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Abstract

The efficient extraction of model silhouettes is essential in many applications, such as non-photorealistic rendering,

backface culling, shadow computation, and computing swept volumes. For dynamically moving viewpoints, efficient

silhouette extraction is more important for system performance. Accordingly, this paper presents an incremental update

algorithm for computing a perspective silhouette sequence for a polyhedral model. The viewpoint is assumed to move

along a given trajectory qðtÞ, where t is the time parameter. As the preprocessing step, the time-intervals during which

each model edge is contained in the silhouette, defined as silhouette time-intervals, are computed using two major

computations: (i) intersecting qðtÞ with two planes and (ii) a number of dot products. If qðtÞ is a curve of degree n, there

are at most n þ 1 silhouette time-intervals for an individual edge. The silhouette time-intervals are then used to

determine the edges that should be added or deleted from the previous silhouette for each discrete viewpoint, thereby

providing an optimal way to compute a sequence of silhouettes. A search-based algorithm is also presented that extracts

the silhouette edges for each time point tj by searching the silhouette time-intervals containing tj . The performance of

the proposed algorithms is analyzed and experimental results are compared with those for the anchored cone algorithm

suggested by Sander et al. [In: Akeley K, editor. Siggraph 2000, Computer Graphics Proceedings. Annual Conference

Series. New York/Reading, MA/New York: ACM Press/ACM SIGGRAPH/Addison-Wesley/Longman; 2000.

p. 327–34.]
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1. Introduction

In computer graphics, researchers have been giving

intensive attention to the efficient silhouette computa-

tion, as silhouettes are essential for a wide range of

applications, such as non-photorealistic rendering,

shadow computation, and backface culling. Since the
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silhouette of a model is the most important visual cue

for recognizing its shape, even in the case of model

simplification, the silhouette of the original model is

used as the simplified model to look more realistic [1].

When silhouette extraction is used in computer

animation, the camera position is considered as the

viewpoint and camera path as the viewpoint trajectory.

The camera path is usually given as a curve, so the

corresponding viewpoint also moves along a curved

trajectory, which makes the efficiency of the silhouette

detection algorithm more critical than in the case of a

fixed viewpoint. Fast silhouette extraction is also
d.
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important in geometric modeling systems, where swept

volumes are often used to create objects. The silhouettes

of a model from a moving viewpoint can be used as a

starting point for the swept volume computation [2,3]. If

sequential silhouettes of a model are extracted in real-

time, the swept volume can then be computed in pseudo

real-time.

Isenberg et al. [4] classified silhouette detection

algorithms into object space algorithms [1,5–8], image

space algorithms [9,10], and hybrid algorithms [11–13].

Among them, object space algorithms have the advan-

tages of computing silhouettes in an analytic form,

obtaining exact silhouettes, and convenient stylization

or further processing of the silhouettes. While there are

many efficient algorithms that compute silhouettes from

a fixed viewpoint, there are relatively few algorithms

applicable to a moving viewpoint. Accordingly, this

paper presents a silhouette detection algorithm for a

polyhedral model from a moving viewpoint in object

space.

Depending on the viewpoint, there are two types of

silhouette: a perspective silhouette and parallel silhou-

ette. For the case of polyhedral models, both types of

silhouette can be defined as a set of model edges with a

special property. Let E be an edge of the polyhedral

model, and F1 and F2 be two facets sharing E. As such,

edge E is in a perspective silhouette from viewpoint q if

and only if the facets F1 and F2 are at the same side of

the plane containing viewpoint q and edge E. To

compute a parallel silhouette, a view direction is given,

which is an idealized viewpoint at an infinite distance

from the model. As such, edge E is contained in the

parallel silhouette with respect to the view direction q if

and only if the facets F1 and F2 are at the same side of

the plane containing edge E and parallel to vector q.

Usually, the computation of a parallel silhouette is easier

than that of a perspective silhouette. Consequently, this

paper considers the problems involved with computing

perspective silhouettes, although the proposed algo-

rithms can also be extended with minor modifications to

compute parallel silhouettes. Thus, in the remainder of

this paper, silhouette implies a perspective silhouette.

