
Voltage Noise in Multi-core Processors:
Empirical Characterization and Optimization Opportunities

Ramon Bertran∗, Alper Buyuktosunoglu∗, Pradip Bose∗, Timothy J. Slegel†,
Gerard Salem‡, Sean Carey†, Richard F. Rizzolo†, Thomas Strach§

∗IBM Research, Yorktown Heights, NY, USA
†IBM Systems & Technology Group, Poughkeepsie, NY, USA
‡IBM Systems & Technology Group, Burlington, VT, USA
§IBM Systems & Technology Group, Boeblingen, Germany

Email: {rbertra,alperb,pbose,slegel,gsalem,smcarey,rizzolo}@us.ibm.com, strach@de.ibm.com

Abstract—Voltage noise characterization is an essential aspect
of optimizing the shipped voltage of high-end processor based
systems. Voltage noise, i.e. variations in the supply voltage due
to transient fluctuations on current, can negatively affect the ro-
bustness of the design if it is not properly characterized. Modeling
and estimation of voltage noise in a pre-silicon setting is typically
inadequate because it is difficult to model the chip/system
packaging and power distribution network (PDN) parameters
very precisely. Therefore, a systematic, direct measurement-based
characterization of voltage noise in a post-silicon setting is
mandatory in validating the robustness of the design.

In this paper, we present a direct measurement-based voltage
noise characterization of a state-of-the-art mainframe class multi-
core processor. We develop a systematic methodology to generate
noise stressmarks. We study the sensitivity of noise in relation to
the different parameters involved in noise generation: (a) stim-
ulus sequence frequency, (b) supply current delta, (c) number
of noise events and, (d) degree of alignment or synchronization
of events in a multi-core context. By sensing per-core noise in a
multi-core chip, we characterize the noise propagation across
the cores. This insight opens up new opportunities for noise
mitigation via workload mappings and dynamic voltage guard-
banding.

Keywords-dI/dt; inductive noise; voltage droop; stressmark
generation; noise-aware workload mapping; dynamic guard-
banding; multi-core hardware measurements

I. INTRODUCTION

For mainframe-class systems like the IBM System z series,
zero-fault reliability is an essential part of the design specification.
Continued technology scaling and the well known ‘power-
wall’ has added pressure to the historically conservative design
margins used for reliable operation. Specifically, in the face
of aggressive supply voltage scaling and power management
solutions to reduce the power burden, the need to characterize the
voltage noise in precise detail has become imperative. Thus, a
systematic approach is needed to define and validate an operating
voltage point that ensures robust performance and zero-fault
reliability, without being overly conservative.

Modeling and characterization of voltage noise in a pre-silicon
setting is typically inadequate. This is because it is difficult
to model the chip/system packaging and power distribution
network (PDN) parameters very precisely. Therefore, a system-
atic, direct measurement-based characterization of voltage noise
in a post-silicon setting (during the processor testing process)
is required to define the adequate voltage levels and package
characteristics that ensure robust functionality.

A key part of such post-silicon processor testing process
is the use of specially crafted benchmarks that maximize the

voltage noise, known as dI/dt stressmarks1. Manual, expert-
driven generation (and fine-tuning) of such dI/dt stressmarks
can be a tedious and error-prone process. This is specially true
in a multi-core setting, in which inter-core synchronization of
noise events and experimental discovery of the system resonance
frequencies can require hundreds (or even thousands) of test
runs with hand-crafted programs.

In this paper, we use a latest generation IBM System
z multi-core processor (IBM zEnterpriseTM EC12 processor
chip) to illustrate a systematic, automation-driven voltage noise
characterization methodology. This methodology is deemed to be
a key post-silicon aid in determining the optimal voltage levels
and package characteristics to ensure the robust performance and
ultra-reliable functionality that is targeted for IBM mainframe
systems. In particular, we present a tight bounds analysis to
quantify maximum voltage noise on the targeted system. This
includes a characterization of noise propagation across the cores
in the multi-core chip. The main contributions of the paper are:

• A systematic methodology to generate all types of dI/dt
stressmarks. The methodology, in contrast to previous
works (e.g. [25], [26], [28]), permits the control of different
parameters affecting the voltage noise generated: amount
of ΔI , synchronization level of ΔI events, number of
consecutive ΔI events and frequency of ΔI events. This
‘white-box’ approach provides a rich toolbox to perform
detailed noise characterizations.

• A complete noise sensitivity analysis of the different
parameters affecting voltage noise: the amount of ΔI ,
the synchronization level of ΔI events, the number of
consecutive ΔI events and the frequency of ΔI events.
This detailed characterization allows us to: (a) validate the
robustness of the zEC12 power delivery system, (b) confirm
the shift of the ‘1st droop’ resonance frequency to lower
bands (around the 2MHz band) due to the usage of deep
trench technology and large on-chip eDRAMs, (c) empiri-
cally quantify the relative importance of each parameter
involved in the noise generation. We show that the amount
of ΔI and the synchronization of ΔI events are the main
contributors of noise and the number of consecutive ΔI
events and their frequency are secondary factors. Overall,
we present a significantly more comprehensive noise
characterization of multi-core systems compared to prior
art (e.g. [2], [27], [31], [40], [41], [55]), which do not study
all the parameters related to noise.

1In this work we use the terms dI/dt and ΔI interchangeably and we refer
to a dI/dt event or ΔI event as a fast transition in power consumption.

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.12

368

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.12

368

Figure 1: Schema of a power distribution network (PDN).

• An analysis of the noise propagation on multi-core proces-
sors based on per-core noise hardware measurements. We
describe a method to empirically evaluate the effects of
physical layout, process variation and other power delivery
system design parameters on the noise perceived by each
core. For instance, we show that the L3 cache —with a
relatively large capacitance— isolates the noise coming
from different cores. Thus, it acts as a damping element.

• A discussion of the optimization opportunities that arise
from noise propagation behavior. We provide a conceptual
overview of the potential benefits of a noise-aware workload
mapping policy and a utilization-based dynamic voltage
guard-banding.

To the best of our knowledge, there is no previous work
on complete noise characterization of multi-core processors
in which both intra- and inter-core noise behavior is captured
and interpreted in the context of a real, high-end mainframe
system. Accurate noise characterization and robustness testing is
a pre-requisite to shipping systems to customers in this high-end
market segment. Hence, this work is of significant and tangible
value to a commercial systems vendor.

The rest of the paper is organized as follows: In Section II
we review the fundamentals of voltage noise. Section III
presents the stressmark generation methodology. Section IV
details the experimental set up. Section V and VI present the
analysis of noise behavior and inter-core noise characteristics
respectively. Section VII discusses the optimization opportunities.
Section VIII presents the related work and we conclude in
Section IX.

II. BACKGROUND

This section provides the basic background to understand the
reasons for the existence of voltage noise and its negative effects
on energy efficiency and reliability. For further details, we refer
the reader to the several previous works on the topic [16], [20],
[22], [24], [30], [34], [38], [43], [46].

A. Problem Overview
In a computer system, the electrical power has to be distributed

from the main power source to all the devices present in the
micro-processor. This is done through the power distribution
network (PDN). Figure 1 shows a schematic diagram of a
PDN. First, a voltage regulator module (VRM) attached in the
motherboard reduces the voltage to a proper package voltage.
Then, the power is distributed through the motherboard to the
package, where controlled collapse chip connections (C4s) —
also known as flip chips— connect the package with the micro-
processor connection pads to distribute the power inside the
chip. Finally, the on-chip PDN distributes the power across all
the devices in the micro-processor.

In an ideal scenario, the on-chip devices would observe
the voltage level generated by the VRM, Vnom. However, the

Figure 2: Model of a power distribution network (PDN).

parasitic components present in the PDN produce variations
in the voltage supply level perceived by the devices (VDie).
Figure 2 shows a simplified model of the power distribu-
tion network that includes the components (resistances and
impedances) present on the motherboard, package and die.
Resistive components (RMb, RPkg1, RPkg2, RDie) produce
a voltage droop across the network referred to as IR-droop
(Vdroop), whereas inductive components (LMb, LPkg1, LPkg2,
LDie) produce voltage fluctuations across the network. We refer
to these fluctuations as didt-droop (Vdidt), which in conjunction
with the Vdroop constitute the voltage noise (Vnoise). Thus,
the VDie = Vnom − Vdroop − Vdidt = Vnom − Vnoise.

The maximum magnitude that Vnoise can achieve defines
the voltage margin (Vmargin) required for a reliable operation.
Designers mitigate the Vnoise magnitude by adding decoupling
capacitance —also known as decap— at different points in
the PDN (CMb, CPkg and CDie in Figure 2) [6]. However,
since the amount of decap is limited by area constraints, the
Vnoise cannot be nullified. In this work, we focus our analysis in
characterizing the Δ in VDie (Vnoise) depending on the activity
being generated in a multi-core processor (Idie(t)).

