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Abstract World Wide Web is transforming itself into the largest information re-
source making the process of information extraction (IE) from Web an important
and challenging problem. In this paper, we present an automated IE system that
is domain independent and that can automatically transform a given Web page
into a semi-structured hierarchical document using presentation regularities. The
resulting documents are weakly annotated in the sense that they might contain
many incorrect annotations and missing labels. We also describe how to improve the
quality of weakly annotated data by using domain knowledge in terms of a statistical
domain model. We demonstrate that such system can recover from ambiguities in the
presentation and boost the overall accuracy of a base information extractor by up to
20%. Our experimental evaluations with TAP data, computer science department
Web sites, and RoadRunner document sets indicate that our algorithms can scale up
to very large data sets.
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1 Introduction

The vast amount of data on the World Wide Web poses many challenges in devising
effective methodologies to search, access and integrate information. Even though
the current Web represents a large collection of heterogeneous sources, their data
presentation and domain specific metadata adheres to certain regularities.

In this paper we present automated algorithms for gathering metadata and their
instances from collections of domain specific and attribute rich Web pages by using
the presentation regularities that are present within the Web pages and by utilizing
domain knowledge. Our system works without the requirements that (a) the Web
pages need to share a similar presentation template or (b) that they need to share
the same set of metadata among each other. Hence, we cannot readily use previously
developed wrapper induction techniques [4, 16, 18] which require that the item pages
should be template driven or the ontology driven extraction techniques [8, 10, 11]
which require that an ontology of concepts, relationships and their value types is
provided apriori in order to find matching information.

Our system proceeds in three phases. In the first phase, we use the presentation
regularities that are present in the Web pages to organize the content in a hierarchical
XML-like structure and annotate the labels in the Web page with their semantic
roles. In the second phase, we build a statistical domain model from the hierarchical
content structures, exploiting the domain knowledge. In the third phase, we utilize
the statistical domain model to improve the semantic role annotations of the labels
within each of the Web pages.

Unlike plain text documents, Web pages organize and present their content using
hierarchies of HTML structures [23]. Different logical blocks of content, such as
taxonomies, navigation aids, headers and footers as well as various other information
blocks such as indexes, are usually presented using different HTML structures.
Furthermore, whenever an information block contains a list of items, these items
themselves are presented consecutively and regularly using repeating similar HTML
substructures. In this paper, we present an information extraction (IE) system,
called Semantic Partitioner that uses these presentation regularities to transform a
given Web page into a semi-structured document, with the labels in the Web page
annotated with their semantic roles. However the labels may be weakly annotated as
the automated IE system is prone to make certain mistakes due to the ambiguity in
presentation.

In addition to the presentation regularities present in the Web, there are also
regularities in the metadata that can be exposed to refine the structured information
extracted from the automated systems. Sometimes the presentation regularities
alone are not sufficient to automatically structure the content in a Web page and
we need to utilize the domain knowledge in order to organize the content. To
obtain such domain knowledge we combine the weakly annotated data extracted
from individual Web pages by automated IE systems into a statistical domain
model. The performance of IE systems can be enhanced by the use of such domain
knowledge. The extracted knowledge is probabilistic because the extracted data may
be unreliable and it may change depending upon the context. In this paper, we
present how to extract such domain knowledge in terms of a statistical domain model
from the weakly annotated data and how to utilize the domain knowledge to improve
the performance of automated IE systems.
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The key contributions and innovations of our system can be summarized as
follows:

– A domain independent IE system that organizes the content in a Web page into
a weakly annotated semi-structured document using presentation regularities.

– A statistical domain model that is built from the weakly annotated data obtained
from an automated IE system.

– A domain model based IE system that uses domain knowledge and presentation
regularities to further improve the annotations made by the statistical domain
model.

We currently do not align the extracted metadata or instance information with any
available ontology or knowledge structure. Various existing approaches developed
for mapping and merging ontologies [20] can be utilized for this purpose. We also
currently do not process plain text inside the Web pages, i.e., any text fragments that
contain modal verbs. However, we hypothesize that the metadata extracted from the
attribute rich segments of the Web pages can be used to extract information from
text with the help of natural language processing techniques [15].

The rest of the paper is organized as follows. Section 2 presents the background
material about information extraction and tagging Web pages. Section 3 presents the
Semantic Partitioner system that performs IE on Web pages using the presentation
regularities. In the following Section 4, we explain how to utilize the hierarchical
structures obtained by Semantic Partitioner and build a statistical domain model.
Next, we describe how to improve the semantic role annotations by using the domain
model in Section 5. Section 6 presents complexity analysis of our algorithms and
Section 7 briefly discusses the related work. We provide the experimental results
with various data sets in Section 8 and conclude the paper in Section 9 with some
future directions of our work.

2 Background on information extraction

Information extraction is the process of extracting pertinent or relevant information
from text, databases, semi-structured and multimedia documents in a structured
format. An information extraction system performs this task either automatically or
with human intervention by using techniques from various areas like machine learn-
ing, data mining, pattern mining, and grammar induction. Since, the World Wide
Web is transforming itself into the largest information source ever available, the
process of information extraction from the Web is both challenging and interesting
problem, which is the primary focus of this paper.

