
SOCA (2009) 3:25–45
DOI 10.1007/s11761-009-0038-7

SPECIAL ISSUE PAPER

POPEYE: providing collaborative services for ad hoc
and spontaneous communities

Juan A. Botía Blaya · Isabelle Demeure · Paolo Gianrossi ·
Pedro Garcia Lopez · Juan Antonio Martínez Navarro ·
Eike Michael Meyer · Patrizio Pelliccione · Frédérique Tastet-Cherel

Received: 30 May 2008 / Revised: 16 January 2009 / Accepted: 22 January 2009 / Published online: 3 March 2009
© Springer-Verlag London Limited 2009

Abstract Next generation collaborative systems will offer
mobile users seamless and natural collaboration amongst a
diversity of agents, within distributed, knowledge-rich and
virtualized working environments. This ambitious goal faces
numerous challenges from the underlying communication
infrastructure to the high level application services, with the
aim to provide services with the appropriate quality (such as
persistence, synchronization, and security). Most currently
available tools supporting collaboration address either rather
traditional and rigid intra-organizational collaboration sce-
narios or, at the opposite, completely free and unstructured
open communities’s interactions. Emerging dynamic, flexi-
ble and ad hoc collaboration schemes are hardly or not sup-

J. A. Botía Blaya · J. A. Martínez Navarro
Departamento de Ingeniería de la Información y
las Comunicaciones, Universidad de Murcia, Murcia, Spain

I. Demeure
Institut TELECOM, TELECOM ParisTech, Paris, France

P. Gianrossi
Softeco Sismat S.p.A., Genova, Italy

P. Garcia Lopez
Department d’Enginyeria Informàtica i Matemàtiques,
Universitat Rovira i Virgili, Tarragona, Spain

E. M. Meyer
OFFIS, Institute for Information Technology,
Oldenburg, Germany

P. Pelliccione (B)
Dipartimento di Informatica, Università dell’Aquila,
L’Aquila, Italy
e-mail: pellicci@di.univaq.it

F. Tastet-Cherel
Advanced Information Technologies Department,
THALES Communications, Colombes, France

ported at all. The POPEYE framework offers collaborative
services for applications that aim to enable spontaneous col-
laboration over P2P wireless ad hoc groups, where fixed
infrastructure is not a prerequisite, where virtual commu-
nities can emerge spontaneously and share data with the
appropriate quality of service for business applications (per-
sistence, synchronization, security, etc.).

Keywords Collaborative working environments ·
Spontaneous communities · Ad hoc networks

1 Introduction

Collaborative Working Environments (CWEs) are computer
and communications based systems designed to facilitate
communication, collaboration, and work by groups, orga-
nizations, and societies. The term CWE refers to a broad
application and research area encompassing a number of
methodologies, technologies and solutions (including res-
earch and commercial products) that generally help individ-
uals in communicating, sharing information and coordinating
operations during collaborative tasks.

CWE technologies and solutions are typically categorized
along three main dimensions (although in practice there are
no sharp boundaries between them):

1. Time: whether users of the CWE are working together at
the same time (synchronous or realtime CWE) or differ-
ent times (asynchronous CWE);

2. Space: whether users are working together in the same
place (colocated or “face-to-face”) or in different places
(distributed or non-colocated);

123

26 SOCA (2009) 3:25–45

3. Scale: collaboration technologies may be usable by pairs
of individuals, by small groups, by medium-size groups,
by large organizations, or by entire societies.

Pioneered in the mid-1990s by very popular applications
such as IBM’s client–server based Lotus Notes and web-
based Domino, research in the area of distributed CWE has
seen an epidemiological growth over the last decade, thanks
to the boost in web technologies (web services) and, more
recently, Grid technologies.

Although useful and increasingly put into regular use,
current CWE solutions have several limitations and relate-
d needs for further research are generally acknowledged.
Most systems address either rather traditional and rigid intra-
organizational collaboration scenarios or, at the opposite,
completely free and unstructured open communities’s inter-
actions. Emerging dynamic, more flexible and ad hoc collab-
oration schemes are hardly or not supported at all. Typically,
explicit representation of the collaboration context, of work-
ers’ and team’s goals and the semantics of underlying busi-
ness processes are not addressed, and this makes it difficult
to ensure the context and process awareness, personalization
and collaboration support required in knowledge-rich inter-
actions.

Next generation collaborative systems will offer the
mobile user seamless and natural collaboration amongst a
diversity of agents within a distributed, knowledge-rich and
virtualized working environments. However, this ambitious
goal faces numerous challenges from the underlying commu-
nication infrastructure to the high level application services.
These challenges, depending on the operational need, can be
addressed in both technological and scientific terms.

POPEYE [4] is a Specific Targeted Research Project
(STREP) in the New Working Environment which aims to
enable dynamic, spontaneous, peer-to-peer collaborative
group working environments, over heterogeneous mobile ad
hoc networks (MANETs), with secure access, support of con-
text information and smart personalization. The result of this
project is a framework called POPEYE that offers collabo-
rative services for applications that aim to enable spontane-
ous collaboration over P2P wireless ad hoc groups, where
fixed infrastructure is not a prerequisite and where virtual
communities can emerge spontaneously and share data with
the appropriate quality of service for business applications
(persistence, synchronization, security, etc.). POPEYE inte-
grates a communication platform and context-aware, secure
and personalized core services to enable the design and the
usability of collaborative applications in such mobile envi-
ronments. POPEYE offers different kinds of services, such
as group management, basic communication and naming
services while considering flexibility and the spontaneous
character of mobile ad hoc networks. These services rely on

multicast communication, since it stands as the most efficient
way to perform synchronous group communication, and they
provide the foundations to build higher layer functionalities
for the core services level. In order to provide these services,
POPEYE meets several requirements: (1) first of all, due to
MANET characteristics, mobile and multi-hop scenario must
be supported; (2) scalability and low traffic overhead at net-
work layer are key features that must be included to provide
an efficient communication platform; (3) network topology
awareness allows benefiting from peer locality and avoids
generating extra routing traffic—a main concern in mobile
networks; (4) group communication is based on this topol-
ogy awareness to achieve an effective and scalable messaging
system.

In summary, the main contributions of POPEYE are:

– Opportunistic ad hoc networking—meet and join: sup-
port dynamic spontaneous collaborative group working
environments with autonomous coordination and knowl-
edge management support. When most of the currently
available tools supporting collaboration exploit rigid cli-
ent-server architecture and rely on a communicationinfra-
structure like the Internet, POPEYE’s ambition is to get
collaborative working free from such constraints. In this
setting, POPEYE considers P2P over wireless ad hoc
groups, where fixed infrastructure is not a prerequisite,
where virtual communities can emerge spontaneously
and share data with the appropriate quality of service (per-
sistence, synchronization, security, etc.). In other words
POPEYE enables creative usage of networked portable
devices without the need of supporting infrastructures.

– Spontaneous networks—setup working groups quickly
and easily: creative activities and human relations per-
formed among collaborative instruments may get enor-
mous advantages from a cooperative and spontaneous
collaboration. Collaborative instruments have to adapt
to new needs that can vary spontaneously according to
the individual human behavior, e.g., new users enter-
ing, existing users quitting the collaboration and users
that need to change their role within the collaboration.
POPEYE by means of administration mechanisms and
cooperation among the nodes maintains service quality
and security and offers an automatic discovery and acc-
ess to services. Confidentiality, integrity, availability and
access control with authentication are offered without
central administration.

The contribution of POPEYE is then both in the middle-
ware layer, mainly in providing data sharing functionalities
with the appropriate quality of service, and in the network
layer. POPEYE, in fact, makes use of existing MANET trans-
port protocols, but several modifications and customizations

123

SOCA (2009) 3:25–45 27

of these protocols have been done, as will be explained in
Sect. 3.4.

The paper is organized as follows: Sect. 2 introduces the
technologies that POPEYE uses, Sect. 3 presents the POP-
EYE framework and its software architecture. The POPEYE
implementation is presented in Sect. 4 and Sect. 5 puts in
practice POPEYE in the spontaneous collaboration among
the participants of a conference, workshop or any similar
public event. Related work is discussed in Sect. 6. Finally,
Sect. 7 presents final remarks and future directions. A glos-
sary that we built to enable a common understanding of terms
used in the paper and in the POPEYE project1 is attached as
an appendix.

2 Background

This section presents the MANET transport protocols that
POPEYE uses: the unicast routing protocol is presented in
Sect. 2.1 and the multicast routing protocol is introduced in
Sect. 2.2.

2.1 DYMO

Many routing protocols have been proposed in the last years
to route packets along mobile ad hoc networks. They can be
classified in two main categories: proactive routing protocols
and reactive routing protocols. The former group collects
routing protocols that attempt to maintain consistent rout-
ing information along each node that composes the network.
When the topology of the network varies, the information
related to the links between nodes is also updated. The sec-
ond group, by contrast, only creates route to a destination
when is required by a source. The creation of the route to the
destination begins with a route discovery process to find out
the destination. Once the route is established, it is maintained
until the destination node becomes inaccessible or the route
is no longer needed.

In order to significantly reduce control messages in the
whole MANET POPEYE organizes the network in clusters.
Unfortunately, proactive routing protocols are not adapt to
deal with networks organized in clusters since a peer which
belongs to a cluster has no information on the links needed
to reach a peer belonging to another cluster. The peer is only
aware of the link to his superpeer. It relies on the super-
peer for the transmission of the message if the destination
is located in a different cluster. Consequently, in the con-
text of POPEYE we have chose a reactive routing protocol
that implies less control overhead. The goal of this overlay is
to reduce multicast communication by limiting multicast for-

1 The glossary is also available online at: http://srvweb01.softeco.it/
IST-Popeye/site/383/default.aspx.

warding within the scope of the cluster. Superpeers retransmit
multicast traffic between clusters and are in charge of man-
aging cluster information.

The DYnamic MANET On-demand (DYMO) routing pro-
tocol [2], as mentioned in its name, belongs to the reactive
protocol group. As such, when a source is interested in send-
ing traffic to a destination node, then it sends route requests
throughout the network to find him. Each intermediate node
that receives a route request stores a route to the originating
node. Thus, when this message arrives at the destination, it
will be able to answer to the source directly using a unicast
message (route reply) through the reverse route previously
created. Thereby, routes have then been established between
the originating node and the target node in both directions.

However the source node does not know the complete
route to reach the destination, the only knowledge that the
node owns is the neighbor who will deliver the message to
the next node. All the nodes participating in the active route
from the source to the destination maintain their routes and
monitor their links so as to react to changes in the network
topology. In case of a broken link, the intermediate node will
send an error message to the source to notify that the link is
broken. Therefore, when the source receives this notification
it restarts the discovery route process to get to the destination.

