
CERIAS Tech Report 2008-12
EXAM  a Comprehensive Environment for the Analysis of Access Control Policies

 by Dan Lin, Prathima Rao, Elisa Bertino, Ninghui Li, Jorge Lobo
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



EXAM – a Comprehensive Environment for
the Analysis of Access Control Policies

Dan Lin and Prathima Rao and Elisa Bertino and Ninghui Li
Department of Computer Science, Purdue University, USA
{lindan,prao,bertino,ninghui}@cs.purdue.edu
and
Jorge Lobo
IBM T.J. Watson Research Center
jlobo@us.ibm.com

Policy integration and inter-operation is often a crucial requirement when parties with different access control
policies need to participate in collaborative applications and coalitions. Such requirement is even more difficult
to address for dynamic large-scale collaborations, in whichthe number of access control policies to analyze
and compare can be quite large. An important step in policy integration and inter-operation is to analyze the
similarity of policies. Policy similarity can sometimes also bea pre-condition for establishing a collaboration, in
that a party may enter a collaboration with another party onlyif the policies enforced by the other party match
or are very close to its own policies. Existing approaches tothe problem of analyzing and comparing access
control policies are very limited, in that they only deal withsome special cases. By recognizing that a suitable
approach to the policy analysis and comparison requires combining different approaches, we propose in this
paper a comprehensive environment – EXAM. The environment supports various types of analysis query, that
we categorize in the paper. A key component of such environment, on which we focus in the paper, is the policy
analyzer able to perform several types of analysis. Specifically, our policy analyzer combines the advantages of
existing MTBDD-based and SAT-solver-based techniques. Our experimental results, also reported in the paper,
demonstrate the efficiency of our analyzer.

Categories and Subject Descriptors: D.4 OPERATING SYSTEMS[D.4.6 Security and Protection]: Access
controls

1. INTRODUCTION

With the widespread deployment of XML-based Web applications and Web services, var-
ious types of access control models and mechanisms have emerged, such as PolicyMaker
[Blaze et al. 1998], KeyNote [Blaze et al. 1999], the ISO 10181-3 model [ISO ] and
the eXtensible Access Control Mark-up Language (XACML) [XAC 2005]. The use of a
policy-based approach enhances flexibility, and reduces the application development costs.
Changes to the application access control requirements simply entail modifying the poli-
cies, without requiring changes to the applications and theaccess control mechanism. Re-
cent trends in service oriented architectures (SOA) [Bertino and Martino 2007] are also
emphasizing the role of policy languages in the developmentand deployment of access
control services.

A key requirement for the successful large scale deploymentof policy-based access
control services is the availability of tools for managing and analyzing policies. Such
a requirement is particularly crucial when dealing with distributed collaborative applica-
tions. In such a context, parties may need to compare their access control policies in order

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 ·

to decide which resources to share. For example, a question that a partyP may need
to answer when deciding whether to share a resource with other parties in a coalition is
whether these parties guarantee the same level of security as P . This is a complex ques-
tion and approaches to answer this question require developing adequate methodologies
and processes, and addressing several issues. A relevant issue is to compare access control
policies. A partyP may decide to release some data to a partyP ′ only if the access control
policies ofP ′ are very much the same as its own access control policies. Also since poli-
cies are deployed in many places within a distributed system- network devices, firewalls,
servers, applications - an important issue is to determine whether all the variously deployed
policies authorize the same set of requests.

Another interesting scenario that needs policy analysis isin the domain of Information
Technology (IT)-supported healthcare (eHealth). Nowadays, many hospitals and health
plan providers start using Electronic Medical Record systems to manage patient health
care data and enable communication of patient data between avariety of healthcare profes-
sionals. When sharing sensitive patient data, it is requiredby Legislative acts, like Health
Insurance Portability and Accountability Act (HIPAA) [United State Department of Health
], that the privacy of patients should be protected. Since different organizations may have
different privacy policies, policy analysis becomes crucial when multiple organizations
want to share same patients’ information. They need to find out the difference among their
policies and then decide how to achieve an agreement.

An important issue in the development of an analysis environment is devising techniques
and tools for assessingpolicy similarity, that we define as the characterization of the re-
lationships among the sets of requests respectively authorized by a set of policies. An
important example of such relationship is represented by intersection, according to which
one characterizes the set of common requests authorized by aset of given policies.

To date, however, no comprehensive environments exist supporting a large variety of
query analysis and related management functions. Specialized techniques and tools have
been proposed, addressing only limited forms of analysis (detailed discussion will be pre-
sented in Section II.B). Common limitations concern: policy conditions, in that only poli-
cies with simple conditions can be analyzed [Fisler et al. 2005]; and relationship charac-
terization, in that for example one can only determine whether two policies authorize some
common request, but no characterization of such request is provided.