An example of an information extraction task is shown in Figure 1. The example
shows the fragment of a faculty home page (Figure 1a), and the structured infor-
mation extracted from this Web page (Figure 1b). The Web page contains three
publications, with each publication having at most five attributes: title, authors,
conference, address, and presentation. These attributes can also be referred to as
metadata as they describe the data. The Web page does not contain the metadata
labels themselves, but it contains values from these metadata attributes. In addition,
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Figure 1 Example of an information extraction task.

each of the publication record may not contain values for all the five attributes and
some of the values may be missing. The goal of the information extraction system in
this task is to be able to extract the data associated with all their metadata labels as
shown in Figure 1b.

3 Information extraction using presentation regularities

In this section we discuss the semantic partitioning algorithm that works by exploiting
the presentation regularities in Web pages. Our semantic partitioning algorithm can
detect repeating HTML substructures and organize the content into a hierarchical
content structure consisting of groups of instances, while skipping HTML blocks that
do not constitute a group. The semantic partitioning algorithm requires no training
and works automatically on each Web page.

The semantic partitioning algorithm works in four phases: page segmentation,
grouping, promotion and semantic role annotation.

3.1 Page segmentation

A Web page usually contains several pieces of information [5] and it is necessary
to partition a Web page into several segments (or information blocks) before
organizing the content into hierarchical groups. In this section we describe our page
segmentation algorithm that partitions a given Web page into flat segments.
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The page segmentation algorithm relies on the DOM tree representation of the
HTML Web page and traverses it in a top–down fashion in order to segment the
content of the page, which lies at the leaf nodes. In the HTML DOM tree of a Web
page, the formatting information about a label can be revealed from its root-to-leaf
path in the DOM tree. For example, a root-to-leaf path html.body.table.td.b.a of a
label l reveals that l is bold and has a link. We utilize this information to identify the
presentation of a label and distinguish the presentation formatting of one label with
that of another label in the Web page.

We define a segment as a contiguous set of leaf nodes within a Web page.
The algorithm aims to find homogeneous segments, where the presentation of the
content within each segment is uniform. The algorithm employs a split-traverse based
approach that treats all uniform set of nodes as homogeneous segments and further
splits non-uniform nodes into smaller segments until each segment is homogeneous.
The algorithm relies on the concept of entropy in order to determine whether a
segment is homogeneous.

We define the notion of entropy of a node in a DOM tree in terms of the
uncertainty in the root-to-leaf paths under the node. Our algorithm is based on the
observation that a well organized or homogeneous system will have low entropy.
We use this principle while traversing the DOM tree from root to leaf nodes in a
breadth-first fashion, and split the nodes until each and every segment in the DOM
tree is homogeneous.

Entropy is generally used to measure the uncertainty in the system. Hence if any
random variable has low entropy, then there is less uncertainty in predicting the
possible values that the random variable can take. In our case, we view each node as
a random variable in terms of the root-to-leaf paths Pis under the node. We define a
set of nodes in the DOM tree to be homogeneous if the paths in the random variable
are uniformly distributed, and it is easy to predict the next path within the set.

Definition 1 The path entropy HP(N) of a node N in the DOM tree can be defined
as

HP(N) = −
k∑

i

p(i) log p(i),

where p(i) is the probability of path Pi appearing under the node N.

We use the concept of path entropy to partition the DOM tree into segments.
The algorithm to partition a given Web page into segments is given in Algorithm 1.
This algorithm is initialized with a vector of nodes containing just the root node of
the DOM tree of the Web page. The MedianEntropy is calculated as the median
of the path entropies of all the nodes in the DOM tree. Essentially we assume the
nodes whose path entropy is less than the median entropy of all the nodes in the
DOM tree to be homogeneous and output it as a pure segment. We use median
entropy because it acts as a representative sample for an average value in the set. If
a node is not homogeneous, then we traverse the children of the nodes in order to
find the homogeneous segments. Our page segmentation algorithm is able to identify
four segments in the Faculty home page as shown in Figure 2a. Please note that we
currently ignore any text fragments in the Web page that contains modal verbs as
they add to the noise in identifying the patterns.

http://html.body.table.td.b.a
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Algorithm 1 Page Segmentation Algorithm
PageSegmenter
Input: Nodes[], a node in the DOM tree
Output: A set of segments

1: for Each Subset S of Nodes[] do
2: HP(S) := Average Path Entropy of all nodes in S
3: if HP(S) ≤ MedianEntropy then
4: Output all the leaf nodes under N as a new segment PS
5: else
6: PageSegmenter(Children(S))
7: end if
8: end for

3.2 Inferring group hierarchy

Even though the page segmentation algorithm organizes the content in a Web page
in terms of segments that present the content in a uniform fashion, each segment just
contains a flat representation of the labels. In many scenarios, the content is usually
represented as a hierarchy of labels and we need to infer the hierarchy among the
labels in order to properly depict the content structure. We define a group to be a

Figure 2 a Shows an example of a faculty home page. The labels in the page are marked with
their corresponding path identifier symbols. The page segments in the web page are also marked
as segments 1 to 4. b Shows the sequence of path identifiers, the regular expression inferred from it,
and the corresponding group tree for each segment.
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contiguous collection of instances that are presented together in a Web page, where
an instance is a repeating element of a group. Such a group hierarchy is helpful in
organizing the content and determining the most general concept in the page and its
attributes.

