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ABSTRACT t = [t(0),¢(1) ...t(N7 — 1)]" the vector of training symbols.
We consider signal-carrier and single-user transmissien a Training symbols are assumed to be known by the receiver.

frequency-selective channel. We focus on the data-aidat jj;(ere, the supers'crip(t')? represents the transpo'se operator.
estimation of the dispersive channel and the frequencyebff or t_he sake_ of _S|mpI|C|ty, we assume that training sequence
We propose a new training sequence selection strateg;amle\t/(”) Is & realization of a r_andom stationary sequence, possibly
for both parameters of interest in the context of a Riceaméad correlated. The channel is assumed to be Rice distribized
channel. Our strategy relies on the minimization of the Mean i I
Square Error on data symbols at the output of a Wiener equal- h=4/ h;+4/——h, (2)
izer after frequency offset compensation. Simulationsedas K+1 K+1
on bit error rate confirm our claim. wherehy is a deterministic vector normalized in such a way
that||hy||?> = 1 and whereéh, is a complex circular Gaussian
1. INTRODUCTION random vector with zero mean and covariance malix=
E[h,hl], normalized in such a way that TE) = 1. The
Usually the transmitted signal can be affected by inter sysuperscript(.)? stands for the conjugate transpose operator.
bol interference due to the multipath channel and a frequer@oefficient K is the so-called Ricean factor. In the sequel,
offset caused by a Doppler effect or a local oscillator dB&- we respectively refer to the first and the second term of the
fore applying an offset correction and an equalizer, th&nkh righthand side of (2) as the line of sight (LOS) and the noe lin
and the frequency offset, which are unknown, have to be esfisight (NLOS) components of the channel.
mated. In many applications, parameter estimation is getlie  In the present paper, we assume that the LOS companent
via the transmission of known (training) symbols prior te thof the channel is known at both the transmitter and the receiv
unknown data symbols. A natural question is therefore: hawdes. This is motivated by the fact that in most wireless ap-
to select the training sequence at the transmitter sidehato plications, the coherence time corresponding to the LOS-com
relevant estimates of the unknown parameters can be obitaipenent is much larger than the coherence time corresponding
at the receiver side ? Whereas the design of optimal traintogthe NLOS component. Note that in this case, the estima-
sequence is fixed when only the channel is unknown or wh@sn of h is actually equivalent to the estimation of the NLOS
only the frequency offset is unknown [2, 1], the design of ti@mponenth,. We denote the unknown parameter vector as
optimal or relevant training sequence associated withdimt j § = [f, hr,h;]T, wherehr and h; respectively represent
estimation issue is still an open problem. This is the camcehe real and the imaginary part hf Although we assume a
of this paper. stochastic channel model, we focus on a standard determinis
Let us consider our signal model. We focus on a singlge estimation approach for the sake of simplicity (our tesu
carrier and single-user communications scheme. Assunie #zn however be generalized to a Bayesian estimation agproac
a training sequencg0),t(1),...,t(Np — 1) with length N7 without difficulty). Therefore we concentrate on the usehef t

is transmitted. The received signgl:) has the form: Maximum Likelihood (ML) estimator, defined by
L1 6 = arg maxlo 0),y(1)...y(Ny —1)|6). 3
y(m) = 1S W)t 1) + (), o gz gp(y(0),y(1)...y(Nr —1)[|8).  (3)
=0

The implementation and performance of the above estimate of
where parametef denotes the frequency offset and where c6-has been extensively studied in the literature [2, 1, 4,13]. |
efficientsh(0) ... h(L — 1) represent the channel coefficientshe sequelf andh respectively denote the estimates of the
Sequencev(n) denotes a white complex-valued circular zerdrequency offset and the channel.
mean Gaussian noise of variance= E[|w(n)|?]. Here,t(n) The aim of the present paper is to propose a method allowing
represents the training sequence. In the sequel, we deyot&lselect training sequentdn a relevant way. It is natural to
h = [h(0)... (L — 1)]T the unknown channel vector and bygearch for the training sequendsshich minimize the estima-



tion error. For instance, when the numbér of training sym- of interest. Basically, our TSD strategy consists in sdarch
bols is large, [4] and [2] characterize the training seqesendor the training sequences such that the mean square error on
minimizing the (limit of the) mean square error (MSE) on théata symbols at the output of the Wiener filter, is minimum. Of
channel: course, our “optimal” training sequences will be relevahew

