional scans.

Guha et al. [19, 18] investigated data stream clustering us-
ing K-median and proposed constant-factor approximation
algorithms for the K-median problem in the data stream
model with a single pass. Charikar et al. [11] gave an im-
proved streaming algorithm for the K-median problem with
an arbitrary distance function.

O’Callaghan et al. [24] proposed LOCALSEARCH and
STREAM algorithms for high-quality clustering. They are
also single-pass algorithms, but they evaluate the perfor-
mance by a combination of SSQ (Sum of Squared Distance)
and the number of centers used. In many applications, they
exhibit superior performance compared with algorithms such
as BIRCH.

Barbara and Chen [7] presented the Fractal Clustering
(FC) algorithm. The algorithm clusters points incrementally
and places them in certain clusters. After adding the point,
the change in the fractal dimension of the cluster should
be the least. It can effectively handle large data sets with
high-dimensionality and noise and is capable of recognizing
clusters of arbitrary shapes.

Babcock et al. [5] extended the STREAM algorithm with
sliding window and solved two important and related prob-
lems in the sliding window model: maintaining variance and
maintaining the K-median clustering.

Most algorithms above are one-pass algorithms and can
address the scalability issue of data stream clustering, but
they can hardly cope with fast evolving data streams. Ag-
garwal et al. [2] proposed the CluStream algorithm, a novel
framework for clustering fast evolving data streams. It di-
vides the clustering process into an online phase, which pe-
riodically stores detailed summary statistics, and an offline
phase, which only relies on these summary statistics. CluS-
tream provides desired functionality in discovering and ex-
ploring clusters over different portions of the stream, but it
can not discover clusters with arbitrary shapes. Afterwards
they proposed HPStream [3], which is a framework for pro-
jected clustering of high dimensional data streams.

In order to find clusters of arbitrary shapes in data streams,
a number of new algorithms were proposed, such as CDS-
Tree [27] based on an improved space partition, DenStream
[9] and D-Stream [12] based on density, ACluStream [34] and
MGDDS [33] based on grid and FCluStream [20] based on
fractal. Most of them followed the online-offline framework
of CluStream and incorporated new methods to find clusters
of arbitrary shapes.

Dedicated software tools and libraries have also been de-
veloped for data stream analysis. For example, Bifet et al.
[8] developed a software environment called MOA (Massive
Online Analysis)[22] for online learning from evolving data
streams. Zhang and Mueller [32] provided a C++ template
library for parallel data streaming applications based on the
streaming abstraction and GPUs.

2.2 GPU High Performance Computing

In recent years, GPUs have evolved into highly parallel,
multi-threaded, many-core processors and are widely used
for general purpose computing [14]. Compared with CPU
based distributed systems such as Hadoop, GPU based par-
allel computing systems are more lightweight, portable and
energy-efficient.

CUDA (Compute Unified Device Architecture) is a gen-
eral purpose parallel computing platform and programming
model, which was first introduced by NVIDIA in Novem-
ber 2006. CUDA makes it convenient to exploit the parallel
capabilities of NVIDIA GPUs to solve computationally in-
tensive problems much more efficiently. CUDA is designed
to support various programming languages and interfaces
such as CUDA C, OpneCL, Python [1] and FORTRAN.

Threads and kernels are the most important concepts in
CUDA. Threads are lightweight processes executed on inde-
pendent processors in GPU, and they are easy to be created
and synchronized. Kernels are functions that are executed
on the GPU in parallel by massive threads organized into
blocks and grids [13].

There are different types of memory in GPUs, which can
significantly affect the performance of programs. Each thread
has its private local memory called register, which is the
fastest type of memory. Each thread block features shared
memory accessible by all threads within a block, which can
be as fast as registers if accessed properly. All threads have
access to the same global memory, which is the largest and
slowest storage and the only memory visible to the CPU.
Constant memory and texture memory are two read-only
memory spaces accessible by all threads [29]. The global,
constant, and texture memory spaces are persistent across
kernel launches by the same application.