One possible way to achieve such hierarchical organization of the content is to
work directly on the DOM tree in a top–down fashion [6]. But such approaches suffer
from handling the noise in the leaf nodes and in successfully detecting the boundaries
as look-ahead searching is expensive. An efficient alternative approach is to utilize
the presentation information (embedded in their root-to-leaf tag path in the DOM
tree) of the labels in order to infer a hierarchy among them. We transform each
segment into a sequence of path identifiers of root-to-leaf paths of the leaf nodes
and infer regular expressions from this sequence in order to extract patterns from
them. For example, the path sequence corresponding to the Segment 3 as marked in
Figure 2b is ghijhikhijhilhijhik.

After the segment is transformed into a sequence of path identifiers, we extract
patterns from it by inferring a path regular expression from the sequence of path
identifiers. We use the standard regular language operators:

– Kleene star (*): The kleene star operator conveys the repeating presentation
patterns within the Web page. For example, if the Web page presents the names
of the courses that a faculty member teaches, they are usually presented with
similar presentation template and the kleene star operator would identify this
pattern.

– Optional (?) and Union (|): The optional and the union operators allow the
patterns to accommodate noise.

– Concatenation (.): The concatenation operator allows a contiguous sequence to
be formed from its sub-patterns.

We build the path regular expression for a given sequence by incrementally
building it using bottom-up parsing. We go through the sequence several times, each
time folding it using one of the four operators, until there are no more patterns left.
The algorithm for building the path regular expression from a sequence is described
in Algorithm 2. The InferRegEx method is initialized for each segment in the page
with its corresponding path sequence.

Once the path regular expression is inferred from the sequence of path identifiers,
every kleene star in the path regular expression is treated as a group and its members
are treated as instances of the group. For example, in Segment 3 of the Web page
in Figure 2b, the path regular expression (hijhi(k|l))∗ is identified as a group which
corresponds to the publications of the corresponding faculty member. The nested
kleene star symbols are transformed into nested group hierarchies from the path
sequence as shown in Figure 2b.

3.3 Promotion

After grouping, the content of the Web page is organized into hierarchical group
structures, but each of these group structures do not have any label. The labels for
the groups, which we call as group headers, are important as they play a role in
connecting the repeating set of instances with the corresponding concept or attribute
label. For example, in a news Web page such as CNN, a group structure containing all
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Algorithm 2 Inferring Path Regular Expressions
InferRegEx(S)
Input: S, a sequence of symbols
Output: S, a new regex sequence of symbols

1: patternFound = true;
2: repeat
3: patternFound = false;
4: for len = 1:length(S)/2 do
5: for i = 0:length(S) do
6: currPattern := subseq(j, j+i);
7: if ExtendPattern(currPattern, S, j+i+1) = true then
8: ReplacePattern(currPattern, S);
9: patternFound = true;

10: end if
11: end for
12: end for
13: until patternFound = true
14: return S;
End of InferRegEx

ExtendPattern(P, S, startIndex)
Input: P, current pattern; S, a sequence of symbols; startIndex, the start index to look
patterns for
Output: boolean, indicating whether the pattern is extended

1: for i = startIndex:length(S) do
2: consensusString := IsMatch(currPattern, subseq(i,i+length(currPattern));
3: if consensusString �= null then
4: currPattern := consensusString;
5: ExtendPattern(currPattern, S, i+length(currPattern))
6: end if
7: end for

End of ExtendPattern

IsMatch(P1, P2)
Input: P1, first pattern; P2, second pattern
Output: consensusString obtained by alining P1 and P2 or null

1: if EditDistance(P1, P2) ≤ MaxLength(P1,P2)

3 then
2: return Consensus(P1, P2)
3: else
4: return null
5: end if

End of IsMatch

ReplacePattern(P, S)
Input: P, current pattern; S, a sequence of symbols
Output: none

1: replace all occurrences of the pattern P in the sequence S by a new symbol P′.
End of ReplacePattern
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the scientific articles cannot be of much use unless it is labeled as Science or Sci/Tech
for indexing and searching purposes.

Bootstrapping the Promotion: In the grouping phase, all the leaf nodes that appear
before the group are identified as candidate group headers and the goal of the
promotion algorithm is to select the appropriate group header from these candidates
for the group. These group headers are bootstrapped by promoting the label as the
header whenever there is only one candidate for a particular group.

Frequent Label based Promotion: Whenever similar Web pages from the same
domain are available, we identify all the frequent labels in the domain from these
similar pages and promote the closest frequent label that is present in the candidate
headers of a group as the label for the group.

Naive Bayes based Promotion: When many similar Web pages obtained from
similar domains and from the same context are available, the candidate group
headers can be used as a training data when deciding on a label to promote as a group
header for a group. In such scenarios, we use the words in the instances as features to
train a Naive Bayes classifier and compute the likelihood of every candidate group
header with a set of instances. Later we promote the closest one as the header for the
group.

Path Consistent Annotation: Typically similar presentation templates are used to
represent similar labels within the same Web page. Hence if one of those similarly
presented labels is promoted with the above rules, then we promote all the other
labels within the same Web page with the same presentation template on top of the
next groups, whenever applicable.

