
Admission Control in Peer-to-Peer: Design and
Performance Evaluation

Nitesh Saxena
Computer Science Dept.

UC Irvine

nitesh@ics.uci.edu

Gene Tsudik
Computer Science Dept.

UC Irvine

gts@ics.uci.edu

Jeong Hyun Yi
Computer Science Dept.

UC Irvine

jhyi@ics.uci.edu

ABSTRACT
Peer-to-Peer (P2P) applications and services are very common in
today’s computing. The popularity of the P2P paradigm prompts
the need for specialized security services which makes P2P secu-
rity an important and challenging research topic. Most prior work
in P2P security focused on authentication, key management and
secure communication. However, an important pre-requisite for
many P2P security services is secure admission, or how one be-
comes a peer in a P2P setting. This issue has been heretofore
largely untouched.

This paper builds upon some recent work [12] which constructed
a peer group admission control framework based on different poli-
cies and corresponding cryptographic techniques. Our central goal
is to assess the practicality of these techniques. To this end, we
construct and evaluate concrete P2P admission mechanisms based
on various cryptographic techniques. Although our analysis fo-
cuses primarily on performance, we also consider other impor-
tant features, such as: anonymity, unlinkability and accountability.
Among other things, our experimental results demonstrate that, un-
fortunately, advanced cryptographic constructs (such as verifiable
threshold signatures) are not yet ready for prime time.

Categories and Subject Descriptors
C.2 [Computer-Communications Networks]: Security and Pro-
tection; C.2.2 [Network Protocols]: Applications; C.4 [Performance
of Systems]: Design Studies

General Terms
Security, Performance

Keywords
peer-to-peer, security, group membership, access control, mobile
ad-hoc networks, admission control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SASN ’03 Fairfax, Virginia USA
Copyright 2003 ACM.

1. INTRODUCTION
In a typical P2P scenario, a number of distributed entities (peers)

perform some function in a decentralized manner. P2P applications
are generally divided into three classes: parallelizable, content-
based and collaborative. A parallelizable P2P application splits
a large task into smaller pieces that execute in parallel at a num-
ber of independent peer nodes. A content-based P2P application
focuses on storing information at various peers in the network. A
collaborative P2P application allows peers to collaborate, in real
time, without relying on central servers to collect and relay infor-
mation. Current P2P settings are clearly very diverse. For example,
some collaborative P2P applications typically require synchronous
operation, while others, such as content-based, usually operate in a
disconnected, asynchronous manner. P2P communication models
vary as well: from one-to-many or few-to-many to many-to-many.

The rising popularity of P2P applications prompts the need for
specialized P2P security services and mechanisms. This need has
been recognized by the research community. However, the bulk of
prior work has been in the context of authentication, anonymity,
key management and, in general, secure P2P communication. Al-
though these are certainly important, another equally important topic
has remained mostly unaddressed. Informally, it has to do with how
one becomes a peer in a P2P paradigm. More concretely, the tech-
nology for secure admission of peers into a P2P application simply
does not exist. This statement does not contradict the fact that there
are currently many operating P2P applications; they either operate
in a completely open manner (i.e., have no admission control what-
soever) or admit peers on some ad hoc basis.

In this work we focus on admission control mechanisms for P2P
settings. Although some P2P applications have behind-the-scenes
servers (e.g., Naptster), many operate as true peer groups with a flat
structure (no hierarchy) where all peer nodes have identical rights
and responsibilities. It is in such “server-less” P2P environments
that admission of new members is a real challenge.

This paper is organized as follows: Section 2 provides some
background on P2P systems. Section 3 presents our system model
and discusses design challenges in P2P admission control. Next,
Section 4 describes the general P2P admission process. Then, Sec-
tion 5 discusses the design and evaluation of the actual admis-
sion control protocols. Experimental results are presented and an-
alyzed in Sections 6 and 7, respectively. Finally, related work is
overviewed in Section 8. (Appendix A contains detailed protocol
descriptions).

2. BACKGROUND
There is a wide variety of P2P systems currently in operation.

They include unstructured systems such as Gnutella [32] and Freenet
[3] where peers are unaware of total population of nodes in the sys-

tem. In these systems, a request is recursively flooded or randomly
forwarded to directly connected peers until it is either answered or
its hop count expires. More structured P2P systems (e.g., CAN
[25], Chord [31], Pastry [27], and Tapestry [33]) tend to use some
form of a distributed hash table (DHT) which guarantees that de-
sired content is always found, if it exists.

Most large-scale P2P systems are asynchronous in nature, i.e.,
constant on-line presence is not assumed or required from peer
nodes. However, one extreme of P2P systems covers more tradi-
tional, synchronous group communication systems such as Spread
[30], Totem [1] or Horus [26] where scalability is typically limited,
membership awareness is total and group membership requires con-
stant on-line presence for each peer.

Nodes in a P2P system can use a wide spectrum of communi-
cation paradigms. At one end of the spectrum are powerful work-
stations connected to stable, high-speed, wired networks. At the
other end are small wireless devices (such as PDAs) forming mo-
bile ad hoc networks (MANET-s). As mentioned earlier, the goal
of this paper is to explore admission control mechanisms for P2P
systems. In doing so, we try to be as general as possible and remain
independent of the specifics of the underlying P2P system.

3. SECURITY
Since P2P systems are usually deployed over open networks, se-

curity is of paramount concern. We distinguish among three main
components in P2P security: key management, trust management
and access control. The purpose of key management is to estab-
lish cryptographic keys to allow secure communication among the
members. Trust management aims to reduce, or possibly block,
the spread of malicious content. The most common P2P reliability
solution is to take advantage of redundancy. Another solution is
to periodically evaluate the reputation of each publisher through a
distributed polling algorithm [5].

It is easy to see that both key management and trust manage-
ment are effective only after a member is allowed to join (access)
the group. Without a secure admission process (which, at the very
least, should include the authentication of the prospective member)
we argue that there is no point in using secure key management and
trust management since a malicious prospective member can easily
generate any number of false identities. For this reason, our focus
is on P2P admission control.

3.1 System Model
Our system model closely follows the admission control frame-

work developed by Kim, et al. in [12]. This framework classifies
group admission policy according to the entity (or entities) charged
with admission decisions. The classification includes simple ad-
mission control policies, such as static ACL-based admission, as
well as admission based on the decision of some fixed entity; either
external (e.g., a TTP) or internal (e.g., a group founder). These sim-
ple policies are relatively easy to support and do not present much
of a challenge. For an in-depth discussion of various issues sur-
rounding admission control policies, the reader is referred to [12].

Things become much more interesting when the peers them-
selves are responsible for admitting new members. In this case,
admission is typically based on some form of limited consensus
among current peers. Limited consensus is essentially equivalent
to attaining a threshold (or a minimum number) of current mem-
bers who agree to admit a prospective peer to their group.