2.2 MMARP

The MMARP protocol (Multicast MAnet Routing Proto-
col) [28] is designed for mobile ad hoc networks (MANETs).
It is fully compatible with the standard IP Multicast model,
i.e., nodes from the MANET can interact with nodes from the
fixed network in multicast communications without requir-
ing any change. MMARP supports the IGMP/MLD (Internet
Group Management Protocol/Multicast Listener Discovery)
protocol as a means to interoperate both with access routers
and standard nodes. The interoperation with access routers
is performed by Multicast Internet Gateways (MIGs) which
are ad hoc nodes located just one hop away from access rou-
ters. Every MMARP node may become a MIG at any time.
The MIG is responsible for notifying the access routers about
the group memberships within the ad hoc fringe. This mecha-
nism allows MMARP to interwork with any multicast routing
protocol in the access network.

MMARP uses a hybrid approach to build a distribution
mesh. Routes among ad hoc nodes are established on-demand,
whereas routes towards nodes in the fixed network are main-
tained proactively. The reactive part consists of a request
and reply phase. When an ad hoc node has new data to
send, it periodically broadcasts a MMARP_SOURCE mes-
sage which is flooded within the entire ad hoc network
to update the state of intermediate nodes as well as the
multicast routes. When one of these messages arrives at a
receiver, or at a neighbor of a standard receiver, it broadcasts a

123

http://srvweb01.softeco.it/IST-Popeye/site/383/default.aspx
http://srvweb01.softeco.it/IST-Popeye/site/383/default.aspx

28 SOCA (2009) 3:25–45

Fig. 1 Average connection time

MMARP_JOIN message including the IP address of the
selected previous hop towards the source. When an ad hoc
node detects its IP address in a MMARP_JOIN message, it
recognizes that it is in the path between a source and a desti-
nation. It then activates its MF_FLAG (Multicast Forwarder
Flag) for the group and rebroadcast a MMARP_JOIN mes-
sage back to the source.

The proactive part of the protocol is simply based on
the periodic advertisement of the MIGs as default multicast
gateways to the fixed network broadcasting a MMARP_
DFL_GW message. The reception of an IGMP/MLD Query
can be used by ad hoc nodes to detect that they are MIGs.
The process of creating the path towards the MIG is simi-
lar to the one described before. When the MIG receives the
MMARP_JOIN message, it sends an IGMP/MLD Report
which creates a forwarding state in the multicast router
towards the ad hoc network. Once the mesh is established,
data packets addressed to a certain multicast group are only
propagated by ad hoc nodes which have their MF_FLAG
active for that group.

This protocol has been improved to offer information
about the clusters, specifically the identifier of the cluster.
This information is used to limit the traffic that only involves
on cluster to that cluster, not overheading the rest of the clus-
ters. Thus, when a peer is interested to send some traffic to
some peers of the same cluster, the information will be only
propagated along the cluster but not to the rest of them. When
this traffic reach the border nodes of other clusters, they dis-
card these messages preventing the network to be flooded
for this traffic. This approach reduces significantly control
messages in the whole MANET.

In the following graphs, some performance metrics have
been obtained to support the aforementioned statements.

Figure 1 shows the average connection time that requires
a peer to connect to a cluster depending on the distance to
the closest SP. As we can see, the connection time remains
quite unchanged in a cluster that requires from two hops to
four hops in order to reach the SP. Thus, the best size of a
cluster for this framework is a four hops distance to the SP.

Fig. 2 Cluster handover time

POPEYE is able to deal also with the mobility of their
users, reacting to the changes of the topology. Thus, while the
user is moving, POPEYE receives information about the clos-
est clusters. A cluster handover process is started if POPEYE
detects that the current cluster is not more the best one (due
to the proximity of a new one).

Figure 2 shows those results for different distance to the
SP. This Figure also supports the statement of the appropriate
size of the cluster.

A complete work can be found in [15] and [21] with more
details regarding the metrics analyzed and the performance
results.

3 The POPEYE framework

The main objectives of POPEYE are to (1) provide an inte-
grated overlay networking architecture that combines the
stability and performance of infrastructure networks (when
available) with the flexibility and spontaneous character of
mobile ad hoc communications, (2) develop a communi-
cation platform to provide efficient P2P management and
communication primitives, (3) provide higher-level context-
aware, secure and personalized core services to facilitate
application development by allowing the combination of user
preferences with ambience information, such as time, loca-
tion, user activity, and peers presence.

Applications built on top of POPEYE are intended to be
used as easily as possible from the user’s point of view. When
users of POPEYE applications want to collaborate they just
have to start the POPEYE Environment with the selected
applications on their wireless device and login to POPEYE.

The device connects to a P2P overlay network which is
built upon a mobile ad hoc network (MANET). This happens
invisibly to the user. In the next step a user can search for and
join existing Workspaces (WS) or he creates a new WS and
invites other available users to join him for collaboration. In
POPEYE, Workspace is the term used to designate a group of
users and the data and applications they share. The users who
joined a WS form the group that belongs to the WS. Sharing

123

SOCA (2009) 3:25–45 29

Fig. 3 The POPEYE layered
architecture

of data between all members of the group is supported by
the shared space which is associated to each WS. The appli-
cations the users employ for collaboration (e.g., file shar-
ing, group calendar, whiteboard, etc.) can be plugged into
the user’s local POPEYE environment at runtime. We call
those applications plug-ins and their instances associated to
a Workspace and having a specific configuration are named
(plug-in-) sessions. The POPEYE system is secure and con-
text aware at all times.

The architecture elicitation process for such a system
started with gathering and specification of requirements [5].
This elicitation process was also guided by an end-users
requirements workshop in which we gathered requirements
expressed by possible POPEYE end users.2 Based on these
requirements, a layered architectural design has been worked
out. A layered architecture allows us to organize the system
into a set of layers each of which provides a set of services.
We chosen the layered model because it supports the incre-
mental development of sub-systems in different layers. In
fact, when a layer interface changes, only the adjacent layer
is affected.

The POPEYE architecture is composed of 22 compo-
nents distributed in four layers and two macro-components.
Figure 3 shows four different layers: the User Interface, the

2 Public Workshop Proceedings are available on http://srvweb01.
softeco.it/IST-Popeye/site/376/default.aspx.

Application, the Middleware, and the Network Abstraction
layers.3 Security and Context macro-components are orthog-
onal to the four layers. Each layer and macro-component
provides/requires services to/from adjacent layers, through
provided/required interfaces. Since each context service is
accessed by all POPEYE layers (a real orthogonal context) it
is represented by only one component. On the contrary, the
security macro-component provides a number of services to
the different POPEYE layers.

Relationships among components are always use relation-
ships. Direct connections between single components rep-
resent access from the upper layer components exclusively
to functions of the connected components within the spe-
cific lower layer. In particular the Framework Manager uses
services provided by the Workspace Management, the User
Management and the Plug-in Management components. At
the same time the plug-in API forms a gateway for plug-ins
to access only functions of the Middleware layer plug-ins are
authorized for.

In the following subsections we focus on each layer and
macro-component, and in their subcomponents. The research
challenge of POPEYE is both in the middleware layer, mainly
in providing data sharing functionalities with the appropri-
ate quality of service, and in the network layer. POPEYE, in

3 The additional physical Network layer is not consider in the remaining
of the paper.

123

http://srvweb01.softeco.it/IST-Popeye/site/376/default.aspx.
http://srvweb01.softeco.it/IST-Popeye/site/376/default.aspx.

30 SOCA (2009) 3:25–45

fact, makes use of existing MANET transport protocols, but
several modifications and customizations of these protocols
have been done, as will be explained in Sect. 3.4.

3.1 User interface layer

The user interacts with the POPEYE system by employ-
ing the User Interface layer. This layer offers to the users
an access to both the POPEYE framework services (e.g.,
search for users and authentication) and its applications (e.g.,
chat and file sharing). The Framework UI is used for inter-
actions with general POPEYE functions provided by the
Framework Manager. This includes all actions concerning
Workspace management, plug-in administration and other
configurations with regard to the general POPEYE system
usage. Plug-in specific UIs are individual user interfaces for
each application that is installed on the local POPEYE sys-
tem. For better handling the plug-ins, UIs are packaged with
the related plug-in. All components in this layer consume
services from Security Management.

3.2 Application layer

The components in this layer implement services to be built
on top of the POPEYE infrastructure. They represent the
application logic which is accessed by the user through
the User Interface layer. The Framework Manager repre-
sents the real POPEYE Client application core. It constitutes
the Controller in a MVC (Model-View-Controller) [3] archi-
tectural pattern (where the middleware layer constitutes the
Model and the User Interface layer acts as the View). The
Framework Manager covers two main roles:

The first role consists in acting as a common entry point for
client layer components to POPEYE middleware functional-
ity. Application layer components, such as plug-ins or User
Interface components obtain access to lower layers function-
alities (such as Workspace handling, shared space manage-
ment, profile management, security and so on) through this
component.

The second role covered by the POPEYE Framework
Manager consists in acting as container for managing the
life-cycle of plug-in instances in execution on the client
application in the context of running sessions.

3.3 Middleware layer

This layer provides the core functionalities of the POPEYE
framework. It is organized in eight different modules that
make use of the services supplied by the Network layer and
Security and Context macro-components.

3.3.1 Data management and sharing services

The Data Management and Sharing Services module is one
of the most important and challenging part of the middleware
layer since it offers a distributed storage system that allows
group members to share data. This system makes use of con-
text information to replicate data in some of the participating
devices in order to achieve accessibility from anywhere in
the network and the efficient use of the network resources.
This module makes use of the super-peer architecture cho-
sen by the network layer. Furthermore, our algorithms make
use of the hierarchical network architecture. They take into
account locality, for example, to retrieve the data from the
closest peer or to decide whether a data should be replicated
or not. To consider locality, Data Management needs to have
some information about the topology. Since clusters are con-
structed taking into account the proximity of the peers, we
use them as a criterion for the locality based algorithm. We
provide a refined an improved static view of the module.
This module is rather complex since it involves a large num-
ber of classes and mechanisms requiring inter modules and
inter peer communication. Nevertheless, we provide the users
with a well defined set of functionalities available through a
unified set of high level interfaces.

Within the POPEYE framework, users, applications and
internal modules must be able to share “data”. Metadata can
be defined as data containing information about other data
(describing its attributes and organization). In POPEYE, we
use Metadata to keep information about data to be exploited
by the POPEYE system itself and by the applications oper-
ating on the POPEYE platform.

