
Energy-Efficient Redundant Execution for Chip
Multiprocessors

Pramod Subramanyan,
Virendra Singh

Supercomputer Education and
Research Center

Indian Institute of Science,
Bangalore, India

pramod@rishi.serc.iisc.ernet.in
viren@serc.iisc.ernet.in

Kewal K. Saluja
Electrical and Computer

Engineering Dept.
University of Wisconsin,

Madison, WI
saluja@engr.wisc.edu

Erik Larsson
Dept. of Computer and

Information Science
Linköping University,
Linköping, Sweden
erila@ida.liu.se

ABSTRACT
Relentless CMOS scaling coupled with lower design tolerances is
making ICs increasingly susceptible to wear-out related permanent
faults and transient faults, necessitating on-chip fault tolerance in
future chip microprocessors (CMPs). In this paper, we describe a
power-efficient architecture for redundant execution on chip multi-
processors (CMPs) which when coupled with our per-core dynamic
voltage and frequency scaling (DVFS) algorithm significantly re-
duces the energy overhead of redundant execution without sacrific-
ing performance. Our evaluation shows that this architecture has a
performance overhead of only 0.3% and consumes only 1.48 times
the energy of a non-fault-tolerant baseline.
Categories and Subject Descriptors: C.1.0 [Processor Architec-
tures]: General
General Terms: Reliability, Performance.
Keywords: Transient faults, permanent faults, redundant execu-
tion, microarchitecture.

1. INTRODUCTION
Over the last three decades, continued scaling of silicon fabri-

cation technology has permitted exponential increases in the tran-
sistor budgets of microprocessors. In the past, higher transistor
counts were used to increase the performance of single processor
cores. However increasing complexity and power dissipation of
these cores forced architects to turn to chip multiprocessors (CMPs)
in order to deliver increased performance at a manageable level of
power and complexity. While deep sub-micron technology is en-
abling the placement of billions of transistors on a single chip, it
also poses unique challenges. ICs are now increasingly susceptible
to soft errors [18], wear-out related permanent faults and process
variations [3, 5].

Traditionally, high availability systems have been restricted to
the domain of mainframe computers or specially designed fault-
tolerant systems [4, 11]. However, the trend towards unreliable
components means that fault tolerance is now important for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’10, May 16–18, 2010, Providence, Rhode Island, USA.
Copyright 2010 ACM 978-1-4503-0012-4/10/06 ...$10.00.

commodity market as well [1]. Fault-tolerant solutions for the com-
modity market have different requirements and present a different
set of design challenges. The commodity market requires config-
urable [1] and low cost fault tolerance. CMPs are appealing in this
context as they inherently provide replicated hardware resources
which can be exploited for error detection and recovery. A number
of proposals [1, 7, 12, 14, 19–23] have attempted to take advantage
of these aspects of CMPs to provide fault tolerance.

An important aspect of low-cost fault tolerance is the energy-
efficiency of fault-tolerant CMP designs. Power and peak tempera-
ture are key performance limiters for modern processors [8]. Since
the power budget for a chip is fixed, decreasing the power con-
sumed in any core increases the power available to other cores. This
allows them to operate at a higher frequency, increasing overall
system performance. Furthermore, reducing power dissipation has
an additional advantage of reducing operating temperatures, which
can increase chip lifetimes by an order of magnitude [13]. Conse-
quently, we believe that there is a pressing need for energy-efficient
fault-tolerant architectures for future microprocessors.

In this paper we propose an energy-efficient architecture for fault-
tolerant CMPs. This architecture has a performance overhead of
less than 0.3% and consumes only 1.48 times the energy of a non-
fault-tolerant baseline processor. We compare our architecture to
two previous proposals for fault-tolerant CMPs: (1) the parallelized
verification architecture (PVA) introduced by Rashid et al. [14],
and (2) Chip-level Redundantly Threaded (CRT) processors intro-
duced by Mukherjee et al. [12]. Our proposal outperforms both
PVA and CRT, and consumes lesser energy than either.