As in [12], we distinguish between admission policies based on
fixed and dynamic thresholds. A fixed threshold is specified as
the minimum number of votes, whereas, a dynamic threshold is

specified as a fraction of the current group size. A fixed threshold
is essentially a

�
-out-of- � model where the threshold

�
is fixed and

� (current group size) varies over time. In contrast, with a dynamic
threshold (such as 30%),

�
shrinks or grows in tandem with � .

3.2 Population Size and Membership Aware-
ness

Since the population of peers in most P2P systems is dynamic,
i.e., peers may join and leave the group at any time, establishing
precise current group size can be problematic. However, especially
for dynamic thresholds, it is imperative to determine the current
group size. (For fixed thresholds, it is only important to establish
whether the current group size is less than the threshold, i.e., ���

�
.

If so, special “below-threshold” policy must be used to admit new
peers.) This is a challenging problem, especially in a completely
distributed, asynchronous and decentralized P2P setting.

Closely related to group size is the issue of membership aware-
ness, i.e., knowing the identities of current peers. This usually re-
quires synchronous, on-line operation. However, synchronous P2P
systems are not common (unless one considers group communica-
tion systems which typically do not scale to Internet size). On the
other hand, as will be seen later in the paper, synchronous operation
makes it relatively easy to conduct certain complicated admission
procedures which are unworkable in an asynchronous setting.

In a more common, asynchronous, P2P setting, one simple way
to solve the group size problem is by imposing or assuming a trusted
authority charged with maintaining up-to-date membership infor-
mation. (In [12], it is referred to as the Group Authority or GAUTH;
we use the same terminology here). Every peer can be required to
periodically send an authenticated heart-beat message to GAUTH
which aids in maintaining up-to-date membership information. This
clearly violates the peer nature of the system. On other hand, in
most current P2P systems [32, 3, 25, 31, 27, 33], a prospective peer
must contact a specific node, called a bootstrapping node, which
provides information about active peers currently on-line. Without
trusting this node, it seems that we cannot bootstrap any meaning-
ful service. Hence, some form of trusted authority is required to (at
least) maintain current group size information.

We stress that a GAUTH only needs to be trusted to keep track
of membership information and not any peer’s or group’s secrets.
We also recognize that it represents a potential single point of fail-
ure; an adversary can launch denial-of-service attacks against a
GAUTH and disrupt service. (Of course, replication methods can
be used to reduce exposure and improve availability.). Note, how-
ever, that rendering GAUTH unavailable only impacts admission of
new peers; it does not disrupt service as far as the normal operation
of the P2P system.

3.3 Certificates
In most modern P2P systems, the identity of each peer is deter-

mined by an identifier (e.g., an IP address or a DNS name) or by a
hash thereof. Neither approach is secure since an adversary can al-
ways choose a set of node IDs that are not random, or choose a set
of IP addresses that hash to a desired range in the node ID space.
This is known as a Sybil attack [6]. It is particularly inappropriate
to use the node ID as a function of the IP address in a P2P system
with highly dynamic peer population.

In order to prevent this type of attack, we can use the public key
of the node to calculate the node ID. This is contingent upon every
peer having a standard (e.g., X.509v3) public key certificate (PKC)
issued by a recognized Certification Authority (CA) [10]. In our
model, rather than using standard long-term identity certificates, a

special-purpose certificate asserting group membership is issued to
each peer upon admission. We refer to it as a Group Membership
Certificate (GMC).

A GMC is in many respects similar to a standard PKC. It in-
cludes the name of the group and the usual fields, such as issuance
time and the validity interval. A GMC may reference the particular
member’s identity PKC. Alternatively, or additionally, it may also
contain a distinct public key (for which the member knows the cor-
responding secret key) to be used as the member’s unique security
credential within the group. A peer member can prove membership
by supplying a valid GMC and demonstrating knowledge (e.g., by
signing a message) of the private key corresponding to the public
key referred to, or included in, the GMC.

4. ADMISSION CONTROL
In this section we provide a more detailed discussion of admis-

sion control. To begin with, the table below summarizes the nota-
tion used in the remainder of the paper.

Table 1: Notation Summary

GAUTH group authority
� total number of peers�

threshold (
���

�)�����
indices of peers � � ����� � ��
	 � ��� ����

and
����

peer, respectively��� 	
identifier of

�
	
������	

public key certificate of
�
	� ����	

group membership certificate of
�
	

� ��	 � ����	 �
	
’s secret and public keys, respectively��� �

group secret key� 	����!
signature of message

�
generated with

� � 	
"#" 	 secret share of

� 	
$!"#" � � � partial secret share for

�
	
by
���

�&% 	
signers list

4.1 Concepts
We now describe a generic peer-based admission process.

Mnew

Vote1

Vote3 Vote4

Vote2

broadcast
unicast

M1

M2

M3

M4

M5

M6

M7

M8

Figure 1: Admission Control

Step 0. Bootstrapping: A prospective peer
�('*),+

obtains the
group charter [12] out of band and then the information of cur-
rent group size from either GAUTH or some bootstrap node. The
group charter is a signed document containing admission policies
and various parameters such as group name, signature/encryption
algorithm identifiers, threshold type (fixed or dynamic), and other
optional fields. This process is performed only once per admission.

Step 1. Join Request:
� '-),+

initiates the protocol by sending
a join request (JOIN REQ) message to the group. This message,
signed by

� '-),+
, includes

� '-),+
’s public key certificate (

����� '*),+
)1

and the target group name. How this request is sent to the group is
application-dependent.

Step 2. Admission Decision: Upon receipt of JOIN REQ, a group
member first extracts the sender’s

����� '*),+
and verifies the signa-

ture. If a voting peer approves of admission it replies with a signed
message (JOIN REP). Several signature schemes (described in sec-
tion 5) can be used for this purpose. Then,

�('*),+
collects and ver-

ifies at least
�

such votes.
Note that, depending on the underlying signature scheme, this

step may involve multiple rounds and co-ordination among signing
members.

Step 3. GMC Issuance: Exactly who issues the
� ��� '-).+

for�
'*),+
depends on the security policy. If the policy stipulates using

an existing GAUTH, once enough votes are collected (according to
the group charter),

� '-),+
sends GAUTH a group membership cer-

tificate request message (GMC REQ). It contains:
����� '-),+

, group
name, and the set of votes collected in Step 2. In a distributed
setting with no GAUTH,

�('*),+
verifies the individual votes, and,

from them, composes its own
� �/� '-),+

.

Armed with a GMC,
� '*),+

can act as a bona fide group member.
To prove membership to another party (within or outside the group)� '*),+

simply signs a message (challenge) to that effect.

4.2 System Design
The admission control system is made up of four components;

policy manager, group membership controller, libraries for various
signature schemes, and signature format processor. Figure 2 shows
the architecture.