Data can be structured in different ways:

– Simple data: data not divided into smaller pieces. (e.g.,:
a code file);

– Fragmented data: data divided into smaller pieces for
practical reasons without any specific semantics associ-
ated to the fragments (e.g.,: a shared video file can be
fragmented into smaller pieces to allow users with scarce
memory devices to watch it);

– Composed data: logical division of data into meaningful
pieces (e.g.,: an encyclopedia article composed of text,
images, video and style sheet).

A shared space is a virtual space composed of all the data
shared among a group of users, applications and internal
modules. A shared space is therefore mapped to a “group”.
Shared space membership is obtained through the corre-
sponding group membership (a group specifies membership
policies that define, for example, who can enter the group).
As users may be members of various groups, they may be
members of various shared spaces. Each member may access

123

SOCA (2009) 3:25–45 31

all data in the shared space as if they were local data, even
if they are stored on a remote terminal, provided he has the
proper access rights. A shared space is state-full: members
may share the same data through different sessions of work
without having to specify the access rights on this data for
this shared space at the beginning of each session.

A shared space is logically organized as a tree structure,
which is independent of the way data are stored on the phys-
ical devices. This structure presents the logical organization
of the shared space: although several replicas of the same
data can coexist, this data is unique in the tree structure.

3.3.2 User management

The User Management module is responsible for managing
profiles data of a user. It provides administrative functions
for retrieving users and users profiles information within both
the MANET and specific Workspaces. Therefore, the mod-
ule provides methods to create, alter and manage the user’s
profile information and to search for profiles based on spe-
cific information using Context modules. In order to achieve
a full set of functionalities regarding information describing
the user, the User Management module creates and handles
multiple profiles representing him. While a single base pro-
file that contains data the user has marked as “publicly avail-
able” is accessible by all other users of the MANET there
can be several private profiles that provide further informa-
tion that is only accessible in the Workspace in which this
profile is used to represent the user. These private profiles
are managed in association with the Security modules and
exclusively contain data that the user has marked as “pri-
vate” when creating his profile(s). To access the base profile
of a user in the MANET, the User Management module has
a connection to Context modules via these profiles. Besides,
a user is able to search for other users with specific profile
information (e.g., users sharing the same interests, having the
same job or working at the same company) using a similar
algorithm that also involves Context modules in order to get
a satisfactory result.

3.3.3 Workspace management

The workspace management module controls the lifecycle of
the existing Workspaces and Sessions. The Sessions repre-
sent the Workspace-related instances of applications. Shared
spaces provided by the Data Management and Sharing Ser-
vices are assigned to each Workspace to allow the Workspace-
wide distribution of data. Workspace Management also
handles the profiles of Workspaces and Sessions including,
e.g., lists of authorized users and the assignment of man-
ager rights for each Workspace. The profiles are stored in the
POPEYE shared space to make them accessible to all peers.
All actions occurring inside a Workspace (e.g., membership

changes, profile changes and invitation notifications) are
distributed locally as well as to all participating peers in the
MANET by means of an integrated Workspace Event Model.
This Event Model encapsulates the events from different
sources regarding the status of Workspaces and Sessions and
provides them to other components as unified Workspace
Events. Furthermore, this module enables to search for Work-
spaces in the Network following different criteria.

3.3.4 Group management, publish/subscribe, and naming
services

Advanced communication mechanisms offered at the mid-
dleware layer are organized in three different modules. First,
the Publish/Subscribe Services module implements a sub-
set of the Java Message Service (JMS) functionalities. The
module offers a fully-decentralized topic-based subscription
mechanism, where durable and non durable topic subscrip-
tions are supported. Furthermore, it supports message retrans-
mission of lost messages due to temporary disconnection. As
long as a single member of the group is connected, messages
published under the topic can be transferred to the node when
rejoining the group. It must be considered that since there is
no central JMS server, subscription information is partially
kept by each peer in the group. In this way, when a node
rejoins a group due to a temporary disconnection, it asks one
of the members of the group in order to obtain previous mes-
sages published in the topic. The naming service also follows
a JAVA standard by implementing a subset of the JNDI (Java
Naming Directory Interface) interface. This naming service
is intended to be used in order to store lightweight data like
resource discovery, group and other information. The mech-
anism to store this information is simple but effective: when
changes are performed in the naming service, these changes
are sent via multicast to all group members. Since we know
this might be a resource-expensive mechanism of deliver-
ing data, naming services are supposed to be used to store
minimal but critical data. On the other hand, information is
rapidly and totally available for current group members.

Besides, a decentralized naming service is also offered by
an implementation of the Java Naming and Directory Inter-
face (JNDI). The Naming Services module binds a name to
a specific resource and at the same time provides event noti-
fication whenever naming entries are modified. Built on top
of these modules, the Group Management Services module
supports multiple group creation where members can join
several groups at the same time. Each group offers group
membership, a replicated name service and different publish/
subscribe channels. Furthermore, a notification when groups
are created and deleted is offered as well as member join/
departure events. Group management services handle all
interactions related to group creation/deletion and group
membership. This module allows creating logical groups

123

32 SOCA (2009) 3:25–45

where members can collaborate. It is necessary that all
members willing to collaborate belong to the same group.
Initially, all members belong to a default group and after-
wards they can create or join new groups. Group information
is stored in the lightweight replicated naming service, so that
it is available for all members in the network. Regarding
group membership, this module also provides information
about all connected members in the group. When members
leave or join a group, events are triggered and forwarded to
the plug-ins that are previously registered to these events.

3.3.5 Plug-in management and plug-in API

As described in Sect. 3.2, the POPEYE collaborative appli-
cations are implemented as POPEYE plug-ins. The power
and flexibility of the POPEYE software lies in the fact that
its plug-in based architecture allows easy extensibility of its
functionality depending on the particular needs and require-
ments of each specific implemented application. Plug-ins
represent “pieces” of applications which are used for collab-
oration, encapsulating specific functionality. They can easily
be plugged into the local POPEYE System at runtime. Plug-
ins can register themselves or can be retrieved by using a
central software component in the POPEYE software, the
so-called Framework Manager, which acts as an entry point
to the POPEYE platform.

The Plug-in Management module in this layer offers
mechanisms to locate, download and install plug-ins. The
installation of a plug-in is supervised by the plug-in man-
ager, so that an end user has the ability to search for avail-
able plug-ins in the POPEYE environment, to share plug-ins
or to receive notifications about shared plug-ins. More spe-
cifically, plug-ins that locally reside to the peer are loaded
at the system startup. After the startup, at each moment a
user can start new instances of already installed plug-ins,
can install plug-ins that are in the file system (browsing
the file system and selecting the jar file of the plug-in), or
can install plug-ins that are shared by another peer and then
that reside on another peer. Possible dependencies between
plug-ins (a plug-in could need other plug-ins to be already
loaded) are taken into account and managed by the POPEYE
plug-in management component. Multiple instances of the
same plug-in can run on the local POPEYE system (even
in the same Workspace). Each of those instances represents
an own session with an individual configuration. Finally, the
POPEYE plug-in manager provides communication infra-
structures for plug-ins. Two kinds of communications are
provided: (1) a communication similar to a publish/subscribe
mechanism used for instance for plug-ins synchronization
(e.g., a plug-in that has to react to modifications of other
plug-ins) and (2) a communication, similar to components
communication, by means of the plug-in interface (i.e., sim-
ply invoking plug-in services). For instance it is possible

to implement a map plug-in showing peers geographically
dislocated in different rooms of the conference and it is pos-
sible interacting on the map to directly open a chat with one of
the peers. Extension points technology provided by the plug-
in infrastructure permits to implement a plug-in that extends
other existing plug-ins adding new functionalities (e.g., add-
ing a new button in a plug-in toolbar with a new associated
functionality, or adding a view window in a map plug-in in
order to give an overview of the whole map when the map is
too big to be readable in its entirety). From the POPEYE cli-
ent point of view, sessions of plug-ins can be executed in the
context of a Workspace from inside the Workspace Explorer.

The plug-in management of POPEYE is based on the
Charmy [26] plug-in infrastructure, a framework and tool
for software architecture analysis. A developer who aims to
write a new plug-in for POPEYE has only to extend
an abstract class (eu.popeye.pluginManager.
plugin.Plugin) and to implement the inherited method
init.4

The plug-in management of Charmy is free-based on the
Open Services Gateway Initiative (OSGi) Service Platform.5

OSGi provides functions to dynamically change (without
requiring restarts) the composition on the device of a
variety of networks. OSGi provides also mechanisms to
support the deployment of a bundle, called plug-in in
POPEYE, (e.g., installation, removal, update, (de-) activa-
tion). Dynamic availability of services provided by bundles
requires an application to be capable of dynamic assem-
bly (e.g., publication of the bundle’s services, connection
between bundles and requested services) and dynamic adap-
tation (e.g., monitoring of existing services, application
reconfiguration). Examples of different implementations of
the OSGi Service Platform specification are OSCAR,6 the
IBM Service Management Framework7 and Siemens VDO.8

The OSGi platform is also the foundation for the Eclipse 3.0
IDE,9 managing among other things dependencies and inter-
actions between plug-ins.

Even solutions targeted at Web services could be con-
sidered among the most suitable for CWE systems. How-
ever, Web services deployment has been primarily studied for
wired and infrastructure-based network such as Grids [32].
For this reason, CWE frameworks for ad hoc and spontane-
ous communities could find in the OSGi-based platform the

4 For further details and for understanding how simple is to write a new
POPEYE plug-in, please refer to the deliverable D6.3 freely accessible
in the POPEYE webpage.
5 OSGi Alliance. http://www.osgi.org.
6 http://oscar.objectweb.org.
7 http://www.ibm.com/software/wireless/wsdd.
8 http://siemensvdo.com.
9 http://www.eclipse.org/equinox/.

123

http://www.osgi.org
http://oscar.objectweb.org
http://www.ibm.com/software/wireless/wsdd
http://siemensvdo.com
http://www.eclipse.org/equinox/

SOCA (2009) 3:25–45 33

most suitable choice for dealing with the deployment of its
services.

The Plug-in API represents a well defined interface that
encapsulates the set of those middleware functions which are
to be accessed by (third party) application plug-ins.

3.4 Network abstraction layer

This layer enables the interaction of the middleware layer
with the underlying physical network. As stated before, in
POPEYE, the target physical network is a Mobile ad hoc
Network (MANET).