2. OVERVIEW AND DESIGN
Our architecture utilizes two cores of a CMP to execute a single

logical thread. To an application executing in redundant mode, the
two cores appear as a single logical processor. One of these cores
is designated as the leading core, while the other is designated as
the trailing core. The leading core is so named because it is tem-
porally ahead of the trailing core. The two cores execute the same
instruction stream, and process the same input data stream. Com-
munication between the leading and trailing cores is carried out
over the system bus of a shared memory CMP. A high level block
diagram of the system architecture is shown in Figure 1.

The leading core assists the execution of the trailing core by for-
warding branch outcomes and load values [12, 15]. This execution
assistance increases the IPC of the trailing core. We exploit this
increase by operating the trailing core at a lower voltage and fre-
quency level, saving energy.

143



logical thread 1 logical thread 2

logical thread 3

C0 C1 C2 C3

shared bus interconnect

C4 C5 C6 C7

Figure 1 – System-level block diagram.

2.1 Core Architecture
To enable energy-efficient redundant execution, we augment a

conventional out-of-order superscalar processor core with some ad-
ditional structures. Figure 2 shows a block diagram of the modified
core. The rest of the section describes these modifications in more
detail.

FetchBPred BOQ

Decode

Issue Queue LSQROB

Reg File FUs D-cache LVQ

WB

Retire

Fingerprint To Interconnect

From Interconnect

Figure 2 – Diagram showing processor core augmented with struc-
tures required for redundant execution. Newly added structures are
shaded.

The Load Value Queue (LVQ) [15] structure is used to hold load
values in the trailing core which are forwarded from the leading
core. Forwarding load values has two benefits: (1) solving the
problem of input replication [15] and avoiding input incoherence
[20] and (2) speeding up the trailing core.

Previous implementations of the LVQ accessed it at the same
time as the access to the data cache, i.e., after the effective address
computation. This is an unnecessary delay because the LVQ entry
from which the value has to be read is known at the time of instruc-
tion decode. Therefore, we introduce the early-write optimization.
This optimization reads the LVQ and writes the result into the des-
tination register at the time of instruction dispatch. The effective
address computation takes places later and is used only for access-
ing the TLB and in the fingerprint computation. As a result of
this optimization instructions which are dependent on load instruc-
tions can begin execution immediately after the load instruction is
dispatched. This optimization breaks data-dependence chains con-
taining load instructions, improving trailing core IPC by over 30%.

Branch outcomes from the leading core are forwarded to the
trailing core’s Branch Outcome Queue (BOQ)[15]. During instruc-
tion fetch the trailing core does not use the branch predictor. In-
stead it accesses the BOQ to get the direction and target address of
the branch. In the absence of soft errors, the BOQ provides perfect
branch prediction to the trailing core.

Periodically, the leading core and trailing core compute a hash
value that summarizes updates that have been made to the state of

the processor. This hash value is referred to as a fingerprint [19].
The two cores swap and compare fingerprints to detect errors. If
no error has occurred, the architectural updates will be exactly the
same, guaranteeing that the fingerprints will also be equal. If an
error occurs, the fingerprints are extremely likely to be different. A
mismatch in fingerprints indicates the occurrence of an error.

When the fingerprints are compared and found to match, the reg-
ister state is stored in a checkpoint store. Memory state is also saved
by using a modified L1 data cache similar to speculative version
caches. The details of checkpointing, recovery and fault isolation
are given in [22]. Fault coverage is discussed in [21] and [22].

2.2 Voltage and Frequency Control
Forwarding load values and branch outcomes to the trailing core

allows it to execute faster than leading core. This speedup can be
exploited by operating it at a reduced voltage and frequency level.
The challenge here is to design an algorithm that can dynamically
set the voltage/frequency levels of the trailing core based on pro-
gram phase behaviour.

In this context, we make the key observation that the sizes of
the BOQ and LVQ are an indication of the difference in execution
speed between the two cores. To understand why, let us assume for
a moment that the trailing core has infinite sized BOQ and LVQ
structures. If the trailing core is operating at lower than its opti-
mal frequency, its execution will be temporally behind the leading
core, and the number of elements in the LVQ and BOQ will contin-
uously increase. On the other hand, if the trailing core is operating
at higher than its optimal frequency, the LVQ/BOQ structures will
likely be empty. This suggests that an algorithm which varies the
frequency of the trailing core based on the number of entries in the
queues will be able to track IPC variations in leading core.

