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Abstract

In many industrial design modeling scenarios the designer wishes
to edit small feature lines—such as variable width and height
creases—on otherwise smooth surface patches. When the path of
such a feature does not align with an iso-parameter line or crosses
patch boundaries it becomes increasingly difficult to maintain good
editing semantics of the underlying surface. In this paper we de-
scribe an algorithm and implementation allowing the interactive
creation and manipulation of fine scale feature curves on subdivi-
sion surfaces. In particular, our approach addresses the problem
of defining the path of such feature curves independent of the lo-
cation of surface iso-parameter lines and global patch boundaries.
The feature lines are modeled as swept displacement curves with
variable profiles, providing a rich toolbox of shapes. Furthermore,
the hierarchical editing semantics of subdivision surface based rep-
resentations carry through to our extended setting, ensuring “good”
behavior of the feature lines under coarse scale surface edits.
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1 Introduction

Subdivision methods such as Catmull-Clark [2], Doo-Sabin [8], or
Loop [17] (among others) elegantly address some of the difficul-
ties of traditional spline based model settings. Subdivision methods
can model arbitrary topology surfaces in a globally smooth fash-
ion while their simple data structures and efficient computational
kernels support highly scalable algorithms, such as level-of-detail
display and compression, for example. For an overview of basic
theory and applications the reader is referred to [24] and the refer-
ences therein.

These attractive properties of subdivision have led to the devel-
opment of hierarchical modeling algorithms—and their multires-
olution extensions—with considerable flexibility and speed [31].

Figure 1:Example of a complex shape involving an irregular topol-
ogy smooth surface with multiple feature curves overlaid on it (De-
sign study for bicycle helmet; Khrysaundt Koenig).

The maturity of these algorithms has reached a stage where subdi-
vision is being employed in large scale movie production [7] and
available in a number of commercial products (Geometique, Radi-
cal Entertainment, 3D Studio Max, SurfReyes, Lightwave, etc.).

While the ideas behind subdivision for surfaces are more than
20 years old, important theoretical progress has only recently been
achieved (examples include [23] and [32]). Broader interest in these
methods is still relatively new and many specific algorithms, of-
ten having analogues in the more traditional NURBS setting, re-
main yet to be worked out in the subdivision setting. Examples
of important practical results reported only recently include mo-
ment computations [20], exact evaluation at arbitrary parameter lo-
cations [29], fast ray tracing [14], variational modeling [13], and
arbitrary boundary curve interpolation [16], among others.

For modeling applications the most popular subdivision methods
are based on generalizations of traditional spline patch methods.
Catmull-Clark [2] generalizes bi-cubic patches, while Loop [17]
generalizes quartic box-splines. The resulting surfaces are still
made up of individual patches, but global continuity conditions are
“compiled” into the knot insertion rules and need not be separately
enforced. Note that subdivision surfaces reduce to ordinary spline
surfaces (bi-cubic, respectively quartic box-spline) in case the con-
trol mesh has regular topology.1 Aside from their ability to deal
well with arbitrary topology control meshes the principal advan-
tage of subdivision flows from a change in the overall approach
to the creation of surfaces. Instead of treating them asanalytical
objects with evaluation functions—which subdivision surfaces still
possess—the surface is treated as aproceduralobject which is ap-
proximated to arbitrary precision through repeated subdivision, or
knot insertion. This opens up a wealth of optimizations allowing
even very complicated geometry to be managed interactively on
low end hardware [31], a critical ingredient in providing interac-
tive modeling environments. Through the connection with classical
multiresolution analysis and wavelets it becomes possible to de-
scribe hierarchical geometry in a rigorous fashion and enable hier-
archical editing (such as first proposed by Forsey and Bartels [9])

1Regular is defined as all interior control vertices having valence four
(Catmull-Clark) and six (Loop) respectively.



as well as many other practically relevant algorithms such as com-
pression [18] and progressive transmission [3], for example.

An important modeling capability concerns the addition of small
scale, curve-like features such as grooves or raised creases to a
patch based surface. Such tools are well known and appreciated
in the traditional NURBS framework [21]. We extend these capa-
bilities to a subdivision based [31] multiresolution setting [9] and
in particular allow the user to draw the desired curve directly onto
the surface in world space [4] avoiding distortion issues associated
with feature curves defined in parameter space. Doing so in a hier-
archical modeling framework ensures that features added at a fine
scale respond gracefully to edits performed at coarse scales without
loosing their smoothness and overall shape.