Group Admission Controller

Crypto Lib (OpenSSL)

Application

Policy
Manager

PS TS-RSA TS-DSA ASM

CommitJoin VerifySign

Signature
Format

Processor

A
dm

is
si

on
 P

ro
ce

ss

Figure 2: Group Admission Control System

A policy manager is the component which checks for confor-
mance to the policy specified in the group charter. First, the policy
manager checks the threshold type. If the threshold type is static,
it checks if the number of current members is at least equal to the

1Note that
����� '*),+

does not have to be an identity certificate; it
could also be a group membership certificate for another group.

threshold (��� �
). If � �

�
, the policy manager enforces the

BelowThreshold policy which requires it to either forward the
JOIN REQ to GAUTH directly, or to reset the threshold to reflect
current � .

In some P2P systems (especially in a MANET), group size can
fluctuate drastically within a short time. As the number of peers
grows or shrinks, we need to increase or decrease the threshold.
Since updating the threshold is an expensive operation, it is imprac-
tical for every membership event to trigger an update process. In or-
der to prevent this, we apply a simple window mechanism. Specif-
ically, every member keeps state of ����� � , which is the group size
at the time of the last threshold-update process. A new threshold-
update process is triggered only when the difference between the
current group size ���
	�� and ����� � is greater than �

� – the win-
dow buffer. In other words, threshold update process is triggered
only when � ���
	������ ��� � ���� �

� .
The group admission controller includes functions used to iden-

tify admission protocols and distribute the messages to the corre-
sponding libraries. Four different admission control libraries built
atop OpenSSL [20] form the core cryptographic engine of the sys-
tem. The details of message handling are described in the following
section. The signature format processor transforms all signatures
into the standard format. That is, membership certificates (GMC-
s) generated by our system are compatible with X.509v3 [10], and
signatures on all protocol messages are PKCS7-formatted [24].

5. PROTOCOL DESIGN
In this section, we describe the protocols used for making admis-

sion decision for both centralized and decentralized models. (We
assume existence of GAUTH in all centralized protocols). A more
detailed description of each protocol can be found in Appendix A.

5.1 Plain Signatures
Plain digital signature schemes, such as RSA and DSA (denoted

collectively as PS), are natural and default candidates for admission
control. Although we use RSA in our protocol examples below,
just about any signature scheme can be used instead. Figures 3 and
4 illustrate the centralized and the decentralized RSA protocols,
respectively.

� '*),+�� � 	
: ������� '*),+ � ���"!#��$�%'& '-).+ (1)� '*),+�(� 	
:)�*"+-, 	 ��. � & 	 (2)� '*),+��0/�1325476

: 8 �)�*"+-,��9�;:�:�:<�=)>*�+-, !@?����A '*),+ �=�CB>�
� '*),+ � �CB9! (3)� '*),+�(0/�1325476
: . � & '*),+ (4)

�D� =JOIN REQ, �EB =GMC REQ
'*),+

)>*�+-, 	�F � ���>GHG IKJ '-),+ !=L�MONQPSR�TVU 	

Figure 3: Centralized RSA Protocol

� '-).+�� � 	
: ���#� '-),+ � �C!
�#$�%'& '*),+ (1)� '-).+�(� 	
:)�*"+-, 	 �
. � & 	 (2)

� =GMC REQ
'*),+

)�*"+-, 	�F � �C! L�MWN PSR>TXU 	

Figure 4: Decentralized RSA Protocol

An important advantage of plain signatures is that each current
member can sign the join request asynchronously, i.e., the admis-
sion process does not require coordination among current mem-
bers. The “applicant” (

�
'-),+
) can approach each member at its

own leisure and gradually collect the required number of votes.
The main drawback is the need to keep a linear number of votes

before approaching the GAUTH. Also, a separate signature verifi-
cation for each vote can amount to significant overhead.

5.2 Threshold RSA
Recently, Kong, et al. [14, 15, 13] proposed the use of threshold

signature schemes for distributing the functions of a certification
authority throughout a MANET. They suggested an RSA threshold
signature scheme. We will refer to it as TS-RSA. In this section,
we describe their scheme and apply it to admission control in P2P
systems.

During initialization, a trusted dealer (i.e., a GAUTH or a boot-
strapping node in our context) is involved in generating an RSA
modulus Y which will be common for the entire group, a secret
function Z ���! such that Z ���! \[^]<_X`a] � �b`0c"cdc�`a] @e � � @e ��Kf'g�h Y , where

]i_
is a group secret key

��� �
. The dealer dis-

tributes a secret share "#" 	j[Z � � to group founders
� 	

-s. After
that, the dealer is no longer required.

Since there may be compromised members who can generate
false shares and false signatures thereafter, the dealer provides a
witness of Z ���! which is represented by k�lim�n � l�m9o � cdcdc � l�m�p=q o9r�Kf'g�h Y for a certain lts�uwv' , and publishes it for Verifiable
Secret Sharing (VSS) [23].

� '-),+ � � 	
: � � �
� '-),+ � � � !
��$�%'& '-),+ � (1)� '-),+ (� 	
: . � & 	 (2)� '-),+�� � �
: ��A '-).+ (3)� '-),+�(� �
:)�*"+-, � �yx<z�z � � U5,�{|! (4)� '-),+��0/}132~4�6

: �����#8�)�*"+-,9�9��:�:;:5�=)�*"+-, ?����A '-).+ �@�EB>�
� '-).+ � �EB9! (5)� '-),+�(0/}132~4�6
: . � & '-).+ (6)

� � =JOIN REQ, � B =GMC REQ
'-).+

)�*"+-, �wF � �D�>GHG IKJ '*),+ ! ��� PSR�TV�
Figure 5: Centralized TS-RSA Protocol

� '*),+ � � 	
: ���#� '-),+ � �C!
�#$�%'& '*),+ (1)� '*),+ (� 	
: . � & 	 (2)� '*),+�� � �
: ��A '-).+ (3)� '*),+�(� �
:)�*"+-, � ��xiz�z � � U5,�{|! (4)

� =GMC REQ
'-),+

)�*"+-, �wF � �C! ��� PSR>TE�
Figure 6: Decentralized TS-RSA Protocol

This scheme can be viewed as an ideal solution for peer group
admission control, mainly because it offers minimal dealer involve-
ment. However, it has a major flaw in checking correctness of
the secret share "#" '*),+ after summing up all $!"#" � � ���9� . In other
words, it does not provide verifiability of secret shares [17].

As a result, malicious or compromised users can send fake shares
to new members without being detected. This limits the scheme’s
applicability in providing security services in a dynamic group set-
ting. Another drawback of this scheme (albeit, a relatively minor
one) is that it requires a trusted dealer to generate the group se-
cret (RSA key) and share it among the initial members, although
presence of the dealer is limited to a short period of time (boot-
strapping). Furthermore, in order to maintain the secrecy of "#" � -s,
we need to use the random shuffling technique proposed in [14].

5.3 Threshold DSA
In this section, we consider the scheme using threshold DSA

signatures, denoted as TS-DSA. This is an extension of the scheme
in [7] where � , the number of group members, can be increased
without changing the group secret.

Unlike TS-RSA, TS-DSA can be initialized by a group of
�

or
more founding members using Joint Secret Sharing (JSS) [21] as
well as a dealer since a secret polynomial is selected over a public
prime modulus � . Thus, TS-DSA does not require the dealer even
for the bootstrapping phase.

