
Tracing piece by piece: affordable debugging for lazy functional languages

Henrik Nilsson∗

Department of Computer and Information Science, Linkpings universitet, Sweden

and
INRIA Sophia Antipolis, France

Abstract

The advantage of lazy functional languages is that programs
may be written declaratively without specifying the exact
evaluation order. The ensuing order of evaluation can how-
ever be quite involved which makes it difficult to debug such
programs using traditional, operational techniques. A solu-
tion is to trace the computation in a way which focuses on
the declarative aspects and hides irrelevant operational de-
tails. The main problem with this approach is the immense
cost in time and space of tracing large computations. Dealing
with these performance issues is thus the key to practical,
general purpose debuggers for lazy functional languages. In
this paper we show that computing partial traces on demand
by re-executing the traced program is a viable way to over-
come these difficulties. This allows any program to be traced
using only a fixed amount of extra storage. Since it takes a
lot of time to build a complete trace, most of which is wasted
since only a fraction of a typical trace is investigated during
debugging, partial tracing and repeated re-execution is also
attractive from a time perspective. Performance figures are
presented to substantiate our claims.

1 Introduction

The distinguishing feature of declarative programming lan-
guages, e.g. lazy functional languages such as Haskell, is that
they allow the programmer to leave the exact evaluation or-
der in a program unspecified. This is an advantage for the
programmer, who can concentrate on the logic of the prob-
lem at hand rather than on a detailed description of how to
solve it. The result is often very succinct yet clear programs.

Declarative languages also have implications as regards
programming errors and debugging. On the one hand, pro-
grammers using a declarative language often find that they
make fewer programming mistakes than when using conven-
tional languages. This is partly a consequence of the declar-
ative aspects: there are typically fewer lines of code to write
and less details to be concerned with, so there are fewer
opportunities for making mistakes.

∗This work has been supported by the Swedish Board for Indus-
trial and Technical Development (NUTEK) and by the Wenner-Gren
Foundations, Stockholm, Sweden.

In Proceedings of the 1999 International Conference on
Functional Programming (ICFP), Pages 36–47, Paris,
France, September 27–29, 1999. c© ACM 1999

On the other hand, declarative languages do certainly
not eliminate the possibility of making programming errors,
so there is still a need to debug code when it turns out that it
does not behave as intended. This can be problematic. The
reason is that conventional debugging techniques are based
on observing execution events as they occur; that is, they
are operational. Such techniques are not really useful unless
the the programmer fully understands what is going on op-
erationally, which is exactly what a declarative programmer
usually prefers not to be too concerned with. It ought to be
possible to debug at the conceptual level at which a program
is written.

Currently, there are few good debuggers for functional
languages [Wad98]. This is true in particular for the lazy
functional languages. To this author’s knowledge, the only
readily available debugging tools which are sufficiently ma-
ture for practical use, are either low-level operational tracers
(such as the tracing facilities offered by HBC [Aug93]), or
specialized tools with a limited scope (for example, Hazan’s
and Morgan’s tool for finding the call path which led to
a run-time error [HM93], or Sparud’s stream programming
debugger [Spa96]). However, there is advanced and ongoing
work in this area besides what is presented here, notably the
work by Sparud and Runciman [SR97b, Spa99]. See section
5 for further details.

Why are there no good, general purpose, ‘lazy debug-
gers’ available? Lazy debugging is difficult for precisely the
reasons discussed above: even though the evaluation prin-
ciple is simple, programmers nevertheless find the ensuing
evaluation order ‘surprising’ [Mor82, OH88]. Because of this,
conventional debugging techniques are only of limited use.
As a more suitable alternative, a number of researchers have
proposed that some form of trace reflecting the logical struc-
ture of the computation should be constructed, thus allow-
ing debugging to take place at an appropriate level (see e.g.
[OH88, Kam90]). However, what were proposed were in most
cases complete traces. Such traces require storage in propor-
tion to the size of the computation. The result is severe per-
formance problems as soon as realistic programs are being
traced.

This paper demonstrates that construction of partial
traces on demand, piecemeal tracing, can be a viable and
efficient way of tracing lazy functional computations. The
trace which is constructed is an Evaluation Dependence
Tree (EDT) [NS96, NS97] which constitutes a suitable basis
for algorithmic debugging [Sha82, NF92]. Since the EDT in
many ways resembles a strict call tree, it can also be used
to explore a computation in a way similar to how a conven-

tional debugger is used. Furthermore, it is possible to start
EDT construction at selected, suspected functions, which
is akin to setting break-points in a conventional debugger.
The focus of this paper is on performance; the reader is re-
ferred to our earlier work [NS96, NS97, Nil98] for detailed
descriptions of the EDT and how to build it. Acceptable per-
formance is a prerequisite for a successful debugger based on
tracing, and we claim that our performance figures indicate
that our scheme is promising in this sense. Whether EDT-
based debugging is a good way to debug functional programs
is a different matter. We think it is, since it at least shows
what is going on inside a program at a suitable level of ab-
straction, but we do not claim this: ultimately, this can only
be decided by user acceptance.

The context of the work is a compiler (called Freja) which
currently handles a large subset of Haskell. It compiles to
native assembler (SPARC) using a traditional G-machine
[Aug84, Joh84] approach. Tracing is achieved by instrument-
ing the generated code on a supercombinator basis with calls
to the tracing routines and code that adds tracing annota-
tions to the graph. The graph annotations take the form of
traced application nodes which refer to the point in the EDT
where the node corresponding to the reduction of the appli-
cation should be inserted when and if it is reduced. There
are mechanisms for declaring functions and modules to be
trusted and to start tracing from suspected functions in or-
der to avoid unnecessary tracing. Language constructs such
as list-comprehensions are supported through compilation
schemes tailored for debugging. Since our tracing scheme
needs a lot of support from the compiler, retrofitting it to
an existing system is not trivial. On the other hand, the ba-
sic implementation principles are completely standard and
used by current Haskell implementations, so integration into
other systems is certainly not infeasible.

The structure of the rest of the paper is as follows. Sec-
tion 2 briefly explains what an EDT is and how an EDT-
based debugger works. Section 3 explains how piecemeal
tracing works. Section 4 evaluates the performance of the
tracer. Section 5 discusses related work. Section 6 sums up
and discusses future work. A substantial debugging example
is given in the appendix.