For devices of compute capability 3.5 or higher, a new
functionality of CUDA called dynamic parallelism is avail-
able, which enables a CUDA kernel to create new work di-
rectly from the GPU without the intervention of CPU, re-
ducing the need to transfer instructions and data between
host and device. This feature is very helpful for the paral-
lelization of algorithms and programming patterns that con-
tain recursion, irregular loop structure, or other constructs
that do not fit a flat, single-level of parallelism [14].

Cao and Zhou [10] made some attempts to accelerate data
stream clustering algorithms using GPUs. However, they
only focused on calculating and comparing distances in par-
allel without making necessary changes to the algorithm
flow. Due to the limitations of the algorithm architecture



and early GPU architectures, the GPU-based algorithms
were only about 7 times faster than the CPU-based algo-
rithms. Meanwhile, Roger et al. [26] presented an efficient
algorithm to remove unwanted elements from a stream of
outputs on the GPU and Verner et al. [28] proposed an ef-
ficient and practical algorithm for processing streams with
hard real-time constraints on heterogeneous systems.

3. PRELIMINARIES

Similar to CluStream [2], PaStream consists of an online
phase and an offline phase. The online phase groups data
points into micro-clusters and the offline phase aggregates
micro-clusters into macro-clusters. The schematic diagram
of our algorithm is illustrated in Fig. 1.
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Figure 1: Schematic diagram of PaStream

In our model, each micro-cluster can be regarded as a
hyper-sphere containing a set of d-dimensional data points.
Using the concept of clustering feature (C'F) [30], we can
represent the i-th micro-cluster containing data points X;,,
Xigy o+, Xi,, with time stamps Tj,, Tip, - -+, Ti,,, by (CF'27,
CF1%, CF2t, CF1t,n;), where CF2? and CF17? are d-dime-
nsional vectors and the other three are scalar values.

CF2? maintains the sum of squares of the data points,
whose j-th entry can be expressed as:

g

CF2 =Y (X,,)? (1)

k=1

CF1? maintains the sum of the data points, whose j-th
entry can be expressed as:

CF1i => Xy, (2)
k=1

CF2t; maintains the sum of squares of the time stamps,
which can be expressed as:

ng

CF2i=> T} ®3)
k=1

CF1t; maintains the sum of the time stamps, which can
be expressed as:

CF1{=) T (4)
k=

n; is the number of data points contained in the ¢-th micro-
cluster. In this way, a micro-cluster is represented by a (2 *
d+ 3) tuple instead of a (n; *d) tuple, reducing the memory
requirements significantly for a typical n; > 2.

From the five attributes above, we can get the centroid,
radius and relevance stamp of a micro-cluster. The j-th
entry of the centroid of the i-th micro-cluster is:

C d CFL, 5
t id, = —9

entroid;; . (5)
Radius reflects the dispersion of the data points in a

micro-cluster, which can be measured by the RMS (Root

Mean Square) deviation of the data points from the cen-

troid:

Radius; =
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In the micro-clustering phase, whether a data point can
be absorbed by a micro-cluster is determined by its maxi-
mal boundary. For a fast evolving data stream, it is difficult
to judge whether to absorb a data point since the radii of
micro-clusters may be unstable. If the criterion of absorbing
a data point relies on the radius of the nearest micro-cluster,
there may be many new micro-clusters created and many ex-
isting micro-clusters merged, which is much slower than the
absorbing process. To improve efficiency, we introduce an
expanding factor so that micro-clusters can expand gradu-
ally in each time.

Relevance stamp reflects the recency of the last m data
points of a micro-cluster, which is defined as the time of ar-
rival of the ——th percentile of the points. The time-stamps
of the data pomts are assumed to obey normal distribution,
the j-th entry of whose mean and standard deviation are:

CF1j, -
iy = — = (7
CF2t. CF1t \?
o = i ; (8)
7 g g

Actually, each micro-cluster can be regarded as a hyper-
sphere containing a set of d-dimensional data points. At
the very beginning of the algorithm, we need to establish
¢ micro-clusters by buffering InitNum data points on disk
and clustering them using a standard k-means algorithm.
Then, whenever a new data point arrives, the online phase
determines whether it is absorbed by a micro-cluster, or a
new micro-cluster is created after an old micro-cluster being
deleted or two closest micro-clusters being merged. We de-
fine the proportion of absorbed points as absorption rate. At
the same time, the micro-clusters are stored as snapshots fol-
lowing a pyramidal time pattern [2], so that for a given time
horizon, the offline phase can determine the micro-clusters
by using two related snapshots.