Figure 3 shows the final hierarchical content structure after promotion for the
Web page shown in Figure 2. It can be noticed that the labels ‘Daniel Moore,’

Figure 3 The complete hierarchical structure of the web page shown in Figure 1 after promotion.
The group structures G1 through G6 with their respective promoted labels are shown in each page
segment. The parts of the Web page that do not correspond to any group structure are shown with
dotted triangles. The figure also illustrates meta semantic role annotation by annotating the labels
with their corresponding semantic roles (C – concepts, A – attributes, V – values).
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‘Publications,’ ‘Address,’ and ‘Phone Number’ are promoted over the adjacent
groups G2, G3, G5, and G6 as group headers. The groups G1 and G4 do not have
any group headers as they did not have any candidate labels to promote over them.

3.4 Annotation with semantic roles

After the group hierarchy has been found and the appropriate labels have been
promoted on the groups, we have a powerful content structure that organizes the
labels in the Web page in a uniform fashion. We utilize this content structure to
annotate the labels in the Web page with metadata tags.

Our annotation framework involves the following four semantic roles:

– Concept (C): A concept defines an abstract or symbolic category or a class of
similar items. For example, ‘Faculty’ and ‘Computer Science Department’ are
some of the concepts in the academic domain.

– Attribute (A): An attribute is a key property of an object or a concept or the
name of the relationship. For example, ‘publications,’ ‘address’ and ‘telephone’
are some of the attributes of the ‘Faculty’ concept in Figure 2a.

– Value (V): A value is a string that provides the value information for an attribute
of a certain object or a concept. For example, ‘(424) 435-3897’ and ‘(434) 787-
4671’ are the values of the attributes ‘Office Telephone’ and ‘Fax Telephone’
attributes in Figure 2a.

– Noise (N): A label that does not belong to any of the above semantic role is
assigned to be noise. For example, some of the labels in headers, footers or
navigational aids could be annotated as noise.

Figure 3 shows an example of the assignment of tags for the Web page shown in
Figure 2a. Within the context of a certain concept, we interpret all the group headers
as attribute labels and the all the instance values as value labels of the corresponding
attribute. Please note that this assignment of roles may not always be robust; for
example, the label ‘Daniel Moore’ has been tagged as an attribute, but it is actually
the name of the object that belongs the concept ‘Faculty.’ Therefore we call this data
as weakly annotated because some of the annotations may be incorrect and some
labels may not be annotated at all.

3.5 Discussion on weakly annotated data

Typically presentation regularities are sufficient to organize the content of an HTML
Web page and extract information from its data rich segments. However, when the
presentation in a Web page does not correlate with the semantic organization of its
content, then the performance of extraction systems [3, 9, 19, 22] detoriates.

Figure 4 shows a typical shopping Web page where the product categories and
featured list of products are presented. Even though the presentation of the labels is
mostly regular, there are some noisy labels, the ones that are circled, that makes it
difficult to skip and extract the repeating item structure. Some of these presentation
irregularities are categorized as follows:

– Presentation Inconsistency: The HTML formatting does not correlate with the
logical organization of the page content. For example, in the shopping Web page
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Figure 4 A sample products Web page that highlights presentation irregularities. Presentation
outliers, labels that do not adhere to the adjacent formatting, and Insertions/Deletions, labels that
only present in some of instances in a similarly presented group, are circled.

shown in Figure 4, the labels such as ‘$199.99’ and ‘$299.99’ are presented with a
bold emphasized formatting that does not match their value semantic roles.

– Metadata/Data Ambiguity: Labels with distinct semantic roles are presented with
identical formatting. For example in the left hand part of the Web page in
Figure 4, the category names such as ‘Action,’ ‘Comedy,’ ‘Drama’ under the
section ‘DVDs’ and the labels such as ‘-more’ are presented using identical
formatting and there is no way to distinguish them with presentation information
alone.

– Presentation Outliers: This occurs when a group of similarly presented items
contains some irregularly presented items. For example, in Figure 4, the circled
labels under the ‘BROWSE BY CATEGORY’ taxonomy represent outlier
concept labels with irregular presentation.

– Insertions/Deletions: Within a group of similar items, some label types are op-
tional. For example in the ‘FEATURED PRODUCTS’ section of the Web page
in Figure 4, the labels ‘Last Day to Save!!’ or ‘Qualifies for FREE SHIPPING’
are optional labels.

These presentation irregularities may lead to misinterpretations of the content by
IE systems, thus producing weakly annotated data. Such weakly annotated data can
be corrected by using the domain knowledge. In the next section, we explain how to
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incorporate the domain knowledge into an IE system by using a statistical domain
model.

4 Extracting domain knowledge

In this section, we model the domain knowledge from the hierarchical structures
given above. The crucial idea is to identify the degree of relationship between
the labels and construct a relational graph which is easy to generate probability
distributions of the roles for each label in the domain. Such a graph would capture
the global statistics of the labels and their associations within a domain. We first
describe the statistical domain model and then discuss how to obtain the probability
distributions.

4.1 Statistical domain model

Before we proceed to the details about our algorithms, we define the notation that
we use in the rest of the paper as follows:

– The ontological roles R is the set of Concept, Attribute, Values or Noise. For-
mally,

R = {C, A, V, N}.
– A term is a pair 〈l, r〉 composed of a label l and a role r ∈ R. In other words, terms

are tagged labels in the Web pages. Each label in a Web page is assumed to be
tagged with only one of the given ontological roles above.