We assume that the centralized protocol requires a dealer (e.g.,
GAUTH) to set up the polynomial over the group secret

�
, and,

in the decentralized version, the secret polynomial is collectively
generated by group founding members

� 	�� � � � � � . We apply
JSS once again to select a random secret � in both centralized and
decentralized versions. For more details, please refer to [21].

� '-),+ � � 	
: � � ��� '-),+ � � � !
�
$�%'& '*),+ � (1)� '-),+ (� 	
: . � & 	 (2)� '-),+ � � �
: ��A '-),+ (3)� '-),+�(� �
: � � �5) � (4)� '-),+�� � �
: � (5)� '-),+�(� �
:)�*"+-, � ��xiz"z � � U5,�{ ! (6)� '-),+��0/}132~4�6

: �D���
8�)�*"+-,9���;:�:;:5�@)>*�+-, ?��������A '-),+ �=�EB>�#� '-),+ � �EB�! (7)� '-),+�(0/}132~4�6
: . � & '-),+ (8)

��� =JOIN REQ, �EB =GMC REQ
'-),+

)�*"+-, �jF�� � �=� ���>GHG IKJ '-),+ !��
	 � � ! PSR�T��
Figure 7: Centralized TS-DSA Protocol

� '-),+�� � 	
: ���
� '-).+ � �E!#�
$�%'& '-),+ (1)� '-),+�(� 	
: . � & 	 (2)� '-),+ � � �
: ��A '*),+ (3)� '-),+ (� �
: � � �~) � (4)� '-),+ � � �
: � (5)� '-),+ (� �
:)�*"+-, � �yxiz"z � � U~,�{ ! (6)

� =GMC REQ
'-).+

)>*�+-, �wF� � � ���
	 � � ! PSR�T��
Figure 8: Decentralized TS-DSA Protocol

This scheme provides verifiability of secret shares. However, just
like in TS-RSA, random shuffling is required to securely transfer$ " " � � ���9� . Similar to [7], this scheme is secure only if there are
less than

��� [�� �� �B� malicious (subverted) members. To generate
a random secret without the dealer, extra � � � B communication
rounds are required.

5.4 Accountable Subgroup Multisignatures
Ohta, et al. [18] proposed this interesting scheme, denoted as

ASM, which enables any subgroup of a given group of potential
signers, to sign in a way that the signature, while of constant length,
provably reveals the identities of all individual signers to any veri-
fier. This scheme takes advantage of the homomorphic property of
Schnorr signatures [28] to construct an efficient ASM scheme.

� '*),+�� � 	
: �D����� '*),+|� ����!
�
$�%'& '*),+ � (1)� '*),+�(� 	
: � 	 ��. � & 	 (2)� '*),+�� � �
: �S��& ����A '-),+ (3)� '*),+�(� �
:)>*�+-, � (4)� '*),+��0/}132~476

: �D���
8�)�*"+-,��9��:;:�:<��)�*"+-, ?���& ���A '-),+ �@�CB>��� '-),+ � �CB9! (5)� '*),+�(0/}132~476
: . � & '-),+ (6)

�D� =JOIN REQ, �EB =GMC REQ
'*),+

)�*"+-, �jF��,� ��	 � � �XGHG I�J '*),+ ! PSR�T��
Figure 9: Centralized ASM Protocol

The verification phase in this scheme requires only two modu-
lar exponentiations and � modular multiplications, since an ASM

� '*),+ � � 	
: ���#� '-),+ � �C!
�#$�%'& '*),+ (1)� '*),+ (� 	
: � 	 �
. � & 	 (2)� '*),+ � � �
: � ��&|����A '*),+ (3)� '*),+�(� �
:)�*"+-, � (4)

� =GMC REQ
'-),+

)�*"+-, �wF��.� ��	 � � PSR�T��
Figure 10: Decentralized ASM Protocol

is effectively the same as a regular Schnorr signature. This is very
efficient since, otherwise,

�
verifications would be performed. Un-

like threshold signatures, no dealer is assumed. Another notable
feature of ASM is full accountability of signers. However, since
each signer’s identity should be included, the length of a signature
is linear in the number of signers.

5.5 Comparison
The protocols discussed thus far offer very different alternatives

for P2P admission control. Table 2 summarizes their key features.
PS relies on each signer having its own key-pair which is inde-

pendently generated. The same independence of key generation
applies to ASM schemes. In contrast, TS-RSA and TS-DSA en-
tail a complicated setup phase and a non-trivial join procedure with
multiple protocol rounds. Moreover, the complex setup does not
eliminate the need for having specific key material for signing mes-
sages within the group. Between threshold schemes, TS-DSA dif-
fers from TS-RSA in that the group secret key can be generated by
a group of members without the dealer.

PS is the most general in that neither on-line presence of all sign-
ers nor membership awareness is necessary. This is important for
asynchronous, off-line groups such as content sharing communi-
ties.

PS and ASM directly identify the signers. Signers’ accountabil-
ity is impossible (or at least hard to attain) with TS-RSA and TS-
DSA. We remark that accountability is not always desired. In con-
trast, TS-RSA and TS-DSA provide the anonymity of the signers.

TS-RSA, TS-DSA, and ASM have only one resulting signature,
while, in PS, the number of signature is linear in the number of
signers. Similarly, both TS-RSA and TS-DSA have a constant
length of the final signature independent of the number of signers.
The signature size in PS depends on the number of signers. Since
ASM contains the identity of signers, the signature may become
larger as the group grows.

Table 2: Feature Summary

Key Features PS TS-RSA TS-DSA ASM

Dealer involved �
On-line presence � � �
Accountability � �
Anonymity � �

6. PERFORMANCE
We implemented the group admission control toolkit as described

in 4.2. It consists of the cryptographic functions which are devel-
oped using the OpenSSL library [20]. This toolkit is written in C
for Linux, and currently consists of about 45,000 lines of code. The
source code for the admission control toolkit is available in [22].

We integrated our admission control system with both Secure
Spread [29] and Gnutella [8] in order to measure the performance
in the context of real P2P applications. Secure Spread is selected

as an example of a synchronous P2P system, and Gnutella as an
asynchronous one.

We measured the basic operations and then compared the perfor-
mance of four cryptographic protocols with both fixed and dynamic
thresholds. We used 1024-bit modulus in all mechanisms; that is,
1024-bit Y in RSA and TS-RSA, and 1024-bit $ and 160-bit � in
TS-DSA and ASM2.

Since each protocol has different number of communication rounds,
we measured total processing time from sending of the JOIN REQ
to obtaining new GMCs3. This means the join cost includes not
only the signature generation and verification time in basic oper-
ations, but also the communication costs such as packet encod-
ing/decoding time, the network delay, and so on. To get reasonably
correct results, the experiments were repeated 1000 times for each.