B. Fundamentals
In order to understand the reasons of such Vnoise, we have

to review some fundamentals on circuit theory. In reactive RLC
circuits with time-varying signals —like the PDNs— Ohm’s
law is generalized to:

ΔVDie = Vnoise = ΔI · Z (1)

where the Z denotes the impedance, i.e. the complex general-
ization of resistance. Z can be further decomposed to:

Z =
√
R2 + (XL −XC)2 (2)

where R is the resistance in ohms of the resistor elements, XL is
the reactance of the inductor elements and XC is the reactance
of the capacitor elements. Given the following definition of
reactance of the inductor and capacitor elements that assumes a
sinusoidal input signal2:

XL = 2π · f · L (3)

XC = (2π · f · C)−1 (4)

where f is the frequency of the signal, L is the inductance in
henries, C the capacitance in farads; we observe that both XL

and XC depend on the input signal frequency. As a result, for
a given R, L, C, the Vnoise can be expressed as a function of
the ΔI generated and the frequency (f) at which this ΔI is
generated.

2Fourier analysis can be used to approximate any arbitrary signal as a sum
of sinusoids.

369369

The resonance frequency (f).: Parallel RLC circuits have
the property of resonance at specific frequencies. Resonance
is the disposition of the circuit to have higher magnitude
oscillations for some frequencies than others. Resonance occurs
because energy is kept in two distinct ways in the circuit: in the
magnetic field of the inductors and in the charge of capacitors.
The rate at which the energy is transferred from one to the other
in a periodic fashion and where the magnitude of oscillations is
maximum is referred to as resonant frequency. The PDN model
shown in Figure 2 can be decomposed into a set of parallel RLC
circuits. Therefore, this results in various resonant frequencies:

fr = (2π
√
L · C)−1 (5)

that are the consequence of the interaction of the different
inductances and decoupling capacitances present in the PDN.
One effect of stimulating a parallel RLC circuit at resonant
frequency is that the impedance (Z) is maximized. As a result,
the Vnoise generated is also maximized (Equation 1).

Since the activity in the device can eventually generate ΔI at
such resonant frequencies, the impedance Z of the system must
be defined not only based on the operating clock frequency, but
also on the spectrum of frequencies where current fluctuations
can exist. This definition is done during the package design
process, when PDN impedance (Z) profiles and decap maps
are generated. In that process, package designers ensure that a
target maximum impedance Z is not surpassed for any given
frequency by placing enough decaps in parallel. This guarantees
that Vnoise remains within a constrained magnitude, allowing
for affordable and reliable voltage margins (Vmargin).

Then, one could define the Vmargin based on impedance
Z profiles generated during the package design process [2],
[14]. However, that would lead to a pessimistic design since,
after all, the Vmargin defined by this process is based on an in-
lab generated worst-case maximum ΔI . Therefore, to improve
the efficiency of the design, Vmargin must be squeezed to the
limits using possible real-world worst-case situations, but without
impacting the reliability of the design.

According to the formulas mentioned above, in order to check
the reliability of the design it is sufficient to validate that the
voltage noise is within the limits (Vnoise < Vmargin) when a
maximum ΔI event is generated at resonant frequency. This
is done through stressmarks, which are specifically tailored to
generate such (possible but improbable) worst case conditions.
Generating them is a challenging task that gained focus in
recent years [25], [26], [28]. In this work, besides presenting
a methodology to generate these stressmarks, we focus our
discussion on exploring, in detail, the effects of the ΔI
magnitude and the ΔI frequency on the Vnoise.

C. Vnoise in Multi-core Processors
In the previous section we have seen that the Vnoise can be

expressed as a function of the ΔI generated by the activity in the
processor and the frequency (f) at which this ΔI is generated.
Ideally, in a multi-core processor, this could be expressed as:

Vnoiseproc = max
0≤i≤#cores

(Vnoisei) = max
0≤i≤#cores

(γi(ΔIi, fΔIi))

(6)

where the total Vnoiseproc is defined as the maximum of the
local noise Vnoisei generated in each core. This local noise is a

function (γi) of the ΔIi that the core generates and the frequency
at which it is generated (fΔIi). This definition assumes that
noise on each core is independent from each other. However,
this is not accurate since the on-chip PDN is shared across the
cores in order to minimize the noise [21]. Therefore, a more
realistic definition of the local noise on a given core i (Vnoisei)
would be:

Vnoisei = γi(ΔIi, fΔIi) + ηi(Vnoisej , ∀j �= i) (7)

where the interaction of local noises generated by different cores
(second element of the formula) is taken into account. Notice
that we define noise function γ and interaction function η on a
per core basis in order to express that different cores can show
different noise levels and interactions depending, for instance,
on their physical layout or due to process variations. This simple
formulation of a much more complex system provides a high
level view of the complexity of performing a sound voltage
noise characterization of a multi-core processor.

In this work, we focus our analysis in understanding the
Vnoise depending on the activity being generated on each core
in the processor. Specifically, we first examine in detail the
different parameters of interest in noise generation: (a) the
amount of ΔI , (b) the frequency of ΔI , (c) the alignment
of ΔI events generated on each core, and (d) the number
of consecutive ΔI events generated. Then, we analyze the
interactions of local noises generated by different cores in order
to identify possible trends resulting from a particular physical
layout or decap placement. This is done by analyzing data
gathered from noise measurement macros implemented on each
core of the processor. This is the first work performing such
local vs. global noise characterization on a production system.
This type of characterization efforts provide a fundamental piece
of data to researchers and system architects in order to define
the requirements of voltage noise mitigation mechanisms [4],
[15], [27], [29], [49].

III. EXPERIMENTAL FRAMEWORK

This section describes the experimental platform as well
as the different methods used to gather the experimental data
presented in this paper. Unless otherwise stated, experiments
have been run on different processors multiple times to check
their reproducibility, and arithmetic average values are reported.

Evaluation platform: The experimental platform is an IBM
zEnterpriseTM EC12 system (zEC12) [44], [51]. Each processor
chip (CP) in the system contains six super-scalar out-of-order
processor cores running at 5.5 GHz. Each core contains private
instruction and data L1 and L2 SRAM caches with 256B cache
lines. The center of the chip contains a 48 MB eDRAM L3
cache that is shared by all 6 cores. The DDR3 interface is on the
left side of the chip (MCU), and the I/O bus controller (GX) is
on the right. Figure 3 shows the chip layout. For the purpose of
this work, various CP chips of zEC12 systems were measured.

Software environment: When running experiments, the
platform runs SUSE Linux Enterprise Server 11 SP3 with linux
kernel version 3.0.82-0.7. This version provides the standard
PCL API [8] to access hardware performance counters. We use
this standard interface to gather performance counter data to
assess the generation of dI/dt stressmarks.

370370

Figure 3: IBM zEC12 CP chip layout. Each unit, i.e. the cores,
the MCU, the GX and the nest, implements a skitter macro that
allows measurement of voltage noise.

Voltage control: Each IBM zEC12 system is provided with
a management console, i.e. a service element, from which control
and monitoring commands can be sent to the different devices in
the system. Specifically, chip voltage can be controlled in steps
of 0.5% of the nominal voltage. This fine-grained granularity
enables accurately finding the failure point when errors start to
occur. Errors are detected using the recovery unit (R-Unit) that
is implemented in these highly reliable systems [45], [52].

In order to find the available voltage margin, i.e. the voltage
at failure [26], [27], the operating voltage is slowly decreased
until first failure happens. This process, commonly named Vmin

experiment, is the ultimate bullet-proof method to check the
available voltage margin. The drawback of this method is its long
turn-around time. This is because voltage is decreased slowly
—0.5% every two minutes— until first failure. In addition, for
each experiment, the system performs failure checks and has to
be rebooted. Therefore, since we had other means to evaluate
the voltage noise generated (see below), we only used this
mechanism to double-check the stressmarks generated and to
gather the extra system information, e.g. the circuit paths within
the design macros that fail first.

Power measurement: The service element can monitor the
power consumption of each device in the system. Specifically,
power measurements are done at the chip level by reading the
current and voltage of the input rails. The granularity of the
readings is in milliwatts. This power consumption data has been
used extensively to assess the generation of the dI/dt stressmarks.

Voltage noise measurement: The measurement of the
voltage noise on the different cores of the system is done through
the skitter macros implemented in the different units of the
zEC12 CP chip [13], [42]. We also performed oscilloscope
measurements of key experiments to confirm the voltage
behavior. Next, we provide an overview about the skitters. We
refer the reader to [13], [42] for an in-depth explanation of their
operation and usability.