2 EDT-based debugging

The Evaluation Dependence Tree is a tree-structured,
declarative execution record or trace of a lazy computation.
It abstracts from operational details such as evaluation or-
der, emphasising the syntactic structure of the program in-
stead. Each node corresponds to a reduction step, recording
the name of the applied function, the arguments and the
result. The structure is declarative in the sense that it es-
sentially is a proof tree relating terms to terms through the
equations defining the program to be debugged, the target.
From this perspective, the structure of the tree reflects a
proof strategy where terms as soon as possible are simpli-
fied exactly as much as needed for obtaining the final result
of the program; that is, an eager evaluation strategy which
somehow, ‘miraculously’, stops as soon as the result of a
reduction would not be used. Thus one might think of the
EDT as a strict call tree, up to a point. This also means
that values will be present in their most evaluated form in
the tree since reductions seemingly are performed as soon
as possible. Furthermore, (sub)expressions left unevaluated
can be abstracted to a special value meaning ‘unevaluated,

assume it is correct’ since they cannot have influenced the
computation in any way. An important aspect of this trac-
ing strategy is that it does not affect the semantics of the
target program: navigation through an EDT does not cause
further evaluation.

The following definitions make the notion of an EDT
more precise.

Definition 2.1 (Direct evaluation dependence) Let
f x1 . . . xm be a redex for some function f (of arity m) with
arguments xi, 1 ≤ i ≤ m. Suppose

f x1 . . . xm ⇒ . . . (g y1 . . . yn) . . .

where g y1 . . . yn is an instance of an application occurring
in f ’s body and furthermore a redex for the function g (of
arity n) with arguments yi, 1 ≤ i ≤ n. Should the g redex
ever become reduced, then the reduction of the f redex is
direct evaluation dependent on the reduction of the g redex.
2

The g redex in definition 2.1 is thus a direct descendant
of the f redex (i.e. an instance of an application syntactically
occurring in the body of f), and the evaluation of the latter,
as far as it was taken, caused the evaluation of the former.
Hence direct evaluation dependence. Notice that this is a re-
lation between reductions, which also can be seen as function
calls. Thus direct evaluation dependence can be understood
as a generalized call dependence which does not require the
function calls on which a call depends to take place dur-
ing the latter call.1 Also note that normal call dependence
is subsumed by definition 2.1 as long as it is understood
that a direct function call is equivalent to instantiating an
application and then reducing it, only much more efficient.

Definition 2.2 (Most evaluated form) The most eval-
uated form of a value is its representation once execution
has stopped, assuming a lazy language implementation. 2

Definition 2.3 (EDT node) An EDT node represents
the reduction of a redex. It has the following attributes:

• the name of the applied function

• the names and values of any free variables

• the actual arguments

• the returned result

where values are represented in their most evaluated form.
2

Definition 2.4 (EDT) An Evaluation Dependence Tree
(EDT) is a tree structured execution record abstracting the
evaluation order, where:

(i) The tree nodes are EDT nodes (in the sense of defini-
tion 2.3), and a special root node which represents the
evaluation of the entire program.

(ii) A node p is the parent of a node q if the reduction
represented by p is direct evaluation dependent on the
reduction represented by q.

1Maybe ‘lazy call dependence’ would have been a more apt de-
scription of the relation.

2

1+2 � 3

2*3 � 6

main � 6

fie 3 � 6

foo 1 2 � (6,?) fst (6,?) � 6

Figure 1: A small EDT. ‘?’ stands for expressions which
were never evaluated.

(iii) The special root node is the parent of the EDT nodes
representing reductions of top-level redexes.

(iv) The ordering of children is such that a node represent-
ing the reduction of an inner redex is to the left of a
node representing the reduction of an outer redex w.r.t.
the body of the applied function of the parent node. 2

The nodes in an EDT may represent only a subset of the
reductions which actually were performed in case some func-
tions are trusted. The special root node is needed because
there may be many top-level redexes in the form of CAFs
besides main. Requirement (iv) of definition 2.4 is not a pre-
requisite for successful debugging, but does ensure that the
user gets a chance to verify the computation of arguments
before these are used in a call. This is usually helpful.

Figure 1 shows the EDT (excluding the special root node
since there is only one top-level redex) for the following
Haskell program.

foo x y = (fie (x+y), fie (x/0))

fie x = 2*x

main = fst (foo 1 2)

Note that the structure of the EDT reflects the structure
of the source code, but that only nodes corresponding to
reduced redexes are present (e.g. foo ‘calls’ fie only once).
Also note that some values were never needed, leaving them
represented as unevaluated expressions. These are shown as
‘?’.

Algorithmic debugging is a semi-automatic debugging
technique where the debugger tries to locate the node in an
execution tree such as an EDT which is ultimately respon-
sible for a visible bug symptom. This is done by checking
whether the recorded reductions are correct or not, typi-
cally in a top-down order, by asking the user or referring to
some formal specification.

As an illustration, suppose the last equation in the above
program was main = snd (foo 1 2). This will result in di-
vision by zero meaning that the result of the program is
undefined, ⊥, which was not intended. The EDT is given in
figure 2.

Debugging algorithmically, the debugger would first ask
about the result of main, which is wrong, then about the
application of foo, which is wrong as well, then about 1/0
yielding ⊥, which is correct, and finally about fie ⊥, also

main �
�

foo 1 2 � (?,
�
) snd (?,

�
) �

�

1/0 �
�

fie
�
 �

�

2*
�
 �

�

Figure 2: EDT with a bug. ⊥ is the undefined value, in this
case 1/0. An attempt to use it caused an execution error.
Since the second component of the result from foo was not
supposed to be undefined, and since the nodes on which the
application of foo depends show correct behaviour, the bug
must be in the definition of foo.

yielding ⊥, which is correct. Given these answers, it would
conclude that the bug must be in foo.

When debugging real code, the questions are often tex-
tually large (i.e. the arguments and results are large data
structures) and may be difficult to answer. A sophisticated
user interface, for example employing configurable graphical
visualisation of such data structures, may be a partial rem-
edy. Should the user so desire, for instance because the ques-
tions are hard, it is always possible to use a system like this
to simply explore the computation, or selected parts of it,
in order to gain insight. This is often very helpful in its own
right. Given the structure of our EDT, the user would find
that this usage mode is not unlike single stepping through
normal, imperative code.

A larger example, based on a real debugging session with
our debugger, can be found in the appendix.