E [||Ah|]* ||t] (4) the receiver coincides with the one depicted at subsectibn 2
. ) Nevertheless, in the case where a different receiver is itded
whereAh = h — h and, on the otherhand, characterize thgagonable to believe that the proposed training stragegili
training sequences minimizing the MSE on the frequency Ofigey to improve the system performance compared to more

set: Iy .
standard training strategies.
E[(Af)?[It],

whereAf = f — f. Here,E[. ||t] denotes the conditional2.1. Receiver structure

expectation w.r.tt and||.|| denotes the Euclidian norm. Unyye assume that the transmission consists in a training mode
fortunately, it turns out that the training sequences m'z“mduring which training sequence with length N is trans-

ing (4) are completely different from the training seqUENCRitteq, followed by a data mode during which data sequence
minimizing (5): I_n other v_vo_rds, there Iotraining sequence 4 _ [d(0),d(1),...,d(Np—1)]T with lengthNp, is transmit-
t allowing to jointly minimize the estimation error on the'(ed. For the sake of simplicityi(n) is assumed to be an inde-

channel and on the frequency offset. In order to overcome,yent identically distributed (i.i.d.) sequence withiamce
this problem and to exhibit a single training sequence selge _ E[|d(n)|?]. Note however that our results can be gener-
tion strategy, [1] investigates the minimization of the sunfizeq 1o the case whetkn) is a colored sequence. Parameter
E[||Ah||?[|t] + E[(Af)?||t]. However, channel estimation er

) | : ) vector @ is estimated using (3). The receiver first compen-
rors will have a different impact, €.g., on the bit error rii@n  o,te5 for the value of the frequency offset: it generatasasig
frequency offset estimation errors. Consequently, it igemo ) = o fn (n). For each > Ny + L
reasonable to minimize a weighted sum of the MSE suchyéén © yun)- =0T '
wrE[||AR||?||t] +w E[(Af)?|/t] wherew;, andw  are respec- L-1
tiveI)EHCho!eu] i]n acéoit(jange”w}ith the impact offthe channglan  Ye(n) = e 2™ > " h(l)d(n — Np — 1) + w(n).
the frequency offset estimation errors on the overall sgste =0
performance e.g., the bit error rate. An even more global dfen, a linear equalizer with coefficientg =

proach suggested by [1] is to search for the training semseng(—L,),...,g9(L,)] is used on the received signal. The

t which minimize the criterion output equalizee(n) is defined by
A~ _ A~ _ H Lg
Tr (WE [(0 0)(6 - 0) ||tD (6) = S gl b).

whereW is a weighting matrix which enables to place differ- ==Ly

ent weights on channel estimation errors and frequencegtffsinally, a hard detector is used on the equalizer outputderor
estimation errors. Unfortunately, the choice of weighting- to recover the transmitted data symbols.
trix W is a difficult task. To our knowledge, it has not been
addressed in the literature. 2.2. Training Seguence Design criterion
In this paper, our goal is to propose a relevant Training

Sequence Design (TSD) criterion and to exhibit training s@-"atural approach would be to exhibit the training strategy
guences minimizing the latter criterion Furthermore, tae rWh|ch leads to the m|n|mum_b|t error rate at_ the detector out-
sulting “optimal training” sequences should not dependan Fput. U.nfortunatel_y, such a crlt.enon is very difficult to egps
rameterd, sinced is unknown at both the transmitter and th@S & Simple function of the training strategy. Here, we psepo
receiver. Solutions should only depend on the prior knogéed'® Minimize the MSE at the output equalizer. In the sequel, we
on @, namelyk, ¥ and the LOS componei,. define

MSE(n,t) = E [|z(n) — d(n — Np)[* ||t] .