MANETs are mainly characterized by the mobility of the
nodes, and the scarce bandwidth. The mobility of the nodes
causes continuous partitions of the network. Furthermore the
scarce bandwidth requires ad hoc routing protocols to cre-
ate efficient routes between nodes, maintain and reconstruct
them whenever they break without generating too many con-
trol messages. DYMO [2] (Dynamic MANET On demand
Routing Protocol) is the underlying unicast routing protocol
that is used in POPEYEs mobile P2P over MANET sce-
narios. DYMO (see Sect. 2.1 for further details) is defined
within the MANET group of the Internet Engineering Task
Force (IETF) as the substitute for the well-known AODV [1]
protocol. The main advantage of using DYMO is that it is
specifically designed to work with heterogeneous devices in
terms of capacity and computation power. Moreover, DYMO
can scale very well to hundreds of nodes, and it has a very
low control overhead. In the area of multicast as it could
be relevant to the deployment of service in mobile P2P, we
use MMARP [28] (Multicast MANET Routing Protocol).
MMARP (see Sect. 2.2 for further details) provides efficient
multicast routing inside the MANET and incorporates addi-
tional functionalities to deal with the complexity of interop-
erating smoothly with fixed IP networks.

The Peer Discovery Services module constructs a peer-to-
peer overlay topology over the MANET protocols to improve
communication efficiency inside and between groups of col-
laborating nodes. To achieve that, this service uses a cross-
layer approach in which the peer-to-peer overlay benefits
from topology and communication traffic from the underly-
ing MMARP MANET protocol. This cross-layer approach is
essential for achieving an efficient protocol that reflects the
MANET multi-hop topology and avoids unnecessary traffic
in the MANET. Note that other approaches just construct
peer-to-peer networks that ignore the underlying MANET
topology and communications.

In order to adapt to collaboration settings, we propose to
construct a hybrid peer-to-peer overlay based on super-peers
and clusters of collaborating nodes. In each cluster, exactly
one distinguished node—the superpeer (SP)—is responsi-
ble for establishing and organizing the cluster. The SPs are
responsible for sending SP Info messages in their clusters,

containing administrative information for the cluster
members. They also form an overlay which allows the com-
munication with adjacent clusters.

Finally, the Communication services module represents
the set of services available for sending messages to other
peers. The main part is the communication channel that
allows peers to send messages to one or to all the peers in
the group. Messages targeted to all group members are sent
through an optimized overlay multicast service routed over
super-peers. Furthermore, the channel provides mechanisms
for synchronous and asynchronous receive. Note that the
communication service is the major abstraction used by the
middleware layer. The communication layer abstracts all
the low level details required to interact with the peer-to-peer
overlay.

3.5 Security macro-component

One of the main objectives of POPEYE is to provide a sim-
ple and reliable computing environment for collaborative
working groups. This objective is aimed by several secu-
rity mechanisms, that are disseminated at different levels of
the POPEYE architecture. The POPEYE security also aims
at providing cryptographic material and security feedback to
the other services of the architecture. The POPEYE environ-
ment has specific characteristics that make the security very
challenging. First, the nodes have limited capacities in terms
of power, bandwidth and memory that require the security to
remain lightweight. Its distributed nature and the lack of a
localized server that could act as a single trust authority do not
allow us to use classic public key infrastructures. However, it
is also characterized by a relative small number of nodes and
time-limited sessions, so that the POPEYE security mecha-
nisms are sufficient for reliable computing. The key concepts
of the POPEYE security are group management, access con-
trol, trust support services and privacy. Access control is used
to decide whether an operation is allowed or not, depending
on the security policies attached to the operation, the creden-
tials provided and the possible input of the end user. Sev-
eral certificates are created, exchanged and stored between
the users to prove one’s identity and permissions. Unlike
access control, the trust services aim at offering transparent
and trusted relationships among users. They do not output a
binary decision, but a trust level that reflects the confidence
a user should have in another one. The establishment of a
peer-trusted chain follows an iterative process consisting of
tracking and analyzing user’s behavior.

Here in the following we detail components that compose
the security macro-component.

The Security Management module is composed of the
Security ToolBox and the Global Security Manager. The
Security ToolBox module is in charge of providing basic
cryptographic functions while the global security manager is

123

34 SOCA (2009) 3:25–45

in charge of managing the security configuration that is not
specific to a Workspace. For example, it will be in charge of
enabling or disabling security globally, or to tune the differ-
ent parameters used in Trust Computation modules.

The Security Policies Services module is used to man-
age and retrieve the set of rules that regulate how security is
implemented and protects and distributes sensitive informa-
tion. The rules apply at different levels: Workspaces, groups,
data-sharing services, plug-ins and profiles.

The Privacy Services module is responsible for managing
private information and profiles, and their certification.

The private information consists in all data that cannot be
managed by the Context Services (all the information man-
aged by the Context Services is public) and that will be deliv-
ered only to the members of common groups, via the profile
used in the group.

The Access Control module is used at different levels in
the POPEYE software:

– Network level. If this option is enabled via the POPEYE
global security management service, a POPEYE creden-
tial is required before a POPEYE end user uses any other
access control function. This credential can be retrieved
by different means (for example it could be distributed
via an USB key, or pre-configured on POPEYE devices).
However, we have implemented the use of the POPEYE
captive portal, since it was the best solution in the context
of the conference scenario described in Sect. 5.

– Collaborative work. The security related to collaborative
work between POPEYE users (that is creating and enter-
ing Workspaces) is also carried by the Access Control
module.

Captive portal is the implemented solution of POPEYE.
The captive portal performs a password-based authentication
before delivering the POPEYE credential. The main service
proposed by the captive portal client side is thus to load a
POPEYE credential into the POPEYE software. Other func-
tions (less important from a technical point of view) are the
specification of the trusted third party (that is the certificate
of the captive portal), and the validation of the POPEYE cre-
dential. The credential generated via the captive portal takes
the form of an X509 certificate of the public key of the user,
signed by the trusted third party authority.

The Super Peer Trust module computes the trust of the
different peers of the network and the relation between super-
peers and how they trust each other. This module is in charge
of computing trust for other POPEYE profiles and users.
Depending on whether or not the use of multiple profiles
is enabled (or if we keep one unique profile per user), the
implementation of the trust computation mechanisms dif-
fers in some points. As explained before, super-peers are the
nodes of the network in charge of a group of nodes nearby

located (cluster), being the nodes responsible of managing
the communication between clusters. So these nodes are
really important in the ad hoc network, not only because
of the communication between clusters but also because they
will also be in charge of the organization of their own cluster.
This module is also in charge of ensuring to a super-peer that
another super-peer is not a malicious node trying to modify
the behavior of the network on his own interest. Super-peers
compose a group called security group. This group is the one
in charge of providing the credentials in case a peer needs
them. When a connection between peers is established, using
requests and replies, both of them are signed by the senders.
However, the only way to check and validate this sign is hav-
ing the credential of the sender. So the peer will request this
information to the security group. After receiving the corre-
sponding credential the node will be able to validate the sign
of the other peer and trust it. When a new peer is becoming
a new super-peer it will send a SP_REQ (super-peer request)
message signed with its private key. The other super-peer
will receive this message and will validate the information
about the becoming super-peer. If the data is validated it will
also send the group symmetric key to the new super-peer.
In this way both of them will be able to communicate with
each other without disclosing the data to other nodes of the
network. This step can be generalized to the case where more
than one super-peer exists in the network. Another alterna-
tive can be applied to this scheme. The alternative consists
in a voting scheme to decide if a new node is going to be
part of a group. More precisely, in the first steps of this alter-
native scheme the group key is split among several nodes
(super-peers). When a new peer is becoming a super-peer it
will also send an SP_REQ message and the current super-
peers will answer with a vote. If the node receives enough
votes, applying a math formula it will be able to build the
group key and therefore able to participate in the super-peer
group. This scheme is an alternative in case the first super-
peer, which is the one who owns the information, disappears
from the network.

3.6 Context macro-component

The POPEYE project, as well as most CWEs [12,23], must be
aware of the environment, preferences, state and equipment
of the user. All information, such as the location of the user,
the device used to access the system, the topics of interest of
the user, and the group of users interested in the same topics,
is contextual information. We deal with this information in
the form of context so as services offered in this framework
should adapt to changing conditions (e.g., the data sharing
service may adapt to changes in network topology) and be
proactive (e.g., a new user entering the system may be noti-
fied of other users or groups sharing interests depending on
his own profile) [18].

123

SOCA (2009) 3:25–45 35

This implies that POPEYE must be context-aware to be
able to deal with this information. In a typical POPEYE sce-
nario, several users equipped with different devices access
the system in a non-deterministic fashion, and they handle
the same semantic framework of information.

POPEYE contextual services follow an event-driven archi-
tecture. The entities of the system can be seen as either pro-
ducers or consumers (or both) of context. Contexts coming
from the environment can be generated by several sources,
such as devices, users, sensors, software modules and even
external applications. Each entity capable of generating con-
text is called Context Source. Users have a profile with con-
textual information (such as the people they know, the topics
they are interested in and the social relationships with other
users) and sensors deliver data periodically. The main goal of
the context source abstraction is to wrap the entity generating
context in a common semantic framework, so the generated
context can be readable and understandable by the rest of the
system. In order to do this, POPEYE has a set of ontologies,
which sets a homogeneous frame of reference of the concepts
handled by the system.

One of such ontologies models context itself. Contextual
information structure is modeled by using a context hierar-
chy and an internal structure for context information. For
such purpose, the OCP (Open Context Platform) [25] has
been reused and adapted for the POPEYE framework. In
such ontology, it is stated that the user is the main entity
with context. And this piece of information may be as com-
plex as needed, taking into account that it may include an
aggregation of environment, location, personal and social
information, among others.

The other ontology related with context is the domain
ontology. In this case, a new ontology which includes par-
ticular details on POPEYE real scenarios has been created by
reusing the basic pervasive systems ontology already
included in OCP. This domain ontology includes all the basic
building blocks to populate user’s context structure.

Ontologies used in POPEYE are expressed and managed
in OWL, thus they rely on the RDF model based on triplets for
the expression of knowledge about concepts and objects of
the world. They are implemented by using the Jena10 ontol-
ogy manager and ORE11 enables context reasoning by the
definition and execution of rules.

Now, it is clear how context information is modeled and
stored. In the following it is introduced how this information
is generated and delivered.

