
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Compiler and Runtime
Techniques for Software
Transactional Memory
Optimization

Peng Wu∗, Maged M. Michael, Christoph von
Praun, Takuya Nakaike, Rajesh Bordawekar, Harold
W. Cain, Calin Cascaval, Siddhartha Chatterjee,
Stefanie Chiras, Rui Hou, Mark Mergen, Xiaowei
Shen, Michael F. Spear†, Hua Yong Wang, Kun
Wang

IBM Research
†University of Rochester

SUMMARY

Software transactional memory (STM) systems are an attractive environment to evaluate
optimistic concurrency. We describe our experience of supporting and optimizing an
STM system at both the managed runtime and compiler levels. We describe the
design policies of our STM system, and the statistics collected by the runtime to
identify performance bottlenecks and guide tuning decisions. We present initial work on
supporting automatic instrumentation of STM primitives for C/C++ and Java programs
in the IBM XL compiler and J9 JVM. We evaluate and discuss the performance of several
transactional programs running on our system.

key words: transactional memory, software transactional memory, compiler optimization,

optimistic concurrency

1. Introduction

It is increasingly clear that transactional memory (TM) will be supported in some form by most
of the major systems manufacturers in the near future. Examples include recent announcements
for hardware support from Sun Microsystems [32], the release of a transactional compiler and

∗Correspondence to: IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY, USA
Contract/grant sponsor: Publishing Arts Research Council; contract/grant number: 98–1846389

Received
Copyright c© 2000 John Wiley & Sons, Ltd. Revised 1 February 2008

2 WU ET AL.

runtime system by Intel [8], and Azul systems using a transaction-like form of speculative lock
elision [31]. However, despite over fifteen years of research since the conception of transactional
memory by Herlihy and Moss [17], there has been limited work exploring the interaction of
TM with compilers and managed runtimes [1, 14, 29]. Most research has instead focused
on the construction of scalable, low-overhead, transactional memory systems, some purely in
software [16, 14, 20, 28], some with significant hardware support [2, 6, 12, 22, 24], and some
in-between [4, 9, 27, 36], while largely ignoring the potential enablers of static analysis and
dynamic optimization as a means of reducing the overhead of transactional execution.

In this paper, we describe our early experience building and optimizing a complete system
stack around an all-software transactional runtime system, with an emphasis on application-
driven optimization of TM bottlenecks. We analyzed several applications with the transactional
runtime system and we identified many opportunities for reducing transactional overheads. To
take advantage of these opportunities, we implemented support to automatically instrument
shared references to STM primitives for C/C++ and Java programs in IBM’s XL optimizing
compiler and J9 Java virtual machine.

The initial focus of our compilation work is the overhead reduction of unnecessary read and
write barriers for operations that are known to be conflict-free. We find significant opportunity
for reducing barriers to address-taken stack addresses. We also present results on escape
analysis for eliminating heavyweight read and write barriers on heap memory that is not
shared by other threads at the point of reference. And we discuss the need and issues with
memory checkpointing that were largely left to be dealt with manually by prior work. We
discuss these optimizations in detail in Section 3 (for C/C++) and in Section 4 (for Java).

In addition to describing our compiler and JVM implementation, we also include an
evaluation of three benchmarks: SSCA2, HSQLDB, and a B+tree algorithm based on the Aries
database system. We include the general analysis of their scaling properties and characteristics
of their transaction working sets, in addition to optimization studies using our compiler and
JVM. This performance analysis is presented in Section 5.

2. Software Transactional Memory Implementation

We begin with a description of the STM system used in our study. We describe the statistics
collected by the STM runtime and how they can be used to provide feedback to components of
the transactional memory software stack (e.g., application, compiler, managed runtime), and
to improve the STM system itself.

2.1. STM Implementation Features

In designing our STM, we selected policies and mechanisms that favor enabling concurrency,
avoiding restrictions that limit the use of TM, and minimizing the performance overheads.

We use a block-based (8-byte) mapping of shared memory locations to shared STM metadata
that controls access and detects conflicts [13, 26, 10]. This has the advantage of being applicable
to any programming languages, unlike object-based mapping which is mostly suitable to object-
oriented programming languages.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 3

For storing data values, our implementation uses a buffered-writes policy [13, 21, 10]. The
values to be written are buffered in transaction-private structures and written to shared
memory only after the transaction is guaranteed to commit. This policy simplifies memory
management, and prevents other threads from observing values that may never be committed,
enforcing the isolation properties of TM.

It also follows a policy of invisible reads [26, 21, 10]. Specifically, reads in the course of a
transaction do not result in any writes to shared metadata. This has the advantage of enabling
concurrent reads of the same location to proceed without inter-transaction interference that
otherwise may result from cache coherence traffic if visible writes were employed.

As a general rule, the STM implementation uses a strategy of disjoint access parallelism
(except for hashing collisions in block-based mapping). In other words, concurrent non-
conflicting transactions (i.e., transactions that do not write to a block that has been accessed by
another transaction) should all commit successfully. Furthermore, such transactions should not
interfere with another transaction’s progress. In addition to motivating our choice of invisible
reads, this also led to our choice of read-set validation mechanism [16, 21] and the avoidance of
global timestamps [10, 30, 25]. The latter requires writes to shared metadata by non-conflicting
transactions.

