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Abstract

In this note, we use a reduction by Cornaz and Jost from the graph
(max-)coloring problem to the maximum (weighted) stable set problem in
order to characterize new graph classes where the graph coloring problem
and the more general max-coloring problem can be solved in polynomial
time.
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1. Introduction

A stable set of a graph is a subset of pairwise nonadjacent vertices, and
a coloring of a graph is a partition of its vertices into nonempty stable sets.
The maximum cardinality of a stable set of a graph G is denoted by α(G),
and the minimum number of stable sets in a coloring of G, called the chro-
matic number of G, is denoted by χ(G). The graph coloring problem is a
basic model for scheduling, frequency assignment, and resource allocation
problems. From particular constraints arising in practical settings, more
elaborate models of coloring have been defined in the literature.
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Given a graph G with a nonnegative weight w associated to each vertex v,
the max-coloring problem consists of finding a coloring of G that minimizes
the sum, over all stable sets in the partition, of the maximum weight of a
vertex in the set. It has applications in batch scheduling [5, 8] and buffer
minimization [10].

The graph coloring problem is NP-complete in general, but it can be
solved in polynomial time for several classes, being the most prominent the
class of perfect graphs [9]. For a compendium of graph classes and the
corresponding computational complexity of the coloring problem on them,
see [6]. Max-coloring is substantially harder than the graph coloring problem,
in particular it is NP-hard in the strong sense in split graphs [5], and so in
particular in perfect graphs and in P5-free graphs. Restricted to bipartite
graphs, it is NP-hard in P8-free bipartite graphs but polynomial-time solvable
in P5-free bipartite graphs [4].

In a recent paper, Cornaz and Jost [3] exhibit a new polynomial-time
reduction from the graph coloring problem to the maximum stable set prob-
lem. Namely, given a graph G with n vertices and m edges, they construct
an auxiliary graph T (G) with m vertices such that the set of all stable sets
of T (G) is in one-to-one correspondence with the set of all colorings of G,
where m is the number of edges of the complement graph G of G.

In fact, the reduction is more general and applies also to weighted graphs.
They reduce the max-coloring problem to the maximum weighted stable set
problem.

A maximum weighted stable set of G is a set of pairwise nonadjacent
vertices such that the sum of the weights of the vertices in the set is maximum.
The maximum weighted stable set problem and its unweighted version are
NP-complete in general, and they can be solved in polynomial time on perfect
graphs [9] and apple-free graphs [1] and in O(n3) time on claw-free graphs [7].

A claw is a graph formed by a vertex with three neighbors of degree one.
A hole in a graph G is an induced cycle of length at least five. An antihole is
the complement of a hole. A hole or antihole is odd if it has an odd number of
vertices. Denote by Ck the induced cycle of length k, and by Pk the induced
path of k vertices. An apple Ak is a graph obtained from a chordless cycle
Ck of length k ≥ 4 by adding a vertex that has exactly one neighbor on the
cycle. If H is a graph, a graph G is called H-free if no induced subgraph of
G is isomorphic to H. If H is a family of graphs, a graph G is called H-free
if no induced subgraph of G is isomorphic to a graph in H.

A clique of a graph is a subset of pairwise adjacent vertices. The maxi-
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mum cardinality of a clique of G is denoted by ω(G). A graph G is perfect
when χ(H) = ω(H) for every induced subgraph H of G. Equivalently, a
graph is perfect if and only if it contains neither odd holes nor odd antiholes
as induced subgraphs [2].

Given a graph G, denote by V (G) and E(G) the set of vertices and
edges of G, respectively. Let n = |V (G)| and m = |E(G)|. Denote by
G the complement of G, and by m the number of edges of G. Denote by
L(G) the line graph of G, that is, the intersection graph of the edges of
G. A partial subgraph of G is a graph G′ such that V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). A spanning partial subgraph of G is a partial subgraph G′

such that V (G′) = V (G).
Let D be a simple digraph with vertex set V (D) and arc set A(D). An

arc with tail u and head v is denoted by uv. The digraph D is called acyclic
if it has no directed cycle. Recall that D is acyclic if and only if there is a
total ordering ≺ on its vertex set such that u ≺ v for each arc uv. A pair
of arcs of D is called a simplicial pair of D if they share the tail and their
heads are connected by an arc.

Let D be an acyclic orientation of the complement G of a graph G. The
graph T (G) is obtained from the line graph of G by removing all edges
between pairs of edges of G which are simplicial pairs of arcs in D.