3 Piecemeal tracing

3.1 Trading time for space

A problem with trace based debugging is that there is no
upper limit to the size of the trace. For an EDT-based de-
bugger this is a big practical problem since the logged events
(reductions) are very frequent, and since the EDT for effi-
ciency reasons must be held in primary memory. The latter
is a consequence of the structure of the computation being
different from the structure of the EDT (which is the raison
d’tre for the EDT). This means that two consecutive reduc-
tions can end up in completely different parts of the tree.
Thus, in order to carry out the structure transformation si-
multaneoulsy with the trace construction, as we do, efficient
random access is needed to insert a node in the right place in
the EDT. Furthermore, arguments and results are not copied
from the heap in order to build an EDT node. Instead, for
efficiency and to ensure that values are seen in their most
evaluated form, the EDT nodes just maintain pointers to
arguments and results on the heap. During garbage collec-
tion, these pointers must be updated, which again means
that efficient random access is needed.2

2One could imagine a scheme where the structure transformation
was deferred by logging execution events to a file as they occur. In-
dividual ETD nodes would then be constructed on demand during
debugging. However, this implies that arguments and results would

3

Figure 3: Piecemeal EDT generation. The large, dashed tri-
angle represents the entire EDT, the smaller triangles rep-
resent the parts of the EDT which are stored during the
first, second and third execution. The path going from the
root downwards illustrates how the EDT is traversed during
debugging.

In practice, only a small fraction of the execution events
are of any interest for finding a bug. Thus it is interesting to
use various filtering techniques so as to avoid storing uninter-
esting events such as reductions involving trusted functions.
Indeed, our system has such mechanisms. However, while fil-
tering helps combating the large trace size, and in addition
speeds up the debugging process, one cannot expect such
techniques to make it possible to carry out arbitrary debug-
ging within limited memory resources: there is no more an
upper limit to the number of ‘interesting’ events than there
is one to the total number of events.

An alternative to storing a complete EDT is to store only
so much of the EDT as there is room for. Debugging is then
started on this first piece of the tree. If this is enough to find
the bug, all is well. Otherwise, the target is automatically
re-executed, and the next piece of the EDT is captured and
stored. The user only notices a hopefully not too long delay.
We refer to this as piecemeal EDT generation. Note that,
in the current implementation, re-execution is implemented
by running the entire program again in order to provide the
correct demand context. Re-executing the program is not a
problem since pure functional programs are deterministic,
even though, from a practical point of view, it is a bit in-
volved since any input to the program must be preserved
and reused, a forced termination of a looping program au-
tomatically re-issued at the appropriate moment, etc. The
process is illustrated in figure 3.

have to be copied to the file, which is very expensive. Based on earlier
experience with an implementation along these lines [NF92, NF94],
we believe that the postmortem EDT node construction also would
be expensive as well as technically complicated. It is interesting to
note that for other proposed tracing schemes, notably redex trails
[SR97b], it seems to be straightforward to construct the trace on sec-
ondary storage but awkward to construct partial traces on demand,
i.e. the opposite to what is the case for the EDT.

0

1 2

2 3 4 5 3 4 5 6

no

no

yes yes yes yes yes yes

no

yes

Figure 4: The query distance. The distance between the
root and a node is obtained by counting the number of ques-
tions that would have to be answered in order to get from the
root to the node in question during algorithmic debugging.

3.2 Deciding which nodes to store

For each execution, the EDT nodes which are going to be
stored must be selected. We assume that the EDT usually
is going to be traversed in an orderly manner, as is the case
when debugging algorithmically. This order directly induces
a priority order among the nodes: to choose between two
nodes, prefer the one which would be visited first. The idea
is illustrated in the context of algorithmic debugging in fig-
ure 4. Each node is assigned a distance measure relative to
the current root node by counting the number of questions
that would have to be answered in order to get from the cur-
rent root node to the node in question. We call this measure
the query distance. Nodes that are close to the root in this
sense should thus be preferred over more distant nodes.

Note that answering ‘yes’ is similar to stepping over a
function call in a conventional debugger, and that answering
‘no’ is similar to stepping into a function call. This is the
key to using a debugger like this more like a conventional
debugger, and suggests that the query distance is a sensible
measure also for this kind of usage.

How many nodes constitute a suitably large EDT piece?
The answer is that the number of nodes on its own is not
a good measure of the size of the EDT since a single node
could refer to an arbitrarily large piece of graph on the heap.
A much more robust solution is obtained by monitoring the
real memory consumption of the EDT. This allows the size
of the EDT to be kept below a certain limit by removing
the most distant nodes when the EDT grows too large. In
addition to this, there is a (user-definable) upper bound on
the number of EDT nodes.

It is important to realize that the size constraint cannot
be maintained simply by stopping adding nodes once a size
limit has been reached. Instead, the size of the tree must be
constantly monitored and the tree must be pruned whenever
a limit is exceeded. There are two reasons for this. First,
nodes are not inserted into the EDT in an orderly manner, as
was explained in section 3.1. This means that the insertion of
a node may necessitate the removal of a more distant node
to keep the size of the EDT within the prescribed limits.
Second, the values referred to from an EDT node may grow
after the node has been inserted into the EDT. For instance,
suppose that we have the following function:

from n = n : from (n+1)

4

Suppose further that there is a redex from 1. Once this re-
dex is reduced, the resulting EDT node would refer to the
result 1 : from 2, which is a compact representation of the
conceptually infinite list of all integers from 1 and upwards.
After a while a much larger part of the result may have been
computed, which means that the EDT node refers to a list
1 : 2 : 3 : . . . This representation of the result occupies
much more space than the previous one.

The current implementation does not impose an abso-
lutely tight upper bound as the storage requirements in-
termittently do exceed the prescribed bound: this is what
activates the pruning process which keeps the size of the
tree within the limits. But as long as a reasonable amount
of memory is allocated for debugging (a few megabytes or
more), we have found that the scheme works well.

In order to implement a piecemeal scheme as outlined
here, we see that the tree construction process must be con-
trolled very carefully and in close co-operation with the run-
time system. This kind of control would probably be difficult
to obtain if the EDT construction was to be performed at
a higher level, e.g. through a transformational scheme (see
section 5).

4 Performance evaluation

4.1 Benchmarks and symbols

All measurements have been performed on a 167 MHz Sun
UltraSparc 1 equipped with 128 Mbyte of primary memory.
Five different benchmark programs have been used. They
are all small to average in terms of lines of source code (up to
1000 lines, excluding comments and blanks), but all of them
result in substantial computations (the execution times for
non-debugged code ranged from 2.4 to 34 seconds and be-
tween 1.6 and 16 million traced reductions were performed
during tracing). Note that the size of the computation rather
than the size of the source is what matters here.

• Sieve. Computes the 2500th prime number using the
sieve of Erathostene.

• Clausify. This is a benchmark from the nofib suite
[Par93]. Transforms a proposition to an equivalent in
clausal form.

• Cichelli. From the nofib suite. Uses a brute-force search
to construct a perfect hash function for a set of 16 key-
words.

• Parser. From the nofib suite. Scans and parses 1760
lines of Haskell (the code for the parser itself repeated
four times) and prints the resulting abstract syntax
tree. This is the largest of the benchmarks in terms
of lines of source code (roughly 1000).