2. THE PROPOSED CRITERION It is worth noting that:(n) is a non stationary sequence due to
the presence of facter 22/, Therefore, the above expres-
sion of the MSE depends on index It is of course impracti-
al to minimize the MSE for all possible valuesmafHere, we
ropose to minimize the average MSE w.r.t. all data symbols:

Clearly, the selection of a TSD criterion crucially depeinds

the receiver's architecture. Indeed, each particularivece
may be more or less sensitive to channel estimation errogs /
guency offset estimation errors. Therefore, we proposette ¢

struct our TSD criterion based on the simple receiver strect 1 Nrtip-l
depicted at subsection 2.1: First, the receiver compesiéate MSE(t) = Np > MSEn,t). (1)
the frequency offset using the estimated vafuef f. Sec- n=Nr

ond, it compensates for the channel distortion using aickissThe above criterion depends on the training sequémzthe
Wiener filter based of the estimated valuef h. Next, we de- estimation errors on parametédrsaand f. The objective of the
rive a TSD criterion in accordance with the receiver streetunext section is to express M$§ in closed-form.



3. THE CRITERION EVALUATION where

In order to express (7) in a more convenient way, the firststgp  — ;2 4. /1(03|h(y>|z +0?)|g(v)2dv
is to provide a simple expression of M&# as a function of 0

the estimation error on parametérsand f. The second step 5 1

is to relate the latter estimation errors to the trainingtsty. - 203% [/O h(l’)g(y)d”}

The third step is to obtain a simplified version of Eq. (7).

o = / (O3B [2 + 02)g 4 (v)do

Step 1: MSE as a function of the estimation error ~ After _ 2 ~ !
straightforward but tedious algebraic manipulations, b&im 2 = 2052+ )7NrS 0 7(v)79,5 (V)
1
MSE(t) = En[MSE(t|h)] e3 = dogn’(1+a+a®/3)Niys R [ /O g(V)h(V)dV}
where where$([.] represents the imaginary part and where
1 2
MSE(t][b) — o2 + o / (g + Ag)()Pdv YoaV) = E[Agw)?] ®)
o i) = ElAg)Af] ©)
4 ag/o B 2l(g + Ag) (v — Af)Pdv vrs = E[(AN)?). (10)

9 1 The terme, represents the error due to the Wiener filter based
— 204R S(Af)/o (9+Ag9)(v —Afh(V)dv|  receiver whenh and f are known. Errore; (resp. es) is
the extra term associated with the mis-estimatioh dfesp.

with f). Finally ez is the supplementary error caused by the mis-
| NrNp-1 estlmatlpn pf botth andf. _ .

S(v) = — Z e~ 2mrn Our aim is now to express the error on the Wiener filter as a

Np =N function of the error on the channel filter. Under the assump-

tion of an infinite length Wiener filterig., L, — o0) , itis
andg (resp. g + Ag) is the Wiener filter associated witheasy to check that
h (resp. h + Ah). In the above expression, we use the

notationp(v) = lL:Q_Ll p(l)e=27v™ for any vectorp = —03W2Ah(u) + 0202 Ah(v)
[p(—L2),- - ,p(L1)]" of length (L1 + Ly + 1). The nota- Aglv) = (3[h(V)[? +0?)?

tion MSEt|/h) stands for the MSE given a realization lof

R[.] represents the real part of a complex-valued term. Then we have

In order to obtain a simple link between M&#th) and the
estimation error, we consider the "asymptotic” regime, we
assume thaboththe sizeNr of the training sequence and the
size Np of the data sequence tends to infinity, while the ratio
Np/Nr converges to a constant. We assume that

o @RI + odo )
79;9( ) - (0§|h(1/)|2+0'2)4 (11)