Once declared, a source of context information starts gen-
erating contextual data. This contextual data is delivered to
the system. Based on the users’ personal profile and prefer-
ences or interests, they may be interested in being aware of

10 http://jena.sourceforge.net/.
11 http://ore.sourceforge.net.

changes or updates in some contextual information. A user
may be interested in knowing when something changes on
shared documents. In order to do this, and following the event
architecture, the users register as listeners of some contex-
tual information. Whenever a listened context changes, all
listeners are notified of the updating in the contextual infor-
mation. The key difference of the context-awareness treat-
ment in POPEYE is the collaborative nature of the system.
In POPEYE, the user is not just an isolated entity, but a col-
laborative member of one or more groups. As such, we must
take into account not only his personal context, but his group
context (i.e., the contextual information that arises from him
as a member of a collaborative framework of users). This
introduces a new paradigm for contextual information treat-
ment, in which the context is not only seen as owned by an
entity, but as a dynamic information unit of the group. The
contextual information also allows us to get advantage of the
semantics of the information. Semantic relationships can be
exploited to offer a better service to the users.

The Context service has three modules, Context Collec-
tion Services (CCS), the Context Delivery Services (CDS)
and the Context Management Services (CMS):

– the module Context Collection Services is responsible for
collecting both the data on the context of each user in
the peers and the communication with the management
module contexts (Context Management Services) in the
superpeer;

– the Context Delivery Services module has the function-
ality of obtaining contexts through communication with
the Context Management Services. The CDS can perform
searches of context, register as listener to be notified of
changes in a given context, or request a specific context.
Therefore, when the CDS receives a message, it possibly
notifies the event to their own peer listeners;

– the Context Management Services are executed in a
superpeer and this module manages all contexts in the
cluster in which belong. The contextual communication
with other clusters is build with the data share module.
In the CMS we can search some context, read a context
by its identify, etc. The CMS has a server behavior, i.e.,
it waits for connections of CCS/CDS modules.

4 POPEYE implementation

This section describes the implementation of the POPEYE
framework as available at the end of the project. The actual
implementation of POPEYE does not support mobile devices
even though the conceptual part of the work can be reused for
further implementations optimized for mobile devices such
as PDAs. However, it is important to note that POPEYE is

123

http://jena.sourceforge.net/
http://ore.sourceforge.net

36 SOCA (2009) 3:25–45

defined to work in mobile contexts in which the mobility is
on walking speed.

When the user clicks on the POPEYE client icon on his
laptop desktop, a start-up console window is displayed; it
prompts the user for login information (username and
password).

Registered users may login through this console and non
registered users may proceed with the registration.

This console provides a top-level menu for the POPEYE
system. It displays basic information about the user that has
logged in to the system through this POPEYE instance. The
functionalities offered to the user are:

Open or create a Workspace. When the user selects this
function, the system discovers the Workspaces currently
available in the MANET and lets the user choose which
Workspace to join. This is done through a dialog box. The dia-
log box also allows the user to create new Workspaces. Once
an existing Workspace is chosen or a new one is created, a
window panel appears below the main console giving access
to the application component named Workspace Explorer,
which allows the user to browse and interact with the main
elements that constitute a Workspace activity. More precisely
the procedure of subscription to new Workspaces is the fol-
lowing: the user selects the “search Workspaces” command
which opens a search dialog allowing him to select search
criteria. As soon as the desired Workspace has been iden-
tified, the user tries to open it. The system notices this and
asks the user if he wants to send the Workspace adminis-
trator a request for subscription. If the user answers “yes”
such request is sent to the Workspace administrator. The
local POPEYE client instance of the current user then opens
a Workspace Explorer window (temporarily “locked”). As
soon as the Workspace administrator receives the request
for subscription, he may decide to accept it or not. In case
the request is rejected, the system notifies the current user
and the Workspace Explorer window is closed. Otherwise,
the “subscription accepted” notification is sent to the current
user and the corresponding Workspace Explorer window is
unlocked.

User preferences. A window with user’s profile informa-
tion is displayed and the user can browse and modify his own
profile. When this option is chosen, as in the previous case a
window appears below the main console toolbar. In this case
the window contains the User Profile explorer, to allow the
browsing and modification of the profile data items. This is
the same window as in the create account command above.

Local settings menu option. Lets the user browse and mod-
ify preferences and settings related to the local instance of
the POPEYE client.

Search profiles. Opens a window querying the context and
displays the search results. From the result list it is possible to
perform some operations, such as inviting a user to a Work-
space.

Figure 4 depicts the general layout of the Workspace
Explorer window. As shown, each opened Workspace (i.e.,
a Workspace the current user has joined) owns a separate
tab in the Workspace Explorer; this allows easy navigation
on multiple Workspaces without making the user interface
too complicated. Each tab has a structure that allows access
to the Workspace elements: the active plug-in sessions, the
subscribed users and the Workspace profile (settings). As
can be seen on the left hand-side of Fig. 4 the plug-in session
view is organized in three different categories of plug-ins:
plug-in sessions active in the local terminal (and other ses-
sions of the same plug-in can be started just clicking with the
mouse) plug-in sessions active in the Workspace (and a ses-
sion plug-in can be started on the machine just clicking with
the mouse) and finally plug-in that can be started from a jar
file that resides in the file system. Moreover, a message area
will appear below the main window area to show incoming
messages or system notifications.12 Finally the right-hand
side part of the window hosts the loaded plug-ins.

5 Putting POPEYE in practice in the context
of international conferences

In this section we put POPEYE in practice in the context
of international conferences. We developed a set of applica-
tions on top of the POPEYE middleware in order to show how
POPEYE can facilitate mobile interaction, networking and
collaboration among the participants of a conference, work-
shop or any similar public event. To better set the context, let
us consider the following scenario:

“Pedro is a researcher in the area of distributed systems
taking part in an important conference on P2P issues. The
conference is organized in Château Villette, a huge Castle in
the countryside near Versailles in France. The Castle is char-
acterized by the almost complete absence of communication
infrastructures.

Pedro arrives at the reception desk and physically
authenticates as conference participant. He receives his pro-
ceedings book, a badge, a collaborative tool and a signed
certificate. Pedro switches on his laptop and, by means of
the collaborative tool, in the user list he can distinguish con-
ference participants from conference organization members.
Pedro contacts an organizer of the conference by an instant
message tool and asks him for specific information about
the conference’s technical setting for giving his talk. Pedro
searches for users with similar interests, matching acade-
mia users with enterprise users in order to prepare a pro-
ject proposal in his research area subject. Pedro enters the
P2P work group to discover other conference attendants.

12 More details on these elements are included in the deliverable D6.2
freely accessible in the POPEYE webpage.

123

SOCA (2009) 3:25–45 37

Fig. 4 Workspace Explorer
window

Pedro’s peer obtains additional collaborative tools provided
by conference organizers and by work group users. These
additional tools become available in Pedro’s tool list. When
entering the work group, Pedro is redirected to the confer-
ence portal (HTML/WML) where he can access all informa-
tion regarding the conference such as the program, venue and
city maps, city guides, and list of participants. He can also
list the online users connected to the work group by using the
presence tool.

All “shareable" documents stored in the participants’ end
devices are automatically made visible in Pedro’s space. Ped-
ro looks for documents that deal with P2P on MANETs. In
particular, he is interested in documents that were edited
by his former colleague Perdita. Pedro starts browsing the
documents and, although not all of them are available by
direct network connection, the system makes them visible and
accessible to Pedro through the distributed network just as if
they were in a single virtual space. A participant may create,
read and possibly modify a shared document provided that he
has been granted the corresponding privileges. Collabora-
tive editing sessions may also be conducted. Pedro decides to
create a new shared document in which he will collect some
of the participants’ feedbacks from the presentations they
attended. He leaves the document open for modifications by
other participants. Some participants prefer to prepare their
comments “off-line” and to insert them in the document when
they are happy with them. Others make their comments vis-
ible to all as they are in the process of editing them. Some

participants chat together through the chat service offered by
the system to discuss the details of the contributions during
the editing sessions. When the conference ends, the confer-
ence work group could continue as an Internet work group,
or otherwise users could transfer some information to their
Internet private work groups.”

Analyzing this scenario we selected a set of plug-ins to
implement in order to put POPEYE in practice in the context
of this case study. The most important plug-ins we imple-
mented are presented in the following.

File sharing plug-in

The “Data Management and Sharing Services” module of
POPEYE (see Sect. 3.3) provides a virtual common space
for each of the Workspaces where users (by means of plug-
ins) and other internal modules may share files and objects.
The contents of each of these shared spaces are distributed
within the different devices in the network so single peers do
not need to maintain locally a copy of all the shared items.
However, all the users taking part in the same shared space,
maintain a global view and do not need to know the physical
location of the files. The contents of the shared spaces fol-
low a tree structure so that users can create directories and
sub-directories to better organize their files. In addition, the
system stores certain attributes (called metadata) associated
to the data. While some of these attributes can be modified by
the users (e.g., author, description), some others are set by the

123

38 SOCA (2009) 3:25–45

Fig. 5 File sharing plug-in

system (e.g., creation date). In either case, users can use them
to perform queries which allow them to identify documents
they are interested in. These search mechanisms are provided
by the “Data Search Mechanisms”. The File Sharing plug-in
is a graphical application providing access to all the services
provided by the “Data Management and Sharing Services
Module” and the “Data Search Mechanism”. Figure 5 shows
the file sharing plug-in.

Messaging plug-in

The POPEYE Messaging plug-in allows all members ins-
ide a group to communicate by exchanging group and pri-
vate messages. The plug-in graphical interface is similar to
a chat room. In first place, all the members of the group who
have launched the plug-in are listed in the membership list.
Besides, messages sent to the scope of the whole group (i.e.,
sent to all the members of the group that launched the plug-
in) are shown in the main board, common to all participants.
Furthermore, by selecting one participant from the member-
ship list, it is also possible to send a private message, so only
the sender and the receiver can follow (see) the conversation.

The POPEYE Messaging plug-in demonstrates basic func-
tionalities provided by communication services. First, in
order to achieve group communication, the plug-in creates a
new communication channel. Only the members of the group
that created this communication channel will receive mes-
sages from the channel. Therefore, two of the most important
functionalities of the channel are used:

– sendGroup: the message is received by all members;
– send: the message is received only by one member.

Messages are handled by each node considering whether
they are group or private messages, so they are shown in the
main board or in a separate window, respectively. Besides,
each member advertises himself when entering the chat room,
so the other members can update the membership list. Apart
from this, the messaging plug-in also allows encrypted com-
munication to ensure message confidentiality. If encryption
is needed, the plug-in retrieves the Workspace shared key
to encrypt the messages. Therefore, no person outside the
Workspace or the POPEYE application is able to intercept
messages and process them.