Skitter macros contain a latched-tapped delay line of 129
inverters, for the best timing resolution, with a nominal delay
between 5 and 8 ps depending on the threshold voltage and
technology. These delay lines and sampling latches form an
edge-capture circuit that captures the rising and falling edges of
the clock signal. The sampling latches take a snapshot of the
state of the inverter chain every cycle, forming a 129 bit string
of 0’s with 1’s where the edges are detected. If the inverter

�
�
�
�
�
��
	

�
�
�

�
	�
��
�
��
�
�
��
�
��
���
� ���	�
���

���
�	�����

���������	
������
�

���������	
������
�

�
��
��
�
��
�
	

�
�
��
�

�
�
�

�
��
��
�	

�
��
��
�
��
�
	

�
�
��
�

�
�
�
��
��

�
�
�
	
�

�
	
�
�
	
�
�
	

�
��
��
�
��
�
	

�
�
��
�

�
��
�
�

�
��
	
�
�
�
�
��

����	�
���	�
��	��	��

����	�

��������
��	��	��

��� ����!�����
�������

�����

������	
��

Figure 4: dI/dt stressmark generation methodology. First, the
EPI profile of the target platform is generated. Then, the profile
is used to obtain max./min. power instruction sequences. Finally,
instruction sequences, system and stimulus frequencies, and
synchronization options are used to generate the desired dI/dt
stressmark.

delays are constant and there is no clock jitter, then the clock
edges (the 1’s) are captured in the same latches (same bit in the
string). When there is clock jitter, the location of the captured
edges varies.

Besides measuring the clock jitter, skitter macros implicitly
take into account the effect of voltage changes on the clock jitter
and skew. This is because the delay line is very sensitive to
voltage changes. In zEC12 processor chip, skitters were placed
in locations that were known to have the potential for large ΔI
events. Additional skitters were then placed to add visibility
throughout the design. In this study, we provide results for the
skitter macros implemented on the cores.

Skitter macros can be configured to run in sticky-mode. In
that case, the latches record all locations where one or more
clock edges occur within a period of time. This allows the worst-
case timing uncertainty (noise) to be measured while running
any application. We used this mode for measuring worst-case
voltage noise while running our dI/dt stressmarks.

Results of skitter macros are reported in percentage peak-to-
peak variation (%p2p). The %p2p value is directly related to
the voltage droop in the PDN. That is, the higher the %p2p
noise, the higher the voltage droop. These characteristics enable
us to quickly and reliably evaluate the voltage droops in the
system, avoiding the time-consuming Vmin experiments.

IV. DI/DT STRESSMARK GENERATION METHODOLOGY

In order to profile the voltage noise of a given architecture,
several thousands of dI/dt stressmarks —with different properties,
such as the target stimulus frequency, ΔI synchronization
method or alignment constraints— have to be generated. Manual
implementation is impractical. Therefore, we require a systematic
methodology to generate dI/dt stressmarks with the different
desired properties.

Figure 4 shows a high-level view of the methodology
used to generate dI/dt stressmarks. The methodology uses the
Microprobe [3] micro-benchmark generation framework as the
underlying infrastructure to generate the dI/dt stressmarks. To
that end, before starting this noise characterization effort, a
back-end knowledge base for the zEC12 architecture had to be
implemented via target definition files [3].

As discussed in Section II, there are various parameters that
affect the noise generated. One parameter is the magnitude of

371371

Rank # Instr. Description Power
1 CIB Compare immediate and branch (32<8) 1.58
2 CRB Compare and branch (32) 1.57
3 BXHG Branch on index high (64) 1.57
4 CGIB Compare immediate and branch (64<8) 1.55
5 CHHSI Compare halfword immediate (16<16) 1.55

1297 DDTRA Divide long DFP with rounding mode 1.01
1298 MXTRA Multiply extended DFP with rounding mode 1.01
1299 MDTRA Multiply long DFP with rounding mode 1
1300 STCK Store clock 1
1301 SRNM Set rounding mode 1

Table I: First and last five instructions in the zEC12 EPI profile.
Instruction power is normalized to SRNM instruction.

the core ΔI . In order to maximize it, maximum and minimum
power instruction sequences first need to be defined, and then
concatenated. Another parameter is the frequency at which core
ΔIs are generated, controlling it permits the detection of the
resonant regions of the system. One more parameter is the
instant at which the core ΔIs are generated, by synchronizing
them the overall voltage droop is maximized. Finally, the
last parameter that affects the overall noise generated is the
number of consecutive ΔI events generated. The rest of the
section describes how we generate these parametrizable dI/dt
stressmarks.

A. Energy-per-instruction profile

The first step required to produce dI/dt stressmarks is the
generation of an energy-per-instruction (EPI) profile [3]. This
profile allows ranking all the ISA instructions by their power
usage. The rank is used afterwards to select the instruction
candidates when searching for maximum and minimum power
instruction sequences.

This systematic methodology for generating an EPI profile
consists in generating a micro-benchmark for each and every
instruction in the ISA. The micro-benchmark skeleton is an
endless loop with 4000 repetitions of the instruction, without
dependencies. Micro-benchmarks are run for a few seconds
and power and performance metrics are gathered. Metrics are
post-processed afterwards in order to generate the EPI profile.

The fact that all instructions are profiled provides a complete
picture of the ISA characteristics. This is useful to detect poten-
tial instruction candidates for low and high power instruction
sequence generation that would not be considered by an expert.
For instance, in Table I, which shows the first and last five
instructions in the instruction ranking, we see the non-intuitive
case where a compare immediate instruction (CHHSI) is in
the Top 5 of most energy consuming instructions. Besides the
detection of these non-intuitive cases, the profile also provides
important feedback to optimize future implementations of the
architecture.

B. Maximum and minimum power instruction sequences

In order to generate the maximum power instruction sequence,
we implement a methodology based on the one presented
in [3]. In that work, the authors propose to select instruction
candidates by functional unit basis —the top instruction for each
functional unit was selected— and then evaluate all the possible
combinations of a given length to select the highest power one.
We adapt that approach to the extra complexity of the zEC12
CISC architecture.

Figure 5 shows the methodology used to generate the
maximum power instruction sequence. It includes the following
steps:

1) Instruction candidate selection: We use the EPI profile to
categorize the instructions by their functional unit usage
and issue class. From each category, we select the top
most power-consuming instructions. Categories with low
power or low IPC3 are discarded to reduce the number
of instruction candidates to nine, avoiding a design space
explosion problem.

2) Sequence candidate generation: We generate all possible
combinations of length six of these nine instructions
(96 = 531 441). Length six is selected because it is twice
the dispatch group size in the zEC12 architecture. Thus, it
provides the best trade-off between combinations explored
and experimental time.

3) Microarchitectural filtering: The 531 441 combinations
are filtered using constraints based on the microarchi-
tecture details implemented in Microprobe. For instance,
sequences that are known to not have an average dispatch
group size of 3 —the maximum possible in zEC12— are
filtered out because they will not exhibit a high IPC. Other
constraints, such as the maximum number of branches or
prefetches per sequence are also added. This results in a
reduction of the design space from 531 441 sequences to
32000.

4) IPC filtering: Since it is still not practical to evaluate
the power of the 32000 remaining candidate sequences,
we filter them based on their IPC. We select the top
thousand sequences showing the highest IPC. Two reasons
motivated us to choose IPC filtering: (a) it is well-
known that IPC is directly related to power and, (b) IPC
evaluations are much faster than the power ones because:
(i) it is possible to run them in parallel using different
cores and machines and, (ii) a run of a few seconds is
enough to obtain the IPC. This is much faster than the
power evaluations, which have to be done on the same
processor with the same experimental conditions (e.g. chip
temperature) between runs for a fair comparison.

5) Power evaluation: We evaluate the power consumption
of the remaining thousand sequence candidates. The
sequence showing the highest power is selected as the
maximum power instruction sequence. We validate the
sequence on different processors to confirm its high power
consumption.

Finally, we also rely on the EPI profile to define the minimum
power sequence. We select the last instruction of the instruction
rank as the minimum power sequence. Note that, the no-operation
instruction (nop) is not the optimal candidate. Instead, long-
latency instructions (such as divisions or decimal instructions)
are better candidates because they stall all parts of the processor.
The EPI profile provides an evidence of that fact, confirming
previous findings [22].

3We refer to IPC as the micro-operations executed per cycle, which in a
CISC architecture might differ from the general IPC definition of instruction
committed per cycle.

372372

Figure 5: Maximum power instruction sequence generation methodology. First, instruction candidates are selected from the EPI
profile. Second, several combinations are generated and filtered using microarchitecture constraints. Then, IPC is evaluated to
select the top thousand instruction sequence candidates which will proceed to the power evaluation stage.