To simplify memory management, in particular to avoid restrictions on the memory
reclamation of objects accessed in transactions, we do not require the STM operations to
be non-blocking, but rather use locking in metadata operations [11, 26, 10].

2.2. STM Runtime Statistics

In order to characterize applications and identify performance bottlenecks, we implemented
a rich set of statistics that are collected by our STM runtime. These statistics have provided
insights into application behavior and have driven the compiler optimizations discussed later
in the paper. An overview of these statistics is presented below.

Read-/write-sets: The size of read-/write-sets are inherent characteristics of the
application code. They are affected by the effectiveness of barrier instrumentation either by
the programmers or the compiler. In our compiler tuning, we use these statistics to evaluate
the effectiveness of compiler optimizations to eliminate unnecessary barriers.

Duplicate reads and writes: arise when there are multiple read- or write-barriers to the
same location in the same transaction. A high percentage of duplicate accesses indicates the
potential to compact the read-/write-set to reduce the overhead of read-barrier and read-set
validation.

Access granularity: A high percentage of reads and writes that match the same conflict
unit as prior reads and writes indicates potential optimizations in the compiler and the STM
runtime to use lightweight versions of read and write barriers without unnecessary conflict
detection operations which are already covered by the earlier accesses in the transaction that
matched the same conflict sets.

Read after subset of writes: A high percentage of reads that follow some write in the
same transaction indicates the importance of employing fast lookup mechanisms in the STM
design such as Bloom filters [5]. On the other hand, a low percentage indicates that the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

4 WU ET AL.

overheads of managing the Bloom filters are unnecessary. Thus the STM implementation can
be reconfigured to match the applications characteristics.

Reads after writes: A high percentage of reads that are of locations previously written by
the same transaction indicates that when allowable it may be beneficial for the STM design
to use an in-place write policy, or alternatively employ record-keeping mechanisms that allow
fast access to buffered to-be-written values.

Read-only transactions: If read-only transactions are more common than read-write
transactions then it may be possible to employ global timestamp mechanisms [10] that may
otherwise limit scalability under heavy loads of read-write transactions, but scale well under
read-only transactions.

Silent writes: If the percentage of silent writes is high then it may be beneficial to transform
silent writes into reads. This can reduce the size of the write-set that decrease the write-set
search time for the read-barriers, and reduce the number of expensive atomic instructions per
transaction to register the write.

Retries: A large number of retries can indicate either that the application lacks
inherent concurrency, or that certain STM design choices are causing unnecessary conflicts.
Differentiating between these cases can be done by collecting these numbers with different
STM configurations. If an application doesn’t scale despite a low retry rate, then this indicates
that the culprit is likely not related to synchronization but rather other causes such as data
layout and cache performance. Identifying the causes of retries can provide input to the STM
regarding retry policies. It can also provide input to the programmer on application data
layouts that may cause synchronization conflicts.

All these have been useful in optimization. In the next section we discuss compiler
optimizations that reduce the number of read/write barriers and how this affects performance.

3. C/C++ Compiler Instrumentation for STM

The major obstacle of programming an STM is the need to explicitly instrument all potentially
conflicting memory references with read-/write-barriers. To improve the usability of the STM
system, we implemented an instrumentation pass in a development version of the IBM XL
compiler. This pass instruments all potentially conflicting references in transactional scopes
marked in the source code to STM read-/write-barrier calls.

In this section, we discuss the compilation issues we faced when instrumenting C/C++
programs for STM, and describe several compiler and STM optimizations to reduce overheads
in instrumented codes.

3.1. Memory checkpointing

When a transaction writes to a stack location or a privately allocated memory that has not yet
escaped the thread (i.e., a memory location that is not yet visible to other threads), the write
does not induce any conflict. We refer to such writes as contention-free writes. Such writes do
not require write-barriers, but may need to be checkpointed if the overwritten values need to
be recovered upon a retry.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 5

#pragma omp parallel private(s,count)
{ ...

s = (int *) malloc(n*sizeof(int));
for (...) {
...
TM_BEGIN {
...
if (...) s[count++] = w;
...
} TM_END

}
... = s[...];

}

Figure 1. A checkpoint example from ssca2.

void foo(node_t **leaf, int *offset){
...;
*leaf = ...;
*offset = ...;

}

node_t *leaf = NULL;
int offset = -1;
TM_BEGIN {

foo(&leaf, &offset);
if (!leaf && offset != -1)
....

} TM_END

Figure 2. An address-taken example from b+tree.

Figure 1 shows a code extracted from ssca2 (details in Section 5.2, where transactions are
marked by TM BEGIN and TM END macros. In this example, s is declared OMP private and
points to a chunk of memory allocated within the thread, which remains private until the end
of the transaction; and count is a private integer variable. Therefore, the writes in s[count++]
in the transaction do not cause any conflict. However, since s[] is live both upon entry and
exit of the transaction block (due to the transaction being inside a loop), its writes need to
be checkpointed. Similarly, count requires checkpointing as it has an exposed use inside the
transaction (e.g., count++).