Shared presentation plug-in

Within collaborative environments, it is very common to per-
form talks and presentations using a set of slides in order to
reinforce the information given by the speaker. To do that, a
slide projector would be necessary. This fact collides strongly
with the spirit of POPEYE, where spontaneous networks can
be created without any previously established infrastructure,
not even a slide projector. To be even more strict, imagine
the situation where an event is held in the open air: we would
not even have a wall where slides could be projected! Taking
these facts into account, we implemented a plug-in allow-
ing the management and visualization of presentations. We
called it PDFViewer, due to the format of the supported files.
In brief, with this plug-in, the speaker controls the visual-
ization of his presentation on the audience devices, i.e., he
decides which file is to be presented and the page number
to be displayed at any moment. The audience devices are
merely passive and follow all the orders received from the
coordinator.

123

SOCA (2009) 3:25–45 39

Fig. 6 PDF viewer plug-in:
initial window and coordination
mode window

This plug-in makes uses of the following POPEYE
modules:

– Naming Service is used to announce the name of the pre-
sentation and the identity of its coordinator;

– Data Management and Sharing Services are used to share
the displayed presentation so it is available to all the
devices taking part;

– Communication Services are used to communicate the
changes in the page number currently displayed.

Figure 6 shows the PDF Viewer plug-in: initial window
and coordination mode window.

Voting plug-in

The voting plug-in implements a simple voting protocol to
determine the preference of members of a Workspace on
some subject. It allows any member to define a poll, with a
question and some options. All the other members can then
either choose one of the given options or “dismiss the issue”,
signalling they do not care. Results and some statistics are
collected by the proponent of the poll, who can then publish
aggregated results to all the other members. The proponent
may also choose at one point to stop the poll, meaning no
more answers will be accepted.

The voting plug-in makes use of both group multicast mes-
sages and unicast messages in the various stages of the poll.
The poll proposal and results publishing is done in multicast
by the poll proponent, while single preferences are sent in
unicast mode to the proponent. This allows for some weak
anonymity scheme, as only aggregated results are spread
around. However, this plug-in has only demonstrational pur-
poses and is by no means adequate to real voting.

Forum plug-in

The forum plug-in is a means of sharing information and
opinions in a threaded, consistent way such as it is done

on a Web forum. A Workspace member can browse in the
hierarchical data, write, read and reply in a threaded way.
This plug-in makes use of data sharing, keeping thus persis-
tence of data within the Workspace lifespan.

Collaborative map plug-in

The Collaborative Map plug-in (CoMa) provides a map to
allow support in orientation based tasks for members of
Workspaces especially appropriate for larger outdoor envi-
ronments. The map has different visualisation layers for pre-
sentation of different types of information. First of all, the
current position of the user is gathered from a position
receiver and shown on a geo-referenced map. Furthermore,
the current user’s position is sent to the other Workspace
members to enable them to see the position on their device.
The position data is currently based on GNSS (Global Nav-
igation Satellite System) signals. In the future, this position-
ing mechanism can be replaced or complemented by other
systems such as indoor positioning (e.g., via RFID-tags or
WLAN signal strength).

The map layer and the user position layer are displayed
as well as the positions of other members within the user’s
Workspace and specific landmarks or points of interest
(POIs), that can be defined and sent by the Workspace mem-
bers. This allows, for example, members to define meeting
points and show them to others. By clicking on the symbols
on the map, the user can get further information about them
(e.g., see the profile of a user or a description of a POI) or can
send short text messages to other members. Figure 7 shows
the collaborative map plug-in.

5.1 Simulating the conference scenario

In order to show what happen in practice when using
POPEYE, similarly to what happened in Glasgow, Scot-
land (April 1, 2008) during the 6th edition of the Minema

123

40 SOCA (2009) 3:25–45

Fig. 7 Collaborative map plug-in: users in workspace and a meeting
point displayed on a map

Fig. 8 Simulation tool: the mobility model

workshop,13 we make use of a simulation tool that allows
the user to choose a configuration and to consequently trig-
ger a network re-configuration. This simulation tool14 refers
to real POPEYE peers that run on real machines and is used
to simulate the peer mobility.

The Minema demonstration was organized in an eight
nodes scenario. The initial configuration of the network was
as shown in Fig. 8.

13 See webpage: http://www.cs.kuleuven.be/conference/minema2008/
demos.html for further details.
14 The simulation tool is an open source project that has been released
at Source Forge under a LGPL license. The source code as well as
some screenshots and documentation is available at http://sourceforge.
net/projects/manetconfig.

This scenario is organized in order to make a node move
through 3 rooms in meeting scenario. The node ANTHONY
enters the Registration Desk room; after making the registra-
tion he walks through the door to the Meeting Room. In the
Meeting Room he says hello to his colleagues MARK and
JAMES. Afterwards he goes to attend FRANK’s conference
in the Conference Room. The links between him and the other
nodes changes as follows: first, when he enters to the Reg-
istration Desk he approaches JOHN, the person in charge of
the registration, therefore he connects to him. Then, when he
gets to the Meeting Room he loses the direct link with JOHN,
and establishes direct connection with MARK and JAMES.
Finally, when he moves to the Conference Room he discon-
nects from MARK and JAMES but he links to FRANK. Table 1
summarizes the network modifications during the execution
of the scenario.

In this case, the scenario uses the user defined mobility
model so we can see the path. The node follows the red lines
path shown in Fig. 8.

The user can also set a different path just clicking on the
scenario. When the user clicks a red point is displayed and
the node moves to it when the mobility is started. If more
points are added straight lines are materialized between one
point and the next one. When the mobility is started, the node
follows the created path. The user can create or delete links
between nodes, add nodes (when a new node is added to the
scenario, a new entry on the table located on the right is cre-
ated. From this table, user can specify the node IP and MAC
addresses), change node names, save the network configura-
tion, load a previously saved topology, check the accessibility
of a node (all the peers that are accessible are displayed in
their original colour and the ones not accessible, in red), etc.

Conference attendants located in the same conference
room may form a cluster. In fact, they will probably collab-
orate in the same Workspaces. Nevertheless, collaboration
with attendants in different clusters is still possible using the
correspondent super-peers. Note that the super-peer architec-
ture is self-adjusting and dynamic. Figure 9 shows a mobility
model with nodes distributed in 5 clusters into the simulation
tool.

6 Related work

The aim of this section is to discuss POPEYE-related work.
We first present frameworks similar to POPEYE, and we then
detail related work for the most innovative parts of POPEYE:
Network Abstraction (Sect. 6.1), Security aspects (Sect. 6.2),
and Context management (Sect. 6.3).

The WORKPAD (An Adaptive Peer-to-Peer Software
Infrastructure for Supporting Collaborative Work of Human
Operators in Emergency/Disaster Scenarios) project15 aims

15 http://www.workpad-project.eu.

123

http://www.cs.kuleuven.be/conference/minema2008/demos.html
http://www.cs.kuleuven.be/conference/minema2008/demos.html
http://sourceforge.net/projects/manetconfig
http://sourceforge.net/projects/manetconfig
http://www.workpad-project.eu

SOCA (2009) 3:25–45 41

Table 1 Summary of the
network modifications Step Current links Created links Deleted links

1 JOHN – –

2 JOHN – –

3 MARK, JAMES MARK, JAMES JOHN

4 FRANK FRANK MARK, JAMES

5 FRANK, MICKY MICKY –

Fig. 9 Mobility model with
nodes distributed in five clusters

at developing an innovative software infrastructure for
supporting collaborative work of human operators in emer-
gency scenarios. Even if this project is strongly related to
POPEYE, WORKPAD works in higher level layers (such
as BPM, workflows) and could benefit from the POPEYE
framework. Moreover this project seems more focused on
collaborative environments in which each team member is
equipped with handheld mobile devices (PDAs) and in which
the adaptiveness to connection/task anomalies is fundamen-
tal.

In [29] authors present a framework for collaborative
working environments which consists of four layers: resource
layer, middleware layer, upperware layer, and application
layer. Similarly to POPEYE, the upperware contains plug/
play facilities for adding new functionalities. Differently
from POPEYE, which is specialized in ad hoc and spontane-
ous networks, the upperware layer contains also intelligent
agents for coordinating and controlling multiple middleware
techniques (such as Grid computing, Web-services, etc.).

In [22] authors aim to propose a generic collaborative
working environment. This work is part of the ECOSPACE
project.16 Particular attention is paid to interoperability pur-
poses, i.e., users should not be aware of different technologies

16 ECOSPACE “Integrated Project on e-Professional Collaboration
Space” (FP6 IST- 035208).

which underlie the integrated platform. This paper proposes
a layered architecture based on Service Oriented Architec-
ture (SOA), and more concretely in the use of web services.
The architecture is divided in the following three layers: Ser-
vices,composite collaborative services and Applications. The
services, in the lower layer, are the ground for the compos-
ite collaboration services that follow some useful interaction
patterns defined by the use of business process languages.
The POPEYE software architecture was somehow influenced
by the software architecture defined in ECOSPACE.

The main objective of the CASCOM project17 is to imple-
ment, validate, and trial a value-added supportive infrastruc-
ture for semantic web based business application services
across mobile and fixed networks. Thus, CASCOM is not
focussed on collaborative working environments but some
aspects of P2P infrastructures and related security aspects
could be somehow related. In the following we detail related
work for each aspect of POPEYE and we discuss these
aspects.

6.1 Network abstraction

Several protocols have been proposed to address routing in
mobile ad hoc networks. They are mainly classified as unicast

17 http://www.ist-cascom.org.

123

http://www.ist-cascom.org

42 SOCA (2009) 3:25–45

and multicast protocols with regard to the number of intended
receivers. Unicast protocols can follow a reactive or a pro-
active routing approach. DSR, AODV [1], and DYMO [2]
are examples of reactive unicast routing protocols. Reactive
protocols find routes on demand, by flooding the network
with route request packets. On the other hand, proactive pro-
tocols like DSDV, WRP and OLSR, maintain updated routes
by distributing routing tables periodically. There are many
unicast routing protocols in the literature, but currently, the
IETF MANET working group is considering for standardi-
zation a reactive protocol (DYMO) and a proactive protocol
(OLSRv2 [10]).

Multicast routing protocols for MANET are mainly classi-
fied in mesh and tree-based protocols, depending on how they
propagate data. Whereas mesh-based protocols may have
various paths between any source and receiver pair, tree-
based approaches consider only a single path. ODMRP is an
example of a reactive mesh-based protocol. MMARP [28],
the multicast protocol that we use in POPEYE, is a mesh-
based protocol as well, and its distribution structure is sim-
ilar to the one used by ODMRP. Examples of tree-based
approaches include MAODV and MOLSR, based on AODV
and OLSR unicast protocols, respectively.