���������	�
����������

���	��

�������������

���	
�
�����
���������	�����

����������
���

���	
�
�����
���������	�����

���������
���

�

�

���	����

Figure 6: dI/dt stressmark skeleton. Rich number of configurable
parameters to control the noise generation: number of steps, syn-
chronization options, low and high power instruction sequences
and their IPCs, stimulus frequency and target system frequency.

C. dI/dt stressmark generation

In order to understand in detail the voltage noise in multi-core
systems and present studies such as the ones presented in Sec-
tions V and VI, several dI/dt stressmarks with different properties
are needed. For instance, we need dI/dt stressmarks generating
different amounts of ΔI , with different stimulus frequencies
—i.e. duration between ΔI events—, with different number of
consecutive ΔI events, with specific alignment between ΔI
events, etc. Therefore, the dI/dt stressmark generation should
be highly configurable.

We have implemented a dI/dt stressmark generation policy
on top of the Microprobe framework. As shown in the last step
of Figure 4, the policy takes as input the high and low power
sequences and their IPCs, the target system frequency, the target
stimulus frequency, the number of consecutive ΔI events to
generate and the synchronization options. With that information,
one can derive the length of high and low power sequences
to generate low/high activity at the given stimulus frequency.
Then, high and low power sequences are concatenated within a
loop to generate a dI/dt stressmark as shown in Figure 6. We
explored the addition of intruction dependencies between high
and low power sequences to ensure a sharper activity change
but results were similar.

As explained in Section II-C, an important challenge to
overcome in multi-core systems is how to synchronize the
stressmarks running on different cores. This is required to
maximize the ΔI generated in a given instant. Although
probabilistic approaches exist to ensure an eventual alignment
of ΔI events within a time window [26], we implemented a
deterministic approach. We leverage the advanced state-of-the-
art timing facilities present in the zEC12 architecture to perform

perfect cycle-accurate alignment within the stressmarks. The
timing facilities provide a global 64-bit Time-Of-Day (TOD)
register that allows for the control of the misalignment between
stressmarks in steps of 62.5 nanoseconds. This cycle-accurate
capability of controlling the misalignment permits the analysis
of the sensitivity of noise to ΔI event misalignments presented
in Section V-B. Note that without the right architecture support
the perfect control of alignment would not be possible.

During the dI/dt stressmark generation methodology def-
inition, we also studied the introduction of disruptive
(e.g. branch/cache/TLB misses) events and memory hierarchy
activity to maximize the ΔI generated. However, we decided
to generate core-contained sequences without disruptive events
because: (a) disruptive events showed small differences in power
consumption with respect to the minimum power sequence
(b) the introduction of memory activity in the maximum power
sequence did not improve the maximum power significantly;
(c) disruptive events and memory activity in shared resources
limit the capacity to control the stimulus frequency generated
by the workload in a multi-core context.

Overall, the flexibility of dI/dt stressmark generation method-
ology allows us to generate any type of dI/dt stressmarks
by controlling every relevant aspect involved in the noise
generation: the magnitude of the ΔI , the frequency of ΔI
events, the number of consecutive ΔI events and the alignment
between the ΔI events. This ‘white-box’ approach provides
to the user all the knobs to control the noise. This approach
complements the existing solutions that are only focused in
finding the worst-case noise scenario. It would be possible
to implement optimization algorithms —such as the genetic
algorithms employed in previous works [26]— on top of the
presented solution. The following sections present detailed noise
analysis that would not be possible without such dI/dt stressmark
generation flexibility.

V. UNDERSTANDING VOLTAGE NOISE

In this section, we present sensitivity analyses for each
parameter related to the voltage noise. This permits us to:
(a) validate the dI/dt stressmark generation policy, (b) gain
detailed insights on noise behavior in multi-core systems,
(c) understand the conditions where worst case noise scenario
occurs, and (d) confirm the robustness of the zEC12 design.
Although we provide per-core noise measurements, this section
analyzes the global behavior of the noise at chip level. Section VI
studies the noise propagation across cores and the inter-core
interactions. These detailed characterizations are used to motivate
the optimization opportunities presented in Section VII.

373373

����� ����� ����� ����� ����� ����� �����

��

�	

��

�	

��

�	

��

�	

��

�	

��

�	

��

�	

��

�	

��������	
��	���������������
��
���
���
�� ���
�� ���
�� ���
�� ���
�� ���
��

��
��
���� !"#$

�
�
�
�
��

�
�	

��������	
��	��������	���
��
���

������	���
��
���� !"#$

(a) Maximum per core noise measured when running the dI/dt
stressmarks with different stimulus frequencies

�������	�

�
�������
�������	�

�
�
��
�
��
�
�
�

�
�
�
�
�
�
�
	
�

�������
�������	�
����

���
�����
���� ���

!�
�����
���"���

(b) Post-silicon impedance (Z) profile generated via direct measure-
ments during package characterization

Figure 7: Noise sensitivity to stimulus frequency. The detected
resonance bands in (a) are in accordance with the Z profile (b).

A. Noise sensitivity to stimulus frequency

The first question to answer is if the skitter-measured noise
generated by the dI/dt stressmarks is magnified at the expected
resonant bands. For this purpose, we explore a wide range of
stimulus frequencies. For each stimulus frequency, we generate
a dI/dt stressmark without synchronization and we run one copy
of it on each core.

Figure 7a shows the per-core noise measurements for different
stimulus frequencies. Note that the step function of noise
readings is due to the discrete nature of the skitter bit-string. The
measurements confirm two resonant bands around the 40KHz
region and 2MHz region, respectively. This agrees with the post-
silicon impedance profile generated via direct measurements
during package testing process (Figure 7b).

The six cores show the same trends in the entire range of the
frequency spectrum. This is expected because the PDN is shared
and therefore, the noise is propagated across cores. Nevertheless,
some cores exhibit more noise than others. For instance, the
maximum noise seen is ∼41%p2p variation in cores 2 and 4.
These differences in the noise seen on each core are mainly due
to manufacturing process variation, although —as we present
later on— some other factors such as the physical layout or
inter-core noise propagation can also contribute.

(a) 20 microseconds (b) Single-period

Figure 8: Oscilloscope shot of voltage noise on core 0 when
executing the maximum dI/dt stressmark at ∼2MHz.

One important thing to note is the displacement of the ‘first
droop’ to the ∼2MHz region4. The traditional ‘first droop’ in
older systems was at frequencies around 30-100 MHz and it was
caused by the charge exchange oscillation between the chip and
the surrounding module capacitors. The path inductance between
chip and module capacitors is fairly small, and therefore the ‘first
droop’ oscillation time is short. Modern IBM systems use deep
trench technology for implementing the large on-chip eDRAM.
This augmented the on-chip capacitance by 40x. As a result,
the resonant bands shifted to a much lower frequency, around
the ∼2MHz region in Figure 7a. The outcome is that there is
no longer an oscillatory power noise behavior at frequencies
above 5 MHz, making the design more robust.

Finally, although the noise levels seen are confirming the
correctness of the dI/dt stressmarks generated, we performed
oscilloscope measurements to double-check the activity being
generated. Figure 8a shows oscilloscope measurements of the
voltage in core 0 when running the noisiest dI/dt stressmark
(∼2MHz). The repetition of the sinusoidal form in the 20
microseconds shot confirms the correctness of the stressmark.
A single period is shown in Figure 8b. The measurements
consistently show large peak-to-peak variations in the voltage
supply. Despite these large noise events, the zEC12 platform
did not trigger any recovery mechanism, confirming its robust
design.

B. Noise sensitivity to alignment
In this section, we repeat the same experiment but adding the

synchronization mechanism in order to evaluate the effect of
synchronization on the ΔI events happening on each core. We
expect that synchronizing the ΔI events will increase the voltage
noise but we would like to quantify, empirically, that increase in
order to discern the relative importance of the synchronization
effect versus other parameters.

We generate dI/dt stressmarks with synchronization for a
wide spectrum of stimulus frequencies and we run a copy of
each stressmark on every core. The synchronization code is
configured to loop until the low-order bits of the clock value
(TOD register) are zero; this happens every 4ms. After that, the
dI/dt loop is executed for a thousand iterations (thousand ΔI
events) before re-synching again. This ensures the stressmarks
are in sync and minimizes the synchronization overhead. We
evaluate the noise sensitivity to the number of consecutive ΔI
events in Section V-E.

Figure 9 shows the noise perceived by the cores. As expected,
the noise increased significantly confirming the effectiveness
of the synchronization mechanism. We see a general increase
of around 20 %p2p points. For instance, the maximum noise

4One can also say that the ‘first droop’ disappeared.