The goal of our work is to address such limitations by developing a comprehensive
environment supporting a variety of analysis. We anchor ourwork around XACML poli-
cies. XACML is a rich language able to represent many policies of interest to real world
applications. In addition, because of the expressive powerof XACML, many notions un-
derlying our approach apply to policies expressed in other languages directly or indirectly
by transforming those policies into XACML policies.

The main contributions of the work reported in this paper canbe summarized as follows:

• We have developed EXAM (Environment for Xacml policy Analysis and Management),
a comprehensive environment for the analysis of access control policies expressed in
XACML.

• We have identified different types of policy analysis. Policy analysis in EXAM is
achieved through the use ofanalysis queries(query for short). These queries are func-
tions that allow the subject designing, deploying or inter-operating a policy (set of poli-
cies) to verify various properties of the policy (set of policies). We provide a large va-

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 3

riety of such queries, such as queries concerning single policies and queries concerning
multiple policies. Analysis queries can be combined to support more complex analysis.

• In the context of EXAM, we have developed a powerful policy similarity analyzer, which
is the core component for query processing. It combines ideas from the Multi-Terminal
Binary Decision Diagram (MTBDD) and SAT-solver techniques, thus combining their
advantages (see Section II for a detailed discussion).

• Finally, we have carried out an experimental evaluation of the policy similarity analyzer.
Our experimental results demonstrate the efficiency of our system.

The rest of the paper is organized as follows. Section 2 surveys XACML and reviews
existing policy analysis techniques and tools. Section 3 presents the EXAM environment
and Section 4 provides a comprehensive taxonomy and formal definitions of the analysis
queries supported by EXAM. Section 5 introduces the detailsof the policy similarity ana-
lyzer. Section 6 reports experimental results. Finally, Section 7 outlines some conclusions
and future work.

2. BACKGROUND AND RELATED WORK

In this section, we review basic XACML concepts and related work on policy analysis.

2.1 XACML Policies

XACML [XAC 2005] is the OASIS standard language for the specification of access con-
trol policies. It is an XML language able to express a large variety of policies, taking into
account properties of subjects and protected objects as well as context information. In gen-
eral, a subject can request an action to be executed on a resource and the policy decides
whether to deny or allow the execution of that action. Several profiles, such as a role pro-
file, a privacy profile etc. have been defined for XACML. Commercial implementations of
XACML are also available [PCX ; ]. XACML policies include three main components: a
Target, aRuleset and aRule combining algorithm.

• The Target identifies the set of requests that the policy is applicable to. It contains
attribute constraints characterizing subjects, resources, actions, and environments.

• EachRulein turn consists of another optionalTarget, aConditionand anEffectelement.
The ruleTargethas the same structure as the policyTarget. It specifies the set of requests
that the rule is applicable to. TheConditionspecifies restrictions on the attribute values
in a request that must hold in order for the request to be permitted or denied as specified
by the Effect. The Effect specifies whether the requested actions should be allowed
(Permit) or denied (Deny).
The restrictions specified by the target and condition elements correspond to the notion
of attribute-based access control, under which access control policies are expressed as
conditions against the properties of subjects and protected objects. In XACML such
restrictions are represented as Boolean functions taking the request attribute values as
input, and returningtrue or false depending on whether the request attributes satisfy
certain conditions. If a request satisfies the policy target, then the policy is applicable
to that request. Then, it is checked to see if the request satisfies the targets of any rules
in the policy. If the request satisfies a rule target, the ruleis applicable to that request
and will yield a decision as specified by theEffectelement if the request further satisfies

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 ·

the rule condition predicates. If the request does not satisfy the policy(rule) target, the
policy(rule) is “Not Applicable” and the effect will be ignored.

• TheRule combining algorithmis used to resolve conflicts among applicable rules with
different effects. For example, if a request is permitted byone rule but denied by another
rule in a policy and the permit-overrides combining algorithm is used, the request will be
permitted by the policy. If the deny-overrides combining algorithm is used, the request
will be denied by the policy.

An XACML policy may also contain one or moreObligations,which represent functions
to be executed in conjunction with the enforcement of an authorization decision. However,
obligations are outside the scope of this work and we do not further consider them in this
paper.

2.2 Related Work on Policy Analysis

In order to discuss related work, it is useful to distinguishtwo types of policy analysis: pol-
icy property analysis and policy similarity analysis.Policy property analysisrefers to the
verification of a given property on a single policy, whereaspolicy similarity analysisrefers
to a comparison among two or more policies. More specifically, the comparison among
policies may check different relationships among policiessuch as equivalence, refinement,
redundancy, and conflict.