Whereas MANET routing protocols are essential to tackle
multi-hop communication, during recent years several peer-
to-peer layers have been designed to be deployed on top of a
mobile ad hoc network in order to benefit from the similarities
between MANETs and peer-to-peer networks. These over-
lay layers are usually based on successful Internet systems
and are ported or adapted to fit MANET requirements. For
instance, some unstructured approaches have been proposed,
like BitTorrent for MANETs [27] or XL-Gnutella [11]. The
latter proposes a cross layer adaptation of Gnutella that facil-
itates the interaction between overlay peers and the underly-
ing routing protocol by means of an event system. However,
these systems are focused on file sharing and do not provide
a good basis to develop collaborative applications. Likewise,
JMobiPeer [7] is a JXTA compatible framework designed
for J2ME CLDC environments. JXTA is the most mature
P2P framework and provides interoperability and platform
independence, allowing connection between heterogeneous
devices. Hence, JMobiPeer benefits from these character-
istics and introduces new features like a routing layer and
emulation of the multicast functionality to adapt JXTA to
mobile environments. Nevertheless, JXTA architecture does
not take into account locality and communication may incur
in adding high overhead due to XML-constructed messages.

6.2 Security aspects

The missing support from any infrastructure and sponta-
neous nature of wireless ad hoc networks brings along a
number of security challenges. The network nodes and net-

working equipment are not controlled by one administrator or
organization. The presence (and especially the permanent
availability) of a generally trusted third party, like a certifi-
cation authority, cannot be assumed. Theoretically, mutually
unknown nodes may spontaneously join and collaborate in
one network. In practice, this statement can be mitigated: the
participants of a conference, for instance, have to physically
register at the beginning and may be issued certificates for
their devices during this administrative proceeding. There-
fore, a node’s legitimacy to participate in a network or an
application may be verifiable. Complementary mechanisms
as trust computation, security framework for group manage-
ment and access control mechanisms, and distributed intru-
sion detection allow one to secure both the functionalities and
the messages exchanged within a wireless ad hoc network.

Trust computation is based on normalized trust metrics
locally maintained in every node for its neighbors or inter-
action partners. Recommendations from partly trusted third
parties may either be used to initialize the trust metric for an
unknown node, or be considered for the continuous updates
of that value. In a transient trust model, trust values are
assigned to direct neighbors in a “trust graph" and are cal-
culated along all possible paths and averaged, which implies
a complete view of the network [30]. In a community trust
model, trust values are computed with the common history,
or common knowledge of the group [20].

Security frameworks for MANET comprise systems using
a trust metric, and adaptations of classical PKI architectures.
They generally aim at the creation of a group of trusted nodes
or a trust domain, in which nodes will mutually rely on the
networking function offered by their peers and may engage
in collaborative applications. In centralized schemes [19], all
users or nodes have to be authorized by a central entity on
initialization. Therefore, users cannot generally join groups
or obtain access rights during system runtime, or need to
contact the central entity. In hybrid schemes [6], initializa-
tion is also done by a central entity authorizing all nodes or
users present at system start, but newcomers are able to join
with full rights without immediately contacting the central
entity. In decentralized schemes [16], if a central entity may
be required to communicate with a small number of nodes
during initialization, all other operations work without this
entity.

In MANETs, intrusion detection is essentially done
locally, since each node has to protect itself. This local view
may be refined with information from other nodes. However,
an IDS relying on wrong information from other nodes may
open new vulnerabilities (especially for DoS attacks). Differ-
ent detection modes have been proposed: misuse, anomaly
and specification-based detection [17]. The first scans for pat-
terns of known attacks, the second regards interactions more
in general, and the third only allows well-defined exchanges.
The information exchanged among different nodes may also

123

SOCA (2009) 3:25–45 43

take different forms: from pure broadcasts of the assumed
probability that an attack is under way over mobile agents
to a closely synchronized distributed system establishing the
overall system state.

6.3 Context management

P2P networks are gaining momentum as frameworks for col-
laborative, context-aware applications and services. Some
examples include Edutella [24], Groove[14], COMPASS
[31] or SpeakEasy [13]. As they become more widely adopted
and demanded, a need arises for adding the advantages of
context awareness to such collaborative systems in order to
offer a faster, more efficient and personalized service to the
user, independently of the resources, devices and underly-
ing technologies used. In the frame of context-awareness,
SpeakEasy [13] proposes a collaborative P2P system, with
resource, network and content sharing as the main goal. It
defines a common set of interfaces each component must
fulfil in order to communicate in an homogeneous way with
other components in the network. Communication is reached
by means of transmitting mobile code to components will-
ing to access the services of another component. In order to
reduce network traffic, our approach is based in the transmis-
sion of homogeneously formatted contextual information,
instead of having to transmit all application code needed to
access a device. Besides, in our approach all relevant infor-
mation is treated as contextual information, not just location
and metadata, thus giving chance to a deeper and more rich
reasoning process. Chen [9] uses context in a collaborative
Filtering e-commerce tool, in which context awareness is
used to predict the user’s preference, not only from opinions
of similar users, but also from feedback of other users in a
context similar to that the user currently is in. In this case, the
context awareness is limited to the information regarding the
actual state of the user, instead of the complex aggregation of
historical context data that conforms the real context situa-
tion of a user. A similar approach is taken in COMPASS [31].
This time, context is treated homogeneously as all relevant
information that can be used to characterize the situation of
an entity. The idea is to offer to a user a set of services based
on his preferences and in the previous selections and actions
of users with similar context. While user’s preferences are
used as hard criteria, the context of the user is used as a
soft criteria. COMPASS works also with a concrete ontol-
ogy suited for its application domain. Yang [33] proposes a
collaborative working environment where context-awareness
is employed to set a learning system, with consumers (learn-
ers) and producers (knowledge providers) of information.
Each collaboration is aimed at this learning process. It uses
a concrete OWL ontology, and receives information directly
from the user in the way of forms or by context detection and
extraction. While the Yang approach has a very solid context

collection mechanism, context is limited to some social data
and to location, so context is not treated in an homogeneous
way, and it is also employed in a concrete scenario.

When giving a collaborative wrapping to a context aware
platform, we must be aware of the conditions for a full collab-
oration (different from mere group work), and design the con-
text information such as collaboration is encouraged and risks
avoided. Biström [8] identifies these collaboration issues. In
P2P applications, this implies setting the right scope for users
to collaborate amongst them, and this must be reflected in
contextual information. The conclusions seem to indicate that
a proper information structure and metadata is mandatory
to produce the infrastructure of a peer-to-peer network that
needs to make the information useful for the users. Unlike
the above described approaches have a flexible but homoge-
neous meta-ontology on the bottom of our design. Therefore,
we are able to build domain-specific ontologies that can suit
concrete scenarios, without imposing a specific data model
to applications.

7 Conclusion

In this paper we presented POPEYE, a Specific Targeted
Research Project (STREP) European project that focuses on
supporting peer to peer collaborative working environments
over mobile ad hoc networks. POPEYE aims to give a solu-
tion on how to provide support for ad hoc cooperation, with
the appropriate quality of service, in situations where the
fixed network infrastructure is absent or cannot be used.

The first implementation of POPEYE available as proof-
of-concept application has been used as the basis of two dem-
onstration events.

After two years of joint development, the POPEYE con-
sortium has developed an integrated framework for P2P
collaboration in MANETs. The POPEYE project has been
successful and we developed a running prototype. The pro-
totype is available as open source in Sourceforge.18 Further-
more, POPEYE software was demonstrated in two live dem-
onstration events. The first one of these events took place
in Paris on October 26, 2007 and was open to a restricted
group of users (the POPEYE User Group) with the goal of
testing and validating the POPEYE framework in a realis-
tic situation. The second event during which POPEYE was
demonstrated was a more open, public showcase of POPEYE
technologies set up in the context of a project open Workshop
organized in conjunction with the International MiNEMA
event19 held in Glasgow on April 1, 2008. The goal of the
second demonstration of the POPEYE system was the dis-
semination of the project results to the wider IST, scientific

18 http://sourceforge.net/projects/popeye-cwe.
19 http://www.cs.kuleuven.be/conference/minema2008/demos.html.

123

http://sourceforge.net/projects/popeye-cwe
http://www.cs.kuleuven.be/conference/minema2008/demos.html

44 SOCA (2009) 3:25–45

and technical communities. Both demonstration events were
a success. The results of both the demonstration events are
described in this paper and further details are collected into
two proceedings documents publicly available on the project
web site: http://www.ist-popeye.eu.

The major drawback of the prototype is that we require
two MANET transport protocols (DYMO, MMARP) that
currently only work in the Linux platform. To solve this por-
tability issue and ease configuration management we began
a research line on Application Layer MANET protocols. In
this line, we developed a Java implementation of the OLSR
protocol (jOLSR) and an optimized overlay multicast over
jOLSR named OMOLSR. The overall idea for a future work
would be to replace POPEYE’s network abstraction layer
with this Application layer protocols. This would enable the
portability of POPEYE to any platform with a Java Virtual
Machine and would also reduce the configuration complexity
of the system.20

Acknowledgments This work was supported by the POPEYE pro-
ject: Peer to Peer Collaborative Working Environments over Mobile Ad
Hoc Networks. POPEYE is part-funded by the EU under the 6th Frame-
work Program, IST priority Contract No. IST-2006-034241 (http://
www.ist-popeye.org). We would like to acknowledge each member of
the POPEYE consortium.

Appendix: POPEYE glossary

The purpose of this glossary is to enable a common under-
standing of terms used in the paper and in the POPEYE
project.

– Authentication, authorization: http://en.wikipedia.org/
wiki/Authentication.

– Core Services: Services that support any collaborative
working application by providing the necessary infra-
structure to share data and context information with users,
applications and internal modules. In the POPEYE
middleware, these services are implemented by the
modules “Data Management and Sharing Services”,
“Workspace Management”, “User Management”, “Plu-
gin Management”, “Plugin API”, “Context Collection
Services”, “Context Delivery Services” and “Context
Management Services”.

– Group: A group of peers that corresponds to the group of
users who are assigned as members to a Workspace.

– Knock: The POPEYE-framework provides a program-
ming interface that enables a Plug-in to knock. Which
means, the Plug-in writes an entry into a log file and, cor-
responding to the importance of the entry, tries to direct
the users attention towards this entry. Example: When a
POPEYE-user is invited to a WS, there is a new entry

20 See: http://ast-deim.urv.cat/wiki/OMOLSR for more information.

inserted into his knock-log and there might be a knock-
symbol flashing at the bottom of the screen and the loud-
speaker might produce knocking sounds.

– Partner: Any of the seven Members of the POPEYE Con-
sortium.