Using data-flow analysis, the compiler can exclude from memory checkpointing writes
to most contention-free locations. Basically, if a variable or heap location is private to a
transactional lexical scope (e.g., transactional block or procedure), that is, the variable is
not live upon entry and exit to the lexical scope, then the write requires no checkpointing.

However, it is often the case that contention-free writes do have uses after exiting the
transaction. In this case, checkpointing can still be avoided if the location is not live upon
entry to the transactional scope, and if the write to the location dominates transaction end.
The latter guarantees that, upon retry, the location will always be re-defined thus no need to
recover the original value.

Finally, uninitialized locations upon a transaction entry require no checkpointing. This also
includes the case when a heap location is allocated within the transaction.

3.2. Handling address-taken stack variables

In C and C++ code, programmers may have pointers to stack locations by taking the address
of stack variables. The compiler will conservatively instrument writes through these pointers
as write-barriers, assuming that they may point to shared memory locations. Consider the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

6 WU ET AL.

example in Figure 2 from b+tree (details in Section 5.1. When instrumenting function foo,
the compiler may assume that pointers leaf and offset refer to potentially shared memory
locations, and instrument *leaf= and *offset= as write-barriers.

There are two issues when treating stack addresses the same as other addresses in a write-
barrier:

• Out of scope writes: Our STM buffers writes in an internal write-list, which are not
committed until the transaction ends. If the write buffer contains a stack address from
a procedure invoked by the transaction, and at the commit time, the procedure stack is
already reclaimed, then the delayed write to the memory location may corrupt stacks of
other procedures.

• Aliasing writes: If writes to the stack can be buffered, subsequent references to the same
location must also be instrumented in order to first look it up from the write buffer. This
means that any direct reference of address-taken stack variables within the transaction
also need to be instrumented into barriers. For instance, in Figure 2, references to stack
variables leaf and offset in the callee function need to be instrumented in order to
read buffered values.

To address both issues, the STM provides special filtering of stack addresses in the write-
barrier so that they are neither buffered nor checked for conflicts, based on a list of compiler
generated address ranges. The compiler generates this list, at the beginning of each procedure,
for all address-taken stack variables that are referenced in transactions. Note that, for stack
addresses that are taken outside the transaction but referenced inside, it must be ensured that
the addresses are not passed to a shared pointer. In our prototype implementation, we assume
that is the case.

With the filtering technique, address-taken stack addresses are never buffered, nor would
they cause any conflicts, thus no barriers are necessary for any direct reference of address-taken
stack variables in the transaction.

3.3. Optimizing for non-escaping heap locations

If a memory location is allocated within a thread and has not escaped the thread at the point
of reference within a transaction, the reference to it does not cause any conflicts, and may not
require read-/write-barriers.

However, not all references to contention-free locations can avoid read-/write-barriers.
Consider a read access to a contention-free location, the read-barrier can be safely removed
only if the location may not be referenced by any prior write-barriers. The issue is similar to
the one discussed above on taking the address of stack variables. Otherwise, the read must
be instrumented as a read-barrier, but a lightweight one that can skip the book-keeping for
conflict detection. Consider a write access to a contention-free location, the write-barrier can
be safely replaced by memory checkpointing, only if the location may not be referenced by any
prior write-barriers. The checkpointing may be eliminated if it further satisfies the conditions
specified in Section 3.1.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 7

4. Java Runtime and Compiler Support for STM

4.1. Instrumentation Issues

During Java byte-code or jitted code execution, three types memory may be accessed: Java
stack, Java heap (e.g., for field or array accesses), or JVM metadata (e.g., class information).

Since the Java stack is always thread-private, stack access is excluded from instrumentation.
Since the heap is shared among threads, heap access needs to be instrumented by the
interpreter when it executes the byte-code, and by the JIT-compiler in the jitted code. In the
prototype implementation, we modified the JIT-compiler to replace every field and array access
with read- and write-barriers to the STM library. The interpreter is not modified. Instead, every
method is compiled at its first invocation (i.e., only jitted code is executed). Field or array
accesses could also occur in native code. We found two such cases that require read- and write-
barrier instrumentation: class loading and array copy. In general, java.lang.System.arraycopy is
implemented in native libraries using the memcpy function. In both cases, we added STM
read- and write-barriers in the native implementation of those routines.

Note that JVM metadata may be subject to concurrent access as well. However, we found it
impractical to instrument these accesses. First, compiler instrumentation may not be feasible
since some JVM code is written in assembly, and the sheer size of the JVM prevents manual
instrumentation. Secondly, if we were to instrument all JVM metadata, accesses to the jitted
code itself would require instrumentation too as JIT-compilation may occur during transaction.
This would significantly degrade the JVM performance. Hence we decided not to instrument
JVM metadata. Instead, for the purposes of our early prototype, we treat such accesses to
meta-data as non-transactional, and avoid conflicts by forcing compilation and mutating shared
metadata accesses to occur before program execution.

4.2. Optimization Issues

We implemented two optimizations: versioning of transactional calls and barrier elimination
of transaction local objects. We briefly explain how these optimizations are implemented.

• When a method is invoked, it is compiled as a non-transactional version without inserting
read-/write-barriers. At this time, we add a special prologue to the entry of the compiled
code. In the prologue, we check whether or not a transaction is active. If a transaction
is active, we call the compiler to generate a transactional version, and then patch the
branch instruction to call this transactional version. For indirect call-sites, i.e., method
calls through the virtual function table, it is possible to add entries for transactional
methods in the virtual function table. For our benchmark this was not yet needed and
therefore we have not yet implemented this optimization.