2% [USGQWQ:WL,h(V)}
(a3lh ()2 + o2)t

2
0505 (V) = ogh(v) Yy (V)

lim Np/Np =
yim Np/Nr=a

'Yg,f(y) - (Uﬁ‘h(V”Q 4 0_2)2 (12)
wherea is a constant depending on the system of interest. We
recall (cf. [4, 2]) that the MSE of channel estimation is ofthere
orderl/Np while the MSE of frequency offset estimation is of Fnn(v) = E[AR(v)?]
order1/N3. Consequently, functiof(f) can be decomposed ’
as follows and wherevy, (v) (resp. v, r(v)) is defined similarly to

Eq. (8) (resp. Eq. (9)).
S(Af) = 1—w(2+ a)NrAf

2r(1+ a+ o [3)NE(Af)? +0,(1/Nr)  Step 2: MSE as a function of the TS statistics  In the se-
quel, we expressy, »(v), vu,r(v) and~y ¢(v) as a function
where 0,(1/Nr) is negligible w.r.t. 1/Nz in probability. of the training sequence, actually, as a function of theingi
Based on the above decomposition, we are able to show thgequence statistics. Before going further, we considetraire
ing sequence as a realization of a zero-mean stationargmand
MSE(t|h) = ep + e1 + e2 +e3+ 0,(1/Nrp) sequence.



When N7 is large, it is known that (cf. [1]) where MSKE is a constant which represents the average MSE
that one would have observed if the estimation was perfadt, a

2 H
E[AhARY] = XTT <Rt_1 + ;l:{lth}J where the “excess MSEJ(q) has the following form
N 302 hh” _ /1 a1 (v) 1 .
EIABART] = S h MO, wwrE” | T amemra) Y
302 h . . o .
EIAhA = = with 8 = 27/2 + 9a + 2a2. ¢1(v) is a deterministic function
[AAT] 27Nz hHR;h defined by / v
EIANY = oo o) + "
2reNg RTR D o) = o [ | 09
whereR; is the L-dimensional covariance matrix defined b}é. I . q defined b
(k= D Ypimo. 11 With 7(k — 1) = E[t(n + k)i(n +1)]. inally c2(v) is a random process defined by
If we assume that the sequenpek); k = 0,+1,---} is ab- |h(v)|?
solutely summable, then we can define the following spectrum ca(v) = O (16)
associated with the training sequence fO 2w +o2 P
9 kv Our approach consists in selecting the value of the powerspe
Su(v) =lgW)I" = Zr(k)e ’ trum|q(v)|? of the training sequence which minimizes the ex-
hez cess MSEJ(¢). To that end, we should obtain a closed form
It is easy to check that expression of/ (¢). In particular, the expectation in the second
1 term of the righthand side of (14) should be derived in closed
r(k) = / lq(u)]2e® ™ duy, form. This task is however involved and, due to the lack of
0 space, will only be investigated in an extended version isf th
This implies that paper. Here, instead of directly minimizing (14), we rather
. minimize a simplier criterion/,(¢) which can be interpreted
hHR,h — / lq(w)[2[A(u)Pdu as an approximation of the initial criteriof(q).
0
Consequently, we have Step 3: Appr_oxinjated I_\/I_SE As explained_above_, we now
propose a simplier training sequence design criterion dase
- 302 (h(v))? on (14). Our criterion is based on the following observation
T (¥)  2Np fl lg(w)|2]h(w)[2du For any continuous functiondt of the channel coefficients,
9 0 E [F(h)] converges tdF(h,) as the Ricean factok tends to
3o h(v) L . g C ;
Y, (V) — > —3 infinity. Following this idea, the proposed simplified criten
2aNE [5 lq(w)[?|h(w)2du consists in replacing each occurenceh(f) in (14) with the
302 1 transfert functiorh () of the LOS component. The simplified
VE= 212 N3 j})l |q(u)\2|h(u)|2du' training sequenlce design criterion is defined by
d
A closed-form expression fofy, ,(v) is more complicated Ja(q) :/ LV)Qdu+ﬂ T 1 . a7
since we have to handle matriR;'. More precisely, o la)] 0 c3(v)lq(v)[2dv