The efficiency of the online phase determines the speed of
processing and should be as simple as possible and easy to be
parallelized. It is obvious that online micro-clustering meth-
ods based on spherical clusters are much simpler than those
based on density grids [9, 12] or space partition [27, 34].
So, there is a need to investigate whether spherical micro-
clusters can meet the requirements of discovering macro-
clusters of arbitrary shapes in the offline phase. To show its
feasibility, we consider the following proposition.



PROPOSITION 1. A confined space of any shape can be ap-
proxzimated infinitely well by an arrangement of non-overlapping
spheres of the same dimension.

A typical circle packing problem! is to find an arrange-
ment in which the circles can fill as large a proportion of
the space as possible. Note that Proposition 1 describes a
similar problem where both the number of circles and the
radii of circles are flexible. So, it is feasible to approximate
macro-clusters of any shapes by many micro-clusters.

4. ONLINE MICRO-CLUSTERING

In this section, we focus on the key challenges in designing
the parallel framework for online micro-clustering in order
to handle fast and complex data streams efficiently.

Challenge 1. Transferring data points from host (CPU)
to device (GPU) on a one by one basis can be very time
consuming.

In a data stream, only a single data point arrives at any
given moment. Consequently, data points should be pro-
cessed one after another according to the order of arrival.
However, in order to conduct computing on the GPU, there
is a need to transfer data from CPU to GPU, which is a time
consuming operation compared with the computing power
of the GPU. If each data point is transferred to the GPU
upon its arrival, significant amount of time will be wasted
on the transferring operation. To reduce the average com-
munication cost of each data point, we create a buffer where
BufferSize data points can be stored in the CPU memory
for a short time and then transferred to device together.
Furthermore, as shown in Fig. 2, if the CPU is not able to
finish processing a data point before another point arrives,
the time lag will get larger over time. By contrast, all the
points in the buffer may be timely processed on the GPU.
The practicability and accuracy of our method will be veri-
fied by experiments in Section 6.

Challenge 2. The shapes of macro-clusters may be irreg-
ular or complex, and the number of them may vary tremen-
dously.

For macro-clusters of regular shapes, a small number of
micro-clusters can approximate them well enough and exces-
sive number of micro-clusters may waste memory and time.
However, for macro-clusters of complex shapes, many more
micro-clusters will be needed to approximate them. So, the
number of micro-clusters should be self-adaptive within the
limits of memory. We propose a scheme according to which
adjacent micro-clusters are merged based on their merging
factor instead of the number of unabsorbed points. The
merging factor is defined as Definition 1, which means any
micro-clusters closer than their merging factor will merge.

Definition 1. (Merging Factor) The merging factor Mg;;
of the i-th and the j-th micro-clusters is defined as a factor
of the sum of the radii of the two adjacent micro-clusters,
which can be expressed as:

MG;; = t(Radius; + Radius;) (9)

where t is a relaxation factor, typically between 0.5 and 2.

'In three dimensions, it is called sphere packing problem. In
higher dimensions, it is called hyper-sphere packing problem.
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Figure 2: Micro-clustering in serial and in parallel

Based on the discussion above, the parallel micro-clustering
framework based on GPU is shown as Algorithm 1 using
pseudo-code.

There are several computation-intensive parts in the algo-
rithm, which are very suitable for running on the GPU:

U] Obtaining the cluster label of each point in the initial-
ization part. For each iteration in the loop, there are
PointNum*ClusterNum Euclidean distances to com-
pute.

U] Finding the closest micro-clusters. For each pass, there
are BufferSize*q Euclidean distances to compute. The
minimum distance and its index are also needed.

] Finding very old micro-clusters. For each pass, there
are ¢ relevance stamps to compute. The minimum
distance and its index are also needed.

] Finding very adjacent micro-clusters. For each pass,

there are @ Euclidean distances to compute.