Figure 1 shows an example of a complex shape with multiple
feature curves overlayed on an irregular topology patch network,
created with our interactive modeling system.

1.1 Related Work

There are many possible ways to add the features we desire to
a given patch based surface. For example, free-form deforma-
tions [19, 26, 6, 12, 5, 28] are a popular way to modify a given
surface shape. Free-form deformations achieve their effect through
a suitable deformation of the embedding space, typically using a
force field function. The advantage of these methods is that they
are, in principle, applicable to any surface modeling setting. How-
ever, it is generally difficult to model non-smooth features, such as
sharp creases, in this way. We chose direct, parameterized displace-
ment in a local coordinate frame induced by the partial derivatives
of the surface. This greatly simplifies precise control over the de-
tailed shape of the feature lines. The modified surfaces maintain
their globally smooth parameterizations which is essential for many
other computations (e.g., raytracing or moment evaluation).

One possible way to describe the displacements we seek would
be through the use of a 1D curve in parameter space giving, for
example, a scalar displacement value along the local surface nor-
mal and a region of influence [21]. However achieving a desired
shape on the surface by specifying an appropriate curve in parame-
ter space involves an inverse problem, accounting for the distortion
induced by the coordinate functions. This is expensive and partic-
ularly difficult to manage across patch boundaries where canonical
parameterizations are typically non-smooth. Of course this obser-
vation applies not only to subdivision but also to classical NURBS
approaches. Instead we allow the user to draw onto the surface di-
rectly to describe the desired curve in a manner similar to world
space surface pasting approaches [4].

Earlier work incorporating features such as creases and variable
radius fillets into the subdivision framework did so through modi-
fied subdivision rules [11, 25, 7, 27]. However, these approaches
limit the location of feature curves to global patch boundaries and
constrain the possible cross-section profiles. Instead we wish to
allow the user to draw the desired feature curveanywhereon the
surface and admit a richer set of varying profiles.

Since we are in a multiresolution setting it is most natural to de-
scribe the effect of the feature curve on the shape of the surface by
going to the appropriate scale in the subdivision induced approx-
imation hierarchy and achieve the desired effect through addition
of local details. In this sense our approach is closely related to
hierarchical modeling methods such as H-splines [9] and surface
wavelets [18].

Before going into more details on our approach to curve based
feature editing we briefly recall some facts about subdivision and
its multiresolution extensions.

1.2 Subdivision Surfaces

There are many different subdivision techniques for surfaces and
the ideas put forth in this paper are independent of the concrete
scheme used. We use Loop’s subdivision scheme [17], which acts
on triangulated control polyhedra to define the surface.

1-ring of marked patch1-ring of marked vertex 2-ring of marked vertex

Figure 2: Example of a control mesh. One control point has been
marked together with its 1-ring (left). The middle shows the 2-ring
of the marked control point. The basis function associated with the
marked control point has its support entirely contained within the
2-ring. On the right the 1-ring of a patch. All marked vertices
influence the shape of the highlighted patch.

More precisely we consider the following setting. LetM0 =
{P0,K0} be an arbitrary topology 2-manifold (with boundary)
control mesh with control pointsP0 ∈ R3, consisting of trian-
gles{i, j, k} ∈ K0, edges{i, j} ∈ K0, and vertices{i} ∈ K0. K0

describes the combinatorial structure of the surface containing all
control triangles, edges, and vertices; if a triangle is contained, so
are its edges and vertices. The surface is a smooth function defined
over this structure

S0(u, v) =
∑
i∈K0

p0
iB

0
i (u, v).