2.2.1 DVFS Algorithm
Our algorithm periodically samples the size of the BOQ and

LVQ after a fixed time interval Ts. There are two thresholds associ-
ated with the BOQ and LVQ, a high threshold and a low threshold.
If the occupancy of both structures structure is greater than the high
threshold, then the frequency of operation is increased. If the oc-
cupancy of both the structures is less than the low threshold, then
the frequency of operation is decreased. In effect the algorithm at-
tempts to maintain the occupancy of the structures in between the
low and high thresholds.

The thresholds can be set either statically or dynamically. Our
results in section 3 show that a single static threshold for all pro-
grams provides significant power savings with a small performance
degradation. Hence, we only use a statically set threshold value.

3. EVALUATION

3.1 Simulation Methodology
Our evaluation uses an appropriately modified version of the

SESC execution-driven simulator [16]. The simulator models an
out-of-order superscalar processor in a detailed manner and fully
simulates “wrong-path” instructions. Our CMP configuration mod-
els a CMP with private L2 caches. Details of the model are given
in Table 1.

In order to put our results in context, we compare our architec-
ture against two previous proposals: (1) the Parallelized Verifica-
tion Architecture (PVA) from [14] and (2) Chip-level Redundantly
Threaded (CRT) processors from [12]. PVA-specific configuration
values are taken from [14].
Workload: We used twelve benchmarks from the SPEC CPU 2000
benchmark suite. For each of the benchmarks, we skipped the first

144



Table 1 – CMP configuration
Fetch/issue/retire 4/4/4 Mem/Int/FP units 4/6/4 Branch predictor hybrid/16k/16k/16k
ROB size 128 instructions I-cache 32k/64B/4-way/2 cycles BTB 4k entries/4-way
Integer/FP window 64/32 instructions D-cache 64k/64B/4-way/2 cycles RAS 32 entries
Load/store queue 32 instructions Private L2 cache 2 MB/64B/8-way/24 cycles LVQ size 128
Interconnect latency 48 cycles Memory 400 cycles BOQ size 128
Checkpointing interval 32k instructions DVFS update interval 1 µs DVFS update latency 100 ns
DVFS voltage levels 0.5 - 1.0 V DVFS frequency levels 1.5-3.0 GHz # of DVFS levels 6

three billion instructions and simulated the next one billion instruc-
tions.

3.2 IPC Results
Figure 3 shows the IPC of each of the SPEC benchmarks nor-

malized by the IPC of non-fault-tolerant execution. The perfor-
mance degradation of PVA is 4.2%. CRT’s performance degrada-
tion is 4.4%. Our proposal, Energy-Efficient Redundant Execution
(EERE), has a performance degradation of only 0.3%.

PVA uses a structure called the Post Commit Buffer (PCB) to
hold buffered stores until they are verified. When the PCB be-
comes full, the primary core cannot make progress. Buffered stores
are removed from the PCB only when the corresponding chunk of
instructions is executed by the trailing cores and the checkpoints
match. We simulate a CMP configuration with large interconnect
delays which increases PCB occupancy, thus degrading PVA’s per-
formance. In CRT, a store cannot retire from the leading core’s
store buffer until it is verified by the trailing core. This creates ad-
ditional pressure on the store buffer. This is the reason why CRT’s
performance suffers for some benchmarks.

3.3 Energy Results
Figure 4 shows the energy consumption of the SPEC benchmarks

normalized by the energy consumption of a non-fault-tolerant exe-
cution. On an average CRT consumes 1.99 the energy of non-fault-
tolerant execution. PVA consumes 1.79 times the energy of non-
fault-tolerant execution. Our proposal, Energy-Efficient Redundant
Execution (EERE), consumes 1.48 times the energy of non-fault-
tolerant execution.

3.4 Sensitivity to Interconnect Latency

45 50 55 60 65 70 75 80 85
Interconnect latency (cycles)

0.90

0.95

1.00

1.05

N
o
rm

a
liz

e
d
 I
P
C

CRT PVA EERE

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

IPC Energy

Figure 5 – Performance with increasing interconnect delay.