We first review work dealing with property verification for single policies. Most such
approaches are based on model checking techniques [Ahmed and Tripathi 2003; Guelev
et al. 2004; Zhang et al. 2005]. Ahmed et al. [Ahmed and Tripathi 2003] propose a
methodology for analyzing four different policy properties in the context of role-based
CSCW (Computer Supported Cooperative Work) systems; this methodology uses finite-
state based model checking. Since they do not present any experimental results, it is not
clear if their state-exploration approach can scale well topolicies with a very large set of
attributes and conditions. Guelev et al. propose a formal language for expressing access-
control policies and queries [Guelev et al. 2004]. Their subsequent work [Zhang et al.
2005] proposes a model-checking algorithm which can be usedto evaluate access control
policies written in their proposed formal language. The evaluation includes not only assess-
ing whether the policies give legitimate users enough permissions to perform their tasks,
but also checking whether the policies prevent intruders from achieving some malicious
goals. However, the tool can only check policies of limited sizes.

Existing approaches to the policy similarity analysis are mostly based on graph, model
checking or SAT-solver techniques [Agrawal et al. 2005; Backes et al. 2004; Fisler et al.
2005; Koch et al. 2001; Lupu and Sloman 1999; Moffett and Sloman 1993]. Koch et
al. [Koch et al. 2001] use graph transformations to represent policy change and integration,
which may be used to detect differences among policies. Suchan approach supports an
intuitive visual representation which can be useful duringthe design of a customized ac-
cess control policy. However, it can only be used as a specification method but not as an
execution method. Backes et al. [Backes et al. 2004] proposean algorithm for checking
refinement of enterprise privacy policies. But, their algorithm is limited to identify which
rule in one policy needs to be compared with the rules in the other policy. They do not
provide an approach for the evaluation of condition functions.

A more practical approach is by Fisler et al. [Fisler et al. 2005], who have developed
a software tool known as Margrave for the analysis of role-based access-control policies

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 5

written in XACML. Margrave represents policies using the Multi-Terminal Binary De-
cision Diagram (MTBDD), which can explicitly represent allvariable assignments that
satisfy a Boolean expression and hence provides a good representation for the relation-
ships among policies. Policy property verification is then formulated as a query on the
corresponding MTBDD structures. For processing a similarity query involving two poli-
cies, the approach proposed by Fisler et al. is based on combining the MTBDDs of the
policies into a CMTBDD (change-analysis MTBDD) which explicitly represents the vari-
ous requests that lead to different decisions in the two policies. The MTBDD structure has
been credited with helping model checking scale to realistic systems in hardware verifica-
tion. The major shortcoming of Margrave is that it can only handle simple conditions, like
string equality matching. A direct consequence of such limitation is an explosion of the
MTBDD size when conditions on different data domains (e.g. inequality functions) have
to be represented. For example, to represent the condition “time is between 8am to 10pm”,
the MTBDD tool needs to enumerate all possible values between “8am” to “10pm”(e.g.,
“time-is-8:00am”, “time-is-8:01am”, “time-is-8:02am”,...).

Other relevant approaches are the ones based on SAT-solver techniques. Most such ap-
proaches [Lupu and Sloman 1999; Moffett and Sloman 1993] however only handle policy
conflict detection. A recent approach by Agrawal et al. [Agrawal et al. 2005] investi-
gates interactions among policies and proposes a ratification tool by which a new policy
is checked before being added to a set of policies. In [McDaniel and Prakash 2006], Mc-
Daniel et al. carry out a theoretical study on automated reconciliation of multiple policies
and then prove that this is an NP-complete problem. In [Kolovski et al. 2007], Kolovski
et al. formalize XACML policies by using description logicsand then employ logic-
based analysis tools for policy analysis. These SAT-solverbased approaches formulate
policy analysis as a Boolean satisfiability problem on Boolean expressions representing
the policies. Such approaches can handle various types of Boolean expressions, includ-
ing equality functions, inequality functions, linear functions and their combinations. By
construction, the SAT algorithms look for one variable assignment that satisfies the given
Boolean expression, although they may be extended to find allsatisfying variable assign-
ments. For each round of analysis or query, SAT algorithms need to evaluate the corre-
sponding Boolean expression from scratch. A major shortcoming of SAT algorithms is
that they cannot reuse previous results and are not able to present an integrated view of
relationships among policies.

Most recently, Mazzoleni et al. [Mazzoleni et al. 2006] haveinvestigated the policy
similarity problem as part of their methodology for policy integration. However, their
method for computing policy similarity is limited to identifying policies referring the same
attribute.