When finding the closest micro-clusters, each point can
be processed in a single block, and a specific number of
FEuclidean distances are computed by a single thread. For
very high dimensionality, we can take advantage of dynamic
parallelism to launch some child kernels to deal with each
dimension within the limits of hardware resource. Further-
more, the data needed by all the threads in the same block
can be placed in shared memory for faster access, such as
the centers of micro-clusters.

According to Amdahl’s Law, the maximum speedup that
can be achieved depends on the proportion of a program



Algorithm 1 GPU Based Online Micro-clustering

Input: Micro-clusters, imic; Buffered data points, data;
Time stamps, ¢
Output: New micro-clusters, omic
1: function MICROCLUSTERING (imic, data, t)
2: Get centers, CF2t, CF1t and point numbers of
imic
for i =0 — Buf ferSize — 1 in parallel do
for j = 0 — MicroCluster Num — 1 do
Calculate DistMat[i, j]
end for
end for
for : =0 — Buf ferSize — 1 do
MinDist < min(DistMat(i,:))
Minldx < argmin(DistMat(i,:))
Calculate MazxBoundary of the Minldx-th
micro-cluster
if MinDist <= MaxBoundary then Absorb-
Point(data(i), t(i))
13: end if
14: end for
15: for i =0 — Buf ferSize — 1 in parallel do

— =

._.
»

16: Calculate RelevStmpVec

17: if RelevStmpVec[i] <  threshold then
DeleteCluster (i)

18: end if

19: end for

20: for i =0 — Buf ferSize — 2 in parallel do

21: for j =i — BufferSize —1 do

22: Calculate Cluster DistM atli, j]

23: if ClusterDistMat[i,j] <= MG;; then
MergeClusters(i,j)

24: end if

25: end for

26: end for

27: for each remain point do

28: CreateNewClusters()

29: end for

30: return omic

31: end function

that can be made parallel and the number of processors [15].
Let us denote the number of processors using n and the
proportion using P, the theoretical speedup of the parallel
code over the serial code can be expressed as:

1

(1-P)+P/n

With the increase of the number of micro-clusters and
dimensionality, P gets larger, and more processors can be
used. As a result, (I-P) gets smaller while P/n almost re-
mains the same, resulting in higher S(n) value. In this way,
the algorithm is expected to feature good scalability with
regard to the number of micro-clusters and dimensionality.
However, the number of processors in a GPU may be up
to thousands but still limited, and the memory space in
a GPU is also limited. If the number of micro-clusters or
dimensionality is out of range, processors or memory space
will be short supply and the maximum speedup will increase
at a much lower speed and can not go beyond n. In this
case, more powerful computing devices are needed to break
through the limitation.

S(n) = (10)

In addition to the above factors, there are also some parts
that consume significant time but are very difficult to run in
parallel, such as the deletion of old clusters and the creation
of new clusters. This is because these parts involve object
creation and destruction, resulting in memory allocation and
release, a slow operation on the GPU. Consequently, for fast
evolving data streams, the speedup rate will drop with the
decrease of absorption rate. In this case, we propose a Dis-
tance Matriz, which maintains the Euclidean distance be-
tween each pair of micro-clusters. Each time a micro-cluster
is modified, created or deleted, the Distance Matrixz updates
the corresponding value in it, making it easier to find adja-
cent objects frequently.

S. OFFLINE MACRO-CLUSTERING

In this section, we describe how to cluster micro-clusters
into macro-clusters of arbitrary shapes and detect outliers
and present GPU accelerated version of the algorithm.

Rodriguez and Laio [25] proposed a powerful and concise
clustering algorithm in 2014, which is able to recognize a
large number of clusters with random noise regardless of
their shapes and dimensionality. The core idea is that clus-
ters are characterized by a higher density than their neigh-
bours and by a relatively large distance from points with
high densities. However, for the offline macro-clustering
phase in PaStream, the objects to be clustered are not com-
mon data points, but micro-clusters containing different num-
bers of data points, or weighted points. So, we need to make
some improvement to meet the new requirements.