374374

����� ����� ����� ����� ����� ����� �����

��

��

��

��

	�

�

��

��

��

��

��

	�

�

��

��������	#�
	��������	���������	

����������������	������������

������ ������ ������ ������ ������ ������

����� ���%�������	�&'(�)

!
"

�
"

��
�

��
�

Figure 9: Maximum per core noise measured for different
stimulus frequencies when running the dI/dt stressmarks that
are synchronized every 4ms. Synchronization enlarged the noise
levels seen in Figure 7a.

seen at the resonant region around the 2MHz point was 41%
(Figure 7a), while with synchronization it is 61% (Figure 9).
The noise is not only magnified around the resonant regions. It
is also magnified in the rest of the stimulus frequencies explored.
Actually, we measured higher noise in non-resonant bands with
synchronization enabled than in the resonant bands without the
synchronization (region between 40KHz and 2MHz stimulus
frequencies in Figure 9). This is because the effect due to
the large ΔI events resulting from synchronization exceeds the
effect of resonance. This suggests that ΔI event synchronization
is a more important factor to avoid than ΔI events occurring
at resonance frequency.

C. Noise sensitivity to misalignment
Since ΔI event synchronization is an important factor to

consider, we want to evaluate ‘how much’ misalignment is
necessary to diminish the synchronization effect. By quantifying,
empirically, the time window where ΔI events should not
happen simultaneously, one can define the requirements of noise
reduction mechanisms on future architecture generations.

For this experiment, we generate dI/dt stressmarks with
a stimulus frequency of 2MHz (within the resonant band)
and synchronizing every 4ms after a thousand ΔI events.
However, in this case, we generate different versions varying
the exit condition of the synchronization loop. For instance, one
stressmark exits the synchronization loop when bits 39–63 of
the TOD register are zero, while the other does so when bits
39–62 of the TOD register are zero and bit 63 is one. This
small modification ensures a 62.5ns misalignment between the
stressmarks.

Figure 10 shows the average %p2p noise seen for each
core versus the maximum allowed misalignment. To create
a given maximum allowed misalignment, the stressmarks are
distributed evenly within the misalignment range. For instance,
for a maximum allowed misalignment of 125ns, 2 stressmarks
are synchronized at t = 0ns, 2 at t = 62.5ns and 2 at
t = 125ns. Since there are multiple possible stressmarks to
core mappings, we execute all of them and report the average
values. The results show that a small misalignment of 62.5ns
is sufficient to reduce the noise to levels similar to the ones
without synchronization. For this study, we were limited by the
62.5ns granularity ensured by the particular implementation of

� ��� ��� ��� ��� ��� ��� 	��
�� ��� ����

��

��

��

��

��

��

��

!"�"�#�������$����������	��
�����	
�	�
������ ������ ������ ������ ������ ������

���������	��
�����	
�	���	��

�
�
�
�
�	
�
��
�

Figure 10: Sensitivity of noise to ΔI event alignment. X-
axis shows the maximum misalignment allowed between the
stressmarks. A small misalignment is sufficient to diminish the
synchronization effect.

the architecture, but it is likely that smaller misalignments, in
the order of a few nanoseconds, will be enough to nullify the
alignment effect.

In conclusion, the fact is that synchronized ΔI events
generate large voltage noise but the strict alignment requirement
considerably reduces their likelihood to happen. Moreover, this
likelihood will decrease in the future with the addition of more
cores to the system. Nevertheless, a platform with such high
reliability standards as the zEC12 cannot take the risk of not
taking into account these improbable but possible noise events.

D. Noise sensitivity to ΔI

As explained in Section II, voltage noise is directly related to
the amount of ΔI generated in a given instant. In this section
we quantify that relation. For this experiment, we use three
types of workloads: nothing (idle), medium dI/dt and maximum
dI/dt. The dI/dt ones have a stimulus frequency of 2MHz and
use the synchronization mechanism in order to maximize the
noise. To generate the medium dI/dt stressmark we use an
instruction sequence that consumes exactly the average between
the maximum and the minimum power sequence. In other words,
two medium dI/dt stressmarks generate the same ΔI as one
maximum dI/dt stressmark. We run all possible workload to
core mappings (6 cores & 3 workloads⇒ 36 combinations)
and gather skitter noise measurements.

Figure 11a shows the maximum noise generated with respect
to the percentage of the maximum possible ΔI that can be
generated. As expected, the noise grows with the amount
of ΔI . This quantification is crucial to accurately define the
requirements of noise reduction mechanisms. For instance, if
we want to implement a noise mitigation mechanism to keep
%p2p noise below 30%, we should not allow more than 60%
ΔI .

In addition, we want to know if the way the ΔI is generated
affects the noise. That is, we want to answer the following
question: what workload distribution creates more noise? A
single stressmark generating a given ΔI or two stressmarks
generating ΔI/2? Figure 11b shows the results of Figure 11a
organized by the workload distribution. In this case, noise is
averaged across cores and mappings with the same workload
distribution and ΔI . The results depict a trend showing that
when the source of the noise is more spread out, the noise is

375375

� �� �� �� �� �� �� 	�
� �� ���

�

��

��

��

��

��

��

����������������������
	
���� 	
��� 	
���� 	
���� 	
����

	
���� �������

��
���������

�
�
�
�
��

��
�

���������	
���

���������	
���

���������	
���

���������	
���

���������	
���

���������	
���

(a) Maximum per core noise measurements with respect to the
percentage of maximum possible ΔI that can be generated. Each
point shows, for a given % of ΔI and core number, the maximum
%p2p noise seen across all workload mappings generating that particular
% of ΔI . The dotted regions designate the minimum number of cores
needed to generate a particular noise level.

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�	

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

	
��

��

��

��

��

��

��

��

��

��

������
������������������	
��	��	��

������������
���� ���� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� ������

����������	
��	��	���� !�"����#���$� !������#��%

�
&
�
&
��
�
	

�

(b) Average noise measurements with respect to ΔI generated and
workload distribution. For instance, point 1-4 shows the average noise
across all possible workload mappings of 1 maximum dI/dt stressmark
and 4 medium dI/dt stressmarks (and 1 core idling).

Figure 11: Noise sensitivity to ΔI . We observe in (a) that noise is directly related to the amount of ΔI and the number of cores
enabled. We also detect in (b) a trend showing that when the source of the noise is more spread out, the noise is higher.

higher. For instance, in Figure 11b we see that, for 50% ΔI , the
noise slightly decreases when going from a 0-6 configuration (all
cores running the medium dI/dt workload) to a 3-0 configuration
(3 cores running the dI/dt workload). Nevertheless, the trend
is not significant. This suggests that the important factor is the
amount of ΔI generated and not the source of the ΔI .

E. Noise sensitivity to number of consecutive ΔI events
To wrap up this sensitivity analysis section, we evaluate the

sensitivity of noise regarding the number of consecutive ΔI
events generated. We want to know if a single ΔI event is
enough to generate large noise or if we need more. We generate
maximum dI/dt stressmarks with different stimulus frequencies
and synchronization enabled while varying the number of
consecutive ΔI events between synchronization points. We also
generate stressmarks for these different stimulus frequencies
without synchronization, i.e. ∞ number of consecutive ΔI
events. The stimulus frequencies selected are at resonant bands
(35KHz and 2.5MHz) and their surroundings. For this last
sensitivity experiment, instead of skitter measurements we run
Vmin experiments in order to measure the available margin
empirically.

Figure 12 shows the available margin —the amount of Vbias
5

required to get the first failure— per stimulus frequency and
number of consecutive ΔI events. Results are normalized to the
worst case, i.e. highest Vbias to fail. The results show that neither
the number of consecutive ΔI events nor the stimulus frequency
affect the voltage margin available significantly. This is because
the noise generated with just a single synchronized ΔI event is
large enough so that the noise amplification due to resonance
becomes relatively small. Note that although the skitters showed
much higher %p2p noise at resonant frequencies, the fact that
we are in the high region of noise —where the linearity
between Vnoise and skitter measurements diminishes [13], [42]—
translates this to similar Vbias levels. When the ΔI event
synchronization is disabled (∞ events/no synch in Figure 12),
the margin available with respect to the worst case is more

5Vmin = Vbias × Vnominal

��� ����� ����� ����� �	��
��	�� �	�� ���	��

��

���

���

��

���

���

����

����

���

�

��������	�
�������
����
�����
����
���������������
��������
�

	�����
 ������
� ������
� 	������
� 	��������
� ������
����������

�
��������� �����

!
�
�

�
��
�
�
�
�"
�
�
��
�

����������
���
�����

#�����������$������
����������
%��������
��������

Figure 12: Available margin for different number of consecutive
ΔI events and stimulus frequencies. The synchronization of ΔI
events is essential to reduce the available margin. The stimulus
frequency is a secondary factor.

than doubled (from 0–2% range to 5–7%). This confirms the
importance of alignment in the noise formation. Finally, 1Hz
and 100MHz frequency points show higher margins because
either the stressmarks are misaligned6 or the stimulus frequency
is too high to generate ΔI events.