Figure 5 shows the variation of normalized IPC and normalized
energy with increasing interconnect delay. Increasing interconnect
delays have a detrimental impact on performance. Two points are
apparent from the from the figure. Firstly, even with a very high
interconnect latency of 80 cycles, our proposal is able to deliver
the same level of energy-efficiency with only a 2% loss in per-
formance. In contrast, PVA and CRT suffer a higher performance
degradation. Secondly, the impact of higher interconnect latencies
on energy consumption is minimal.

4. RELATED WORK
Fault Tolerant Architectures:

Current high availability systems like the HP Nonstop Advanced
Architecture [4] and the IBM zSeries [6] are high cost systems that
spare no expense to meet reliability targets. Although they provide
excellent fault coverage, they impose a high cost of 100% hardware
duplication and 100% additional energy consumption. For high
availability systems targeted at the commodity market, these high
costs are unacceptable.

DIVA is a novel fault detection architecture which detects faults
in a larger out-of-order core by using an in-order checker core to
verify computations at the time of retirement [2]. Unlike our pro-
posal, a DIVA checker is always-on and its resources cannot be
used when fault tolerance is disabled.

Transient fault detection using simultaneous multithreading was
introduced by Rotenberg in AR-SMT [17] and Reinhardt and Mukher-
jee [15] in Simultaneously and Redundantly Threaded (SRT) pro-
cessors. An SRT processor augments SMT processors with addi-
tional architectural structures like the branch outcome queue and
load value queue for transient fault detection. The branch outcome
queue enhances the performance of the redundant thread, while the
load value queue provides input replication. Since an SRT proces-
sor provides an unpredictable combination of space and time re-
dundancy, it cannot guarantee the detection of all permanent faults.
Muhkerjee et al. also introduced chip level redundant threading
(CRT) [12], which extends SRT to simultaneously multithreaded
chip multiprocessors. Our design provides better performance and
energy characteristics than CRT. Gomaa et al. studied Chip Level
Redundant Threading with Recovery (CRTR) [7], which uses the
state of the trailing thread to recover from an error. Our design also
provides recovery from errors like CRTR, but unlike CRTR, it is
faster and more energy-efficient than CRT.
Dynamic Voltage and Frequency Scaling (DVFS): The idea of
per-core voltage and frequency levels was first explored Isci et al.
[8]. They introduced a set of policies to manage per-core voltage
and power levels in CMPs. Their policies aim to maximize perfor-
mance while keeping power dissipation within the budget. These
policies are managed either by a dedicated micro-controller, or a
daemon running on a dedicated core. Kim et al. [10] described the
detailed design of on-chip regulators; showing that it is possible to
perform voltage changes in time periods of the order of a few hun-
dred nanoseconds. Although current commercial processors do not
yet have the ability to set per-core voltage levels, the AMD Quad
Core Opteron [9] allows the frequency of each core to be set inde-
pendently.
Energy-efficient Fault Tolerance: Rashid et al. [14] proposed the
parallelized verification architecture (PVA) for fault-tolerant CMPs
which saves energy by parallelizing the verification by executing it
on two cores. These two “verification cores” are operated at half
frequency and voltage levels. An important point here is that PVA
uses three cores to execute a single logical thread, while our design
uses only two. Our design also has better performance and energy-
efficiency than PVA.

145



gap mcf vpr gzip twolf crafty swim equake applu wupwise mgrid art geomean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
o
rm

a
liz

e
d
 I
P
C CRT PVA EERE

Figure 3 – Normalized IPC of the SPEC benchmarks. PVA and CRT refer to the proposals in [14] and [12] respectively. EERE is our proposal

gap mcf vpr gzip twolf crafty swim equake applu wupwise mgrid art geomean0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y

CRT PVA EERE

Figure 4 – Normalized energy consumption of the SPEC benchmarks. PVA and CRT refer to [14] and [12] respectively. EERE is our proposal.

5. CONCLUSION
Decreasing feature sizes, lower design tolerances and higher op-

erating temperatures have resulted in the emergence of wear-out
related permanent faults and transient faults as significant concerns
in modern microprocessors.

In this paper, we showed the design of an energy-efficient fault-
tolerant microarchitecture for chip multiprocessors. Our microar-
chitecture exploits the slack due to branch mispredictions and data
cache misses to operate the trailing core at a lower frequency, sig-
nificantly reducing the energy-cost of fault-tolerance. Our results
showed that this architecture has a performance overhead of less
than 0.3% and energy consumption that is only 1.48 times that of
non-fault-tolerant execution. We compared our architecture with
two previous proposals for fault-tolerant CMPs and found that our
architecture outperforms both proposals while consuming less en-
ergy. Our results also showed that our architecture performs well
even with very high interconnect delays, making it suitable for fu-
ture CMPs with several tens or hundreds of cores.