There are two quantities to evaluate the i-th micro-cluster,
which are defined as follows:

Definition 2. (Local Density) The local density p; with a
Gaussian kernel is defined as the total Gaussian weight of
all the data points, which can be expressed as:

 di dij
pi=>_ J exp(——) (11)
]:1 C C

where n is the number of data points, and d;; is the Eu-
clidean distance between the i-th and the j-th micro-cluster,
and d. is a cutoff distance.

Definition 3. (Local Distance) The local distance t; is
defined as the minimum distance between the i-th micro-
cluster and any other micro-cluster with higher local density,
which can be expressed as:

Vi = ming p;>p, (dij) (12)

First of all, for all the cluster centers, we need to calculate
the Euclidean distances between each other, which is stored
in CenterDistMat. Afterwards, for each micro-cluster, we
calculate its local density and local distance, and then we
can plot the decision graph. The spiral dataset is plotted in
Fig. 3, and its decision graph is shown in Fig. 4.

Typically, the local distance of the local density maxima
is much larger than others, which makes it very easy to
distinguish the number and centers of the clusters.

The parallel macro-clustering framework based on GPU
is shown as Algorithm 2 using pseudo-code.

The tasks listed below are computation-intensive but very
convenient to parallelize:
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Figure 3: Spiral

Algorithm 2 GPU Based Offline Macro-clustering

Input: Micro-clusters, mic
Output: Macro-clusters, mac:

1: function MACROCLUSTERING(mic)
2 for : =0 — MicNum — 2 in parallel do
3 for j =i — MicNum —1 do
4 Calculate CenterDistMat][i, j]

5: end for

6: end for
7.

8

9

Get d. by sorting the Center Dist M at
for i =0 — MicNum — 1 in parallel do
: Calculate pli]
10: end for
11: for i =0 — MicNum — 1 in parallel do

12: Calculate [i]

13: end for

14: Plot Decision Graph and choose macro-cluster cen-
ters

15: for i =0 — MicNum — 1 in parallel do

16: Assign cluster labels

17: end for

18: return mac

19: end function

[] Calculating CenterDistMat. There are % Euclidean
distances to compute.

] Calculating local densities. There are w Gaussian
wights to compute.

] Calculating local distances. There are w

isons needed.

compar-

Ol Assigning cluster labels. There are n comparisons needed

to assign cluster labels for all the normal points. Be-
n(n—1)
2

sides, in order to distinguish outliers,
isons are needed.

compar-

Similarly, each task can be divided into many independent
parts to be executed by different blocks and threads. Within
the limits of processors and memories, we should try to use
more threads to simplify the task of a single thread. For
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Figure 4: Decision graph of spiral

sorting operations, Thrust offers several functions such as
thrust::sort and thrust::stable_sort to sort data or rearrange
data according to a given criterion very efficiently.

6. EXPERIMENTAL RESULTS

We conducted the experiments on a PC with Intel-i7 CPU
(3.40GHz, 4 cores / 8 threads) and NVIDIA GeForce GTX
750 GPU. The programming environment was Visual Studio
2012 with CUDA 6.5 running on Windows 8.1 (64bit).

Both synthetic datasets and real datasets were used in our
experiments. The synthetic datasets have a varying num-
ber of clusters ranging from 1 to 1000, and dimensionality
ranging from 2 to 100. The widely used real dataset in data
stream clustering KDD-CUP’99, which contains a set of Net-
work Intrusion Detection stream data, was also included in
experiments. This dataset contains 4898431 records, 5 clus-
ters and 42 attributes of which 34 are continuous and the
other 8 are discrete. In our experiments, all the 34 continu-
ous attributes were used and normalized to [0, 1].

6.1 Micro-Clustering Performance

We evaluated the online micro-clustering phase of PaS-
tream by its efficiency and quality compared with CluS-
tream [2], including the (single-threaded) CPU version and
the OpenMP version.

Fig. 5 shows the running time of PaStream compared with
the CPU version and OpenMP version CluStream with vary-
ing numbers of micro-clusters, as well as the speedup rates
relative to the CPU version CluStream. We can see that
the speedup rate of the OpenMP version CluStream var-
ied between 2 and 3.5 while the speedup rate of PaStream
kept growing with the increase of the number of micro-
clusters,which shows excellent scalability with regard to the
micro-cluster number. However, too many micro-clusters
will increase the running time significantly, so the number
of micro-clusters should be controlled within a certain scope.