– In this setting, we consider all the labels in each Web page are tagged with roles,
hence we define a Web page to be a vector of its terms. Formally, assuming m
labels in the Web page W ;

W = {〈l1, r1〉, 〈l2, r2〉, . . . , 〈lm, rm〉}.
– The statistical domain model G is a weighted undirected graph where the nodes

are terms in the domain, and the weights on the edges represent the association
strength between terms.

– The semantic role distribution Dl of a label l is a probability distribution of the
four roles {Pc, Pa, Pv, Pn}, where Pc, Pa, Pv, Pn are the probabilities of l being a
concept, attribute, value and noise, respectively within a certain context – which
represents the Web document of the label. That is, the role distribution of a label
might vary in different Web pages.

– In our framework, the context of a label l ∈ L in a Web page W is the Web page
W itself.

Statistical domain model is a relational graph G generated from automatically
extracted data. The nodes in G denote the labels with their semantic roles and the
edges denote the association strengths between the annotated labels. Node weights
are initialized as the counts of the corresponding terms and the edge weights are the
counts of the corresponding edges in the hierarchies. Formally, assuming wij as the
weight between the terms i and j, and wi as the weight of the node i, wij = w ji =
|i ↔ j| and wi = |i| where |i ↔ j| and |i| denote the number of times the edge (i, j)
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Figure 5 A fragment of the relational graph obtained by aggregating several products Web pages,
that is relevant to the page shown in Figure 4. The thickness of the line represents the strength of the
association between two labels. Each label is also annotated with its semantic role.

appeared in the hierarchies and label i appeared in the entire domain respectively.
Note that the edges are undirected since association strength between labels is a bi-
directional measure.

A fragment of the statistical domain model obtained for the shopping domain
from a collection of Web pages is presented in Figure 5. The nodes are the tagged
labels such as ‘Product:C’ which specifies the concept node of the ‘Product’ label. The
thicker the edge, the stronger the relationship is. For instance, the value ‘V7 W1PS
LCD Display’ is more related with the attribute ‘Price’ than the attribute ‘Rebates’
in the graph.

4.2 Role distribution calculation

The probability calculations are briefly introduced below.

Definition 2 For a given Web page W , the probability of a label l tagged with a role
r ∈ R is Pr(l|W).

In order to reduce the complexity and to utilize the context, the probabilities are
calculated using a simple Bayesian model with the following assumptions:

Assumption 1 All the terms in G are independent from each other but the given
term 〈l, r〉.

Assumption 2 The prior probabilities of all the roles of a label l are uniform.

Here, the first assumption is the well-known “naive” assumption of the simple
Bayesian models. Note that we only utilize the first order relationships of a term
in its context, i.e., neighbors of the term in G. One can easily extend the model
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for higher order relationships. Assumption 2 states that the role distribution of a
label shouldn’t depend on its frequency but only its context. Otherwise when a label
which is frequent in the domain, the role probability distribution will be strongly
biased towards its frequent role in the domain, and will dominate the contextual
information. Now, given the two assumptions above we can state the following
theorem:

Theorem 1 Let W = {t1, t2, . . . , tm}. Then the normalized probability of a label l
tagged with the role r is,

Pr(l|W) =
∏m

i=1 Pr(l|ti)∑
k∈R

∏m
i=1 Pk(l|ti) . (1)

Proof By Bayes’s rule,

Pr(l|W) = Pr(l|t1, t2, . . . , tm) = Pr(t1, t2, . . . , tm|l)Pr(l)
P(t1, t2, . . . , tm)

.

Using the independence assumption,

=
∏m

i=1 Pr(ti|l)Pr(l)∏m
i=1 P(ti)

Again using Bayes’s rule,

=
∏m

i=1 Pr(l|ti)P(ti)
Pr(l)m

.
Pr(l)∏m

i=1 P(ti)
=

∏m
i=1 Pr(l|ti)
Pr(l)m−1

This is the unnormalized probability. Since Pr(l)m−1 is constant by Assumption 2,
we can remove it and add the normalization factor

∑
k∈R

∏m
i=1 Pk(l|ti) in the denom-

inator. That is,

Pr(l|W) =
∏m

i=1 Pr(l|ti)∑
k∈R

∏m
i=1 Pk(l|ti) .


�

A conditional probability such as Pr(l|ti) depends on the association strength
between the terms 〈l, r〉 and ti in the relational graph G. That is, Pr(l|ti) = Pr(l,ti)

P(ti)
=

w〈l,r〉ti
wti

by Bayes’s rule where w〈l,r〉ti is the weight of the edge (〈l, r〉, ti) and wti is
the weight of the node ti. Our probability model is based on the methodology of
association rules [1]. Hence, the initialization for the above conditional probabilities
is defined analogous to Pr(l|ti) ≡ Conf idence(ti → 〈l, r〉) [2]. This formulation is
consistent with Assumption 2 since it is independent from the prior, Pr(l). For more
details, interested reader can refer to the technical report [13].

The domain knowledge for a given Web page is represented in terms of semantic
role distributions Dl for each label l in the Web page. Pr in the role distributions of
a label l in a Web page is the shorthand notation for Pr(l|W). As the output, these
distributions are presented to the IE system.
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5 Integrating the domain knowledge into IE system

The key phases in the IE system presented in Section 3 are grouping and promotion.
In this section we describe how to accommodate the domain knowledge into these
phases.