• Mini-Freja. This is an interpreter for a small functional
language. It interprets a program computing a list of
the first 500 prime numbers. This is the largest of the
benchmarks in terms of the number of traced reduc-
tions (16 million).

Table 1 lists and explains the symbols used to denote the
various parameters and measured quantities in this chapter.
The overall performance is given by relating the total execu-
tion time during tracing (ttot) to the corresponding execu-
tion time without tracing (t0). The time for garbage collec-
tion makes up a significant part of the execution time dur-
ing tracing and is thus included in ttot, even though garbage

Symbol Parameter or measured quantity
T The number of traced reductions. This is a

rough measure of the size of a computation.
Also note that it is an upper bound of the
number of nodes in the complete EDT.

N The number of nodes in the stored part of the
EDT at the end of the execution.

Nmax User-definable upper bound on the number of
nodes in the stored part of the EDT.

RG Total size of the pieces of graph retained solely
by the EDT. Note that this is the size towards
the end of the execution, as measured during
the last garbage collection. This does not nec-
essarily reflect the average size of the retained
pieces of graph during the execution, or the
effort spent on garbage collecting them (i.e.
tGC). Moreover, it is not exactly synchronized
with N .

RGmax User-definable (soft) upper bound on RG.
ttot Total execution time; ttot = tred + tGC + tEC.
t0 Total execution time for the baseline case (no

debugging).
tHBC Total execution time when compiled with

HBC to put the baseline case into perspective.
tred Reduction time. Time spent actually perform-

ing graph reduction.
tGC Garbage collection time. Total time spent on

garbage collection.
tEC EDT construction time. Time spent building

and pruning the EDT.
QD

max
The maximal QD estimate of a node in the
stored part of the EDT. This is an indication of
the number of questions that can be answered
before the target program is re-executed.

Table 1: Parameters and measured quantities.

collection times are very sensitive to the amount of memory
available and the type of garbage collector used. The other
parts of the total execution time are the time spent on per-
forming reductions (tred) and the time spent on constructing
the tree (tEC). All of these are accounted for separately in
the tables to show where the time is spent and to make it
possible to see what would happen if e.g. garbage collection
times were significantly reduced.

Table 2 gives a breakdown of the execution time when
the benchmark programs are compiled for ordinary execu-
tion with our system. Note that the garbage collection times
in most cases are small. This is a result of having a heap
which is much larger than the size of the live data. To put
the performance of our system into perspective, the column
tHBC gives the execution times for the benchmarks when
compiled with HBC [Aug97].

4.2 Debugging cost

This section evaluates the performance of our system when
performing debugging. The five benchmark programs have
been compiled with debugging support and the execution
time when building the initial part of the EDT has then
been measured for various settings of the parameters Nmax

and RGmax. Table 3 gives the number of traced reductions

5

Benchmark t0 [s] tred [s] tGC [s] tGC/t0 tHBC [s]

Sieve 7.4 7.3 0.1 0.01 9.6
Clausify 3.5 3.4 0.1 0.03 2.8
Cichelli 9.3 8.7 0.6 0.07 7.9
Parser 2.4 2.2 0.2 0.08 2.1
Mini-Freja 33.5 28.7 4.8 0.14 37.6

Table 2: Breakdown of the execution time for the bench-
mark programs when compiled for ordinary execution. 10
Mbyte heap, except for Mini-Freja which needed 32 Mbyte.
Average times over 5 runs.

for each benchmark.

Benchmark T

Sieve 6 366 044
Clausify 3 208 175
Cichelli 6 516 387
Parser 1 555 745
Mini-Freja 16 469 854

Table 3: The number of traced reductions for each bench-
mark.

Note that a program may have to be re-executed several
times during a debugging session. Thus, if the debugging
cost were to be measured as the total time for all needed
re-executions, it would be much larger than indicated here.
However, debugging is an interactive activity, so what really
matters is response time. The time needed for a single re-
execution is therefore more interesting than the total over-
head since the former gives an indication of the worst-case
response time.

The re-execution frequency should also be taken into
account when judging the debugging cost. Provided re-
executions do not occur too often, relatively long re-
execution times can probably be tolerated since the average
response time still would be low. The tables in this sec-
tion therefore include a column giving the estimated query
distance of the nodes furthest from the root of the stored
EDT portion (QDmax). This gives a rough indication of the
number of questions that can be answered before the target
program is re-executed.

Of course, if the EDT nodes are not visited in an orderly
way, the average response time will increase and approach
the worst-case response time. Only extensive real use can
determine how much of a problem this is in practice. How-
ever, as remarked in section 3.2, the query distance does
seem to be a useful metric also when the debugger is used
more like a conventional debugger for ‘stepping through’ an
execution. And as long as there are no better alternatives,
the inconvenience of a possibly sluggish response has to be
weighed against the inconvenience of not having a debugger
at all.

Table 4 shows the performance for different values of
RGmax, the maximal size of the graph retained by the EDT.
In each case, the bound on the number of EDT nodes, Nmax,
has been set as high as possible3 in order that the tree size

3The EDT nodes proper are stored in a table with Nmax entries.
The memory needed to store this table plus the peak heap consump-
tion must be small enough to avoid excessive paging.

should be bounded by RGmax only. This is successful in
most cases, even if Nmax tends to be the limiting factor
when RGmax gets large.

Table 4 shows that the time spent on garbage collection
increases with increasing RGmax. In most cases it quickly
becomes the dominating part of the total execution time.
The time for building the tree is typically small in compar-
ison, but also tends to grow as the size of the stored part of
the tree grows.

Clausify is somewhat problematic since there are very
large nodes (nodes which retain a lot of heap, i.e. large ar-
guments or results) close to the root of the EDT. When the
debugger tries to keep the size of the tree below RGmax, the
result is that it throws away almost the entire tree. However,
this is not a global property: when starting tracing further
down in the tree, it is often possible to store much larger
subtrees. The somewhat peculiar entries for N and RG in
the first two rows for Parser, are due to N and RG not being
exactly synchronized, see table 1.

Table 5 shows the performance for different values of
Nmax, the maximal number of stored EDT nodes. The bound
on the size of the retained pieces of graph, RGmax, has been
set to 64 Mbyte which means that it does not interfere, as
can be seen from the column RG.

As the number of nodes in the stored portions of the
trees grows, the size of the retained graph grows and so do
the garbage collection times. The EDT construction times
again grow slowly, but as Sieve, Clausify, and Parser show,
EDT construction sometimes account for a significant part
of the total execution time.