The B0
i are the basis functions associated with the subdivision

scheme. The support of each basis function is the 2-ring around
the given control point (see Figure 2, middle). Thep0

i ∈ P0 are the
control points, while(u, v) are defined over each control mesh tri-
angle, typically through the use of barycentric coordinates. A given
patch of the Loop surface is defined with reference to a triangle
{i, j, k} in the control mesh. Its degrees of freedom are the control
pointsp0

l in the 1-ring of the triangle (see Figure 2, right). If the va-
lences of{i}, {j}, and{k} for triangle{i, j, k} are all equal to six,
the resulting patch is a regular quartic box spline patch. In case one
(or all) of the corner vertices have valence other than six the patch
consists of an infinite sequence of quartic box spline patches and
we will refer to it as an extraordinary patch. Properties such as po-
sition and partial derivatives of regular patches are straightforward
to evaluate, while extraordinary patches can be exactly evaluated
through reduction to the regular case using eigenanalysis (for de-
tails see [29]). The resulting surfaces areC2 everywhere, except at
control points of valence other than six, where they areC1.

With this setup the surface is completely parameterized by a
(typically) coarse triangular control mesh. This control mesh rep-
resents the global shape and topology of the surface. One can now
work with the surface in any algorithm which only assumes a pa-
rameterization. For example, the surface can be rendered by evalu-
ating it on a suitably dense set of points and displaying the resulting
piecewise linear approximation, just as is done in standard NURBS
display libraries (e.g. [30]).

Instead of taking this point of view we treat the surface as the
limit of repeated knot insertion, or subdivision. Figure 3 shows the
Loop knot insertion stencils. The coefficientβ depends on the va-
lence of the central point and can be taken to beβ = 3/8k for
k > 3 andβ = 3/16 for k = 3 (this set of weights was first pro-
posed by Habib and Warren [10]). There are also special rules at
the boundaries and derived stencils to compute partial derivatives or



limit positions (see [11, 25, 1] for details). Aside from being partic-
ularly easy to implement and very efficient, this structure elegantly
supports adaptive display and multiresolution representations. Sub-
division converges quadratically to the limit, so that a small number
of (adaptive) subdivision steps is sufficient for most tasks during in-
teractive work.

Note: Standard graphics hardware can only display polygons
(triangles). Consequently any smooth surface, be it a NURBS patch
or a subdivision patch is by necessity displayed as a polyhedron.
For performance reasons this is generally done through tessella-
tion based on geometric approximation criteria [15]. When explicit
(piecewise) polynomial representations are given this can be done
through forward differencing. Another route is (adaptive) repeated
knot insertion followed by a single step movement of control points
to their associated smooth surface positions. Subdivision surfaces
are most efficiently displayed in this way. This should not be con-
fused with polygonal modeling. The subdivision surface is still
a smooth object with a proper parameterization, exact evaluation
functions, and all other attendant mathematical properties.
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Figure 3: In Loop’s subdivision scheme a single subdivision step
consists of quadrisecting all triangles (left column). New points
are inserted through a weighted average of nearby points (middle
stencil), while old points are moved to new positions based on a
1-ring filter (right stencil).

1.3 Multiresolution Surfaces

Pure subdivision alone is not powerful enough for a flexible editing
system. Figure 4 shows a model built with few patches (left). As
expected it is very smooth with no fine details. This pure subdivi-
sion setting can be extended through the introduction of displace-
ments at finer and finer levels of the subdivision hierarchy to enable
multiscale modeling.

Figure 4: Difference between pure subdivision (left) and subdivi-
sion with additional details added in each subdivision step (right).
Adding details at all levels of subdivision, each parameterized in
a local, surface dependent frame, provides a structure to support
hierarchical editing semantics (first proposed in [9]).

The key to this extension is the observation that the Loop ba-
sis functions observe a refinement relation induced by subdivision.

Let M0 be the original control mesh andM1 = {P1,K1} be
the result of applying subdivision once to the original mesh. Both
describe the same surface and each basis function associated with
M0 is a linear combination of the dilated basis functions associ-
ated withM1. The weights of this linear combination are given
by the subdivision stencils. This Ansatz is not unlike what one
would do in a wavelet setting in which the Loop basis functions
would serve as scaling functions [18]. The result is an increas-
ingly dense sequence of function spaces given by the linear span,
V l = span{Bli|i ∈ Kl}, of the basis functions at each subdivision
level leading toV 0 ⊂ V 1 ⊂ . . . ⊂ V L ⊂ . . .. This increasing
sequence of spaces is exploited by associating a detail vector with
each vertex at each level of subdivision in which it partakes. De-
tail vectors at some levell encode how much the control points for
some surfaceSl ∈ V l differ from the result of subdividing the con-
trol points at the coarser levell − 1 of an approximation ofSl in
V l−1. This difference is represented in a local coordinate frame,
just as in the H-splines setting [9], providing intuitive and powerful
hierarchical editing semantics. Figure 4 shows an example on the
right which differs from the left figure only through the introduc-
tion of detail vectors. The surface on the right is a member ofV 5