Let qðtÞ be the viewpoint trajectory, where t is the

parameter denoting time. To compute sequential silhou-

ettes from viewpoints on qðtÞ, one intuitive way is to

repeatedly apply a silhouette extraction algorithm from

a fixed viewpoint, while changing the position of the

viewpoint. However, this technique ignores the temporal

coherence in sequential silhouettes. Few differences can

be expected between silhouettes from two close view-

points qðtiÞ and qðti þ �Þ. If one of the model edges is

contained in the silhouette from viewpoint qðtiÞ, there is

a high possibility that the same edge will also be in the

silhouette from viewpoint qðti þ �Þ. Thus, when assum-

ing that the viewpoint moves with respect to time, a

particular model edge should be contained in a
silhouette for a time-interval rather than a set of discrete

time points.

Two efficient algorithms are presented to extract a

sequence of silhouettes for a polyhedral model from a

moving viewpoint: (i) an incremental update algorithm

and (ii) search-based algorithm. Both algorithms require

the preprocessing of computing time-intervals for an

edge to be included in the silhouette. Let the time-

intervals be denoted as silhouette time-intervals. It is also

assumed that the viewpoint moves along a trajectory

qðtÞ. Then, the end points of the silhouette time-intervals

can be computed for each edge E by intersecting qðtÞ

with the supporting planes of the two facets that share

E. When the degree of qðtÞ is n, the end points of the

time-intervals can be computed by solving two equa-

tions of degree n. For a model edge, the number of

silhouette time-intervals is at most n þ 1.

The incremental update algorithm is considered first.

When extracting f frames of silhouettes from a sequence

of viewpoints qðtjÞ, 0pjof , a data structure needs to be

constructed that manages the information on the

beginning and ending of edge inclusion in a silhouette

from each viewpoint qðtjÞ. By using this data structure, a

silhouette can then be extracted at each time point tj by

adding and deleting the appropriate edges from the

previous silhouette. When computing the silhouette

from viewpoint qðtjÞ, the edges in the previous silhouette

qðtj�1Þ are visited, then the appropriate edges are added

or deleted just once, making this an optimal algorithm.

In contrast to the above incremental update algo-

rithm, the search-based algorithm directly uses the set of

silhouette time-intervals with the corresponding edge

information, such as ðb; e;EÞ, where b and e are the

beginning and ending time points, respectively, for edge

E to be included in the silhouette. Then, the silhouette

from viewpoint qðtjÞ can be extracted by searching the

intervals containing tj . To implement the search-based

algorithm efficiently, an interval tree is used as the main

data structure.

When the length of the viewpoint trajectory exceeds a

threshold, the incremental update algorithm produces a

better performance than the search-based algorithm.

Thus, the current experiments are focused on showing

the performance of the incremental update algorithm

compared to previous work. The contributions of the

proposed incremental update algorithm are summarized

as follows:
�
 It is a novel algorithm that defines and uses silhouette

time-intervals for computing the sequence of object

space silhouettes. Based on preprocessed silhouette time-

intervals, the incremental update algorithm can extract a

silhouette sequence in an optimal way. Experiments

show that the performance of the incremental update

algorithm is better than that in the previous work.
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�
 Various efficient silhouette extraction algorithms

already exist, such as [1,8], yet they require heuristics

that make the implementation difficult and take a

relatively long time. Thus, when compared to such

algorithms, the incremental update algorithm is

analytic, plus it is simple and easy to implement.
�
 The algorithms in [6,7] do not require heuristics and

are easy to implement. However, these algorithms do

not always guarantee the extraction of exact silhou-

ettes from a moving viewpoint, as they require the

selection of appropriate starting points to trace the

silhouette for each frame. Thus, when compared to

these algorithms, the incremental update algorithm

always provides accurate whole silhouettes.

The limitations of the proposed incremental update

algorithm are mainly related to its preprocessing

requirement:
�
 The algorithm requires the computation of silhouette

time-intervals whenever a new viewpoint trajectory is

given.
�
 The algorithm needs memory space in proportion to

the number of silhouette time-intervals.

The remainder of this paper is organized as follows.

Section 2 presents related work, then the computation of

silhouette time-intervals is explained in Section 3.