Theorem 1. [3] For any graph G and any acyclic orientation of its comple-
ment G, there is a one-to-one correspondence between the set of all colorings
of G and the set of all stable sets of T (G). Moreover, α(T (G)) + χ(G) =
|V (G)|.

Note that |V (T (G))| = m and |E(T (G))| is equal to the number of edges
of the line graph of G minus the number of triangles in G. Therefore, given
a undirected graph G, the number of vertices and edges of T (G) does not
depend on the order of V (G) from which the orientation of D is derived.

Given a graph G with a nonnegative weight w on its vertex set, denote
by αw(G) the weight of a maximum weighted stable set of G with respect to
w, and by χw(G) the value of an optimum max-coloring of G with respect to
w. For each vertex a of T (G) corresponding to the arc uv of D, define the
weight w̃(a) := w(v). The previous theorem can be generalized to weighted
graphs in the following way.

Theorem 2. [3] Let G be a graph with a nonnegative weight w on its vertices,
and consider an acyclic orientation of G given by a non-increasing ordering
of V (G) with respect to w. Then αw̃(T (G)) + χw(G) = w(V (G)).
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In this paper, we analyze the transformation T . In particular, we try to
find classes of graphs C such that T (C) is a class of graphs where the maximum
weighted stable set is polynomial-time solvable. In general, we consider T (C)
as the class of graphs T (G) obtained from any acyclic orientation of the
complement of a graph G in C since, for the max-coloring problem, this
orientation is given by the weight function. But one of our main results
is the characterization of a class of graphs C in which, for every graph G

in C, there exists an orientation of G such that T (G) is claw-free. In that
class, the coloring problem is polynomial-time solvable, by using any available
polynomial-time algorithm for maximum stable set in claw-free graphs. The
class obtained is not contained in any previously known class where the
coloring problem is polynomial-time solvable, as far as we could check in [6].
Moreover, it can be recognized in polynomial time, which makes the result
interesting also from a practical point of view.

2. Main results

We start by analyzing the pre-image of perfect graphs by the transfor-
mation T . In what follows we denote with uv the vertex in V (T (G)) corre-
sponding to the arc uv of D.

Proposition 3. If G has an odd hole as induced subgraph then T (G) has
a hole of length 5 as induced subgraph, and if G has an odd antihole Ck as
induced subgraph then T (G) has an odd hole Ck as induced subgraph.

Proof. If G has Ck as induced subgraph, then G has Ck as induced subgraph,
and no pair of edges of it is a simplicial pair of arcs in D. So T (G) has Ck

as induced subgraph. In particular, for k = 5, if G has C5 = C5 as induced
subgraph, then T (G) has C5 as induced subgraph.

Let H be a subgraph of G inducing an odd hole with vertex set V (H) =
{v1, . . . , vk}, where k ≥ 7 and v1 is the smallest vertex of H in the vertex or-
dering defining the orientation ofD. Then, vertices {v1v5, v1v4, v4v6, v3v6, v3v5}
induce a hole of length 5 in T (G).

Corollary 4. If T (G) is a perfect graph then G is a perfect graph. That is,
T−1(perfect graphs) ⊆ perfect graphs.

Note that if G is perfect then T (G) is not necessarily perfect. In partic-
ular, there exists a perfect graph G such that T (G) is not perfect, indepen-
dently of the acyclic orientation of its complement (Fig. 1). So, from the
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Figure 1: The complement G of a perfect graph G such that T (G) is not perfect, indepen-
dently of the orientation of G.

Figure 2: The apple A4.

graph coloring point of view, the pre-image of perfect graphs by the trans-
formation T leads to a class of graphs where the problem is already known
to be polynomial-time solvable. But it could be of interest to characterize
T−1(perfect graphs) from the max-coloring point of view.

Our aim now is to characterize T−1(claw-free graphs), in order to describe
a new class in which the max-coloring problem can be solved in polynomial
time.

Lemma 5. T (G) is a claw-free graph for every acyclic orientation of G if
and only if G does not contain a spanning partial subgraph of A4 (Fig. 2) as
an induced subgraph.