and the surface on the left its approximation inV 0.
Exact evaluation at arbitrary parameter values can be achieved

by simply summing all the contributions of all basis functions
(weighted by their associated control points) overlapping a given
point in parameter space. Extensive implementation details includ-
ing adaptive approximation, incremental computation, and analysis
algorithms, i.e., how to project a member ofV i into V i−1, can be
found in [31].

1.4 General Setup

Since we are focusing on small scale, curve-like feature editing we
will deal with the perturbation of the surface in a small neighbor-
hood of a curve drawn on the surface. This requires definition of a
suitable neighborhood of the curve on the surface and the change
of the surface inside this neighborhood according to some profile
function. For each feature curve the user may choose a scale space
V l in which the feature should first appear. The curve is drawn onto
an adaptive tessellation of the surface corresponding to the cho-
sen subdivision level, using direct manipulation in 3D of a standard
dragger tool [30]. The curve is represented as a quadratic spline
control polygon. Its edges have to be inside triangles of the con-
trol mesh at levell. If any segments intersects an edge of a levell
control triangle, the segment is split (see Figure 5).

Figure 5:The user draws directly onto the surface at a certain level
of resolution, i.e., we may think of the curve as defined by a control
polygon drawn at the selected level of the multiresolution hierarchy.

Once the curve is established a neighborhood on the surface is



computed and control points of levell in this neighborhood are re-
computed to follow the feature profile. The result is a modified
surfaceS̃l ∈ V l whose control points differ from the control points
of the original surfaceSl ∈ V l as p̃li = pli + dli for dli non-zero
only for i in the influence neighborhood of the curve.

Although we allow feature curves of arbitrary complexity there
are some natural restrictions. Since our goal is to present an algo-
rithm for the creation offine level features, a natural requirement
is that the feature size (width/height) be smaller than the local knot
density at the (subdivision) level of definition. In other words, given
the subdivision level at which the feature curve is defined, together
with the region of influence, the control mesh at that level should
admit local projection to the surface tangent plane without diffi-
culty. The semantics of the perturbation can be thought of as that
of a tool which, for example, carves a groove on the surface.

To summarize, our algorithm has the following properties:
• it deals with surfaces of arbitrary topology in a hierarchical edit-

ing environment;

• all perturbation datadli is kept separate from the surface data,
so the feature curves can be edited, moved as a whole, deleted,
etc., without loosing any information about the original surface;

• feature curves are defined in world-space through direct manip-
ulation to avoid non-intuitive distortion artifacts due to the pa-
rameterization (especially near points on the surface where mul-
tiple patches meet);

• feature curves may have arbitrary alignment with respect to iso-
parameter lines;

• feature curves may intersect each other as well as self-intersect;

• feature curves can be created on different multiresolution levels
with features on the finer level using the coarser perturbation as
their reference surface.

In the next sections we describe implementation details before pre-
senting some examples built with our interactive modeling system,
and discussing them.

2 Computing the Perturbation

For purposes of exposition we proceed in a number of steps. At
first we consider the simplest case, a curve which consists of a sin-
gle straight line segment. This then forms the basis for any collec-
tion of curves consisting of straight line segments only. Recall that
the user defined curve is given as a sequence of samples. If these
samples are dense enough using simply the influence of each linear
segment is sufficient. In many cases however, we wish to treat the
user supplied samples as the control points of a quadratic spline.
This is achieved by noting that the thusly defined quadratic spline
interpolates the midpoints of the edges of its control polygon and
has a tangent at that point collinear with the control polygon edge.
In that setting we continue to consider the influence of each control
polygon edge as a straight line, but enhanced through a quadratic
interpolation between adjacent segments.

Consequently, for all these cases the basic computational kernel
derives from considering a single straight line segment.