– Plug-in: A piece of software that is designed to be plugged
into the POPEYE-Framework. A Plug-in provides a spe-
cific tool for collaborative work like for example: file
sharing, videoconferencing, etc. Each Plug-in may be
considered as “application”.

– POPEYE framework: The idea is to design POPEYE as
a kind of extensible core system which can be expanded
by specific collaborative tools (see plug-in). This core
system provides the means to handle groups, sessions,
users, members, etc, but it does not provide elaborated
tools for specialized collaborative work (like emergency
rescue coordination or whiteboard teaching).

– POPEYE user: A person who has installed and started
POPEYE-software on at least one of his computers.

– Session: An instance of a Plug-in inside a WS. It may
own a specific configuration.

– Example 1: Harald is member of the tulip lover WS.
He creates a file sharing Session and puts all his tulip
photographs into the shared file system.

– Example 2: Harald and John and some others are
members of a WS named “Rapid Illustrators”. The
members of this Workspace are interested in illustra-
tors who are very quick at drafting. Today there is
a contest between Harald and John. For this purpose
there are four Sessions inside this WS:
• (a) An Instant messaging Session where a referee

gives the subject for the drawing;
• (b) and (c) Two whiteboarding Sessions: Harald

(as well as John) has his own whiteboarding ses-
sion which he uses to show his drawing to the other
WS-members who have joined this session;

• (d) A voting Session where the members can elect
the winner.

– Session-creator: A Session-creator is a WS-member who
created a session. Session-creator are allowed to change
the Session’s profile and to terminate the Session.

– Session-member: A WS-member who has joined a Ses-
sion.

– Session-manager: A session-member that has the addi-
tional right to change the session’s profile and to terminate
the session. There can be more than one Session-man-
ager for a specific session. A session-manager might be a
workspace-manager of the containing workspace but he
doesn’t have to.

– Workspace (WS): A Workspace comprises a Group (group
membership and access control), shared data and tools
(Plug-ins associated to Sessions).

123

http://www.ist-popeye.eu
http://www.ist-popeye.org
http://www.ist-popeye.org
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authentication
http://ast-deim.urv.cat/wiki/OMOLSR

SOCA (2009) 3:25–45 45

– WS-creator: A POPEYE-user who creates new WS. He
also becomes the first WS-manager.

– WS-manager: A WS-manager is a WS-member who is
allowed to change the WS’ profile, terminate the WS,
exclude WS-members, give manager-rights to WS-
members, and invite POPEYE-users (might be allowed
for all WS-members). A WS’ creator becomes the first
WS-manager of that WS. It is possible that each WS-
member is also a WS-manager.

– WS-member: A POPEYE-user who has joined a WS.

References

1. Ad hoc On Demand Distance Vector (AODV). http://moment.cs.
ucsb.edu/AODV/aodv.html

2. Dynamic MANET On-demand Routing Protocol (DYMO). http://
moment.cs.ucsb.edu/dymo

3. Model-View-Controller (MVC). http://java.sun.com/blueprints/
patterns/MVC.html

4. POPEYE websites. The home page of the POPEYE project is http://
www.ist-popeye.eu, while the source code can be found in http://
sourceforge.net/projects/popeye-cwe

5. POPEYE deliverable D2.2 Description of Functional, non-Func-
tional and Technical Requirements. http://www.ist-popeye.org/,
2006

6. Almenarez F, Carbonell M, Forne J, Hinarejos F, Lacoste M, Marin
A, Montenegro JA (2005) Design of an Enhanced PKI for Ubiqui-
tous Networks. In: Proceeding of the sixteenth international work-
shop on database and expert systems applications, Los Alamitos.
IEEE Computer Society, pp 262–266

7. Bisignano M, Modica GD, Tomarchio O (2005) A JXTA compli-
ant framework for mobile handheld devices in ad-hoc networks.
In: ISCC, Murcia, Spain

8. Biström J (2005) Peer-to-peer networks as collaborative learn-
ing environments. Paper presented at HUT T-110.551 Seminar on
Internetworking, retrieved October 25

9. Chen A (2005) Context-aware collaborative filtering system: pre-
dicting the user’s preferences in ubiquitous computing. In: CHI’05,
New York, NY, USA

10. Clausen T, Dearlove C, Jacquet P (2007) The Optimized Link-
State Routing Protocol version 2, February 2007. Internet-Draft,
draft-clausen-manet-olsrv2-03.txt, work in progress

11. Conti M, Gregori E, Turi G (2005) A cross-layer optimization of
gnutella for mobile ad hoc networks. In: Proceedings of the Mobi-
Hoc05, Illinois, USA

12. Drira K (2000) A coordination middleware for collaborative com-
ponent-oriented distributed applications. Netnomics 2(2):85–99

13. Edwards W, Newman M, Sedivy J, Smith T, Balfanz D, Smetters D,
Wong H, Izadi S (2002) Using speakeasy for ad hoc peer-to-peer
collaboration. In: Proceedings of ACM computer supported coop-
erative work (CSCW 2002), New Orleans, Louisiana, USA

14. Eikemeier C, Lechner U (2004) Peer-to-peer and group collabora-
tion—do they always match? In: WETICE ’04, Washington, USA.
IEEE Computer Society, pp 101–106

15. Galera FJ, Martinez JA, Sanchis MA, Gomez-Skarmeta AF (2008)
Design of a cluster-based peer to peer architecture for manets. In:
SCCC’08

16. Gray E, O’Connell P, Jensen C, Weber S, Seigneur J, Yong C (2002)
Towards a framework for assessing trust-based admission control in

collaborative ad hoc applications, Technical Report, vol 66. Depart-
ment of Computer Science, Trinity College Dublin

17. Inverardi P, Mostarda L (2005) A distributed intrusion detection
approach for secure software architecture. In: Proceedings of the
European workshop on software architecture (EWSA 2005), Pisa,
Italy. Springer, Berlin, p 168, 184

18. Botia J, Ha Duong H, Demeure I, Gómez-Skarmeta A (2008) A
context-aware data sharing service over MANET to enable sponta-
neous collaboration. In: Proceedings of the 6th international work-
shop on distributed and mobile collaboration (DMC 2008), WET-
ICE. Rome, Italy, 24 June, 2008

19. Kagal L, Finin T, Joshi A (2001) Trust-based security in pervasive
computing environments. Computer 34(12):154–157

20. Legrand V, Hooshmand D, Ubda S (2003) Trusted ambient commu-
nity for self-securing hybrid networks. Technical report, no. 5027,
INRIA Rhne-Alpes, France

21. Martinez JA, Galera FJ, Sanchis MA, Gomez-Skarmeta AF, A clus-
ter-based framework for spontaneous collaboration without infra-
structure. In: CCNC’09

22. Martfnez-Carreras MA, Ruiz-Martfnez A, Gomez-Skarmeta AF
(2007) Designing a generic collaborative working environment.
In: IEEE International Conference on Web Services (ICWS 2007)

23. McKinley PK, Malenfant AM, Arango JM (1999) Pavilion: a mid-
dleware framework for collaborative web-based applications. In:
Proceedings of the international ACM SIGGROUP conference on
Supporting group work (GROUP ’99), New York, NY, USA. ACM
Press, pp 179–188

24. Nejdl W, Wolf B, Qu C, Decker S, Sintek M, Naeve A, Nilsson M,
Palmr M, Risch T (2002) EDUTELLA: a P2P networking infra-
structure based on RDF. In: Proceedings of the eleventh Interna-
tional World Wide Web Conference (WWW2002), pp 604–615,
Honolulu, Hawaii, USA

25. Nieto I, Botia J, Gomez-Skarmeta A (2006) Information and
hybrid architecture model of the OCP contextual information man-
agement system. J Univers Comput Sci 12(3):357–366

26. Pelliccione P, Inverardi P, Muccini H (2008) Charmy: A frame-
work for designing and verifying architectural specifications. IEEE
Transactions on software engineering. IEEE computer society, 29
December 2008. doi:10.1109/TSE.2008.104

27. Rajagopalan S, Shen C-C (2006) A cross-layer, decentralized bit-
torrent for mobile ad hoc networks. In: Proceedings of MOBIQUI-
TOUS 2006, San Jose, USA

28. Ruiz P, Gomez-Skarmeta A, Groves I (2002) Multicast routing for
MANET extensions to IP access networks: the MMARP protocol.
In: Proceeding of the international workshop on mobile IP-based
network developments, pp 75–81, October 2002

29. Su D, Xiong Y, Zheng Y, Ji S (2008) A framework for collabora-
tive working environments. Int J Prod Res 46(9):2363–2379

30. Theodorakopoulos G, Baras JS (2004) Trust evaluation in ad hoc
networks. In: Proceedings of the 2004 ACM workshop on wireless
security (WiSe’04), pp 1–10, New York, NY, USA. ACM Press

31. van Setten M, Pokraev S, Koolwaaij J (2004) Context-Aware Rec-
ommendations in the Mobile Tourist Application COMPASS. In:
Proceedings of the interantional conference adaptive hypermedia
(AH 2004), pp 235–244

32. von Laszewski G, Foster I, Gawor J (2000) Cog kits: a bridge
between commodity distributed computing and high-performance
grids. In: JAVA’00: Proceedings of the ACM 2000 conference on
Java Grande, pp 97–106, New York, NY, USA. ACM

33. Yang SJH (2006) Context aware ubiquitous learning environ-
ments for peer-to-peer collaborative learning. Educ Technol Soc
9(1):188–201

123

http://moment.cs.ucsb.edu/AODV/aodv.html
http://moment.cs.ucsb.edu/AODV/aodv.html
http://moment.cs.ucsb.edu/dymo
http://moment.cs.ucsb.edu/dymo
http://java.sun.com/blueprints/patterns/MVC.html
http://java.sun.com/blueprints/patterns/MVC.html
http://www.ist-popeye.eu
http://www.ist-popeye.eu
http://sourceforge.net/projects/popeye-cwe
http://sourceforge.net/projects/popeye-cwe
http://www.ist-popeye.org/
http://dx.doi.org/10.1109/TSE.2008.104

	POPEYE: providing collaborative services for ad hocand spontaneous communities
	Abstract
	1 Introduction
	2 Background
	2.1 DYMO
	2.2 MMARP

	3 The POPEYE framework
	3.1 User interface layer
	3.2 Application layer
	3.3 Middleware layer
	3.4 Network abstraction layer
	3.5 Security macro-component
	3.6 Context macro-component

	4 POPEYE implementation
	5 Putting POPEYE in practice in the contextof international conferences
	5.1 Simulating the conference scenario

	6 Related work
	6.1 Network abstraction
	6.2 Security aspects
	6.3 Context management

	7 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