In order to put these available margins in context, we
depict a line showing what we would consider the worst case
available margin for a typical customer code. The extrapolation
assumes the following: (a) ΔI events are not synchronized
—synchronized ΔI events are very unlikely to happen— and (b)
the magnitude of the ΔI events generated on each core is around
∼80% of the maximum possible ΔI . This is based on the fact
that, historically, maximum power stressmarks showed ∼20%
higher than worst case regular user codes. Therefore, in this
context, there is plenty of margin for optimization opportunities.
One can apply dynamic guard-banding to reduce the margins
dynamically (like in POWER7/POWER7+ systems [11], [12],
[29]) or noise reduction techniques to reduce the maximum
noise that can be generated by a workload [27].

6The fact that frequency (1Hz) is much larger than the synchronization interval
(4ms) leads to stressmarks being aligned at different 4ms interval points.

376376

F. Sensitivity summary

We quantified the sensitivity of noise with respect to different
parameters. We confirm that the shift of the ‘first droop’ to lower
frequencies —around the 1-5MHz range— is due to the on-chip
capacitance increase because of the implementation of large
eDRAMs using deep trench technology. This could potentially
affect some prior works on noise reduction techniques that are
too tailored to reduce high frequency noise events (30-100MHz
range).

In addition, we conclude that the key enabler for noise
generation is the amount of ΔI generated in a given instant
of time. The synchronization of ΔI events on different cores
is crucial in that regard. If a mechanism is implemented to
avoid the synchronization of ΔI events happening on different
cores, the noise can be reduced by 2-3x. The results also
show that any mechanism implemented to reduce the noise
should be implemented on a chip-wide basis. Two observations
support that fact: (a) large intra-core ΔI events happening
on a few number of cores do not lead to high noise and, (b)
relatively small ΔI events happening simultaneously to all
cores could lead to a large Vnoise. This global requirement for
noise reduction techniques imposes significant implementation
challenges since prediction/detection and reduction of ΔI events
should be done globally. The next generation processor chip
for System z mainframes will include a mechanism to globally
monitor/reduce noise if necessary.

Finally, we also confirm experimentally that the stimulus fre-
quency and the number of consecutive ΔI events are secondary
factors. We do not see any value in implementing mechanisms
to avoid resonance or a given number of consecutive ΔI events
if the main factors (magnitude of ΔI and synchronization of
ΔI events) are not solved first. Throughout this section, we
analyzed the noise globally and we proved the robustness of
the zEC12 power delivery system. The next section provides
detailed analyses on inter-core noise propagation.

VI. NOISE PROPAGATION ON MULTI-CORES

In this section, we analyze how the noise is propagated
in a multi-core system. We want to discern all patterns (if
any) that could arise as a result of the system design such
as core placement, decap placement or overall chip layout.
Detecting such patterns is important for: (a) validating the
design, e.g. ensuring that there is no particular core/region more
vulnerable to noise, (b) detecting optimization opportunities. For
example, if the current delivery system is not robust and some
cores are more correlated in terms of noise, then one can avoid
scheduling tasks on them at the same time if other cores are
available. This would reduce the worst-case noise.

To evaluate the inter-core noise relations, we use the same
experimental setup as in Section V-D. We also evaluate all
the possible workload mappings to cores. This provides the
complete picture of possible core activities. By performing
statistical analyses on the dataset, one can detect trends or
anomalies.

First, in Figure 13a, we compute the correlation factor between
the noise seen in all the possible mappings for each pair of
cores. This tells us if some cores are more related to others. As
expected, inter-core noise correlation factors are high (>0.91).

������ ������ �����	 �����
 ������ ������

���

����

����

����

����

����

����

���	

���

����

�

���������������������������
������ ������ �����	 �����
 ������ ������

�
�
��
�
��
��
�
�
��
�
�
��
��
��
�
�

�������	
�
����	
����

�������	��
����	�����

(a) Correlation coefficient between noise observed by each core for
all possible workload mappings.

(b) Simulation of a ΔI event on core 0 confirming that the noise
from core 0 is transferred faster and more strongly to cores 2 and
4 than to the other cores.

Figure 13: Inter-core noise propagation. We detect the existence
of two noise-related core clusters resulting from the chip layout.

This is because noise is globally propagated across the PDN.
Therefore, if there is noise in the PDN, all the cores are affected.
However, we also see that some cores are more correlated than
others.

As shown in Figure 13a, we detect two clusters of cores:
cores 0,2,4 and cores 1,3,5. Two main reasons explain this
result: First, if we revisit Figure 3, the clusters correspond to the
upper three cores and the lower three cores, respectively. Since
the L3 —with a relatively large capacitance— sits between
the clusters, it slightly isolates the noise from one cluster to
another, acting as a damping element. Second, the PDN topology
also affects how the noise is propagated. The two clusters are
on different on-chip voltage domains sharing a single package
voltage domain.

In order to confirm these findings, we use our in-house
PDN simulation set up based on Cadence/Sigrity Speed 2000
software [5]. We evaluate the effects of a large ΔI event on
Core 0, while the other cores are idling. Figure 13b shows the
simulated voltage on the six cores over time. We see that the
noise in the cores 0, 2, 4 on one side of the chip is larger than
the noise in the cores on the opposite side of the chip (cores
1,3,5). This correlates with our observations. Moreover, we also
see that the noise from core 0 is transferred faster to cores 2
and 4 than to the other cores.

We show an example of how these inter-core relations can
affect the noise generated in Figure 14. The figure shows two
different mappings of three dI/dt stressmarks on the six-core
processor. In Figure 14a, the dI/dt stressmarks are mapped on
cores 1,4,5 and we see a worst-case noise of 24.6 %p2p on
core 1. In contrast, if we map the three dI/dt stressmarks in
one of the clusters detected (as shown in Figure 14b), the worst

377377

(a) Best case

������ ������ ������

�����	�����
������

���
 �
�� �
��

�����
������

(b) Worst case

������ ������ ������

�����	�����
������

�	�� ����� �����

���	�������
���

Figure 14: Two different mappings of 3 worst-case dI/dt
stressmarks. Each core shows the workload and the %p2p noise.
Worst-case noise is highlighted on each mapping to spotlight
that the worst-case noise depends on workload to core mapping.

case noise increases to 28.2 %p2p (on core 2). The main reason
for this effect is the clustering relation mentioned above. In
addition, the noise seen in core 2 of Figure 14b is amplified
because it sits in the middle of two other ‘noisy’ cores (core 0
and 4).

To summarize, we have seen that technology and physical
layout as well as other PDN design parameters —such as
the number of power domains— can affect how the noise is
propagated across the different cores in a multi-core chip. The
amount of propagation depends on the distance/capacitance
between elements. Therefore, there are some isolation benefits
related to element layout. However, their significance has to
be evaluated on each particular design. These interactions
will likely be higher in the future due to the higher process
variation and number of cores. This suggests that there might
be increasing opportunities to decrease worst-case noise via
appropriate workload-mapping techniques. The next section
discusses some of them.

VII. OPTIMIZATION OPPORTUNITIES

Based on the knowledge learned during the characterization of
noise performed in previous sections, we infer two optimization
opportunities: noise-aware workload mapping and utilization-
based dynamic guard-banding. In this section, we discuss the
potential gains of implementing them in order to build a strong
case for further research on the topic. Detailed proposals and
evaluations are needed to assess their implementability on future
generations of processors. In any case, we believe that they could
serve as a guide for future research on noise-related techniques.
Note also that, given the robustness of the power delivery
system implemented in IBM zEnterpriseTM EC12 systems (as
shown throughout the paper), we do not foresee the necessity
to implement noise reduction techniques for maintaining the
system reliability.

A. Noise-aware workload mapping

As we have seen in Section VI, the worst case noise for a
given number of workloads is not equal for all possible mappings.
That is, depending on the mapping used, the worst case noise
would be different. This opens up the possibility of implementing
noise-aware workload mapping policies. In other words, one
can implement a task mapping policy with the objective of

� � � � � � �

�

��

��

��

��

��

��

�

���

�

���

�

���

�

���

�

������������	
�	��	���
��������	���	��������
�

�	���������
� ����������
�� ������������	
����	���
����������������

���	���	�����	���������

�
�
�
�
�

	
��
�

�
�
�
�
�

	
��
�
��
�
�
�
�
��
	

Figure 15: Noise reduction opportunity to reduce worst case
noise via workload mapping.

minimizing the worst-case noise. Then, one can proactively
squeeze the available voltage margin accordingly or just let
other hardware-implemented mechanisms such as critical path
monitors [11], [12], [29] to reap the benefits of lower noise
automatically.