Section 4 outlines the proposed search-based algorithm

with two data structures: an array and interval tree,

while Section 5 introduces the proposed incremental

update algorithm. The performance of both algorithms

is analyzed in Section 6, plus the proposed incremental

update algorithm is experimentally compared with the

anchored cone algorithm proposed by Sander et al. [1] in

Section 7. Some final conclusions and areas for future

work are given in Section 8.
2. Related work

The silhouette extraction problem has already been

investigated using many different approaches. Thus,

according to the classification of Isenberg et al. [4], this

paper discusses the trade-offs between existing silhouette

detection algorithms based on the following categories:

object space, image space, and hybrid algorithms.

Image space algorithms [9,10,13] extract silhouettes

from a geometric buffer, such as a depth buffer or

normal buffer, by detecting the discontinuities in the

image. A depth buffer uses pixel intensities to represent

the depth information on an object from a particular

viewpoint. Thus, by detecting the edges in a depth buffer

image, C0 discontinuities in a scene can be detected.

Similarly, a normal buffer contains the normal informa-
tion on an object. Hertzmann [10] suggested an

approach to obtain C0,C1 discontinuities and silhouettes

in a scene by combining the depth map and normal map.

Meanwhile, hybrid algorithms modify the faces of the

model in the object space, and render them using a z-

buffer. The extracted silhouette is then shown in the

image space. For example, Raskar and Cohen [12]

suggested a method for rendering image precision

silhouettes by drawing a frontface polygon over an

enlarged backface polygon, while Gooch et al. [11]

computed silhouettes in a similar way, and applied it to

technical illustration in manufacturing.

Image space algorithms and hybrid algorithms use the

benefits provided by existing graphic hardware, so they

have advantages as regards generating silhouettes in

real-time or at an interactive frame rate. The visibility of

the silhouette is solved when the silhouette is rendered.

However, the resulting silhouettes do not contain

geometric properties, so it is difficult to stylize or apply

further processing to them. Such silhouettes also have a

low precision and suffer from an aliasing problem.

In contrast, object space algorithms [1,6–8,10] have

advantages as regards their analytic description, the

production of exact silhouettes, and convenient styliza-

tion or further processing of the silhouettes. However,

object space algorithms cannot solve the visibility-

culling problem while the silhouettes are computed.

Markosian et al. [7] used a randomized algorithm for

the silhouette detection problem, where the initial

silhouette edge is identified by examining only a small

subset of the edges in the model. The connected

silhouette edges are then efficiently extracted from the

initial edge, yet there is no guarantee that every

connected component of the silhouette can be extracted.

Meanwhile, Benichou and Elber [5] computed parallel

silhouettes of polyhedral models using a Gaussian

sphere, where the normal vectors for the edges of the

model and the view direction are mapped onto a

Gaussian sphere, at which point they become various

great arcs and one great circle, respectively. This data is

then projected from the Gaussian sphere onto a

circumscribing cube, where the arcs and circle became

straightlines, and the silhouette curve is finally computed

by intersecting the lines.

Hertzmann [10] considered a polyhedral mesh as an

approximation of a surface. After computing the normal

vector Ni at each surface point pi, a normalized dot

product of Ni and the viewing direction (q� pi), where q

is the given viewpoint, is computed. For edges where the

dot product results for the end points have different

signs, the silhouette point on the edge with a potential

zero dot product value is selected. The whole silhouette

curve is then derived by connecting the silhouette points.

Using the above silhouette finding technique, Hertz-

mann and Zorin [6] presented algorithms for the line-art

rendering of smooth surfaces.



ARTICLE IN PRESS

E

P1F1
F2

p1

p2

K.-J. Kim, N. Baek / Computers & Graphics 29 (2005) 393–402396
Gu et al. [14] rendered a polyhedral mesh with a

coarse mesh and exact silhouette. In this case, the use of

a coarse mesh produces an efficient rendering, while the

use of an exact silhouette makes the coarse mesh look

realistic. The viewpoint is assumed to move on a

circumscribing sphere of the object. For each sampled

viewpoint on the sphere, the silhouettes are computed in

a preprocessing step. Then, for an arbitrary viewpoint

on the sphere, the silhouette is computed by interpolat-

ing the preprocessed silhouettes from the neighboring

viewpoints.