2.1 Simplest Case: One Straight Line Segment

Assume that a single line segmentI was drawn at some levell
(see Figure 6). This level is now the “top feature level,” since the
feature will not exist on any coarser level. First, we fix the sizer of
the neighborhood aroundI and collect all triangles at levell which
intersect the setNr = {v|v ∈ R3, dist(v, I) < r}. We will refer
to the triangles which intersectNr as neighborhood triangles and
their associated control points as neighborhood points.

neighborhood

radius

Figure 6:A given curve segment lies entirely inside some triangle.
In a first step all triangles are identified which will be influenced by
this segment, i.e., overlap the region of influence,Nr.

The surface will be perturbed by shifting all neighborhood points
so they will follow some profile. To make this more precise, let us
fix some neighborhood pointp which is on the surface. It is closest
to some pointb ∈ I (see Figure 7). Define the planePb which
passes through the pointsb andp and contains the normal to the
surface atb (z-axis in Figure 7). LetCb = Sl∩Pb be an intersection
curve of the planePb and the surfaceSl. All points which lie on
the curveCb will be recomputed according to the same local frame.
The frame is given by the normal to the surface at base pointb (z-
axis), the normal to the planePb (x-axis) and the tangent toCb atb
(see Figure 7). The origin of the local frame is at the base pointb.

p

b

z-axis

y-axisx-axis

on surface
curve segment

with surface
of plane 
intersection

Figure 7:Given a neighborhood pointp on the surface and a closest
point b ∈ I , let Pb define a plane throughp and b, containing the
surface normal atb (z-axis). This plane intersects the surface in a
curve and the feature edit can thus be described as a function of a
parameter running along the plane/surface intersection curve (see
Figure 8).

Now splitPb into two half-planes according to the localy coor-
dinate,Pb+ for y ≥ 0 andPb− for y < 0. The curveCb has two
partsCb± lying in Pb± . We will deal with them separately. Let us
takeCb+ and define a new curveC′b+ which lies in the same plane
Pb+ , passes through the same boundary point and has the same tan-
gent vector at that point (see Figure 8). The derivative at the base
point b will define the “crease” of the feature along the length of
the curve. Generally we will use a zero derivative atb for smooth
features. Now, we move all surface points in the influence neigh-



borhood along the local z-axis towards the new curveC′b+ .
Notice that we defined the plane intersecting the surface to con-

tain p and the closest pointb ∈ I . If b is an interior point ofI we
will have the plane normal parallel to the line segmentI . If on the
other handb is one of the endpoints ofI we will typically not have
parallelism between the x-axis and the plane normal. Our definition
ensures that we get rounded endcaps as indicated in Figure 6.

2.1.1 Measuring Distance Along the Surface

Note that the only thing we really need from the planePb is the lo-
cation of that point on the surface at which to match the boundary of
the displacement curveC′ (see “boundary condition” in Figure 8).
There we have to match both position and derivative in order to en-
sure a smooth join between the perturbed region and the original
surface. If the neighborhood is completely flat, the intersection of
the boundary point with the half-planePb+ would be given by the
line along the vectorp−b. So a ray from the pointp in the direction
p− b would intersect the boundary at the same point asPb+ .

We will use this observation to find the boundary point in the
general case without actually constructing the planePb. Take the
ray from the pointp which goes in the direction ofp−b and project
it on the surface measuring out a distancer, the size of the neigh-
borhood. When the surface on the given scale is approximately flat,
the modified method of finding the boundary point coincides with
the previous method (construction ofPb) to high accuracy. Note
that we now control the size of the neighborhood by computing the
length of a projected ray. It is possible to use either a distance along
the surface or a distance in the tangent plane of the local frame at
the base point. In our implementation we use distance along the
surface with much success.