Figure 15 shows the maximum benefits that could arise from
noise-aware workload mapping. We compare for each number of
workloads (dI/dt stressmarks) to schedule, the mapping showing
the highest core noise (Worst Mapping in Figure 15) vs. the
one showing the lowest core noise (Best Mapping in Figure 15).
The difference between them is shown in the secondary y-
axis. When we have 2, 3 or 4 workloads to schedule there
are mappings that could reduce the worst-case noise between
2 and 3 %p2p points. For low or high number of workloads
to schedule, the benefits are smaller because the potential ΔI
is too small or too high. Overall, these results show a small
potential for the approach on current systems. However, we
foresee that with the increasing number of cores and process
variation, the optimization opportunities will increase. This is
because the number of possible combinations (mappings) will
grow exponentially as well as the variation among them.

B. Utilization-based dynamic guard-banding

From Figure 11a, it is clear that the worst case noise is
directly related to the amount of ΔI generated. At the same
time, the amount of ΔI that can be generated is bounded by the
number of cores that are executing a workload (regions depicted
in Figure 11a). If the hardware, or the software managing the
resources such as the OS or the firmware, is aware of the number
of cores that can execute a workload, then it could safely adapt
the available margin accordingly. That is, once a new core is
requested to execute some workload, the hardware would raise
the voltage to maintain the safety margin because the worst-case
noise is higher. Similarly, when a core is freed from execution,
the hardware would decrease the voltage to ensure that the
margin is not over-provisioned. Although mechanisms such as
critical path monitors [11], [12], [29] already do that implicitly,
they can benefit from this worst-case bound approach because
the dynamic range where they actuate will be tailored to the
real worst case for each situation. In the end, the benefits of
this simple mechanism depend on the utilization rates of the
processor on real environments, with potential huge impact on
energy efficiency when the system is not fully utilized.

378378

VIII. RELATED WORK

Several works have explored ways to optimize the PDN and
minimize voltage noise. This section summarizes some of them.

Architectural solutions: Several architecture-level solutions
target the reduction of voltage noise events. Powell et al. [35]
propose a pipeline muffling technique to avoid transient and
large change in resource utilization. In [39], the authors present
a voltage noise prediction mechanism, a signature-based noise
reduction scheme and an efficient implementation of them
based on bloom-filters. Gupta et al. [18] presents a delay-
commit mechanism that allows rolling-back the execution if noise
emergencies have been detected. In [36], the authors use pipeline
throttling knobs to change the frequency of voltage noise,
avoiding the resonant frequency band. Different works [32],
[33], [47] target the problem of minimizing the noise when
activating/deactivating, or clock-gating, functional units. In [22],
the authors propose techniques to eliminate voltage emergencies
based on control theory. The authors extend their work in [23]
by using wavelet-based approach for identifying voltage levels
at run-time. SMT aspect of voltage noise is studied in [7].
In that work, the authors propose intelligent hardware thread
management to control voltage noise. In a broader scope, the
authors in [9], [10] propose a reliable architecture that eliminates
the need of voltage margins.

Software-based noise reduction: Voltage noise can not only
be mitigated using hardware solutions, it can also be reduced
by appropriate software control. In [48], the authors propose
a noise-aware instruction scheduling algorithm for compilers.
Types of noise events are categorized and code transformations
to avoid them are proposed in [17]. Dynamic software-based
optimization systems are presented in [19], [37]. Based on
continuous hardware profiling, the solutions use compiler-based
transformations to reduce the frequency of noise events. In [31],
the authors propose a synchronization methodology to mitigate
the noise related to thread synchronization primitives. Our
work foresees two software-based solutions related to voltage
noise that were not explored in prior art: noise-aware workload
mapping and utilization-based dynamic guard-banding. Although
these solutions do not directly target the reduction of noise, they
alleviate the guard-banding that is required to be noise-safe.

Noise in production processors: Empirical quantification of
noise on real hardware provides fundamental insights and direct
data to the research community. Reddi et al. [41], [40] analyze
the noise behavior on an Intel R© CoreTM2 Duo processor. They
use a technique —based on removing package capacitors— to
extrapolate voltage noise in future systems. The extrapolation is
used to analytically evaluate a temporal-based thread scheduling
policy that minimizes voltage emergencies. In [27], Kim et al.
analyze the floating point throttling mechanism implemented in
AMD Orochi processors. After analyzing the power, performance
and reliability trade-offs, they propose a noise reduction solution
—controlling, dynamically, the floating-point unit throttling— that
increases system performance. In [1], the authors use the error
correction mechanisms already built into modern processors
to dynamically adapt voltage margins while keeping a safe
operating voltage. Our work provides a step forward in the
understanding of voltage noise in production processors by
providing insights on intra-/inter-core noise behavior, crossing

—for the first-time— the chip-level measurement barrier. In
addition, we also present a complete characterization of all the
parameters related to voltage noise.

dI/dt stressmark generation: Correct dI/dt stressmark gen-
eration is crucial to understand the noise behavior [22]. In [28],
Kim et al. propose a systematic methodology to generate of
dI/dt stressmarks based on genetic algorithm-based optimization.
In [26], the same authors validate the methodology on different
processors, AMD Buldozer and Phenom, by proposing a dithering
technique to align the threads in a multi-core system. Our
novelty on systematic dI/dt generation is that we provide a fully
configurable method to generate all kinds of dI/dt stressmarks,
not only the worst case. Besides, we show a deterministic
approach leveraging the time facilities to solve the thread
alignment issue for multi-core systems, which also allows to
control the miss-alignment between threads.

Noise modeling and PDN optimization: It is also important
to the community to understand the trends of the noise in future
processors in order to anticipate possible limitations. To that end,
exploratory PDN and noise modeling are crucial. In [55], the
authors model the noise in a future 10nm technology processor
running at near-threshold voltages. They highlight the importance
of accurate voltage noise characterizations, like the one presented
in this paper, to avoid the large guard-band requirements they
predict for future near-threshold processors. The same issue is
addressed in [53], where the authors use a PDN optimization
model to anticipate that future processors will have I/O pads
limited due to the increase of pads required to maintain reliable
levels of voltage noise. This pad budgeting problem is further
analyzed in [50], [54].

IX. CONCLUSIONS

This paper addresses the issue of generating complete voltage
noise characterizations on current, state-of-the-art, multi-core
processors. We presented a configurable ‘white-box’ methodol-
ogy to systematically generate dI/dt stressmarks with different
characteristics. Then, we showed how that methodology enabled
the detailed characterization of the different parameters involved
in voltage noise generation. This permits the validation of the
power delivery system design and the quantification of the
relative importance of each parameter involved in the noise
generation. In addition, we presented a noise propagation anal-
ysis on multi-core systems, detecting empirically the different
noise interactions between the cores. Finally, we discussed
potential optimization opportunities emerging from this new
understanding of noise behavior.

Overall, we proved the robustness of the power delivery
system implemented in IBM zEnterpriseTM EC12 systems. The
empirical and detailed characterization of the noise behavior
enables an accurate definition of the requirements for noise
monitoring/mitigation mechanisms.

ACKNOWLEDGMENT

This work has been partially sponsored by Defense Advanced
Research Projects Agency (DARPA), Microsystems Technology
Office (MTO), under contract no. HR0011-13-C-0022. The views
expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense or the U.S.

379379

Government. This document is: Approved for Public Release,
Distribution Unlimited.

Many individuals across IBM made this work possible. We
extend particular thanks to Michael D. Campbell, Andrew Z.
Muszynski, Jochen Supper, Hubert Harrer, David S. Hutton,
Douglas C. Mershimer, Ervin Conn Jr, Karl E. Anderson, Scott
B. Swaney, Stanley F. Lutek, Andreas Krebbel and Sreekala
Anandavally. Finally, we would like to thank the anonymous
reviewers for their comments and feedback.

REFERENCES

[1] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage mar-
gins by leveraging on-chip ecc in itanium ii processors” in ISCA-40,
Jun 2013, Tel-Aviv, Israel.

[2] W. Becker et al., “Mid-frequency simultaneous switching noise in
computer systems” in ECTC-47, May 1997, San Jose, CA, USA.

[3] R. Bertran et al., “Systematic Energy Characterization of
CMP/SMT Processor Systems via Automated Micro-Benchmarks”
in MICRO-45, Dec 2012, Vancouver, BC, Canada.

[4] K. Bowman et al., “A 22nm dynamically adaptive clock distribu-
tion for voltage droop tolerance” in VLSI, Jun 2012, Honolulu, HI,
USA.