6.1 Basic Operation Costs
In this section, we demonstrate the cost of each signature scheme

used as a primitive in our admission control mechanisms. Table 3
shows, for each scheme, the number of exponentiations for sig-
nature generation and signature size which resulted from

�
partial

signatures. With regard to the number of exponentiation, TS-DSA
takes one extra exponentiation order to get � without knowledge
of � or � e � in a distributed fashion. The length of the signature
in PS and TS-RSA is linear in

�
. Note that, in both PS and ASM,

the combined signatures include the signers’ identities and the total
signature size grows accordingly. TS-DSA has a constant signature
size.

Table 3: Signing Cost Analysis (� � � : key length, � ��� � : length of
signer’s

� �
, unit: bit)

No of Expos. Signature size
PS + +�� � G % G �\G IKJ�G !

TS-RSA + G % G
TS-DSA + � � �

� G � G
ASM + G � G �\G �XG�� � +�� G IKJ�G !

Table 4 shows our measurements for signature generation with
plain RSA, DSA and Schnorr schemes which are form basis of TS-
RSA, TS-DSA, and ASM, respectively. Table 5 shows the cost of
signature generation in terms of key size, where t=3. In TS-RSA,
the cost in generating a partial signature is almost the same as that
of RSA signature generation, but we need extra cost to compute

�

times Lagrange coefficient for partial private key. Similarly, TS-
RSA is slightly better than TS-DSA with 512-bit modulus, while
TS-DSA is faster than TS-RSA with larger key size. As evident
from the table, ASM is the best performer.

Table 4: Signature Generation Costs of Basic Schemes in msecs
(P3-977MHz)

Key RSA DSA Schnorr

512 1.390 1.440 1.650
768 3.940 2.680 2.775

1024 6.820 3.815 4.136
2048 41.880 12.290 12.830

Table 6 shows the measured signature verification costs for all
aforementioned signatures. Table 7 shows the cost of signature
2DSA key of 1024 bits is a little more secure than 1024-bit RSA
key, because the RSA key is a composite number and the DSA key
is a prime [11].
3In these experiments we did not consider the partial share shuf-
fling for both TS-RSA and TS-DSA.

Table 5: Signature Generation Costs in msecs (t=3, P3-
997MHz)

Key PS TS-RSA TS-DSA ASM

512 3.710 15.920 23.730 7.930
768 14.010 38.349 32.380 11.300

1024 24.220 70.429 40.920 15.902
2048 128.500 425.176 104.420 41.760

verification in terms of key size. In PS, the cost of signature ver-
ification is proportional to the threshold. All other schemes, ex-
cept PS, have only one resulting signature due to the aggregation
of partial signatures. It is easy to see that the verification costs of
TS-DSA and ASM are similar to that of underlying standard sig-
natures. However, verification cost for TS-RSA is extremely high.
This is because the computation of �

� �Kf'g�h Y in t-bounded
offsetting algorithm [14] has to be done almost every time the sig-
nature is verified.4 Unlike plain RSA, we can not apply the Chinese
Remainder Theorem to speed up computation, since the factors of
Y are unknown to the verifier. From our experiments, we found
that this computation takes more than 95% of the total verification
cost. This is a critical observation. Contrary to our intuition, the
result shows that TS-RSA is much worse than TS-DSA in terms of
signature verification cost.

Table 6: Signature Verification Costs of Basic Schemes in msecs
(P3-977MHz)

Key RSA DSA Schnorr

512 0.198 1.910 1.940
768 0.238 3.430 3.450

1024 0.287 4.755 4.774
2048 0.604 15.150 15.030

Table 7: Signature Verification Costs in msecs (t=3, P3-
997MHz)

Key PS TS-RSA TS-DSA ASM

512 0.465 5.010 2.090 1.9400
768 0.723 12.550 3.950 4.025

1024 0.763 24.410 5.020 5.290
2048 1.780 144.460 15.450 15.760

6.2 Secure Spread Experiments
Secure Spread [29] is an application built on top of Spread [30] –

a reliable wide-area group communication system. Secure Spread
adds group key management and secure communication services
to Spread. In its present form, Secure Spread supports only static
group access control. This is done via the flush mechanism which
is used by each current group member to acknowledge every mem-
bership change (e.g., join, leave, partition, merge). A prospective
member can join a group only after it has received flush OK mes-
sages from all current group members. However, this mechanism
offers no security, since there involves no authentication of either
new or current members. Moreover, all group members must be
involved in each admission process.

We integrated our admission control mechanisms with Secure
Spread. The integration involved extensions to Spread API. All

4We ran each test case 1000 times. We observed that with SHA-1
as the hash function, about 50% of trials underwent this operation
in case of 512-bit key and t=2. For all other test cases, it occured
almost all the time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

RSA

TS-RSA
TS-DSA

ASM

A
v
e
ra

g
e
 J

o
in

 T
im

e
 (

s
e
c
o
n
d
s
)

Threshold (t)

(a) Secure Spread

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

RSA

TS-RSA
TS-DSA

ASM

A
ve

ra
g
e
 J

o
in

 T
im

e
 (

se
co

n
d
s)

Threshold (t)

(b) Gnutella

Figure 11: Fixed Threshold Cost

group admission protocol messages (e.g., JOIN REQ, JOIN REP,
etc.) are sent encapsulated within standard Spread messages. Spread
unicasting and muticasting are used to send such messages. Once
the joining member receives its GMC, it becomes the new member
of the group and the group key is updated.

For our experiments with Secure Spread, we used a cluster of 10
machines at Johns Hopkins University. Each machine has P3-667
MHz CPU, 256 KB Cache and 256 MB memory and runs Linux
2.4. We ran Spread daemons on all machines which formed a
Spread Machine Group. Almost equal number of clients running
on these machines connect randomly to the daemons. The new
joining member is a client running on a machine at UC Irvine with
a Celeron 1.7 GHz CPU, 20 KB cache and 256 MB memory.

Experiments were performed with the above testbed for both
fixed and dynamic thresholds for all signature schemes discussed
thus far.

Figure 11(a) shows the plot for the average time taken by a new
member to join a group with a fixed threshold. We performed this
test with 4-5 processes on each machine and measured the join cost
by changing the threshold. As expected, plain RSA is the best per-
former in terms of computation time. However, we also see that
both TS-RSA and TS-DSA exhibit reasonable costs (��� sec.), at
least until t=10.

Figures 12(a) and 12(c) show the plots for the average time for
a new member to join a group with a dynamic threshold. In this
experiment, the threshold ratios (�) is set to 20% and 30% of the
current group size, respectively. The actual numeric threshold is
determined by multiplying the group size by � . We measured the
performance up to �

[�� � .

6.3 Gnutella Experiments
For the asynchronous P2P experiments, we integrated our mech-

anisms with Gnut-0.4.21 [8] (an open-source Gnutella [32] imple-
mentation). At the setup phase of the Gnutella protocol, a connec-
tion is established by communicating so-called ping and pong
messages which are based on IP addresses. In order to prevent
Sybil attacks [6], we modified our implementation so that the con-
nection is made only if the responder answers with its valid GMC.
For this purpose, we specified two new messages: sping and
spong. The sping message contains the requester’s PKC, and
the spong message contains the responder’s GMC and its signa-
ture (to prove possession of its private key). As in the Spread ex-

periment, all group admission protocol messages are encapsulated
within standard Gnutella messages.