2.1.2 Ray Projection

The only remaining item is the projection of rays onto the surface.
This could be done by measuring the length of a path on the actual
smooth surface. In practice this would be accomplished through
an adaptive integrator, which effectively takes straight line steps of
sufficiently small size to achieve a desired accuracy. We apply this

C’

p

b

y-axis

region

z-
ax

is

of influence
on surface

center height

boundary condition

target
displacement

of profile

(point/tangent)

b through p
ray from

Figure 8:View of the setup in the plane intersecting the surface in
b (see Figure 7), we are ready to move all neighborhood pointsp
towards a new location on the curveC′b+ . This new curve is given
by interpolation and derivative constraints. At the local origin (the
anchorpointb ∈ I on the surface) we fix a height and (typically)
a zero derivative. At a distancer along the surface (the region of
influence) we requireC′b+ to match in value and derivative. We are
in effect replacing a section of the surface with a new surface fixed
by the boundary conditions.

idea to the surface tessellation at the given resolution, which, by
assumption, already satisfies the desired approximation criterion.
Consequently the ray projection becomes a matter of traversing a
triangulation and “unrolling” the length of the ray.

Starting the ray at the base point is well defined, since it is inside
a triangle. A new ray is formed through projection into the plane of
this triangle (Figure 9, top). The new ray, if it is long enough, in-
tersects the boundary of the triangle at some point and then leaves
the surface again. There are two cases which need to be treated
separately. The point of intersection may be a vertex of the triangle
(or may lie very close to the vertex) or it may be a general edge
point. In either case we first find the tangent plane at that point.
This plane can be derived explicitly from the subdivision rules. For
an edge point we use linear interpolation between the two edge end-
point normals (Figure 9, middle).

Once the plane has been established, we project the rest of the
ray onto this plane. For an edge intersection point we switch to
the neighboring triangle and continue by projecting the ray onto the
plane of the neighbor (Figure 9, bottom). For the vertex point we
consider the 1-ring of triangles around the vertex and project this
ring to the tangent plane. There we find the point at which the ray
exits the 1-ring. Taking this point from the tangent plane back down
to the surface we continue to “unroll” the original ray.

It is at this point in the algorithm that we require the assumption
that the surface at the selected feature level be sufficiently flat. We
need to guarantee that all vertices have 1-rings which possess a one-
to-one projection to their tangent planes. Since the size of the 1-
ring is supposed to be comparable to the size of the feature, our
restriction guarantees that the original surface does not have its own
features at this scale.

It is important to emphasize how we project in the case of general
edge points. When the ray intersects an edge we project twice. This
is not the same as one projection directly onto the plane of the new
triangle. The problem with single projection is that geometrically
close rays which lie on different sides of a vertex would quickly
diverge (see Figure 10). Theoretically double projection does not
guarantee stabilization but we find that it works well in practice (for
a more indepth discussion of these issues see [22]).

of neighboring triangle
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endpoint
normal

of triangle
projection into planein triangle
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interpolated plane

continued projection
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Figure 9:To trace the region of influence of a line segment we must
compute the projection of rays onto the surface. This is done in
steps as we “unroll” the ray.



perspective view top down view

Figure 10:Projection of rays to the surface is delicate near vertices,
where slightly different rays can diverge. We use special projection
rules for rays grazing vertices and otherwise perform a 2-step pro-
jection whenever crossing any edge to stabilize these situations.

2.1.3 Discussion

We should emphasize that our way to compute offsets in a single
frame for all points on the curveCb is different from two related ap-
proaches described in [28] and [4]. In the former a density function
in a tubular neighborhood of a skeleton curve is defined to smoothly
decay towards the boundary of its finite region of influence. This
function, together with a number of parameterized linear transfor-
mations with respect to a reference curve warps all surface points in
its volumetric region of influence. In our setting there is no underly-
ing offset parameterization and the influence of the feature “travels”
only along the surface, not through space.

Similar to the surface pasting setting [4] we use displacements
in local coordinate frames. However, we do so in a discrete setting
without the need for a mapping into some domain. Control points
of the multiresolution representation are directly manipulated. Ad-
ditionally, our approachremovesa section of surface and replaces
it with a shape molded according to the boundary conditions found
in the region of influence. This approach better fits the intuition of
a designer who wants a tool to make, for example, a groove and
expects that the shape of the feature is relatively insensitive to the
shape of the base surface.

In our implementation we took a cubic polynomial for the profile
function. Since we have constraints for the value and derivative of
the function at the boundary, our shape depends on the surface at the
boundary. Obviously, one can not expect complete independence
unless the value of the derivative at the boundary is fixed. We can
also construct features with fixed derivatives though the perturbed
surface will no longer be smooth. Using cubic polynomials we have
a two parameter family of profiles. The free parameters are the
value of the function and its derivative at the origin. These values
allow us to vary the height of the perturbation and the crease along
the base curve.