Fig. 6 shows the running time of PaStream compared with
the CPU version and OpenMP version CluStream with vary-
ing dimensionality, as well as their speedup rates relative to
the CPU version CluStream. We can see that the speedup
rate of PaStream kept growing when the dimensionality in-
creased from 2 to 70 and the running time remained below
10 seconds, which shows excellent scalability with regard
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Figure 5: Running time and speedup rate comparison with varying numbers of micro-clusters (Dimensionality

= 2, Buffer Size = 1000, Absorption Rate = 95%)

to dimensionality. However, when the dimensionality ex-
ceeded 70, the speedup dropped a bit and stopped increas-
ing, which is caused by the limits of processor number and
memory space in the GPU. If the dimensionality is too high,
too much data will remain in the global memory of GPU,
reducing the computing speed.

Fig. 7 shows the running time of PaStream with vary-
ing buffer sizes, as well as their speedup rates relative to
the CPU version CluStream. We can see that the running
time of PaStream dropped significantly when the buffer size
increased from 1 to 10 and the speedup rate kept growing
with the increase of buffer size, which is consistent with the
analysis above. Obviously, the buffer size should be selected
rationally to keep the balance between speedup rate and
clustering quality. If the buffer size is too large (relative to
data stream speed), speedup rate will increase much slower
while clustering quality will drop significantly.

Fig. 8 shows the speedup rate of PaStream with vary-
ing absorption rates. We can see that the speedup rate
decreased for fast evolving data streams because of the fre-
quent deletion of old clusters and creation of new clusters,
but the algorithm still shows very high efficiency.

6.2 Macro-Clustering Performance

We evaluated the offline phase of PaStream by its effi-
ciency and quality compared with its CPU version.

Fig. 9 shows the 7 macro-clusters by clustering 1000 micro-
clusters. We can see that the macro-clusters were of high
quality and most outliers (marked as black dots) were cor-
rectly detected.

Fig. 10 shows the SSQ and clustering quality of macro-
clustering algorithm with varying buffer sizes based on the
KDD-CUP’99 dataset. We can see that the SSQ increased
very slowly with the increase of buffer size and the cluster-
ing quality was only affected slightly. In practice, the buffer
size can be chosen properly according to the speed and com-
plexity of data stream.

Fig. 11 shows the running time and speedup of the GPU
version macro-clustering algorithm compared with its CPU
version with varying numbers of micro-clusters. We can see
that the GPU version can reach up to more than one hun-
dred times faster for complex data streams.

Fig. 12 shows the running time and speedup of the GPU
version macro-clustering algorithm compared with its CPU

version with varying dimensionality. We can see that the
running time of the GPU version algorithm showed excellent
scalability with regard to dimensionality and the speedup
kept increasing within the permitted scope of hardware re-
sources.

7. CONCLUSION AND FUTURE WORK

In this paper, we present PaStream, a highly efficient par-
allel algorithm for clustering very fast and complex data
streams based on NVIDIA GPUs. With the help of a new
parallel framework and a series of innovative techniques, the
online micro-clustering phase of PaStream can achieve hun-
dreds of times speedup using inexpensive commodity GPUs
and features excellent scalability with regard to cluster num-
ber and dimensionality. By incorporating a local density
based algorithm into the macro-clustering phase, PaStream
can discover clusters with arbitrary shapes and handle out-
liers effectively. Meanwhile, the macro-clustering algorithm
can be accelerated by dozens of times using GPUs, without
compromising the clustering quality.

As to future work, it will be a tremendous advantage
if we can reduce the I/O overhead significantly and run
the algorithm totally on the GPU. Other advanced high-
performance computing platforms such as Mars, Spark etc.
can also be exploited to handle very fast and complex data
streams. It is equally important to consider some special
data types (e.g., spatio-temporal data) and more realistic
scenarios (e.g., uncertainties and spatial constraints).
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