We performed all measurements on the following Linux ma-
chines connected with a high-speed LAN: P4-1.2GHz, P3-977MHz,
P3-933MHz, and P3-797MHz.

Figure 11(b) shows the join cost for the static threshold case. Fi-
nally, Figures 12(b) and 12(d) show the join costs for the dynamic
threshold case (20% and 30%, respectively). All of these measure-
ments were performed with the equal number of member processes
on each machine.

7. OBSERVATIONS AND DISCUSSION
A few interesting points arise from observing our experimen-

tal results. Most observations are quite intuitive. In all tests with
both Gnutella and Secure Spread, we note that PS outperforms TS-
RSA, TS-DSA and ASM. This is mainly due to the smaller number
of rounds in the protocol as well as faster signature generation and
verification (refer to Tables 5 and 7). At first, this seems to indi-
cate that advanced cryptographic techniques are not very useful for
the purpose of P2P admission control. However, there are some
counter-arguments.

The very reason we chose to use the threshold (RSA/DSA) and
ASM schemes was because we wanted to reduce the combined sig-
nature size in a GMC. As can be seen from Table 3, the signature
size (and thus the size of a GMC) in the PS scheme is proportional
to the threshold

�
. This is in contrast with threshold schemes where

signature sizes are constant for a given key size. Also, in ASM,
the effective signature size is smaller than in the PS, although it
includes the identifiers of all signing peers.

For large groups and especially for dynamic thresholds, the GMC
will become huge for the PS schemes. This yields a basic trade-
off: PS offers lower join cost but longer GMCs, whereas, other
schemes, have shorter (ASM) or constant (TS-DSA/TS-RSA) GMCs
but high join cost. The optimal choice would clearly need to depend
on the specifics of a particular group. The PS mechanism will be
a good choice for small groups or groups of moderate size where
bandwidth is not a major concern. For large groups, where joining
thresholds are higher and bandwidth is an important issue, thresh-
old and multisignature schemes may yield better results. On the
other hand, in power-starved MANET and sensor networks, higher
computation costs may still rule out ASM and threshold schemes
in favor of PS.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

Number of Current Members (n)

A
v
e

ra
g

e
 J

o
in

 T
im

e
 (

s
e

c
o

n
d

s
)

RSA

TS-RSA
TS-DSA

ASM

(a) Secure Spread (R=20%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50 55

RSA

TS-RSA
TS-DSA

ASM

Number of Current Members (n)

A
v
e

ra
g

e
 J

o
in

 T
im

e
 (

s
e

c
o

n
d

s
)

(b) Gnutella (R=20%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

Number of Current Members (n)

A
v
e

ra
g

e
 J

o
in

 T
im

e
 (

s
e

c
o

n
d

s
)

RSA

TS-RSA
TS-DSA

ASM

(c) Secure Spread (R=30%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50 55

RSA

TS-RSA
TS-DSA

ASM

Number of Current Members (n)

A
v
e

ra
g

e
 J

o
in

 T
im

e
 (

s
e

c
o

n
d

s
)

(d) Gnutella (R=30%)

Figure 12: Dynamic Threshold Cost

We also note that join cost for ASM is better than that for thresh-
old schemes. Also, among threshold schemes, TS-DSA fairs better
than TS-RSA for fixed thresholds. ASM and TS-RSA have the
same number of rounds, but the difference is in the amount of com-
putation done by the peers (and GAUTH, in case of centralized
protocols). In TS-RSA, verification of the threshold signature is ex-
tremely high, due to the

�
-bounded offsetting algorithm mentioned

earlier. The costs of signature generation and verification in DSA
and Schnorr (on which TS-DSA and ASM are based) as listed in
Table 4 and Table 6 are comparable, however, ASM becomes more
efficient than TS-DSA because of fewer rounds. For the dynamic
threshold case, TS-RSA is slightly ahead of TS-DSA because, in
the latter, a considerable amount of time is spent on updating the
polynomials as a consequence of the changing threshold. Since
the effective signature size is independent of the group threshold,
we conclude that the selection among ASM, TS-RSA and TS-DSA
schemes has to be made on the basis of the desired features, as
discussed in Section 5.5

Another, more transparent, observation is that the graphs fol-
low almost the same pattern for all schemes with both Gnutella
and Secure Spread. Not surprisingly, Secure Spread incurs higher
costs than Gnutella. This is quite self-explanatory: all communica-
tion between the client and the server in Gnutella is point-to-point,
whereas, in Spread, two peers communicate via their respective
daemons. Also, the communication overhead in Spread is gener-

ally higher, due to its synchronous nature and various reliability
features.

8. RELATED WORK
With the exception of [12] there appears to be almost no prior

work in the area of P2P admission control.
The Antigone [16] project is the closest related work. Antigone

includes a flexible framework for secure group communication and
utilizes a centralized admission approach geared primarily towards
secure multicast scenarios. Antigone offers flexible mechanisms
for defining policies about membership, application messages and
other aspects.

In Antigone, member admission is mediated by a Session Leader
(SL) which interacts with the TTP (that operates on-line) in order
to admit a new member. The TTP shares a symmetric key both
with the SL and every potential new member. (The TTP acts like a
Kerberos AS/TGS). Everyone is expected to know in advance the
identity of the SL.

Some of the mechanisms discussed in this paper are akin to lim-
ited forms of voting. Electronic voting schemes have been exten-
sively studied starting with the seminal work of Benaloh [2]. Most
approaches are based on mix-nets, homomorphic encryption [4] or
blind signatures [19].

[9] presents a trust based admission control model which could
be integrated with our system to make admission decisions based

on a rating of trust for the prospective member. But, we insist that
this scheme can not be used for establishing admission control in
its entirety.

9. CONCLUSION
Building upon a peer group admission control framework in [12]

we designed several concrete P2P admission control mechanisms
based on different cryptographic techniques. We assessed the prac-
ticality of these techniques by measuring and analyzing their per-
formance in both synchronous and (more typical) asynchronous
P2P settings. The experimental results are slightly disheartening
as they cast some doubt upon the practicality of advanced cryp-
tographic techniques, especially, threshold signatures. Moreover,
since every scheme has its own pros and cons, we assert that it is
impossible to single out one particular scheme for all P2P admis-
sion control scenarios.

In summary, although we made some progress towards construct-
ing practical P2P admission control schemes, much remains to be
done.

10. REFERENCES
[1] D. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K.

Budhia. The totem multiple-ring ordering and topology
maintenance protocol. ACM Transactions on Computer
Systems, 16(2):93–132, May 1998.

[2] J. Benaloh. Veriable Secret-Ballot Elections, Yale University
PhD thesis. YALEU/DCS/TR-561, 1987.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A
distributed anonymous information storage and retrieval
system. In ICSI Workshop on Design Issues in Anonymity
and Unobservability, July 2000.