2.2 Summary

At this point we have the following algorithm. For each control
pointp inNr we findb and the distance vectorp− b. Using the lat-
ter together with the normal to the surface atb we construct a local
frame in which we will recomputep. First we project the ray from
p in the directionp − b on the surface until we reach the boundary
of the region of influence. There are two ways to measure distance:
3D Euclidean and along the surface. Since we use projections onto
the surface for finding boundary points, it is more natural to always
consider distances as measured along the surface. Note, the defi-
nition of the neighborhoodNr uses 3D Euclidean distance, which
never exceeds the distance along the surface. Then we calculate the
new position of the control pointp according to the profile with the
given boundary parameters.

An example of multiple curves which overlap is shown in Fig-
ure 11, with an indication of the width of the neighborhood.

Figure 11: Example of three user specified feature curves which
overlap. The surface shown is the level at which the curves were
drawn. Note that the feature lines do not align with any patch
boundaries. The blue outline delineates all the neighborhood tri-
angles. For the final surface resulting from these feature curves see
Figure 16.

2.3 Multiple Segments

Now we consider the case when we have multiple line segments.
Again we start by collecting all triangles which belong to the neigh-
borhood of the segments. For each triangle we record all segments
on the surface that influence it before recomputing any control point
positions. The new control point position is now computed with re-
spect to all segments.

These segments are divided into two groups: those which give
positive offsets in their local frame and those which give negative
offsets. Going through the offset computations for each segment
we keep a running max (for positive offsets) and min (for negative
offsets).

Note that in general this procedure is not commutative and de-
pends on the order in which the segments were created. This is so
because the displacements are computed in different tangent plane
coordinate frames for each of the base points. But if the original
surface on the given scale is flat enough the difference is very small.
At the last step we interpolate between negative and positive values.

2.4 The General Case: Arbitrary Curve

Any line can be approximated by a set of straight segments so we
have enough tools to build features along an arbitrary curve. Here
we discuss two ways for optimization.

First, it may happen that a curve consists of a large number of
very small segments. This would incur considerable computation
for each control point in the influence neighborhood. To deal with
this problem we only consider segments which arelocally closest
to a given control point. For a given control pointp let bpi be the
base point of the segmenti. If this point is an end point of the
i-th segment and is not an end point of the neighbor, we skip the
segmenti (see Figure 12). This procedure saves computation time
and also solves the commutativity problem for adjoining segments.



Figure 12:All line segment candidates which may influence a given
neighborhood point must be tested to find the closest one. If in a
given test the endpoint of a segment is the closest point, then its
segment neighbor must also consider the same endpoint closest,
otherwise the line segment is rejected.

The second problem is that sometimes the base feature level is
too coarse to represent the desired curve smoothly. This causes no-
ticeable creases to appear where segments meet. To smooth the
profile we use quadratic curves to interpolate between any two seg-
ments and use the points on the quadratic interpolant as origins for
the local frames. Each quadratic curve piece starts in the middle of
a segment and has the same tangent as the segment. It ends in the
middle of the next segment with the tangent vector of that segment.
The interpolation allows us to improve the quality of the profile for
coarse line segments. We are effectively constructing a quadratic
spline using the original user input as the control polygon.

displaced point
angle with support triangle

Figure 13:Recursive quadrisection according to the Loop subdivi-
sion scheme, and any additional detail perturbations, stops when a
local flatness criterion is met.

2.5 Adaptive Computations

The perturbation is computed according to the multiresolution rep-
resentation. First, we consider all control points of the level at
which the curve was drawn. Then control points of finer levels are
recomputed. Each triangle is quadrisected as usual. We fix some
threshold for the surface flatness and continue to subdivide the tri-
angle only if an edge midpoint violates this threshold. The thresh-
old measures the angle between the plane of the parent trianglet
and the line connecting the midpoint with its opposite vertex ont
(see Figure 13). We check this condition for both triangles which
share the midpoint. Subdivision of a triangle is stopped if all three
edge midpoints are close enough to the plane of the parent triangle
and its neighbor across the corresponding edge.