[5] “Cadence/sigrity speed 2000.” [Online]. Available:
http://www.cadence.com/products/sigrity/speed2000

[6] R. Downing et al., “Decoupling capacitor effects on switching
noise” in IEEE Transactions on Components, Hybrids, and Man-
ufacturing Technology, vol. 16, no. 5, Aug 1993.

[7] W. El-Essawy and D. Albonesi, “Mitigating inductive noise in SMT
processors” in ISLPED, Aug 2004, Newport Beach, CA, USA.

[8] S. Eranian, “Linux Has a Generic Performance Monitoring API!”
CSCADS Workshop, Tahoe City, California, USA, Jul 2009.

[9] D. Ernst et al., “Razor: Circuit-level correction of timing errors for
low-power operation” in IEEE Micro, vol. 24, no. 6, Nov 2004.

[10] D. Ernst et al., “Razor: a low-power pipeline based on circuit-
level timing speculation” in MICRO-36, Dec 2003, San Diego, CA,
USA.

[11] M. S. Floyd et al., “Introducing the adaptive energy management
features of the power7 chip” in IEEE Micro, vol. 31, no. 2, Mar
2011.

[12] M. S. Floyd et al., “Adaptive energy-management features of the
ibm power7 chip” in IBM JRD, vol. 55, no. 3, May 2011.

[13] R. Franch et al., “On-chip Timing Uncertainty Measurements on
IBM Microprocessors” in ITC, Oct 2008, Santa Clara, CA, USA.

[14] B. Garben et al., “Mid-frequency delta-i noise analysis of complex
computer system boards with multiprocessor modules and verifica-
tion by measurements” in IEEE Trans. on Adv. Packaging, vol. 24,
no. 3, Aug 2001.

[15] A. Grenat et al., “Adaptive clocking system for improved power
efficiency in a 28nm x86-64 microprocessor” in ISSCC, Feb 2014,
San Francisco, CA, USA.

[16] M. Gupta et al., “Understanding voltage variations in chip multi-
processors using a distributed power-delivery network” in DATE,
Apr 2007, Nice, France.

[17] M. Gupta et al., “Towards a software approach to mitigate voltage
emergencies” in ISLPED, Aug 2007, Portland, OR, USA.

[18] M. Gupta et al., “Decor: A delayed commit and rollback mech-
anism for handling inductive noise in processors” in HPCA, Feb
2008, Salt Lake City, UT, USA.

[19] K. Hazelwood and D. Brooks, “Eliminating voltage emergencies
via microarchitectural voltage control feedback and dynamic opti-
mization” in ISLPED, Aug 2004, Newport Beach, CA, USA.

[20] D. Herrell and B. Beker, “Modeling of power distribution systems
for high-performance microprocessors” in IEEE Trans.s on Adv.
Packaging, vol. 22, no. 3, Aug 1999.

[21] N. James et al., “Comparison of Split-Versus Connected-Core
Supplies in the POWER6 Microprocessor” in ISSCC, Feb 2007,
San Francisco, CA, USA.

[22] R. Joseph et al., “Control techniques to eliminate voltage emer-
gencies in high performance processors” in HPCA, Feb 2003,
Anaheim, CA, USA.

[23] R. Joseph et al., “Wavelet analysis for microprocessor design:
Experiences with wavelet-based di/dt characterization” in HPCA,
Feb 2004, Madrid, Spain.

[24] G. Katopis, “Delta-i noise specification for a high-performance
computing machine” in Proceedings of the IEEE, vol. 73, no. 9,
Sep 1985.

[25] M. Ketkar and E. Chiprout, “A microarchitecture-based framework
for pre- and post-silicon power delivery analysis” in MICRO-42,
Dec 2009, New York, NY, USA.

[26] Y. Kim et al., “AUDIT: Stress Testing the Automatic Way” in
MICRO-45, Dec 2012, Vancouver, BC, Canada.

[27] Y. Kim et al., “Performance boosting under reliability and power
constraints” in ICCAD, Nov 2013, San Jose, CA, USA.

[28] Y. Kim and L. John, “Automated di/dt stressmark generation for
microprocessor power delivery networks” in ISLPED, Aug 2011,
Fukuoka, Japan.

[29] C. Lefurgy et al., “Active management of timing guardband to
save energy in POWER7” in MICRO-44, Dec 2011, Porto Alegre,
Brazil.

[30] B. McCredie and W. Becker, “Modeling, measurement, and simu-
lation of simultaneous switching noise” in IEEE Transactions on
Components, Packaging, and Manufacturing Technology, vol. 19,
no. 3, Aug 1996.

[31] T. N. Miller et al., “Vrsync: Characterizing and eliminating
synchronization-induced voltage emergencies in many-core proces-
sors” in ISCA-39, Jun 2012, Portland, OR, USA.

[32] M. Pant et al., “An architectural solution for the inductive noise
problem due to clock-gating” in ISLPED, Aug 1999, San Diego,
CA, USA.

[33] M. Pant et al., “Inductive noise reduction at the architectural level”
in VLSI-13, Jan 2000, Calcutta, India.

[34] S. Pant and E. Chiprout, “Power grid physics and implications for
cad” in DAC-43, Jul 2006, San Francisco, CA, USA.

[35] M. Powell and T. N. Vijaykumar, “Pipeline muffling and a priori
current ramping: architectural techniques to reduce high-frequency
inductive noise” in ISLPED, Aug 2003, Seoul, Korea.

[36] M. Powell and T. N. Vijaykumar, “Exploiting resonant behavior to
reduce inductive noise” in ISCA-31, Jun 2004, Munich, Germany.

[37] V. J. Reddi et al., “Eliminating voltage emergencies via software-
guided code transformations” in TACO, vol. 7, no. 2, Oct.
2010.

[38] V. J. Reddi et al., “Voltage Noise: Why Its Bad, and What To Do
About It” in SELSE-5, Mar 2009, Stanford, CA, USA.

[39] V. J. Reddi et al., “Voltage emergency prediction: Using signatures
to reduce operating margins” in HPCA-15, Feb 2009, Raleigh, NC,
USA.

[40] V. J. Reddi et al., “Voltage noise in production processors” in IEEE
Micro, vol. 31, no. 1, Jan 2011.

[41] V. J. Reddi et al., “Voltage smoothing: Characterizing and miti-
gating voltage noise in production processors via software-guided
thread scheduling” in MICRO-43, Dec 2010, Atlanta, GE, USA.

[42] P. Restle et al., “Timing uncertainty measurements on the Power5
microprocessor” in ISSCC, Feb 2004, San Francisco, CA, USA.

[43] R. Senthinathan and J. Prince, Simultaneous Switching Noise and
CMOS Devices and Systems, vol. 249, no. 1, Jan 1994.

[44] C. Shum et al., “IBM zEC12: The Third-Generation High-
Frequency Mainframe Microprocessor” in IEEE Micro, vol. 33,
no. 2, Mar 2013.

[45] T. Slegel et al., “IBM’s S/390 G5 microprocessor design” in IEEE
Micro, vol. 19, no. 2, Mar 1999.

[46] L. Smith et al., “Power distribution system design methodology
and capacitor selection for modern CMOS technology” in IEEE
Trans. on Adv. Packaging, vol. 22, no. 3, Aug 1999.

[47] Z. Tang et al., “Ramp up/down functional unit to reduce step
power” in First International Workshop on Power-Aware Computer
Systems, Nov 2001, Cambridge, MA, USA.

[48] M. C. Toburen, “Power analysis and instruction scheduling for
reduced di/dt in the execution core of high-performance micropro-
cessors” Master’s thesis, North Carolina State University, Raleigh,
NC, USA, Jun 1999.

[49] C. Tokunaga et al., “A graphics execution core in 22nm CMOS
featuring adaptive clocking, selective boosting and state-retentive
sleep” in ISSCC, Feb 2014, San Francisco, CA, USA.

[50] K. Wang et al., “Walking pads: Fast power-supply pad-placement
optimization” in ASP-DAC-19, Jan 2014, Singapore.

[51] J. Warnock et al., “Circuit and Physical Design of the
zEnterpriseTM EC12 Microprocessor Chips and Multi-Chip Mod-
ule” in IEEE Journal of Solid-State Circuits, vol. 49, no. 1, Jan
2014.

[52] C. Webb, “IBM z10: The Next-Generation Mainframe Micropro-
cessor” in IEEE Micro, vol. 28, no. 2, Mar 2008.

[53] R. Zhang et al., “Some limits of power delivery in the multicore
era” in WEED-4 workshop at ISCA-39, Jun 2012, Portland, OR,
USA.

[54] R. Zhang et al., “Architecture implications of pads as a scarce
resource” in ISCA-41, Jun 2014, Minneapolis, MN, USA.

[55] X. Zhang et al., “Characterizing and evaluating voltage noise
in multi-core near-threshold processors” in ISLPED, Sep 2013,
Beijing, China.

380380