5.1 Grouping

To accommodate the domain knowledge in the IE system, the grouping algorithm
described in Section 3.2 is extended to include the role distributions of the labels. The
only change in the new grouping algorithm occurs in the similarity measure between
two candidate sequences of labels. In Algorithm 2, the similarity measure between
two sequences of labels is computed using the minimum edit distance between their
path regular expressions. In the new grouping algorithm, we add a new similarity
measure that takes the similarity of the role assignments of the label sequences into
account when computing the similarity measure.

Let l1 and l2 be two label sequences. Let Sp be the path similarity measure between
l1 and l2 computed using the edit distance between their path regular expressions.
The role similarity measure Sr between l1 and l2 is computed by calculating Pearson
Correlation Coefficient [21] between the role distributions Dl1 and Dl2 of the two
labels. The role similarity measure ensures agreement in the role assignment of labels
in the sequences. The total similarity measure between l1 and l2 is computed by a
weighted sum of Sp and Sr. Therefore two label sequences are said to be similar if
and only if there is an agreement in both their path regular expressions and their
semantic role assignments of individual labels.

The rest of the grouping algorithm proceeds in a similar fashion as described
in Section 3.2 in that a regular expression is inferred from the sequence of labels
and each Kleene star is interpreted as a group and the members of Kleene star are
interpreted as instances.

5.2 Promotion with semantic roles

The promotion algorithm is also slightly altered from the one described in Section 3.3
to bias towards metadata labels in choosing the headers for the group. The group
headers are obtained by identifying the closest metadata label, with role assignment
of a concept or an attribute, as identified from the role distributions. The group
header is chosen by the following simple formula:

GroupHeader(G) = arg max
li

{di ∗ (Pa + Pc)}. (2)

where li is the label and di is the distance of li from the group structure.
We also promote metadata labels inside the instances of the groups over the

next sequence of values with similar path identifiers. This promotion within the
instances assists in extracting the attribute-value relationships that are present within
the instances of group structures.

5.3 Significance of domain knowledge

Figure 6a shows a fragment of a course Web page. The labels in the page are
annotated with the HTML root-to-leaf path identifiers that highlight the presentation
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Figure 6 a Shows a fragment of a course Web page. For each label in the fragment, its path identifier
symbol and its semantic role are marked. b Shows the group structures extracted by semantic
partitioner algorithm that relies solely on presentation regularities. c Shows the group structures
extracted by using a domain model.

formatting and their semantic roles. An automated IE system such as semantic parti-
tioning algorithm described in Section 3 that relies solely on the presentation would
not be able to distinguish the ‘Place’ attribute of the ‘Professor’ concept and ‘Office
hours’ attribute of the ‘Teaching Fellow’ concept from their respective values ‘Room
MCS 123’ and ‘Tuesday, 4–6 ...’ since their presentation formatting is identical. Also
such a system cannot associate the attributes ‘E-mail’ and ‘Office hours’ with their
corresponding concepts ‘Professor’ and ‘Teaching Fellow’. Similarly, it would fail to
associate these attributes with their respective values, due to various presentation
irregularities that would hide the repetitive sub-structures and their boundaries.
Figure 6b shows the output of the semantic partitioning algorithm that relies solely
on the presentation.

If the system is aware of the domain knowledge, it can more accurately sep-
arate metadata from data, and discover the relationships between them. For ex-
ample, in Figure 6, if the system is aware of the fact that the labels ‘E-mail,’
‘Office hours,’ ‘Place’ and ‘Phone’ are attributes, and the labels ‘jones@cs.univ.edu,’
‘Monday 11–12 ...,’ ‘Room MCS 123,’ ‘adam@cs.univ.edu,’ ‘Tuesday, 4–6 ...,’ and
‘123-456-7891’ are values, it can discover correct groupings for G2 and G3 for the
concepts ‘Professor’ and ‘Teaching Fellow.’ The accurate group structures obtained
by using such a domain knowledge as well as presentation regularities is shown in
Figure 6c.

6 Complexity analysis

The page segmentation algorithm works directly on the DOM tree of the Web page
in a top-down fashion and its complexity is O(n lg n), where n is the total number
of nodes in the DOM tree. The group hierarchy inference phase iteratively goes
through the path sequence in a bottom-up fashion until no more regular expressions
are found. Assuming there are k nodes in the segment, the worst complexity of this
phase is O(k3). Since k is considerably smaller than the number of leaf-nodes in
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the Web page, this is reasonable for the Web. The promotion and labeling phases
are linear in the number of nodes in the corresponding group. The complexity of
generating the role distributions from the statistical model is O(m + p) where m and
p are the total number of labels and Web pages in the collection respectively [13].

7 Related work

In this section, we discuss the related work from several areas and show how our
system is different from them.

Template based algorithms: RoadRunner [9] works with a pair of documents
from a collection of template generated Web pages to infer a grammar for the
collection using union-free regular expressions. ExAlg [3] is another system that
can extract data from template generated Web pages. ExAlg uses equivalence
classes (sets of items that occur with the same frequency in every page) to build the
template for the pages by recursively constructing the page template starting from
the root equivalence class. TAP [14] is a system that extracts RDF triplets from
template driven Web sites in order to generate a huge knowledge base that has a
Web searchable interface. These algorithms are based on the assumption that the
input Web pages are template driven in their presentation and are typically driven
by standard metadata. Our approach differs from all these approaches in that it
does not require that the input Web pages are template driven and it can effectively
handle noise.