Sander et al. [1] hierarchically constructed search trees

to speed up the silhouette detection. Each node in the

tree contains two anchored cones for one face cluster.

The two anchored cones are constructed to contain

viewpoint positions that make the corresponding face

cluster either front facing or back facing, respectively.

As a result, the efficiency of the silhouette computation

is improved by removing a large portion of the edges

that are definitely not in the silhouette.

Although most previous research has focused on

computing silhouettes from a fixed viewpoint, there are

also several approaches that compute a sequence of

silhouettes based on a temporal coherence. For example,

Pop et al. [8] proposed several on-line silhouette finding

applications, where, for a sequence of different view-

points, rather than computing the complete silhouette

each time, the changes in the silhouette of a polyhedral

model are computed between consecutive frames. The

normal vectors for the edges in the model are

transformed into dual line segments, while the viewpoint

is transformed to a dual plane. The silhouette edges then

correspond to the dual line segments that intersect with

the dual plane. Yet, the problem with this approach is

that it is difficult to find such dual line segments

efficiently. Thus, the problem was reduced to finding the

end points of the line segments included in a double-

wedge of two dual planes, corresponding to two close

viewpoints, using heuristics. This algorithm is actually

complementary to the algorithm proposed in a later

section.

P2

E
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q(t1)

q(t2)
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N1
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Fig. 1. Perspective silhouette edge E.
3. Computation of silhouette time-intervals

This section presents the derivation of equations to

compute the silhouette time-intervals for an edge E in a

model. It is assumed that E is shared by two facets F1

and F2, and the end vertices of E are p1 and p2. The

outward normal vectors of F1 and F2 are denoted as N1

and N2, respectively. It is also assumed that qðtÞ,

tminptptmax, is the trajectory of a moving viewpoint.

Edge E is part of the silhouette from viewpoint qðtÞ, if

and only if ððqðtÞ � p1Þ �N1ÞððqðtÞ � p1Þ �N2Þp0.

For an arbitrary plane P, the half-space with respect

to P, which contains the normal vector of P, is denoted
as Pþ, while the other half-space is denoted as P�. Then,

Pþ and P� can be represented as Pþ ¼ fqjðq� pÞ �

NX0g and P� ¼ fqjðq� pÞ �Np0g, respectively,

where N is the normal vector of P and p is an arbitrary

point on P. Based on this property, the regions in

the three-dimensional (3-D) space can be classified

according to whether they contain viewpoints that

include E in a silhouette. In Fig. 1(a), there are two

faces F1 and F2 that share edge E. When the supp-

orting planes of F1 and F2 are denoted as P1 and P2,

respectively, the 3-D space can be classified into

four regions: (i) region Pþ
1 \ Pþ

2 , (ii) region Pþ
1 \ P�

2 ,

(iii) region P�
1 \ Pþ

2 , and (iv) region P�
1 \ P�

2 . The

necessary and sufficient condition for E to be included

in a perspective silhouette from viewpoint q is that

q is either in Pþ
1 \ P�

2 or P�
1 \ Pþ

2 . Fig. 1(b) is a view

of the faces in Fig. 1(a) from an infinite distance

along the line containing E. The shaded area corre-

sponds to two regions: region Pþ
1 \ P�

2 and region

P�
1 \ Pþ

2 . In Fig. 1(b), the viewpoint trajectory qðtÞ

intersects with two planes P1 and P2 at qðtd Þ,

d ¼ 0; 1; 2; 3. In this case, the necessary and

sufficient condition for edge E to be included in the

perspective silhouette is that the viewpoint is on the

curve segments qðtÞ for t0ptpt1 or t2ptpt3, where

those segments are included in region Pþ
1 \ P�

2 . The

silhouette time intervals for E are the intervals ðt0; t1Þ
and ðt2; t3Þ.
The end points of the silhouette time-intervals for E

are computed by intersecting qðtÞ with P1 and P2, and
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are calculated as the values of t as follows:

ftjðqðtÞ � p1Þ �N1 ¼ 0 [ ðqðtÞ � p1Þ �N2 ¼ 0

for tminptptmax and t 2 Rg. ð1Þ

If the values of t in Eq. (1) are sorted in an ascending

order and the sequence of tj , j ¼ 0; 1; 2; . . . ; n, is derived,
then the necessary and sufficient condition for edge E to

be contained in the silhouette from viewpoint qðtÞ,

tjptptjþ1, is as follows:

ððqðtmÞ � p1Þ �N1ÞððqðtmÞ � p2Þ �N2Þp0,

where tm is an arbitrary value between tj and tjþ1.