References
[1] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi, and James E.

Smith. Configurable isolation: building high availability systems with commod-
ity multi-core processors. SIGARCH Comput. Archit. News, 35(2), 2007.

[2] Todd Austin. DIVA: A Reliable Substrate For Deep Submicron Microarchitec-
ture Design. Proceedings of the 32nd MICRO, 1999.

[3] Todd Austin, V. Bertacco, S. Mahlke, and Yu Cao. Reliable Systems on Unreli-
able Fabrics. IEEE Des. Test, 25(4), 2008.

[4] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and
J. Smullen. Nonstop R©advanced architecture. In DSN ’05: Proc. of DSN, 2005.

[5] S. Y. Borkar. Designing Reliable Systems from Unreliable Components: The
Challenges of Transistor Variability and Degradation. IEEE Micro, 25(6), 2005.

[6] M.L. Fair, C.R. Conklin, S. B. Swaney, P. J. Meaney, W. J. Clarke, L. C. Alves,
I. N. Modi, F. Freier, W. Fischer, and N. E. Weber. Reliability, Availability, and
Serviceability (RAS) of the IBM eServer z990. IBM Journal of Research and
Development, 2004.

[7] M. Gomma, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. Transient-Fault
Recovery for Chip Multiprocessors. Proceedings of the 30th ISCA, 2003.

[8] C. Isci, A. Buyuktosunoglu, C-Y. Cher, P. Bose, and M. Martonosi. An Anal-
ysis of Efficient Multi-Core Global Power Management Policies: Maximizing
Performance for a Given Power Budget. Proc. of the 39th MICRO, 2006.

[9] J. Dorsey et al. An Integrated Quad-core Opteron processor. International Solid
State Circuits Conference, 2007.

[10] W. Kim, M. S. Gupta, Wei Gu-Yeon, and D. Brooks. System level analysis of
fast, per-core DVFS using on-chip switching regulators. Proceedings of the 14th
HPCA, 2008.

[11] Israel Koren and C. Mani Krishna. Fault Tolerant Systems. Morgan Kaufmann
Publishers Inc., 2007.

[12] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design and Evaluation
of Redundant Multithreading Alternatives. Proceedings of the 29th ISCA, 2002.

[13] I. Parulkar, A. Wood, J. C. Hoe, B. Falsafi, S. V. Adve, and J. Torrellas.
OpenSPARC: An Open Platform for Hardware Reliability Experimentation.
Fourth Workshop on Silicon Errors in Logic-System Effects (SELSE), 2008.

[14] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi. Exploiting Coarse-
Grain Verification Parallelism for Power-Efficient Fault Tolerance. Proc. of the
14th International Conference on Parallel Architectures and Compilation Tech-
niques, 2005.

[15] S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via Simultaneous
Multithreading. Proceedings of the 27th ISCA, 2002.

[16] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. SESC Simulator. http://sesc.
sourceforge.net/, 2005.

[17] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in a
Microprocessor. Proceedings of FTCS, 1999.

[18] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the
Effect of Technology Trends on the Soft Error Rate of Combinational Logic.
Proceedings of the 32nd DSN, 2002.

[19] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk.
Fingerprinting: Bounding soft error detection latency and bandwidth. Proceed-
ings of the 9th ASPLOS, 2004.

[20] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion: Complexity-
Effective Multicore Redundancy. Proceedings of the 39th MICRO, 2006.

[21] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Power-Efficient Redun-
dant Execution for Chip Multiprocessors. Proc. of 3rd WDSN, 2009.

[22] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Mulitplexed Redundant
Execution: A Technique for Efficient Fault Tolerance in Chip Multiprocessors.
Proc. of DATE, 2010.

[23] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson. Energy-Efficient Fault
Tolerance in Chip Multiprocessors Using Critical Value Forwarding. To appear
in Proc. of DSN, 2010.

146

http://sesc.sourceforge.net/
http://sesc.sourceforge.net/