2.6 Feature Curves in the Hierarchy

We allow feature curves to exist on different subdivision levels. As
mentioned earlier, for a finer level feature curve the base surface is
given by the perturbation from any coarser level (see Figure 14).
Since features do not exist at levels coarser than the level at which
they were created, any changes in finer features do not affect coarser
ones. On the other hand, any modification to the coarser feature
propagates recomputations to all finer level features. Figure 15
demonstrates this with a coarse level surface edit.

Figure 14: Feature curves defined at different levels are layered
according to the definition level and can be manipulated indepen-
dently (see Figure 16 top left for the single layer version).

Figure 15:Applying a standard hierarchical editing modification to
the coarse surface carries along any features at finer scales as one
would expect.

2.7 Additional Tools

As an illustration of some possible extensions which can be consid-
ered in our setting we implemented two additional ideas: variable
sized neighborhoods and variable height. The former allows one to
have differently sized feature neighborhoods on the left and right
of the curve.2 To make the algorithm well defined around the end
points of the curve we smoothly interpolate between the left and
right values. Using this tool one can create shapes with different
slopes on the left and right sides of the base line (see Figure 16,
bottom middle).

The second modification can be used, for example, to linearly
increase the height of the profile along the curve. During control
point recomputation we project to the base curve and compute the
length from the beginning of the curve to the point of projection.
Then the height factor for a control point is scaled by this length. In
particular, this tool allows for the creation of grooves which gradu-
ally rise (see Figure 16, bottom right).

In our current implementation the following parameters can be
adjusted independently for each feature curve
• size of the neighborhood (Figure 16, top row);

• ratio of the neighborhood sizes on the left and right (Figure 16,
bottom middle);

• profile height (Figure 16, top row and bottom row left);

• profile crease;

• ratio of height at the beginning and at the end of the curve (Fig-
ure 16, bottom right);

• threshold for adaptive computations
Figure 17 shows a more complex example of an irregular topol-

ogy shape (top left) with a variety of feature curves overlaid on it.

2Any curve is considered oriented based on how it was drawn.



Note that the holes are not trimmed but rather the original patch
network was layed out to have these holes.

3 Conclusion

We have described an algorithm to enable the creation and control
of curve-like, fine-level features in a subdivision based multireso-
lution geometric editing environment. The user chooses a level of
the hierarchy on which to draw a free form curve. The curve is
realized as a quadratic spline with attributes such as the neighbor-
hood size, width, and height, which control the perturbation of finer
resolution levels in the vicinity of the curve. The perturbation is
performed through direct displacement according to a profile curve
which “grafts” a new surface piece into the old surface, respecting
smooth boundary conditions. The resulting semantics is that of a
tool, carving features into the surface. There are no constraints on
the location of the curve with respect to control mesh edges. Details
of the curve must however be resolvable at whatever level the curve
was defined. Multiple curves are allowed to overlap or selfintersect
and a rich set of editing operations is supported on the curves them-
selves. Since the algorithm is realized in a subdivision framework
there is no need to explicitly manage domain space mappings or
to worry about the behavior of features subject to coarse scale ed-
its. The main assumption of the algorithm is that the feature size is
small compared to the local scale of the underlying surface. We do
not believe this to be a limitation as larger scale features are better
dealt with in the usual hierarchical editing approach.

Subdivision, and its multiresolution extensions, are a strong con-
tender for many modeling scenarios. Their chief advantage is their
ability to perform gracefully in the arbitrary topology setting. Ad-
ditionally, they naturally support many state of the art algorithms
such as level-of-detail display, progressive transmission, and adap-
tive approximation for numerical modeling tasks. The present pa-
per adds to the growing palette of available tools for subdivision
surfaces.
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Figure 16:Given a simple set of lines (see Figure 11) this sequence illustrates some of the parameters the user can control (see the itemization
in Section 2.7).

Figure 17:A more complex example of using feature curves on an irregular topology base shape (top left). Overlaying a number of feature
curves during an interactive editing session resulted in the shape on the top right. The bottom images provide additional views (Design study
for a bicycle helmet; Khrysaundt Koenig).