Table 6 shows the result when Nmax and RGmax interact.
The bounds have been set to 10 000 nodes and 4 Mbyte re-
spectively. The increase in execution time is below a factor of
3 in all cases, while QD

max
indicates that a reasonably large

portion of the tree has been stored (except for Clausify).
In conclusion, these benchmarks show that the instru-

mentation overhead and the cost of building the EDT are
low. The costly part of tracing, both in terms of time and
space, lies in retaining pieces of graph which otherwise would
have been discarded. As the tables show, the time spent on
garbage collection can easily account for 75 % or more of the
execution time when the retained graph is getting large. This
and the fact that memory resources are limited demonstrate
the importance of bounding the amount of graph retained
by the EDT.

The large overhead for garbage collection is partly due
to the use of a simple two-space copying garbage collector.
A generational garbage collection scheme would almost cer-
tainly be beneficial since it is likely that a large part of the
graph retained by the EDT quickly would be moved to an
old generation. Earlier experiments carried out in the con-
text of HBC, which has a generational collector, indicate
that this indeed is the case [NS96].4 However, even for a
generational collector the garbage collection time increases
with the size of the live data.

Furthermore, the results in table 4 and, in particular, ta-
ble 5 hint at an interesting fact: due to the increasing cost
of garbage collection as the size of the stored portion of the
EDT grows, it may well be cheaper overall to execute a tar-
get program a few times with a low bound on the size than

4As remarked by one of the anonymous reviewers, it might even
be possible to exploit the information about expected lifetime which
is inherent in the query distance measure to perform optimizations
(distant nodes are likely to die sooner than close ones).

6

RGmax N RG QD
max

ttot ttot
t0

tred
t0

tGC

t0

tEC

t0[Mbyte] [nodes] [Mbyte] [s]
Sieve

1 29 0.8 13 16 2.1 1.3 0.4 0.4
2 407 1.6 55 18 2.4 1.3 0.6 0.5
4 6329 3.9 223 29 3.9 1.3 2.0 0.6
8 24978 6.9 446 33 4.5 1.3 2.4 0.8

16 99683 12.4 892 41 5.6 1.3 3.4 0.9
Clausify

1 18 0.0 12 15 4.3 1.3 1.0 2.0
2 14 0.0 11 17 4.8 1.3 1.3 2.2
4 461 3.3 23 21 6.0 1.3 2.2 2.5
8 329258 5.6 45 23 6.5 1.3 2.2 3.0

16 329258 5.6 45 23 6.5 1.3 2.2 3.0
Cichelli

1 3079 0.0 58 22 2.3 1.3 0.6 0.4
2 3553 0.0 64 28 3.0 1.3 0.9 0.8
4 4856 0.0 84 50 5.3 1.3 2.8 1.2
8 393695 5.4 153 83 8.9 1.3 6.4 1.2

16 393695 5.4 153 83 8.9 1.3 6.4 1.2
Parser

1 18366 1.6 123 12 4.9 1.2 2.1 1.6
2 18366 4.9 123 14 5.7 1.2 2.6 1.9
4 74336 6.3 187 17 7.3 1.2 3.6 2.5
8 148839 9.4 265 24 9.8 1.2 5.7 2.9

16 399652 10.2 508 23 9.5 1.2 5.6 2.7
Mini-Freja

1 31795 0.6 304 74 2.2 1.1 0.8 0.3
2 131862 1.2 609 82 2.4 1.1 1.0 0.3
4 218922 1.8 782 95 2.8 1.1 1.3 0.4
8 799767 5.8 1486 201 6.0 1.1 4.5 0.4

16 799767 5.8 1486 201 6.0 1.1 4.5 0.4

Table 4: Performance for different values of RGmax. Nmax = 400 000 except for Sieve where Nmax = 100 000 and Mini-Freja
where Nmax = 800 000.

7

Nmax N RG QD
max

ttot ttot
t0

tred
t0

tGC

t0

tEC

t0[nodes] [nodes] [Mbyte] [s]
Sieve

5000 4952 3.6 198 18 2.4 1.3 0.8 0.3
10000 9872 4.6 280 28 3.7 1.3 2.0 0.4
20000 19902 6.3 398 27 3.6 1.3 1.8 0.5
50000 49772 9.3 630 39 5.3 1.3 3.3 0.7

100000 99683 12.4 892 42 5.6 1.3 3.4 0.9
200000 199398 16.5 1262 52 7.0 1.3 4.5 1.2
500000 499502 21.6 1998 77 10.5 1.3 7.3 1.9

Clausify
5000 4657 4.7 31 7.4 2.1 1.3 0.5 0.3

10000 7976 4.8 33 7.6 2.2 1.3 0.5 0.4
20000 19565 4.8 36 8.1 2.3 1.3 0.6 0.4
50000 37181 4.9 38 9.8 2.8 1.3 0.8 0.7

100000 97342 5.1 41 12 3.4 1.3 1.1 1.0
200000 182375 5.4 43 16 4.5 1.3 1.8 1.4
500000 431132 5.7 46 25 7.3 1.3 3.5 2.5

Chichelli
5000 4974 0.0 87 15 1.6 1.3 0.1 0.2

10000 9694 0.5 113 16 1.8 1.3 0.3 0.2
20000 18316 2.1 119 19 2.0 1.3 0.5 0.2
50000 47080 4.3 126 26 2.8 1.3 1.2 0.3

100000 96874 4.5 132 35 3.7 1.3 1.9 0.5
200000 197598 4.8 140 51 5.5 1.3 3.4 0.8
500000 492048 5.6 160 102 10.9 1.3 8.2 1.4

Parser
5000 4735 3.2 94 4.1 1.7 1.2 0.3 0.2

10000 9962 2.8 108 4.4 1.8 1.2 0.3 0.3
20000 19857 2.0 125 5.1 2.1 1.2 0.4 0.5
50000 49300 4.2 160 7.0 2.9 1.2 0.9 0.8

100000 99223 4.3 215 11 4.4 1.2 1.9 1.3
200000 199537 6.5 338 17 7.1 1.2 4.1 1.8
500000 498262 9.9 567 25 10.6 1.2 6.3 3.1

Mini-Freja
5000 4930 0.4 126 50 1.5 1.1 0.2 0.2

10000 9952 0.4 174 50 1.5 1.1 0.2 0.2
20000 19978 0.5 243 52 1.6 1.1 0.3 0.2
50000 49841 0.7 378 55 1.6 1.1 0.3 0.2

100000 99710 1.0 531 62 1.8 1.1 0.5 0.2
200000 199565 1.7 747 74 2.2 1.1 0.9 0.2
500000 499217 3.8 1176 124 3.7 1.1 2.3 0.3

1000000 999353 7.2 1660 282 8.4 1.1 6.7 0.6

Table 5: Performance for different values of Nmax. RGmax = 64 Mbyte.