-1 H _
’[Vlhv?_(?)egslﬁffﬂf)y]‘) n?rf (oyr)dfc:; tgLe ilgreslv?ﬁéeleife(ryt)qua_ntitWherecil(V) is obtained by removing the mathematical expec-
as a simple function of(v), we notice that, when the channe)ﬁ‘rmon and by replacing(v) with hq(v) in Eq. (15), and where

PV . . . )
. . . ¢5(v) is obtained by replacing(v) with hq(v) in Eq. (16).
Iength_L IS Iarge enougﬂRt becomes a Iarge_ Toeplitz matr_ngof course, the above criteriofy () is likely to be a relevant
forl Wrt"Ch 'f{h.e |n\f/erssef;t CQE k:jebwe_tll a;_pptroxmated by a Clr'approximation ofJ(q) provided that the Ricean factdt is
culant matrix (cf. [5]) described by its first row large enough. The training strategy proposed in the fortihico
1 — ing section is therefore appropriate whihis large. On the
[/ ‘q(u>|2€ d“] otherhand, the minimization of the initial criteriof{¢) which
0 is likely to provide better results for moderate valuegqiwill

k=0, ,L—1

Based on this approximation, we obtain be investigated in future works.
2 2
en(V) = — L . 3 - [h(v)] 4. OPTIMAL TRAINING SEQUENCE
Nr \la@)I? 2 [ |q(u)|2[h(u)|2du

, It can be shown that the minimization @f(q) w.r.t. ¢ reduces
When both\V and L become large, the MSE finally becomercb a convex optimization problem. Using Lagrange optimiza-

0202 tion method, we prove the following result. The proof is omit

ag
MSE(t) = MSE, + Ny J(q) (13) ted due to the lack of space.




Theorem 1 Criterion J; defined by Eq. (17) is minimum un- MSE versus €[ NSO, phaci and SRS
Perfect knowledge
White TS

der power constrain}f’o1 lq(v)|?dv < P for opmeTe

|Q(l/)|2 P \/Ctli(l/)/(:u‘ - C%(V)) (18) e S S—

VW) (- w)du

wherep is such thatf01 ctu)/ct(u)/(pn — cd(u))du = /B.

We now make the following comments.

e In practice, a training sequence with power spectrum (18)
can be very simply generated as the output of a digital filter Loots 2 zs s 3s 45 s
with relevant coefficients excited by a known sequence.

MSE

01

e The generation of a training sequence following (18) can Fig. 2. MSE versust

be achieved without any additional computational compyexi

compared to a traditional (white) training sequence sihee t

above filter has to be evaluated only once by transmission. €qualizer based on the estimated values of the parameters ar

e When K is large but cannot be considered as infinite, ggnployed. We remark that the gain i.n performance is. of inter-
t. Moreover we guess that the gain may be more important

mentioned in previous section, we propose to still make u € - carry out the training seauence desian relving on the tr
of the proposed training sequence (18). Indeed, simulatidn y gseq 9 ying

show that performance gains can be obtained by using the "c%lte”"” (14) instead of on the simplified Eq.(17).
ored” training sequence (18) when compared to an uncorre- £ vrss SR o 50 and o

lated training sequence. ! perftqamiedle ——
\(bﬁ;\? Optimal TS —a—

5. SSIMULATIONS o1

We considerN; = 50, L = 5 anda = 10. The carrier fre-
guency offset is fixed tgf = 0.1. All simulated points are
averaged ovet00 Monte-Carlo runs for which we have mod-

BER

ified the deterministic and random part of the channel at each 0001
trial with respect to the zero-mean unit-variance Gausdisn
tribution.
In Figure 1, we display the theoretical MSE versus SNR R
(with K = 5) when the parameters are perfectly known

and when the parameters have to be estimated with either a Fig. 3. BER versus SNR

white training sequence or the suggested training sequence

In Figure 2, we also plot the theoretical MSE verdtigwith 6. REFERENCES
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