• Some field accesses can be exempted from instrumentation. For example, field access
to an object which is allocated inside the transaction, we call those objects transaction-
local. For example, we can safely eliminate read-/write-barriers in the constructor, which
is called immediately after an object is created. This optimization is similar to the one
described in Section 3.3.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

8 WU ET AL.

5. Application Characterization and Evaluation

We chose three workloads with different characteristics to evaluate the STM implementation
and related compiler techniques.

B+tree is a kernel program in C that exercises concurrent accesses to a B+tree structure.
The program can be regarded as classic case for transactional memory, since thread-safety
of the sequential B+tree data structure is achieved mostly by encapsulating tree operation
into coarse-grained transactions. ssca2 implements a parallel graph analysis algorithm with
irregular memory access and very fine granular transactions. hsqldb is a Java in-memory
database that we use to evaluate Java-specific issues. Similar to b+tree, it presents the case of
a simple parallelization of an otherwise sequential database implementation: A coarse-grained
transaction is used per SQL statement to achieve serializability of concurrent accesses to the
database.

The STM implementation enables concurrency inherent in the applications but it cannot
eliminate inherent scalability bottlenecks. Therefore, the performance of applications with
inherent concurrency is expected to scale well when using STM. The main challenge for STM
implementations is reducing their high contention-free overhead over sequential performance.
The compiler techniques that we explore focus primarily on reducing these overheads.

5.1. B+Tree

The btree is the core data structure used for building database indexes to store key-value
pairs. In a btree of order m, every non-root node can store at least m− 1 and at most 2m− 1
keys. The keys are stored in non-decreasing order. We have implemented a version of the btree
called the B+tree in which nodes at the same level are connected via a singly-linked list [19].
In our implementation, only the leaves store the values. Each leaf has the same depth, which
is the tree’s height, h. For a B+tree of order m containing n keys, the height h is O(logm(n)).

B+tree can support three types of operations: insert a key-value pair, delete a key-value pair,
and fetch the value of a given key. Both insert and delete operations change the number of
keys stored in the tree and can lead to structural re-balancing to preserve B+tree’s structural
constraints. Each B+tree operation starts at the tree root and descends down to the leaves.
Any leaf update can trigger a structural modification to rebalance the tree. The structural
modification can potentially affect the entire tree.

In our evaluation, the lock-based implementation treats tree operations as critical sections
and serializes them using coarse-grained locks over the entire tree. In the transactional
implementation, the critical sections are replaced by transactions.

Figure 3 shows the performance of the lock-based and STM versions for a workload of
inserting 64K items into the tree. The critical section accounts for 94% of the overall execution
time of this workload. The average critical section size amounts to 629 dynamic instructions
for this workload.

We first observe a high contention-free overhead of using STM (10 times over the lock-
based version). This is primarily due to the large number of dynamic read-barriers (110 on
average) that inflate the dynamic instruction counts of the STM version. Detailed analysis of
this overhead is presented in Section 5.1.1. However, as the number of threads increases, the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 9

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

sp
ee

du
p

(n
or

m
al

iz
ed

 to
 1

-th
re

ad
 s

tm
)

lock
STM
Ideal

Figure 3. Scalability of B+tree on a 16-way Power5.

STM implementation can at runtime detect and exploit avenues of parallelism, resulting in
reasonable scaleup.

On the other hand, due to the coarse-grained nature of the lock, performance of the lock-
based version degrades as the number of threads is increased. The lock-based performance can
be improved by changing the lock granularity. However, implementing a correct and efficient
fine-grained lock-based concurrent algorithm is very cumbersome.

5.1.1. Compiler evaluation

The application uses very coarse-grained transactions to guard the entire operation of
fetch, insert, and delete. There are 3 transaction blocks and 13 procedures called from the
transactions that need to be instrumented. The compiler instrumented over 100 static write-
barriers, and over 200 static read-barriers.†

For a single thread run of 64K insertions, the average and maximum read-set sizes reported
by STM runtime are 110 and 310 entries, respectively. The average number of dynamic
read-barriers are 30% higher than the read-set size due to duplicate reads. The average and
maximum write-set size are 5.67 and 278 entries, respectively. The wide range of write-set size
is due to the occasional re-balancing of the tree that may modify many more nodes than the
usual insertion.

Figure 4 shows the percentage of performance improvement due to compiler optimizations.
The handling for address-taken stack variables improves the performance, on average, by 26%.
For a single thread run, 20% of the dynamic write barriers are to address-taken stack addresses.

†The number of barriers instrumented by the compiler do not map exactly back to source code instrumentation
due to compiler code replication prior to the instrumentation pass.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

10 WU ET AL.

0%

10%

20%

30%

40%

 +escape +addr-taken +escape+addr-taken

P
er

fo
rm

an
ce

 im
p

ro
ve

m
en

t

Figure 4. Performance improvements from compiler optimization for B+tree with 64K insertion
operations, amortized over speedups of 16 runs, ranging from 1 to 16 threads.