Benchmark N RG QD
max

ttot ttot
t0

tred
t0

tGC

t0

tEC

t0[nodes] [Mb] [s]

Sieve 2487 2.8 140 20 2.8 1.3 1.1 0.4
Clausify 57 0.0 16 7.3 2.1 1.3 0.4 0.4
Cichelli 9694 0.5 113 16 1.8 1.3 0.3 0.2
Parser 9962 2.8 108 4.4 1.8 1.2 0.3 0.3
Mini-Freja 9952 0.4 174 51 1.5 1.1 0.2 0.2

Table 6: Performance for Nmax = 10 000 and RGmax = 4 Mbyte.

8

to execute the same target only once with bounds set suffi-
ciently high to allow the entire tree to be stored. The reason
is that only a fraction of the nodes in an EDT typically are
visited during debugging, so the re-execution cost is offset
by the cost of maintaining irrelevant nodes. If the latter is
higher than the former, the piecemeal scheme wins. Had a
generational collector been used, the effect might not have
been so marked, but it would still be there.

Another interesting fact is that re-execution of the en-
tire target program is not as wasteful as it first may seem:
garbage collection and construction of the desired portion
of the EDT often constitute the dominating parts of the
execution cost. Naish & Barbour [NB95] propose a partial
re-execution scheme based on inferring the demand con-
text from the stored result of the application which is re-
evaluated. While such a scheme would be beneficial (as long
as the gains are not offset by hidden implementation costs),
the overhead of garbage collection and tree construction puts
an upper bound on the obtainable speedup.

5 Related work

Sparud [Spa96] takes a transformational approach to debug-
ging lazy functional programs. The idea is to transform all
functions so that they return an execution record in addi-
tion to their normal result. Sparud’s aim is to provide a
debugging tool which is as portable as possible. However, in
order to avoid changing the semantics of the target, a few
impure primitives are used. The memory consumption prob-
lem is not addressed, and the approach also results in code
that runs 8 to 25 times slower than normal not counting the
extra garbage collection time [NS96].

The work by Naish and Barbour [NB95] is closely re-
lated to Sparud’s work [Spa94, Spa96], and there are also
similarities to the work presented here. Naish and Barbour
use a source-to-source transformation, similar to Sparud’s,
which transform the target into a program that generates
a tree representing a suitable view of the execution in ad-
dition to its normal output. A key difference between their
transformation and Sparud’s is that they rely on an impure
function dirt (Display Intermediate Reduced Term) which
is more complicated to implement than the impure primi-
tives Sparud uses, but which simplifies the transformations.
Unfortunately, no performance figures are given.

Naish and Barbour also consider the memory consump-
tion problem and suggest generating parts of the tree on
demand. Unlike our piecemeal scheme, they do not require
the entire program to be re-executed each time a new part
of the tree is needed. Instead, once a node at the fringe of
the stored portion of the tree is reached, they re-apply the
function of that node to its arguments, and then compare
this application to the evaluated parts of the result of the
previous application of the functions, which is also stored in
the node. This will drive the computation exactly the right
amount for constructing the tree below the node in question.
Note that dirt plays a crucial role since comparing against
unevaluated parts of the result would drive the computation
beyond what was originally computed which is unsafe.

As to how much of a tree to store, Naish and Barbour
suggest building nodes down to a certain, predetermined,
depth. (Then the normal, untransformed, versions of the
functions can be called to obtain better performance.) As
demonstrated in section 4.2, this does not give a good handle
on how much space the stored portion of the tree really

occupies, so in general only a few nodes would probably
be stored. This in turn could lead to frequent, partial, re-
executions, which are not necessarily much cheaper than a
complete re-execution.

Recently, Sparud and Runciman have proposed an al-
ternative debugging method based on maintaining complete
computational histories for all values [SR97b, Spa99]. They
call these histories redex trails. The idea is that it should
be possible to single out an erroneous value and follow its
history backwards until the bug is found. Note that other
erroneous values may be encountered during this process,
but since all values are associated with a trail, it is then
just a matter of following one of the other trails instead.

Like Sparud’s earlier work [Spa96], the implementation is
based on transformations with some support from the com-
piler. The transformations currently handle most of Haskell.
To address the memory consumption problem, Sparud and
Runciman propose pruning the redex trails by a modified
garbage collector [SR97a]. This risks loosing information im-
portant for debugging, but some experiments indicate that
this might not be a severe problem in practice. However,
the time costs are still too high: executing a traced program
takes about 15 times longer than normal. As an alternative
to pruning, they also experiment with storing the trace in a
file.

6 Conclusions and future work

This paper demonstrated that piecemeal tracing can be an
attractive solution to the memory consumption problem for
trace-based debuggers for lazy functional languages. A suit-
able trade-off between time and space can be achieved by
setting the size limits for the stored portion of the EDT ap-
propriately. Given a few megabytes of trace storage, a traced
program typically takes two to three times longer to execute
than normal, while the stored portion of the trace usually
is suffiently large to allow reasonably many questions to be
asked before it is time to build the next part of the trace. To
increase the efficiency further, a generational garbage collec-
tion scheme could be used. The current implementation has
some problems when large nodes end up close to the root
of the stored portion of the EDT. This situation could be
detected and the large nodes pruned as a last resort. Other
than that, we are currently working on handling full Haskell
(problems which has to be solved include handling monadic
I/O) as well as methods to speed up debugging in certain
cases by providing ‘shortcuts’ into the EDT.

Appendix: Debugging a small program

In this section, we will demonstrate how our debugger can
be used to debug a small but not completely unrealistic lazy
functional program. The example is adapted from Johnsson
[Joh87], and makes use of a ‘circular’ programming style
which is typical of many lazy programs. Unfortunately, a bug
has crept into the adapted code, leading to a black hole.5

The purpose of the program which we are going to debug
is to take a binary tree where the tips contain elements of a
type on which a total order is defined (in our case integers),
and return a structurally identical tree where the tips have

5The Freja compiler uses circular programming extensively. Black
holes, which were quite difficult to track down, were encountered in
these parts of the code more than once during the development. If
only a debugger had been available!

9

Productions Attribute equations
S → T T↓itips = []

T↓isorted = sort T↑stips
S↑tree = T↑tree

T → Tip x T↑stips = x : T↓itips
T↑ssorted = tail T↓isorted
T↑tree = Tip

(head T ↓isorted)

T → TL TR↓itips = T↓itips
:^: TL↓itips = TR↑stips
TR T↑stips = TL↑stips

TL↓isorted = T↓isorted
TR↓isorted = TL↑ssorted
T↑ssorted = TR↑ssorted
T↑tree = TL↑tree :^: TR↑tree

Figure 5: Attribute grammar for transforming a binary tree
into a binary tree with the same shape where the tip values
are sorted according to some order. S is the start symbol. ↓
indicates an inherited attribute, ↑ a synthesized one.

been sorted according to the total order. However, we wish
to do so using only one traversal of the tree using circular
programming. The basic idea is that the tree traversal func-
tion in addition to the sorted tree returns a list containing
the tip values. This list is then sorted and fed back into the
tree traversal at the top level. This works fine in a lazy lan-
guage as long as the traversal is not control dependent on
the sorted list.