When the degree of qðtÞ is n, the maximum number of

silhouette time-intervals between tmin and tmax for each

edge is n þ 1, because the number of intersections

between the two planes and qðtÞ is at most 2n. For

efficient computation of the intersection, it is assumed

that qðtÞ is given as a sequence of quadratic curves.
4. Search-based algorithm

This section presents a search-based algorithm for

extracting a sequence of silhouettes from a moving

viewpoint. Assume the extraction of silhouettes for f

frames from a moving viewpoint on qðtÞ, tminptptmax, is

considered. The silhouettes are then supposed to be

computed from viewpoints qðtjÞ, where tj 2 ½tmin; tmax�

and j ¼ 0; 1; 2; . . . ; f . For the polyhedral model P, the

set of silhouette edges for P from viewpoint qðtjÞ is

denoted as SðjÞ, where j is the frame identification

number. The algorithm for computing SðjÞ can be

summarized as follows:

Algorithm: Search_Based_Silhouette_Extraction.

Input: Polyhedral model P and viewpoint trajectory

qðtÞ, tminptptmax.

Output: Sequence of silhouettes SðjÞ,

j ¼ 0; 1; 2; . . . ; f .
Step 1: For each edge E of P, compute the

silhouette time-intervals for E, then add the

interval and edge information to set I.

Step 2: Construct an array (or interval tree) for

the silhouette time-intervals in I.

Step 3: For each time point tj ,

(a) Search the array (or interval tree) to find

intervals containing tj , then add the corre-

sponding edges to set Sð jÞ.

(b) Draw or proceed on Sð jÞ.
Assume that set I contains k intervals: I ¼

flij1pipkg and each silhouette time-interval li consists
of three fields: li ¼ ðbi; ei;EiÞ, where bi and ei are the

time-interval endpoints and bipei. Ei is the edge that

corresponds to the time-interval. Since the efficiency of a

search-based algorithm depends on the search time for

the time-intervals, two different data structures are

introduced for storing the time-intervals: an array and

interval tree. Theoretically, an interval tree is known as

the optimal data structure for finding intervals contain-

ing a specific value. However, experimental results show

that an array has a better performance than an interval

tree when considering the preprocessing time.

4.1. Interval array

The intervals in set I are stored in an array structure

with three fields for bi, ei, and Ei. Given the value

tj , a sequential search of li such that biptjpei is applied

to I .
4.2. Interval tree

An interval tree [15,16] is a useful data structure when

searching for intervals containing a specific value. Thus,

for the intervals in set I , a static interval tree is

constructed as follows: Let ðbi; ei;EiÞ denote the silhou-

ette time-interval ðbi; eiÞ for edge Ei, and

ðt1; t2; t3; . . . ; t2kÞ be the sorted sequence for the end-

points of the k time-intervals fðbi; eiÞj1pipkg. Then, the

interval tree T for set I is constructed as follows:
(1)
 The root w of T has a discriminant dðwÞ ¼ ðtk þ

tkþ1Þ=2 and points to two (secondary) lists LðwÞ and

RðwÞ, LðwÞ and RðwÞ contain the sorted lists of the

left and right end points, respectively, of the

members of I containing dðwÞ, and LðwÞ and RðwÞ

are sorted in ascending and descending order,

respectively.
(2)
 The left subtree of w is the interval tree for sequence

ðt1; t2; . . . ; tkÞ and the subset IL � I of the intervals

whose right extreme is less than dðwÞ. The right

subtree of w is defined analogously.
To construct secondary lists for nodes w, LðwÞ and