Using the technique described in Section 3.2, these write-barriers become very lightweight and
involve only a few compares. It also reduces 2% of the read-barriers. More importantly, since
stack write-barriers do not add to the write-list, the optimization effectively reduces the write-
list size by 27% for a single-thread run. Note that, since write-barriers accounts for less than
5% of total number of barriers, we believe that the performance gain comes from the reduction
of write-list size, which reduces the search time for each read-barrier.

Barrier elimination for non-escape heap locations accounts for 10% improvement, on average.
The opportunity lies in function create bptnode, which is invoked for each insertion to allocate
and initialize a new node. In create bptnode, the malloced location does not escape the
function. Our escape analysis is able to eliminate all but one of the write-barriers in this
function. For a single thread run, the optimization reduces the number of dynamic write-
barriers by 40% and the write-list size by 30%. We also notice that there are additional
initialization of the newly allocated tree node following the invocation of create bptnode and
through the pointer returned. The write-barriers for some of the initializations may be safely
removed using inter-procedural escape analysis.

Similar to stack address filtering, the performance gain most likely comes from the reduction
of write-list size. Note that the improvement from escape analysis is less than that from the
previous stack optimization, even though it has a larger reduction of the write-list. We speculate
that the writes reduced by stack filtering happen to occur earlier in this workload, thus its
impact to the search time of read-barriers is more significant.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 11

critical section coverage count size read-set write-set
(file:line Number) phase [%] [# Insts] avg total avg total

betweennessCentrality.c:131 2.14 46674 10 2.0 434 1.0 217
betweennessCentrality.c:306 30.80 376962 28 3.1 3604 1.1 3570
betweennessCentrality.c:380 5.28 107419 17 4.0 464 1.0 219

Table I. Transaction characteristics in ssca2.

5.2. SSCA2

Table I shows the dynamic characteristics of the critical sections in ssca2 [3]. The coverage
metric refers to the fraction of the execution spent in a particular critical section. The count
metric refers to the number of transactions that successfully commit, and size specifies the
number of instructions in the critical section without STM instrumentation. The number has
been determined using the lock-based code, starting to count at the instruction after the
lock is acquired and stop the count just before the lock is released. read-set and write-set
report the average number of unique word-aligned non-stack locations that are read or written
within a transaction and the total number of unique word-aligned non-stack locations across
all transactions; the same location may fall into the read and write set if it is first read, then
written.

We focus the evaluation on kernel 4 of ssca2 that computes the “betweenness centrality”
metric for each node in a randomly generated, clustered graph; graph generation is done in
another kernel of the benchmark. Two variants of the algorithm are implemented that execute
in two different phases. The critical section at line 131 falls into one phase while the critical
sections lines 306, 380 are executed in the other phase. For both variants of the kernel, a
significant fraction of the execution is spent outside critical sections, hence not contributing
to task-interdependence.

Figure 5 illustrates the execution times of ssca2 when executed on up to 16 threads,
choosing input scale k = 13 (approximately 10K nodes and 80K edges in the graph). For
high performance, this benchmark relies on efficient data access in cache. We observed that
in configurations with two or more threads, threads execute on cores that do not share the
same L2 cache on our architecture, resulting in a significant increase of L2 misses and L2
interventions. Consequently the CPI metric increases from 1.4 to 2.1 to 2.6 when moving from
one to two to four threads.‡ Hence the reason for the lack of scalability documented in the
chart is the increase in data access latency, not the synchronization. Even at 16 threads the
transaction rollback rate is very low (2.5%). For 12 threads and beyond, the partitioning of
the work among threads is unbalanced; an artifact that we attribute to the relatively small
data set size.

‡CPI is measured on the basis of the fine-grain lock implementation. STM operations significantly deflate CPI
numbers since operations tend to have good cache locality.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

12 WU ET AL.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 2 4 6 8 10 12 14 16

threads

sp
ee

d
u

p
 (

n
o

rm
al

iz
ed

 t
o

 1
-t

h
re

ad
 s

tm
)

stm-simple
stm-parBFS
stm-ideal
finelock-simple
finelock-parBFS

Figure 5. Scalability of ssca2 on a 16-way Power5.

Program read-barrier write-barrier checkpoint
manual (compiler) manual (compiler) manual (compiler)

ssca2 3.3 (3.69) 1.01 (0.93) 0.07 (0.15)

Table II. Dynamic barrier counts of ssca2 per transaction instance with manual and compiler
instrumentation

5.2.1. Compiler evaluation

ssca2 contains four independent transaction blocks and a function that need to be
instrumented. For this application, we are able to compare compiler instrumentation with
manual instrumentation.

Overall, compiler barrier instrumentation matches well with manual instrumentation. As
shown in Table II, the compiler generates 7% fewer dynamic read-barriers and 8% more
dynamic write-barriers. In kernel parBFS, the compiler is able to remove an array reference
via common subexpression elimination prior to the instrumentation, thus instrumented one
less static read-barrier than manual instrumentation. On the other hand, one additional write-
barrier and read-barrier are instrumented by the compiler for references to non-escaping heap
locations. In both cases, the allocation of the heap and the reference to the heap location occur
in separate functions after the compiler outlined OMP parallel regions. Our intra-procedural
escape analysis is not able to eliminate these barriers. Therefore, the compiler version generated
fewer checkpoints but more write-barriers.