Grammar induction based algorithms: Grammar induction based systems employ
a strong bias on the type and expected presentation of items within Web pages to
extract instances. XTRACT [12] is such a system that can automatically extract
Document Type Descriptors (DTDs) from a set of XML documents. It transforms
each XML document to a sequence of identifiers and infers a common regular
expression that serves as a DTD, using the Minimum Description Length (MDL)
principle. Our pattern mining algorithm is different from these approaches and
parses the given sequence in a bottom-up fashion and infers the grammar on-the-fly
as it goes through the sequence multiple number of times.

Page Segmentation algorithms: VIPS algorithm [5] is a vision-based page segmen-
tation algorithm that is based on HTML heuristics relying on specific tags such as font
size and <HR> to partition the page into information blocks. Our page segmentation
algorithm is similar to the VIPS algorithm in traversing the DOM tree in top-down
fashion, but our algorithm uses well-defined information theoretic methods in order
to measure the homogeneity of the segment, whereas the VIPS algorithm is based on
HTML heuristics.

KnowItAll [11] and C-PANKOW [7] systems extract facts from a collection of
Web pages starting with a seed set of factual patterns that are either manually
specified or (semi)automatically engineered. The Semtag and Seeker system [10]
uses the domain ontologies extracted from automatic wrappers [16] to annotate Web
pages. Such systems extract relationships and facts that match these patterns from the
natural language text segments of the Web pages. Hence, they are complementary to
our systems capabilities that processes the data rich segments of Web pages.
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8 Experimental results

In this section, we describe the data we used in our experiments and provide the
results and discussions for our experiments.

8.1 Experimental setup

We used three different data sets in order to evaluate the efficacy of our algorithms.
In the first two data sets, we show how our algorithms work with template-driven
and non-template-driven Web pages. In the third data set, we compare our approach
with another IE system, RoadRunner [9].

The first data set consists of TAP KB,1 containing the categories AirportCodes,
CIA, FasMilitary, GreatBuildings, IMDB, MissileThreat, RCDB, TowerRecords
and WHO. These categories alone comprise 9,068 individual attribute-rich Web
pages. We provide experimental results for this data set with our algorithms and
compare them against the relations obtained by TAP.

As our second data set, we prepared CSEDepts data set which is composed of
individual Web pages from Faculty and Courses domains, consisting of 125 Web sites
and more than 15,000 individual Web pages. To demonstrate the performance of
our semantic role annotation algorithms, we created a smaller data set containing
randomly chosen 120 Web pages from each of the faculty and course categories. We
provide experimental results for this data set with our algorithms.

As the third data set, we selected the RoadRunner2 [9] data. We compare our
extraction of data values with the RoadRunner system in this experiment.

The experimental results are obtained by comparing the data annotations of the
algorithms to manually annotated data by eight human volunteers who are non-
project member computer science graduate students. The inter-human agreement
on manual annotation was 87%, which indicates that the data annotations can be
ambiguous and can be interpreted differently in various contexts.

8.2 Experiments with the TAP data set

The Table 1 shows the experimental results for the TAP data set using semantic
partitioning algorithm that relies solely on presentation regulariteis. The algorithm
achieves 100% F-Measure with annotating the labels with the concept label. Since
the TAP data set contains only one concept per page, the algorithm is able to easily
identify the label. However, the algorithm suffers from low recall with annotating
as attribute labels because some of the attribute labels are single valued and there
is no group associated with them, and they are labeled as values. Nevertheless, the
algorithm is able to tag with the attribute labels correctly whenever it does, as the
precision is above 91%. As expected, the recall and precision numbers for the value
label annotation are exactly opposite for the same reasons that many attribute labels
are labeled as values.

1TAP Home page is located at http://tap.stanford.edu.
2RoadRunner experimental results can be found at http://www.dia.uniroma3.it/db/roadRunner/
experiments.html.

http://tap.stanford.edu
http://www.dia.uniroma3.it/db/roadRunner/experiments.html
http://www.dia.uniroma3.it/db/roadRunner/experiments.html
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Table 1 Experimental results with TAP data set using semantic partitioner algorithm.

DomainName P(C) R(C) F(C) P(A) R(A) F(A) P(V) R(V) F(V) Avg F-Measure

AirportCodes 100 100 100 94 83 88 86 98 92 93
CIA 100 100 100 96 54 69 88 99 92 87
FAS Military 100 100 100 96 76 85 84 99 91 92
Great buildings 100 100 100 95 61 74 88 99 93 89
Missile threat 100 100 100 96 63 76 66 99 79 85
IMDB 100 100 100 72 56 63 63 51 56 73
Roller coster 100 100 100 78 52 46 84 91 88 78
Database (RCDB)
Tower records 100 100 100 75 69 72 62 55 58 77
WHO 100 100 100 100 94 97 85 100 92 96
Overall 100 100 100 91 67 74 79 92 85 86

P(C), R(C), F(C) denote the precision, recall and F-measure of the concept annotation. Similar
notation is used for attributes (A), and values (V).