RðwÞ, an AVL tree was used for an efficient search. Only

a static interval tree is needed, i.e. there is no need to

insert or delete the nodes from the interval tree

dynamically. A static interval tree for a collection of k

intervals uses OðkÞ space, since there are 4k � 1 nodes in

the primary structure and at most 2k values to be stored

in the secondary lists. The skeletal primary structure is

constructed in Oðk log kÞ time, since the endpoints of k

time-intervals have to be sorted. When searching for an

interval containing a specific value, the time complexity

involved in searching the primary structure is Oðlog kÞ,

plus additional time is needed to visit the secondary lists.
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5. Incremental update algorithm

The basic idea of the proposed incremental update

algorithm is to determine when an edge begins or ceases

to be a silhouette edge in the preprocessing step. The

preprocessing of silhouette time-interval information

can facilitate the extraction of sequential silhouettes, and

data structures are used to keep the list of edges that

need to be added or deleted from the silhouette for each

time point tj , 0pjpf : Add½ j� and Delete½ j�.

struct EdgeList f

int Eid;

struct EdgeList *link;

} *Add [NUM_FRAME], *Delete [NUM_FRAME];

Fig. 2 presents an example of constructing Add and

Delete for four edges Ei, 0pip3. The horizontal axis

represents the values of the time parameter t, while the

horizontal thick line segments are the silhouette time-

intervals for each edge. For example, edge E0 has two

silhouette time-intervals l0 and l1. During the contin-

uous time intervals l0 and l1, E0 is included in the

silhouette. Thus, since E0 is included in the silhouette for

four sequential time points t0, t1, t2, and t3, E0 is

attached to Add½0� and Delete½3�. Meanwhile, in the case

of E1, l3 does not contain any time points, thus, only

two intervals l2 and l4 contribute to constructing Add

and Delete. Therefore, E1 is attached to Add½1�,

Delete½2�, Add½4�, and Delete½4�.

After constructing Add and Delete, the silhouettes can

be incrementally updated for each time point using the

following data structure of edges:

struct Edge f

int vertex[2]; /* the adjacent vertices of the edge */

bool isSilhouette; /* notifying whether this edge is

included in the silhouette */

int link; /* containing the index of the next silhouette

edge */

} E[NUM_EDGES];

For each time point tj , the edge list in Add½ j� is added

to Sð jÞ by updating the isSilhouette and link fields for
t0 t1 t2 t3 t4

E0

E1

E2

E3

l0 l1

l2 l3

l5

l6

Fig. 2. Silhouette t
each edge. For each edge E½i� in Add½ j�, E½i�:isSilhouette

is updated as TRUE, while E½i�:link is updated to point

to the next silhouette edge. Meanwhile, the edges in

Delete½ j � 1�, i.e. the edges with a isSilhouette field

marked FALSE after computing Sð j � 1Þ, are deleted

while Sð jÞ is extracted. For each time point tj , the

silhouette is extracted by visiting the edges in Add½ j�,

Delete½ j�, and the previous silhouette Sð j � 1Þ only

once. The details of the incremental update algorithm

are presented in Appendix A.
6. Performance analysis

The time and space complexity of the brute force

algorithm and proposed algorithms are presented in

Table 1, where N is the number of edges in P, k is the

number of silhouette time-intervals, M is the average

number of edges in the silhouette, and f is the number of

frames.

The search-based algorithm using an interval tree has

a better time complexity than that using an interval

array, yet the preprocessing for the interval tree took

considerably longer than that for the interval array.

When the length of the viewpoint trajectory exceeded a

threshold, the incremental update algorithm produced a

better performance than the search-based algorithms.
7. Experimental results

This section compares three algorithms: the proposed

incremental update algorithm, an anchored cone algo-

rithm [1], and brute force algorithm. The incremental

update algorithm was implemented using C program-

ming and an OpenGL library, then the three algorithms

were tested based on computing a sequence of perspec-

tive silhouettes for four polyhedral models: bunny, hand,

gargoyle, and parasaur (see Fig. 4) in a PC with a

Pentium 4 (2.80GHz) processor and 1GB RAM.