Proof. Suppose first that G contains a spanning partial subgraph H of A4

as induced subgraph. Let us consider an ordering of the vertices of G such
that v1 ≺ v2 ≺ v3 ≺ v4 ≺ v5, and let D be the digraph obtained from
that ordering. Then v3v4 and v3v5 are a simplicial pair of D, so they are
nonadjacent in T (G). Besides, v2v3 does not form a simplicial pair of D with
neither v1v2, v3v4 nor v3v5, independently of which edges were removed from
A4 to obtain H. So, {v2v3, v1v2, v3v4, v3v5} induces a claw in T (G).
Conversely, suppose that T (G) contains an induced claw, for some ordering
of the vertices of G. Let ab, cd, ef and gh be the edges of G inducing the
claw on T (G), where cd, ef and gh form a stable set on T (G) and ab is
adjacent to all of them. We will split the proof into two cases: cd, ef and gh
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share the same endpoint of ab (wlog, c = e = g = a), or two of them share an
endpoint with ab and the third one shares the other endpoint with ab (wlog,
c = e = a and g = b). In the first case, each pair of edges in {cd, ef, gh} is a
simplicial pair, so d, f and h form a triangle in G, and {b, a, d, f, h} induces
on G a subgraph of A4. In the second case, {cd, ef} is a simplicial pair, so
d and f are adjacent in G, and a ≺ d, f . If h is different from d and f , then
{h, b, a, d, f} induces on G a subgraph of A4. So, suppose wlog that h = d.
In that case, gh(= bd) and cd(= ad) should form a simplicial pair, but this
is impossible because a ≺ d, and this completes the proof of the proposition.

Remark 1. If T (G) is a claw-free graph for some acyclic orientation of G
then α(G) ≤ 4.

Figure 3: All spanning partial subgraphs of A4 but P5.

As a direct consequence of the previous Lemma, we have the following
result.

Theorem 6. T (G) is a claw-free graph for every acyclic orientation of G if
and only if G does not contain P5 or a graph in Fig. 3 as an induced subgraph.

Corollary 7. Given a graph G that does not contain P5 or a graph in Fig. 3
as an induced subgraph, and a nonnegative weight on its vertices, the max-
coloring problem on G can be solved in O(m3).

We can strength this result for coloring by choosing a clever ordering of
the vertices of G in order to obtain an orientation of the graph G leading to
a claw-free graph T (G), even if we allow to have some induced P5’s in G.
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Theorem 8. If G does not contain a graph in Fig. 3 as an induced subgraph
and there exists an ordering ≺ of the vertices of G such that for every induced
P5 = v1v2v3v4v5 of G it holds v3 ≺ v1 and v3 ≺ v5, then the graph T (G),
obtained from the acyclic orientation of G given by that ordering, is a claw-
free graph.

Proof. Let G be a graph and consider an ordering ≺ of its vertices. Suppose,
by the way of contradiction, that T (G) is not a claw-free graph. Then, by
Proposition 5, G contains either a graph in Fig. 3 or a pathH = v1v2v3v4v5 as
induced subgraph. Since G does not contain a graph in Fig. 3 as an induced
subgraph, then the claw in T (G) is formed by the edges of H. It is easy
to check that they induce a claw in T (G) if and only if either v1 ≺ v3 or
v5 ≺ v3.

From Theorem 8, one can characterize the following class of graphs in
which the coloring problem can be solved in polynomial time.

Corollary 9. Given a graph G, it can be checked in polynomial time if G
does not contain a graph in Fig. 3 as an induced subgraph and there exists an
ordering ≺ of the vertices of G such that for every induced P5 = v1v2v3v4v5
of G it holds v3 ≺ v1 and v3 ≺ v5. In this case, the coloring problem can be
solved in polynomial time for G. The overall complexity of the algorithm is
O(n5 +m3).

Proof. It can be checked in O(n5) time that G does not contain a graph in
Fig. 3 as an induced subgraph. Also in O(n5) time it can be builded a digraph
D′ with vertex set V (G) and an oriented arc for each pair of vertices x, y such
that there is an induced P5 in G such that x is the middle vertex and y is
an end vertex of it. Finally, it can be checked in linear time if D′ is acyclic,
and in that case it can be given in linear time a suitable ordering for V (G).
Finally, the algorithm to solve the coloring problem consists on building the
graph T (G) with respect to that order and, by Theorem 1, solving the stable
set problem on it. By Theorem 8, T (G) is a claw-free graph and so, the
stable set problem can be solved in O(m3) time [7].

One might be tempted to try to enlarge the class by looking at the preim-
age of apple-free graphs by the transformation T , since apple-free graphs
constitute a superclass of claw-free graphs where the maximum weighted
stable set problem can be solved in polynomial time as well. Unfortunately,
a computer-aided exhaustive case analysis shows that if, for a given ordering
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of the vertices of G, T (G) contains a claw as induced subgraph then it also
contains an induced A4. In other words, T (G) is apple-free if and only if
it is claw-free. As a consequence, if T (G) is a chordal graph then it is also
claw-free, and in particular if T (G) is a tree then it is indeed a path.
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