As Johnsson shows, this is perhaps best understood
through an attribute grammar formulation. The grammar
can then be transliterated into a lazy functional program,
where the laziness ensures proper propagation of inherited
and synthesized attributes. An attribute grammar for our
problem is given in figure 5. Figure 6 illustrates the attribute
propagation for a small tree.

In order to transliterate this grammar into a lazy func-
tional program, one function is introduced for each non-
terminal. The functions are defined by pattern-matching
over the tree type. There is one case for each of the non-
terminal’s productions, where the patterns are given by
the right-hand sides of the productions in an obvious way.
The inherited attributes become additional arguments of the
function, and the synthesized attributes are returned as the
result, packed into a tuple in case there are two or more. The
result of transliterating into Freja is shown in figure 7. The
transliteration was performed rather carelessly, however, re-
sulting in a mistake.

When the program is executed, it immediately stops with
an error message saying that a black hole has been encoun-
tered when evaluating an application of an internal selector
function.

[Fatal error] Black hole!

Since this does not offer any particularly good lead as to
what the problem may be, we recompile the program with
debugging support and start it in debug mode. Below, the
user’s input is typeset in italics.

sen1-102% fc -g sorttree.fr

sen1-103% sorttree -- -d

FREJA DEBUGGER

:^:

Tip 3 :^:

Tip 1 Tip 2

[]

[]

[2]

[1,2]

[1,2]

[3,1,2]

(a) Propagation of itips (↓) and stips (↑).

:^:

Tip 3 :^:

Tip 1 Tip 2

[]

[]

[3]

[2,3]

[2,3]

[1,2,3]

(b) Propagation of isorted (↓) and ssorted (↑).

Figure 6: Attribute propagation for a small tree.

(Enter "help" to get help.)
[no tree]> debug

(((Tip
[Fatal error] Black hole!

aTree
=>
(:^:)

((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5)))
((:^:) (Tip 3) (Tip 1))

1> yes

We use the command debug to start a debugging session.
The target is then executed, but the execution stops almost
immediately with the same error message as before. How-
ever, we note that a small part of the result actually has
been printed ((((Tip). The debugger now proceeds to ask
the first question. The question concerns the value of the
CAF aTree: is it correct or not?. Since the value of aTree
looks perfectly fine, we answer yes.

main => "(((Tip :_|_"
2> no

sortTree

((:^:)
((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5)))
((:^:) (Tip 3) (Tip 1)))

=> (:^:) ((:^:) (Tip _|_) ?) ?
3> no

10

data Tree a = Tip a | (Tree a) :^: (Tree a) -- deriving Show

sortTree t = t_tree
where
(t_stips,t_ssorted,t_tree) = sortTree’ t t_itips t_isorted
t_itips = []
t_isorted = sort t_stips

sortTree’ (Tip a) t_itips t_isorted =
(t_stips, t_ssorted, t_tree)
where

t_stips = a : t_itips
t_ssorted = tail t_isorted
t_tree = Tip (head t_isorted)

sortTree’ (l :^: r) t_itips t_isorted =
(t_stips, t_ssorted, t_tree)
where
(l_stips,l_ssorted,l_tree) = sortTree’ l l_itips l_isorted
(r_stips,r_ssorted,r_tree) = sortTree’ r r_itips r_isorted
r_itips = t_itips
l_itips = r_stips
t_stips = l_stips
l_isorted = t_ssorted
r_isorted = l_ssorted
t_ssorted = r_ssorted
t_tree = l_tree :^: r_tree

aTree = ((Tip 7):^:((Tip 2):^:(Tip 5))):^:((Tip 3):^:(Tip 1))

main = print (sortTree aTree)

Figure 7: A Freja program for solving the tip sorting prob-
lem using only one tree traversal. The program is a translit-
eration of the attribute grammar of figure 5, but contains a
bug.

The next question concerns main which evaluated to a string
which ends in ⊥. This is not what we expected, so the an-
swer is no. Now the debugger asks about an application of
sortTree. The argument is OK, but in the result we find ⊥

in a tip. So again the answer is no. We also note that two
parts of the result were never evaluated, indicated by the
two question marks.

sortTree’
((:^:)

((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5)))
((:^:) (Tip 3) (Tip 1)))

[]
?

=> (?, ?, ((:^:) ((:^:) (Tip _|_) ?) ?))
4> no

We are now faced with an application of sortTree’. We im-
mediately notice one interesting detail: the third argument
(t isorted) was never evaluated (to WHNF). However, this
is an operational observation. What does it mean declara-
tively? Well, we know for sure that an expression which is
not evaluated cannot possibly have influenced the compu-
tation in any way. In particular, it cannot have caused our
black hole. Thus, for the purpose of declarative debugging,
we should assume that an unevaluated expression represents
a correct value!

Continuing with our example, we see, by the same rea-
soning, that the result as far as we are concerned is mostly
correct. However, ⊥ does occur in the result which is not
intended. This reduction is therefore incorrect.

sortTree’
((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5))) ? ?

=> (?, _|_, ((:^:) (Tip _|_) ?))
5> no

The next question is again a call to sortTree’. Reasoning as
above, we see that the arguments are correct, and we would
thus expect the answer to be completely defined. But since
⊥ occurs in the result, this is not the case, and the reduction
is again wrong.

sortTree’ (Tip 7) ? _|_ => ([7:?],_|_,(Tip _|_))
6> yes

Once again we encounter a call to sortTree’. This time
we have to think more carefully about our answer since ⊥

occurs as one of the arguments. The argument in question
is t isorted. Looking at the attribute equations for the tip
case, we would then expect the returned tip value to be ⊥

(since head ⊥ = ⊥) and t ssorted to be ⊥ (since tail ⊥ =
⊥). Moreover, we would expect t stips to be a list whose
first element is 7. Thus, given the arguments above, all three
components of the result are correct. We therefore conclude
that the reduction is correct.

sortTree’ ((:^:) (Tip 2) (Tip 5)) ? ?
=> (?, _|_, ((:^:) ? ?))
7> no

Question 7 is similar to question 5. The answer is again no.

sortTree’ (Tip 2) ? _|_ => ([2:?],_|_,(Tip ?))
8> yes

sortTree’ (Tip 5) ? _|_ => ([5:?],_|_,(Tip ?))
9> yes

Questions 8 and question 9 are both similar to question 6,
even if the tip values in the results are unevaluated. Both
reductions are thus correct.