The models were normalized within a bounding box

with a maximum edge length of 200, and the viewpoint

trajectory qðtÞ, which was composed so that the model
Add [1] : E1,E3
Add [2] : E2
Add [3] :

Add [0] : E0

Add [4] : E1

Delete [0] :
Delete [1] :
Delete [2] : E1
Delete [3] : E0,E2
Delete [4] : E1,E3

t

l4

ime-intervals.
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Table 1

The performance analysis

Algorithm Space complexity Time complexity

Preprocessing Silhouette extraction

Brute force OðNÞ Not required Oð fNÞ

Interval array OðN þ kÞ OðNÞ Oð fkÞ

Interval tree OðN þ kÞ OðN þ k log2 kÞ Oð f log2 kÞ

Incremental update OðN þ kÞ OðNÞ Oð fM þ kÞ

Fig. 3. Bunny model with viewpoint trajectory qðtÞ.
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edges would be included in at least one silhouette, was

qðtÞ ¼ ðt; 0:5;�0:005t2 þ 500Þ, �350ptp400, with dif-

ferent numbers of frames. Fig. 3 shows the path qðtÞ with

one of the test models, bunny. The viewpoint trajectory

used was a quadratic curve, as when the viewpoint

trajectory is a curve with a degree higher than two, it can

be approximated with a sequence of quadratic curves

based on applying a slightly modified version of

Chaikin’s algorithm [17]. The preprocessing was then

performed by intersecting the set of quadratic curves

with the model faces Fig. 4.

Table 2 shows the features of the test models,

including the number of model edges, average number

of silhouette edges for each frame, and percentage of

silhouette edges over the total number of model edges.

With the proposed incremental update algorithm,

preprocessing is required with every new viewpoint

trajectory, thus Table 3 shows the preprocessing time

required when qðtÞ was given as the viewpoint trajectory

for each model. In contrast, the brute force algorithm
simply tests whether or not each model edge is contained

in the silhouette from each viewpoint, so no preproces-

sing is involved. Meanwhile, although the anchored cone

algorithm requires at least several minutes of preproces-

sing to construct the search tree structure, once this

preprocessing is completed, it does not need to be

repeated, thus no preprocessing time was considered for

the experiments.

The frame rate for the incremental update algorithm,

including its preprocessing time, was compared with that

for the anchored cone algorithm, excluding its prepro-

cessing time. The graphs in Fig. 5 show the frame rate

for the three algorithms for the viewpoint trajectory qðtÞ

with different numbers of frames for the four models.

The average step size of the viewpoint movement for

1000, 2000, 3000, 4000, and 5000 frames was 1.66, 0.83,

0.55, 0.41, and 0.33, respectively. The number of frames

was found to be inversely proportional to the step size of

the viewpoint movement. The frame rate was the

number of frames for which a silhouette could be

computed within one second.

The frame rates for the proposed algorithms were also

measured, excluding the rendering time. The frame rates

labeled (c) and (p+c) in Fig. 5 represent just the

computation time for the silhouettes and the combined

preprocessing and computation time, respectively. Even

though the proposed incremental update algorithm

required the preprocessing steps of computing the

silhouette time-intervals and constructing the Add and

Delete structures, when the step size of the viewpoint

movement was large, i.e. when the number of frames

was 1000, the incremental update algorithm worked

9.37–15.03 times faster than the brute force algorithm

and 2.67–4.85 times faster than the anchored cone

algorithm. Also, when the step size of the viewpoint

movement was smaller, the performance of the incre-

mental update algorithm improved. For example, when

the silhouettes for 5000 frames were extracted, the

experimental results showed that the incremental update

algorithm worked 34.45–41.13 times faster than the

brute force algorithm and 8.55–13.63 times faster than

the anchored cone algorithm.
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Table 2

Model features

Model Number of edges Average number of

silhouette edges

bunny 104,445 2942 (2.82%)

hand 91,284 2087 (2.29%)

gargoyle 25,083 1048 (4.18%)

parasaur 11,531 515 (4.47%)

Table 3

Preprocessing time for incremental update algorithm

Number of

frames

bunny (ms) hand (ms) gargoyle

(ms)

parasaur

(ms)