For the TAP data set, the statistical domain model and corresponding semantic
role distributions for each Web page are generated from automatic wrapper based
IE systems. The extracted domain knowledge is fed to our algorithm that extracts
the relational facts and also improves the semantic role annotations of labels. We
compare the performances of the semantic partitioning algorithm with and without
utilizing the statistical domain model.

The experimental results for semantic role annotations are shown in Figure 7.
The graphs show the F-Measure values of concept labeling, attribute labeling, value
labeling and overall labeling. The semantic partitioning algorithm that relies solely
on presentation regularities and does not utilize the statistical domain model was not
able to identify the attribute names correctly in some cases because the presentation
does not distinguish the attribute name and its values. But the algorithm that makes
use of the statistical domain model in terms of semantic role distributions overcomes
such irregularities in presentation. As it can be seen from the results, the accuracies
for some categories in the TAP data set are lower than others. The low F-Measure
value occurs when the statistical domain model cannot recover from unreliable
information extracted from automated systems.

Figure 7 The role annotation F-measure values from the TAP data set for semantic partitioning
algorithm, with and without using the domain knowledge.
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Figure 8 The role annotation F-measure values from CSEDepts data set for semantic partitioning
algorithm, with and without using the domain knowledge.

8.3 Experiments with the CSEDepts data set

Figure 8 shows and compares the F-measure values for semantic partitioning algo-
rithm with and without utilizing the domain knowledge. It shows that the semantic
partitioning algorithm based on presentation regularities alone achieves about 90%
F-measure, and the semantic partitioning algorithm that uses the statistical domain
model achieves more than 95% F-measure. The F-measure for the concepts in the
initial semantic partitioning algorithm is low because the number of concept labels
in the domain are very few and they are ambiguously located along with the other
attribute labels. However, the statistical domain model is helpful in disambiguating
these concept values and boost the F-measure. The algorithm is able to perform fairly
accurately in annotating the attribute and value labels in both cases, which is very
vital because, these labels are the most frequent on the Web. The F-measure for
value annotation is the highest among all role annotations, as the semantic partitioner
is able to correctly identify the groups and thus identify the instances of the concept
and attribute labels accurately.

8.4 Experiments with RoadRunner data set

Table 2 shows the number of Web pages in each of the ten categories from which
the IE systems, RoadRunner and semantic partitioner systems, with and without
utilizing the statistical domain model were able to extract the relevant information.
By exposing the regularities in the extraction patterns, the semantic partitioner
system with the statistical domain model was able to extract relevant information
from 8 out of 10 categories, whereas the original system was only able to extract
data from 6 categories. The resulting semantic partitioner system with the statistical
domain model was also able to perform better than the RoadRunner system in
one category (package directory) as the RoadRunner system requires two Web
pages to infer the presentation template. The ‘uefa’ data is organized in terms of
complex tables, RoadRunner was able to infer the template by using two sample
pages whereas the semantic partitioner (both initial and modified) was unable to
extract from such tables using a single page. The results show that the performance
of the semantic partitioner with the statistical domain model is comparable to that of
RoadRunner system. The statistical domain model for this data set is learnt from over
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Table 2 Comparison of the performance the RoadRunner algorithm with semantic partitioner
system, before and after utilizing the statistical domain model.

Classes Comparative results

Site Description No. of
pages Metadata RoadRunner Sempart Sempart

(before) (after)

amazon.com Cars by brand 21 Yes 21 – 21
amazon.com Music bestsellers

by style 20 No – – –
buy.com Product information 10 Yes 10 10 10
buy.com Product subcategories 20 Yes 20 20 20
rpmfind.net Packages by name 30 No 10 10 10
rpmfind.net Packages by

distribution 20 No 20 20 20
rpmfind.net Single package 18 No 18 18 18
rpmfind.net Package directory 20 No – 20 20
uefa.com Clubs by country 20 No 20 – 20
uefa.com Players in the national 20 No 20 – –

team

100 shopping and sports Web sites. The precision and recall of metadata extraction
from the RoadRunner data set are 89 and 94%. Please note that our system is able
to achieve this performance without the requirement of template-drivenness unlike
RoadRunner system.

9 Conclusions and future work

In this paper, we have presented an IE system, Semantic Partitioner, that can
automatically structure the content of a Web page into a semi-structured hierarchical
document, with the labels in the Web page weakly annotated with their semantic
roles. We also presented details about how to build a statistical domain model that
can be utilized as domain knowledge to enhance the performance of an automated
IE system. We demonstrate that automated IE coupled with an automatically
constructed domain model can recover from ambiguities in the presentation and
improve the accuracy of the base information extractor. Our experimental evalu-
ations with TAP, computer science department Web sites, and RoadRunner data
sets indicate that our algorithms can scale up to large data sets in terms of running
time complexity. Hence, we conclude that current automated IE systems can benefit
from using the domain regularities in order to extract information from all kinds
of data rich Web documents. Such structured information also enables browsing of
information in order to see interesting connections among a set of objects.

In our future work, we intend to identify the missing attribute labels of values in a
given Web page by using aggregated statistical domain model which may obtain the
labels from different Web pages. This research also involves merging of labels that
refer to the same entities which is closely related with the area of schema matching
and merging. Another dimension is to extend our work to perform information
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extraction from text blobs of the Web pages with the help of natural language
processing techniques.
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