[4] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and
optimally efficient multi-authority election scheme. In
Theory and Application of Cryptographic Techniques, pages
103–118, 1997.

[5] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
P. Samarati, and F. Violante. A reputation-based approach for
choosing reliable resources in peer-to-peer networks. In
ACM Conference on Computer and Communications
Security, pages 207–216, November 2002.

[6] J. R. Douceur. The sybil attack. In International Workshop
on Peer-to-Peer Systems (IPTPS’02), March 2002.

[7] R. Gennaro, S.Jarecki, H.Krawczyk, and T.Rabin. Robust
Threshold DSS Signatures. In U. Maurer, editor,
EUROCRYPT ’96, number 1070 in LNCS, pages 354–371.
IACR, 1996.

[8] Gnut v0.4.21 source code, http:
//schnarff.com/gnutelladev/source/gnut.

[9] E. Gray, P. O’Connell, C. D. Jensen, S. Weber, J. M.
Seigneur, and Y. Chen. Towards a Framework for Assessing
Trust-Based Admission Control in Collaborative Ad Hoc
Applications. Technical Report TCD-CS-2002-66, Trinity
College Dublin, 2002.

[10] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 3280, IETF, Apr. 2002.

[11] C. Kaufman, R. Perlman, and M. Speciner. Network
Security: Private Communication in a Public World (2/e).
Prentice-Hall. 2002. ISBN 0-13-046019-2.

[12] Y. Kim, D. Mazzocchi, and G. Tsudik. Admission control in
peer groups. In IEEE International Symposium on Network
Computing and Applications (NCA), Apr. 2003.

[13] J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu.
Adaptive Security for Multi-level Ad-hoc Networks. In
Journal of Wireless Communications and Mobile Computing
(WCMC), volume 2, pages 533–547, 2002.

[14] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing
robust and ubiquitous security support for MANET. In IEEE
9th International Conference on Network Protocols (ICNP),
2001.

[15] H. Luo, P. Zerfos, J. Kong, S. Lu, and L. Zhang.
Self-securing Ad Hoc Wireless Networks. In Seventh IEEE
Symposium on Computers and Communications (ISCC ’02),
2002.

[16] P. McDaniel, A. Prakash, and P. Honeyman. Antigone: A
flexible framework for secure group communication. In 8th
USENIX Security Symposium, pages 99–114. USENIX, Aug.
1999.

[17] M. Narasimha, G. Tsudik, and J. H. Yi. On the Utility of
Distributed Cryptography in P2P and MANETs: the Case of
Membership Control. In IEEE 11th International Conference
on Network Protocols (ICNP), 2003 (To appear).

[18] K. Ohta, S. Micali, and L. Reyzin. Accountable-subgroup
multisignatures. In ACM Conference on Computer and
Communications Security, pages 245–254, November 2001.

[19] T. Okamoto. Receipt-free electronic voting schemes for large
scale elections. In Security Protocols Workshop, pages
25–35, 1997.

[20] OpenSSL Project, http://www.openssl.org/.
[21] T. P. Pedersen. A threshold cryptosystem without a trusted

party. In D. Davies, editor, EUROCRYPT ’91, number 547 in
LNCS, pages 552–526. IACR, 1991.

[22] Peer Group Admission Control Project,
http://sconce.ics.uci.edu/gac.

[23] P.Feldman. A practical scheme for non-interactive verifiable
secret sharing. In 28th Symposium on Foundations of
Computer Science (FOCS), pages 427–437, 1987.

[24] PKCS #7: Cryptographic Message Syntax Standard,
http://www.rsasecurity.com/rsalabs/pkcs/
pkcs-7/index.html.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM ’01, pages 161–172,
August 2001.

[26] R. V. Renesse, K. Birman, and S. Maffeis. Horus: A flexible
group communication system. Communications of the ACM,
39(4):76–83, April 1996.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms, November
2001.

[28] C. P. Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991.

[29] Secure Spread Project, http://www.cnds.jhu.edu/
research/group/secure_spread/.

[30] Spread Project, http://www.spread.org/.
[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of ACM

SIGCOMM ’01, pages 149–160, August 2001.
[32] The Gnutella Protocol Specification v0.4, http:

//www.clip2.com/GnutellaProtocol04.pdf.
[33] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An

infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, UC Berkeley,
April 2001.

APPENDIX

A. PROTOCOL DESCRIPTIONS

A.1 Centralized RSA
Step 1. A prospective member

�('*),+
presents its identity certifi-

cate
����� '-).+

and a signature on JOIN REQ message � � in order
to prove the knowledge of the corresponding private key.

� '*),+
waits for at least

�
votes from the current group members before it

could join the group.

Step 2. The current member
�
	

signs the message
�
� � � � ��� '*),+ as

a vote using plain RSA scheme and sends it back to
�('*),+

along
with its membership certificate

� �/� 	
.

Step 3.
� '*),+

verifies at least
� � ��� 	 � � s�� � � � � � [� , collects�

votes, and submits them to GAUTH with GMC REQ
'*),+

, and its
signature. A GMC REQ

'*),+
is a X.509 certificate request [10] which

contains an identity of
� '-),+

,
��� '-),+

, and other attributes such as
a group name. Recall that an identity and a public key of

� ��� '*),+
are bound to those of

����� '*),+
.
� '-),+

also sends a signers’ list� % '-),+
to the GAUTH so that it can verify the signatures of the

respective members.

Step 4. Finally, GAUTH issues
� ��� '-).+

for
� '*),+

after veri-
fying all votes individually with RSA verification process where��� '*),+

is derived from GMC REQ
'*),+

.
The GAUTH also verifies that the signatures are actually meant

for the prospective member with identification
��� '-),+

and not for
someone else. This will foil any attempt of a replay (one where
a new member delivers all its votes to someone else) or a collu-
sion (one where two or more prospective members exchange their
individual votes) attack.

A.2 Decentralized RSA
Step 1. Same as step (1) in Section A.1 except that the signature is
generated on GMC REQ

'-),+
.

Step 2. Same as step (2) in A.1 except that the vote is made on
GMC REQ

'-).+
without

��� '-).+
since GMC REQ

'-),+
already contains

an identity of
�
'*),+

.

Step 3. Same as step (4) in A.1 except
�('*),+

issues itself a
� �/��'-).+

which contains k GMC REQ
'*),+ � � �&% '-).+ � � � � � � c"c�c � � � r , where

� 	
is

(GMC REQ
'-).+

) LiM N f'g�h
�
	
.

A.3 Centralized TS-RSA
Step 1. Same as step (1) in Section A.1

Step 2. Current members replies with its membership certificate� ����	
to
� '-),+

after verifying the JOIN REQ as a join commit-
ment and

����� '*),+
therein.

Step 3.
�
'-).+

picks (perhaps at random)
�

responding
� ��� � � � s ���� � � � [� and composes the signer list

� % '-).+
with the

���
of

members who have voted. Then,
� '-),+

sends
� % '*),+

to each
���

who have sent the join commitments. The reason why we need to
send the signer list is to make each

� 	
know the index of

�
mem-

bers in advance to compute Lagrange coefficient, denoted by � � ���! ,
for the partial signatures and shares.