1000 203.00 177.00 52.00 36.67

2000 203.00 177.33 62.67 36.33

3000 213.00 187.33 62.67 36.33

4000 213.67 182.33 62.67 31.33

5000 208.00 182.00 62.67 42.00

Fig. 4. Models: (a) bunny, (b) hand, (c) gargoyle and (d) parasaur.
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8. Conclusions

Algorithms were presented for the fast extraction of a

sequence of perspective silhouettes for a polyhedral

model from a moving viewpoint. The viewpoint is

assumed to move along a trajectory qðtÞ that is a space

curve of the time parameter t. As such, time-intervals are

determined when each edge of the model is included in

the silhouette based on two major computations: (i)

intersecting qðtÞ with two planes and (ii) a number of dot

products. If qðtÞ is a curve of degree n, then there are at

most n þ 1 time-intervals for an edge to be included in

the silhouette. Thus, two algorithms are proposed: a

search-based algorithm and incremental update algo-

rithm, which extract the silhouettes using the silhouette

time-interval information.

The incremental update algorithm is an optimal

solution for sequential silhouette extraction, and experi-

ments demonstrated that the performance of the

incremental update algorithm was better than that

of other algorithms. With minor modifications

the proposed algorithm can also be extended to
compute parallel silhouettes. Future work includes

the efficient computation of silhouette sequences for

moving polyhedral models and solving the visibility

problem.
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Appendix A. Code of incremental update algorithm
void DrawIncUpdateSilhouette (int j)

// Input: j, which is a frame identification number

// Output: Sð jÞ, which is a pointer to the silhouette edge

list of frame j

f

in
t SilPtr ¼ IntNULL, SilPrePtr ¼ IntNULL;

// IntNULL was defined as �1
s
truct EdgeList *ptr ¼ NULL, *preptr ¼ NULL;
S
( j) ¼ S( j-1);
/
/ Attach the edge list pointed by Add[j] to Sð jÞ
p
tr ¼ Add[j];
if
 (ptr ! ¼ NULL) f
if
 ( j ¼¼ 0) SðjÞ ¼ ptr!Eid;
if
 (SilEnd ! ¼ IntNULL) E[SilEnd].link ¼ ptr!Eid;
w
hile (ptr ! ¼ NULL) f
E
[ptr!Eid].isSilhouette ¼ TRUE;
if
 (ptr!link ! ¼ NULL) E[ptr!Eid].link ¼

(ptr!link)!Eid;
p
reptr ¼ ptr;
p
tr ¼ ptr!link;
g

SilEnd ¼ preptr!Eid;

g

E
[SilEnd].link ¼ IntNULL;
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Fig. 5. Comparison of three algorithms.

K.-J. Kim, N. Baek / Computers & Graphics 29 (2005) 393–402 401
//D
raw silhouette
 edges and remove non-silhouette
edg
es from Sð jÞ
S
ilPtr ¼ Sð jÞ;
w
hile (E[SilPtr].isSilhouette ¼¼ FALSE && SilPtr ! ¼

IntNULL) SilPtr ¼ E[SilPtr].link;
if
 (SilPtr ! ¼ IntNULL) Sð jÞ ¼ SilPtr;
S
ilPrePtr ¼ SilPtr;
w
hile (SilPtr ! ¼ IntNULL) f
if
 (E[SilPtr].isSilhouette ¼¼ FALSE) f
w
hile (SilPtr ! ¼ IntNULL && E[SilPtr].isSilhouette

¼¼ FALSE)
S
ilPtr ¼ E[SilPtr].link;
E
[SilPrePtr].link ¼ SilPtr;
g

if
 (E[SilPtr].isSilhouette ¼¼ TRUE)

DrawOneEdge(SilPtr); // Draw one silhouette edge
if
 (SilPtr ¼¼ IntNULL) break;
S
ilPrePtr ¼ SilPtr;
S
ilPtr ¼ E[SilPtr].link;
g

S
ilEnd ¼ SilPrePtr;
/
/Set the isSilhouette field of the edges ofSð jÞ those who

are in Delete[ j] as FALSE
p
tr ¼ Delete[j];
w
hile (ptr ! ¼ NULL) f
E
[ptr!Eid].isSilhouette ¼ FALSE;
p
tr ¼ ptr!link;
g

r
eturn Sð jÞ;

g
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