5.3. HSQLDB

HSQLDB [18] is a SQL relational database engine written in Java and it supports an in-
memory table in addition to the disk-based table. The multi-threaded version of this code

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 13

critical section coverage count size read-set write-set
(file:line Number) phase [%] [# Insts] avg total avg total
Session.java:870 94 50005 12200 283 14155316 49 2489426

Table III. Transaction characteristics in hsqldb.

throughput [tx/sec]
Lock-HSQLDB (original) 22154
STM-HSQLDB 4417 (5x smaller)

Table IV. HSQLDB throughput on a single thread

does not scale well since a single lock controls access to the database object, thus threads
serialize their execution at the level of SQL statements. The lock that protects the database
is implemented using Java’s synchronized mechanism in the form of a single synchronized
block.

Our transactional-memory implementation of HSQLDB transforms the synchronized
block into a transactional block. This is possible because we use the in-memory variant of
the database and therefore no I/O operations are performed within the transaction. This
transformation is similar with the transformation done by Chung et al [7].

One of the core data structures in HSQLDB is a B-tree. Although we expected most of the
conflicts to occur on the B-tree object, many conflicts occurred on other data structures, such
as global counters. We observed that every transaction incremented several shared counters,
which caused frequent conflicts among transactions and transaction retries. It was possible to
modify the code such that separate counters are used in each thread, thus avoiding conflicts.
As a result, most conflicts among transactions in the modified version of the code occur now
due to conflicting data accesses to the B-tree.

Table III shows the transactional characteristics in hsqldb. Despite the considerable average
size of the transactions, only 283 locations are read and 49 locations are written transactionally.
For this benchmark, we also determined the average transaction size including STM read and
write barriers; despite the sparse instrumentation, the average transaction size amounted to
72346 instructions, i.e., the code attributed to read and write barriers inside the transaction
inflates the instruction count of the vanilla critical section by almost a factor of 6.

5.3.1. Compiler evaluation

Table IV shows that the throughput of HSQLDB with STM on a single thread is five times
smaller than that of the original HSQLDB. Figure 6(a) shows the execution time breakdown
of HSQLDB on STM. Most of the time is spent in the STM library: about half of the time
is consumed by stm read and by the call to get write entry that searches the address in the
internal write buffer. 8% of time is consumed by stm status, which is called before every barrier
to check whether it is in a transaction context since an instrumented method can be called
outside the transaction.

Figure 6(b) shows the effectiveness of the optimizations we implemented. Most of the
benefit for transaction-local object optimization comes from the elimination of write-barriers

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

14 WU ET AL.

26%

25%

9%

8%

4%

16%

12%

get_write_entry stm_read stm_end stm_status

stm_write JITCODE Others

(a)

0

5000

10000

15000

20000

25000

Original +STM +STM+Ver +STM+Ver+Local

T
h
ro
u
g
h
p
u
t
(t
x
/s
e
c
)

(b)

Figure 6. (a) Breakdown of execution time and (b) effectiveness of optimizations (ver: versioning,
local: transaction local object optimization)

STM STM+ver+local
read-set avg. 283 296 (4.5% increased)

max. 696 748 (8% increased)
write-set avg. 49 39 (20% reduced)

max. 230 167 (19% reduced)

Table V. Sizes of read and write-set in HSQLDB.

in the constructor. Table V shows that the size of write-sets was reduced by 20% after the
optimization. That, in turn, reduces the search time spent in get write entry, thus speeds
up read-barriers. By versioning the instrumented procedures, we significantly reduce calls to
stm status (to one per method invocation), and also speedup the execution when a function is
not invoked in a transaction context.

Figure 7 shows the performance of hsqldb on an 8-processor Power5 multiprocessor§. We
observe that the lock-based version of the application does not scale (i.e., with flat throughput)
even with more threads. The STM-based version of the implementation scales very well.
Although it starts with higher overhead, it outperforms the lock-based version beyond 4
threads.

§System administration issues prevented us from setting up the Java STM environment on the 16-processor
multiprocessors.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 15

0

2

4

6

8

1 2 4 8

Threads

S
p

ee
d

u
p

 (
N

o
rm

al
iz

ed
 t

o
 1

-T
h

re
ad

 S
T

M
)

lockSTM
Figure 7. Scalability of hsqldb on an 8-way Power5.

6. Related Work

Due to the vast amount of recent work related to transactional memory, we restrict this
discussion to those papers that describe modifications to compilation and managed runtime
environments, since that is most directly relevant to the work presented here.

The most closely related work to our C/C++ compiler optimization is the recent release
of a C/C++ compiler distribution by Intel that includes support for transactional programs
targeting an STM interface, documented by Wang et al [34]. Their system uses annotations
to mark transaction boundaries and identify functions that may be called from a transaction,
for which the compiler generates a transactional version of the function. Their optimizing
compiler includes transactional primitives in its intermediate representation, which is then
optimized using partial redundancy elimination, reducing some unnecessary read barriers.
The compiler also includes support for code motion across transaction boundaries (when
safe), accommodated by an efficient compensating checkpoint mechanism. In contrast, our
modifications to XLC are focused on reducing the number of read-/write-barriers using escape
analysis, and should be orthogonal to the optimizations implemented in the Intel compiler.