Step 4. Now, each
���

generates ��� � � � for
� '-),+

such that ��� � � � [�
� � � � ��� '-).+ � � �Kf'g�h Y , where a partial private key,

� �
, is gener-

ated by " " � c � � � � �Kf'g�h Y . Also,
���

computes
� '-).+

’s partial
share $!"#" � � ����� by "#" �|c � � � ����� �Kf'g�h Y . The

� 	
sends back

��� � � � � $!"#" � � ����� to
� '*),+

.

Step 5.
� '*),+

self-initializes its own secret share "#" '-),+ by sum-
ming up all $!"#" � � ����� -s. After that,

� '-).+
requests from GAUTH

the membership certificate with the collection of
�

votes and the
signers list.

Step 6. The GAUTH multiplies
�

votes to generate the signature
since 	 ��
 � � � � � � ��� '-).+ ����[�

� � � � � � '*),+ � �Kf'g�h Y . To ob-
tain the actual signature, extra procedure, called

�
-bounded coali-

tion offsetting algorithm [14] is required. If the signature is valid,
the GAUTH finally issues the

� ��� '-).+
to
� '*),+

.

A.4 Decentralized TS-RSA
Step 1. Same as step (1) in Section A.2

Step 2-3. Same as step (2)-(3) in Centralized TS-RSA

Step 4. Same as step (4) in Centralized TS-RSA, except the vote is
made on GMC REQ

'-).+
without

� � '*),+
.

Step 5. Same as step (6) in Centralized TS-RSA, except
� '-),+

is-
sues itself a

� ��� '-),+
which contains k GMC REQ

'-).+ � � � r , where�
=(GMC REQ

'-).+
) � L�M f'g�h Y .

A.5 Centralized TS-DSA
Step 1. Same as step (1) in Section A.1

Step 2. The peers who wish to participate in the admission reply
with their respective membership certificates

� �/� 	
to
� '*),+

after
verifying

����� '-),+
.

Step 3.
� '*),+

picks at random
�

responders
� � � � s�� ��� � � � [�

, collects their
� � �

from their respective
� ���

-s to form a signer
list

� % '*),+
and sends it to each

� �
.

Step 4. Each
� �

randomly chooses its polynomial � � ���� �] � ���
in u�� of degree

� � � � , where
� � [� �� �B�� . Note that � ��� �[� ��
 � � � ��� ,] ���� 7[� ��
 �]*� ��� . � � computes � � � � and

]*� � �
for all signers

�
	 � � [� � cdcdc � � in
�&% '-).+

, and then distributes
� � � � and

] � � �
to all of its co-signers. After receiving her partial

shares from the other co-signers,
� �

computes � � and
]*�

such that
� � [� � � X[� �
 � � � � � �] � []!� � [� �
 �] � � � �Kf'g�h � .
Then,

� �
computes � � and � � such that � � [� ��c]*� �Kf'g�h � � � � [

l m � �Kf'g�h $, and sends � � and � � back to
� '*),+

. Why each
���

must take (at least) two polynomials is referred to [7].

Step 5.
� '*),+

computes � without knowing � and � e � as fol-
lows: First, it computes � and � such that � [� ��
 � � � � � � � �Kf'g�h � which finally equals to �] �Kf'g�h � , � [��
 � � � �- � ���

_��
�Kf'g�h $ which equals l m �Kf'g�h $. Next, it computes the inverse

� e � �Kf'g�h � and finally computes � as � [� � 	 q o f'g�h $
f'g�h � which equals

� l�� q o f'g�h $ �f'g�h � . Then,
� '*),+

sends
� to

� �
.

Step 6.
� �

computes ��� � � � such that ��� � � � [� � ��� � � � � ��� '-),+ �`� � � �f'g�h � , where
� �

is
� �

’s share of group secret
�

. Also,���
computes

� '*),+
’s partial share $!"#" � � ����� by

� � c � � � �����

�Kf'g�h � . Then,
���

sends ��� � � � and $!"#" � � ����� to
� '-).+

.

Step 7.
� '*),+

now requests the membership certificate with
�

votes, a joint challenge � , and the signers list to GAUTH.

Step 8. GAUTH recovers the complete signature
�

with
�

votes us-
ing Lagrange interpolation and then verifies � and

�
with standard

DSA verification process. If the signature is valid, GAUTH issues
the

� ����'-).+
.

A.6 Decentralized TS-DSA
Step 1. Same as step (1) in Section A.2

Step 2-5. Same as step (2)-(5) in Centralized TS-DSA

Step 6. Same as step (6) in Centralized TS-DSA, except the vote is
made on GMC REQ

'*),+
without

��� '-),+
.

Step 7. Same as step (8) in Centralized DSA, except
� '-).+

issues
itself

� �/��'*),+
which contains k GMC REQ

'-),+ � � �C� � � r , where � [
l�� q o f'g�h $ f'g�h � , � =(GMC REQ

'*),+
)
` � � f'g�h � .

A.7 Centralized ASM
Step 1. Same as step (1) in Section A.1

Step 2. To sign a message, each
�
	

sends a partial commitment �
	

such that �
	 [l � N �Kf'g�h $ to

�
'-).+
.

Step 3.
� '-).+

multiplies
�

commitments to obtain the joint chal-
lenge

�
along with all signers information

� % '-),+
such that

� [
� �

� � � � � � � � % '-),+ , where
� [�

	 f'g�h $, and then sends
�

,�
and

� % '-),+
to the

�
signing members.

Step 4. Each
� �

first verifies the hash of
�

(to confirm that it
is signing a membership message and not some arbitrary message
from

�
'*),+
). It then computes and returns ��� � � � such that ��� � � �j[

�
� `(� � � � � � ��� '*),+ f'g�h � back to the

� '*),+
.

Step 5.
�
'-).+

collects at least
�

votes and submits them (along
with

�
,
� % '-).+

and GMC REQ
'-).+

) to GAUTH.

Step 6. Finally the GAUTH verifies all votes by checking that l L�Kf'g�h $ equals to
� c�� ����� � 	 �
	��� � �Kf'g�h $, where

� [� � �
�Kf'g�h � and

�a[��
� �Kf'g�h $. If the verification is successful,

the GAUTH issues
� ��� '*),+

.

A.8 Decentralized ASM
Step 1. Same as step (1) in Section A.2

Step 2. Same as step (2)-(3) in Centralized ASM.

Step 4. Same as step (4) in Centralized ASM, except the vote is
made on GMC REQ

'*),+
.

Step 5. Same as step (6) in Centralized ASM, except
� '-),+

issues
itself

� �/� '*),+
which contains k GMC REQ

'-),+ � � � % '*),+ � � � � � � � � � r ,
where

� [�
(GMC REQ

'*),+ � � 	 l � � � � �&% '-).+ , � [�
�
�|` � � �

.