Bug located! Erroneous reduction:
sortTree’ ((:^:) (Tip 2) (Tip 5)) ? ?
=> (?, _|_, ((:^:) ? ?))
[no] 7>

The debugger has now collected enough information to lo-
cate the erroneous function and exhibit a particular appli-
cation of it which manifests the bug symptom. The bug ev-
idently occurs in the clause for (:^:). Furthermore, we find
that the second and third arguments are unevaluated. From
an operational point of view, this is strange. Why are these
arguments not used? A quick inspection of the source code
reveals that t isorted actually does not occur in the body
of the second clause of the function. This must be wrong.
Looking back at the attribute equations, we spot the mistake
and correct the equation for l isorted:

l_isorted = t_isorted

An alternative approach would have been to inspect
the equations in order to find the cause of the black hole,
here shown as ⊥. The black hole appears as the second
component of the returned tuple, i.e. t ssorted is bound
to ⊥. t ssorted is equal to r ssorted which depends on
r isorted via the definition of (sortTree’ (Tip 5)). In
turn, r isorted is equal to l ssorted which depends on
l isorted via the definition of (sortTree’ (Tip 2)). But
l isorted had by mistake been defined as t ssorted. The
definition was thus circular in a self-dependent way, hence
the black hole.

11

References

[Aug84] Lennart Augustsson. A compiler for Lazy ML. In
Proceedings of the 1984 ACM Conference on LISP
and Functional Programming, pages 218–227, Au-
gust 1984.

[Aug93] Lennart Augustsson. HBC user’s manual. Depart-
ment of Computing Science, Chalmers University
of Technology, S-412 96, Göteborg, Sweden, 1993.
Distributed with the HBC Haskell compiler.

[Aug97] Lennart Augustsson. The HBC compiler.
http://www.cs.chalmers.se/~augustss/hbc/hbc.html,
1997.

[HM93] Jonathan E. Hazan and Richard G. Morgan. The
location of errors in functional programs. In Peter
Fritzson, editor, Automated and Algorithmic De-
bugging, volume 749 of Lecture Notes in Computer
Science, pages 135–152, Linköping, Sweden, May
1993.

[Joh84] Thomas Johnsson. Efficient compilation of lazy
evaluation. In Proceedings of the 1984 ACM
SIGPLAN Symposium on Compiler Construction,
pages 58–69, June 1984. Proceedings published in
ACM SIGPLAN Notices, 19(6).

[Joh87] Thomas Johnsson. Attribute grammars as a func-
tional programming paradigm. In Functional Pro-
gramming Languages and Computer Architecture,
volume 274 of Lecture Notes in Computer Science,
pages 154–173, Portland, Oregon, September 1987.
Springer-Verlag.

[Kam90] Samuel Kamin. A debugging environment for
functional programming in Centaur. Research re-
port, Institut National de Recherche en Informa-
tique et en Automatique (INRIA), Domaine de
Voluceau, Rocquencourt, B.P.105, 78153 Le Ches-
nay Cedex, France, July 1990.

[Mor82] J. H. Morris. Real programming in functional lan-
guages. In J. Darlington, P. Henderson, and D. A.
Turner, editors, Functional Programming and its
Applications. Cambridge University Press, 1982.

[NB95] Lee Naish and Tim Barbour. Towards a portable
lazy functional declarative debugger. Technical
Report 95/27, Department of Computer Science,
University of Melbourne, Australia, 1995.

[NF92] Henrik Nilsson and Peter Fritzson. Algorith-
mic debugging for lazy functional languages. In
Maurice Bruynooghe and Martin Wirsing, editors,
Programming Language Implementation and Logic
Programming (PLILP ’92), volume 631 of Lecture
Notes in Computer Science, pages 385–399, Leu-
ven, Belgium, August 1992.

[NF94] Henrik Nilsson and Peter Fritzson. Algorithmic de-
bugging for lazy functional languages. Journal of
Functional Programming, 4(3):337–370, July 1994.

[Nil98] Henrik Nilsson. Declarative Debugging for Lazy
Functional Languages. PhD thesis, Department
of Computer and Information Science, Linköpings

universitet, S-581 83, Linköping, Sweden, May
1998.
http://www.ida.liu.se/~henni/thesis.ps

[NS96] Henrik Nilsson and Jan Sparud. The evalua-
tion dependence tree: an execution record for lazy
functional debugging. Research Report LiTH-
IDA-R-96-23, Department of Computer and Infor-
mation Science, Linköpings universitet, S-581 83,
Linköping, Sweden, August 1996. This is an ex-
tended version of [NS97].

[NS97] Henrik Nilsson and Jan Sparud. The evalua-
tion dependence tree as a basis for lazy func-
tional debugging. Automated Software Engineer-
ing, 4(2):121–150, April 1997.

[OH88] John T. O’Donnell and Cordelia V. Hall. Debug-
ging in applicative languages. Lisp and Symbolic
Computation, 1(2):113–145, 1988.

[Par93] William Partain. The NoFib benchmark suite
of Haskell programs. In John Launchbury and
Patrick Sansom, editors, Proc. 1992 Glasgow
Workshop on Functional Programming, Work-
shops in Computing, pages 195–202. Springer-
Verlag, 1993.

[Sha82] Ehud Y. Shapiro. Algorithmic Program Debugging.
MIT Press, May 1982.

[Spa94] Jan Sparud. An embryo to a debugger for Haskell.
Presented at the annual internal workshop “Win-
termötet”, held by the Department of Comput-
ing Science, Chalmers University of Technology,
Göteborg, Sweden, January 1994.

[Spa96] Jan Sparud. A transformational approach to de-
bugging lazy functional programs. Licentiate the-
sis, Department of Computing Science, Chalmers
University of Technology, S-412 96, Göteborg,
Sweden, February 1996.

[Spa99] Jan Sparud. Tracing and debugging lazy functional
computations. PhD thesis, Department of Com-
puting Science, Chalmers University of Technol-
ogy, S-412 96, Göteborg, Sweden, March 1999.

[SR97a] Jan Sparud and Colin Runciman. Partial redex
trails of large functional computations. In Proceed-
ings of the 9th International Workshop on Imple-
mentation of Functional Languages (IFL ’97), St
Andrews, Scotland, September 1997.

[SR97b] Jan Sparud and Colin Runciman. Tracing lazy
functional computations using redex trails. In Pro-
ceedings of the 9th International Symposium on
Programming Languages, Implementations, Log-
ics and Programs (PLILP ’97), Southampton,
September 1997.

[Wad98] Philip Wadler. An angry half-dozen. ACM SIG-
PLAN Notices, 33(2):25–30, February 1998.

12