Several Java-based STM systems have also been described. Table VI shows a summary of
existing Java-based STM systems. Herlihy et. al. have proposed APIs to define transactions and
transactional objects which need to be instrumented [15, 16]. The advantage of this approach
is to reduce the number of read-/write-barriers by restricting the instrumented objects with
the developer’s effort. The disadvantage is that developers need to make much effort to write
transactional programs by defining transactional objects in addition to defining transactions.

Harris et. al. and Adl-Tabatabai et. al. have introduced high-level constructs to define
transactions [1, 13]. Read-/write-barriers are automatically inserted by the JIT compiler.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

16 WU ET AL.

Table VI. Summary of Java-based STM systems

How to define transactions How to instrument the code
DSTM [16, 15] Use API: A critical region is defined

by implementing a method of a new
API.

Use API: An instrumented object
is defined by implementing the
methods of a new API.

WSTM [13],
McRT-STM [1]

Use construct: A critical region is
defined by using a new construct.

Use JVM and JIT compiler: Read-
/write-barriers are automatically
inserted.

Transactional
monitor [35]

Use synchronized construct: A
synchronized block is recognized as
a critical region.

Azul’s
optimistic
locking mecha-
nismy [31]

Use synchronized construct: A
synchronized block is recognized as
a critical region.

Use JVM and hadware support: A
lock is acquired by multiple threads
and the data contention is detected
by the hardware.

Although this approach reduces the work of developers, it increases the number of read-/write-
barriers. Adl-Tabatabai et. al. describe some optimization techniques to reduce the overhead of
each read-barrier by employing the eager-write policy (in which it is not necessary to search to-
be-written values), and to reduce the number of read-/write-barriers by employing the object-
based conflict detection with some compiler optimizations. The compiler optimizations they
proposed are: 1) versioning, 2) barrier elimination of transaction local objects, 3) redundant
barrier elimination using the traditional redundancy elimination technique, and 4) barrier
inlining. Two optimizations mentioned in 4.2 are a part of those optimizations.

There has also been recent work leveraging transactional hardware primitives in support of
optimizations that require efficient conflict detection and/or checkpointing[23, 33]. In contrast
to the work presented here, which focuses on reducing the overheads of transactional runtime
systems, these papers explore compiler and runtime optimizations that leverage TM hardware
to optimize applications regardless of whether they may have been written to use transactions.

7. Conclusions and Future Work

This paper presents our preliminary experience adding support for transactions to an industrial
strength compiler and managed runtime. Using several multithreaded applications, we have
studied the overheads of executing these applications on a software transactional memory
system runtime. Based on the characterization of the execution we designed and implemented
several optimizations attacking these overheads. By exploiting the synergy between the design
and implementation of the STM and the ability of the compiler to analyze and optimize
transactions we obtained speedups of up to 46% (32% average over 1–16 threads runs on the
B+tree application).

While respectable, significantly more work needs to be done to eliminate the conflict-free
overheads of STMs. We believe that this is certainly within the realm of the infrastructure that
we built. It should also be noted that although this work has largely focused on reducing the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

COMPILER AND RUNTIME OPTIMIZATION IN TRANSACTIONAL MEMORY 17

single-thread overheads caused by TM, given an application with enough inherent parallelism
and enough processors on which to run, these overheads are constant per-thread, and will
ultimately be overcome by the additional concurrency exposed by transactional memory.
Examples of such potential are shown in our results on the HSQLDB application, which
scales almost linearly using transactions while it provides no scaling on the lock based
implementation.

Furthermore, beside the performance advantages of transactional memory, transactional
programming has the potential of improving programmer productivity. Indeed, one such
example is demonstrated in this paper, since we used the compiler to instrument all the read
and write accesses in our applications, and the programmer had to just mark the transactional
blocks. However, transactional memory must be better integrated in a parallel programming
model to clearly demonstrate its potential.

REFERENCES

1. Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and Tatiana
Shpeisman. Compiler and Runtime Support for efficient software transactional memory. In Proc. of
PLDI ’06, pages 26–37, 2006.

2. C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie. Unbounded
Transactional Memory. In Proceedings of the Eleventh International Symposium on High-Performance
Computer Architecture, pages 316–327. Feb 2005.

3. D.A. Bader and K. Madduri. Design and Implementation of the HPCS Graph Analysis Benchmark on
Symmetric Multiprocessors. In Proc. 12th International Conference on High Performance Computing
(HiPC 2005), pages 465–476, December 2005.

4. Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin. Making the fast case common
and the uncommon case simple in unbounded transactional memory. In ISCA ’07: Proceedings of the
34th annual international symposium on Computer architecture, pages 24–34, New York, NY, USA, 2007.
ACM Press.

5. Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk disambiguation of speculative threads
in multiprocessors. In Proc. of ISCA 2006, pages 237–238, 2006.

6. Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson, Michael Van Biesbrouck, Gilles
Pokam, Brad Calder, and Osvaldo Colavin. Unbounded page-based transactional memory. In Proceedings
of the 12th international conference on Architectural support for programming languages and operating
systems, pages 347–358, New York, NY, USA, 2006. ACM Press.

7. JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom, Christos
Kozyrakis, and Kunle Olkotun. The common case transactional behavior of multithreaded programs.
In Proc. of the Twelfth IEEE Symposium on High-Performance Computer Architecture, pages 266–277,
2006.

8. Intel Corp. Intel C++ STM compiler, Prototype Edition, September 2007.
9. Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Daniel Nussbaum.

Hybrid transactional memory. In Proceedings of the 12th international conference on Architectural support
for programming languages and operating systems, pages 336–346, New York, NY, USA, 2006. ACM Press.

10. David Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In DISC, pages 194–208, Sep 2006.
11. Robert Ennals. Efficient Software Transactional Memory. Technical Report IRC-TR-05-051, Intel

Research Cambridge Tech Report, Jan 2005.
12. Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg,

Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Transactional memory
coherence and consistency. In Proceedings of the 31st Annual International Symposium on Computer
Architecture, page 102. IEEE Computer Society, Jun 2004.

13. Tim Harris and Keir Fraser. Language Support for Lightweight Transactions. In Proc. of the OOPSLA’03,
pages 14–25, 2006.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

18 WU ET AL.

14. Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing Memory Transactions. In
Proc. of the PLDI’06, pages 388–402, 2003.

15. Maurice Herlihy, Victor Luchangco, and Mark Moir. A Flexible Framework for Implementing Software
Transactional Memory. In Proc. of the OOPSLA’06, pages 253–262, 2006.

16. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software Transactional
Memory for Dynamic-Sized Data Structures. In Proc. of the ACM Symposium on Principles of Distributed
Computing, pages 92–101, 2003.

17. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architecture support for lock-free data
structures. In Proc. of the 20th Annual International Symposium on Computer Architecture, pages 289–
300, 1993.

18. hsqldb - 100 % java database. http://hsqldb.org/.
19. P. L. Lehman and S. Bing Yao. Efficient Locking for Concurrent Operations on B-trees. ACM Transactions

on Database Systems, (4):650–670, 1981.
20. Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Adaptive Software Transactional

Memory. In Proc. of the 19th International Conference on Distrubted Computing, pages 354–358,
September 2005.

21. Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat, William N.
Scherer III, and Michael L. Scott. Lowering the Overhead of Software Transactional Memory. In ACM
SIGPLAN Workshop on Transactional Computing. Jun 2006.

22. Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood. Logtm: Log-
based transactional memory. In Proceedings of the 12th International Symposium on High-Performance
Computer Architecture, pages 254–265. Feb 2006.

23. Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan, and Craig Zilles. Hardware
Atomicity for Reliable Software Speculation. In Proc. of ISCA ’07, pages 174–185, 2007.

24. Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transactional Memory. In Proceedings of
the 32nd Annual International Symposium on Computer Architecture, pages 494–505. IEEE Computer
Society, Jun 2005.

25. Torvald Riegel, Pascal Felber, and Christof Fetzer. A Lazy Snapshot Algorithm with Eager Validation.
In DISC, pages 284–298, 2006.

26. Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin Hertzberg.
McRT-STM: a High Performance Software Transactional Memory System for a Multi-Core Runtime.
In Proc. of PPoPP’06, pages 187–197, March 2006.

27. Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural Support for Software
Transactional Memory. In Proc. of the 39th Annual International Symposium on Microarchitecture,
pages 185–196, December 2006.

28. Nir Shavit and Dan Touitou. Software Transactional Memory. In Proc. of the Symposium of Principles
of Distributed Computing, pages 204–213, 1995.

29. Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steve Balensiefer, Dan Grossman, Richard
Hudson, Katherine F. Moore, and Bratin Saha. Enforcing isolation and ordering in stm. In Proc. of
PLDI ’07, pages 78–88. 2007.

30. Michael F. Spear, Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Conflict Detection
and Validation Strategies for Software Transactional Memory. In DISC, pages 179–193, 2006.

31. Azul Systems. Optimistic Thread Concurrency: Breaking the Scale Barrier. White Paper, January 2006.
32. Mark Tremblay. Transactional Memory for a Modern Microprocessor. 2007 Conference on Scalable

Approaches to High Performance and High Productivity Computing, September 2007.
33. Christoph von Praun, Luis Ceze, and Calin Cascaval. Implicit parallelism with ordered transactions. In

Proc of PPoPP 2007, pages 79–89, 2007.
34. Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-Tabatabai. Code Generation

and Optimization for Transactional Memory Constructs in an Unmanaged Language. In Proc. of CGO
’07, pages 34–48, 2007.

35. Adam Welc, Antony L. Hosking, and Suresh Jagannathan. Transparently Reconciling Transactions
with Locking for Java Synchronization. In ECOOP 2006: European Conference on Object-Oriented
Programming, volume 4067 of Lecture Notes in Computer Science. Springer-Verlag., pages 148–173, 2006.

36. Luke Yen, Jayaram Bobba, Michael M. Marty, Kevin E. Moore, Haris Volos, Mark D. Hill, Michael M.
Swift, and David A. Wood. LogTM-SE: Decoupling Hardware Transactional Memory from Caches. In
Proceedings of the 13th International Symposium on High-Performance Computer Architecture(HPCA).
Feb 2007.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