Unlike aforementioned work that focuses on a special case ora certain type of policy
analysis, our approach aims at providing an environment in which a variety of analysis
can be carried out. In particular, our environment is able not only to handle conventional
policy property verification and policy comparison, but also to support queries on common
portions and different portions of multiple policies.

The policy property analysis problem is a more general form of the compliance checking
problem investigated in the area of trust management [Blazeet al. 1998]. In the compliance
checking problem, one asks whether a single request is authorized by a policy. In the
policy property analysis, one can check other properties ofa policy, such as whether the

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 ·

policy authorizes any query at all. Moreover, the policy similarity problem has not been
investigated in the area of trust management.

3. EXAM ARCHITECTURE

The EXAM environment, an overview of which is shown in Figure1, includes three lev-
els. The first level is the user interface, which receives policies1, requests and queries from
users, and returns request replies and query results. The second level is the request dis-
patcher, which handles various requests received from the user interface, dispatches them
to proper analysis module and aggregates obtained results.The third level is the core level
of EXAM and includes three modules supporting different tasks in policy analysis, namely:
policy annotator, policy filter, andpolicy similarity analyzer.

User User User

Request Dispatcher

Policy Similarity

Analyzer (PSA)

. . .

User  Interface

Annotation
Policy

Repository
Policy

Filter
Policy

Fig. 1. EXAM Architecture

• Policy annotator [Rao et al. 2007]: it preprocesses each newly acquired policy by adding
annotations to it. The annotations explicitly represent the behavior or semantics of each
function referred in the policy. Such annotations help in automatically translating poli-
cies into Boolean formulae that can then be evaluated by the policy analysis modules.
The annotated policies are stored in the policy repository together with the policy meta-
data.

• Policy filter [Lin et al. 2007]: it is a lightweight approach which quickly evaluates sim-
ilarity between each pair of policies and assigns them a similarity score ranging from 0
to 1. The higher the similarity score is, the more similar thetwo policies are. According
to the obtained similarity scores, policies with low similarity scores may be pruned from
further analysis, whereas policies with high similarity scores will be further examined.
The main goal of the policy filter module is to reduce the number of policies that need

1In EXAM policies can also be acquired from files through a browsing interface; we do not discuss the user
interface related aspects of the environment as they are not relevant to the discussion in the paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 7

to be analyzed more in details, when dealing with large size policy sets. The filtering
approach we use is based on techniques from information retrieval and is extremely fast.
The use of filtering in the policy analysis process is howeveroptional. The policy man-
agement module can directly send analysis queries to the policy similarity analyzer, to
carry out a fine-grained policy analysis, without performing the filtering.

• Policy similarity analyzer (PSA): it is the core component of our approach to policy
analysis. It basically implements the strategies for processing the policy analysis queries
supported by EXAM, and thus in the subsequent sections we describe in details its main
techniques and query processing strategies.

It is worth noting that our system is flexible and supports an easy integration of new
functions. Even though its current version applies only to XACML policies, it can be
easily adapted to deal with other policy languages.

4. ANALYSIS QUERIES ON POLICIES

In this section, we present formal definitions of policy analysis queries that are supported
by EXAM. Because one can analyze policies and sets of policies from different perspec-
tives, it is important to devise a comprehensive categorization of such queries. In our work,
we have thus identified three main categories of analysis queries, which differ with respect
to the information that they query. These categories are:policy metadata queries, policy
content queries, andpolicy effect queries. Figure 2 provides a taxonomy summarizing the
various query types.

Policy Metadata Query

p Qc
Qd

Policy Content Query Policy Effect Query

Policy Analysis Query

Single−Policy Query Multiple−Policy Query

Property Verification Query Common Property Query Discrimination Query

Q

Fig. 2. Query Categorization

Policy metadata queries analyze metadata associated with policies, such as policy cre-
ation and revision dates, policy author, and policy location. A policy content query, by
contrast, extracts and analyzes the actual policy content,such as the number of rules in
the policy, the total number of attributes referenced in thepolicy, the presence of certain
attribute values.

A policy effect query analyzes the requests allowed or denied by policies and interac-
tions among policies. The category of the policy effect queries is the most interesting one
among the query categories we have identified. The processing of policy effect queries is
also far more complex than the processing of queries in the other two categories, and thus
we address its processing in details (see next section). Thepolicy effect query category can
be further divided into two subcategories: (i) queries on single policy; and (ii) queries on

ACM Journal Name, Vol. V, No. N, Month 20YY.



8 ·

multiple policies. The first subcategory contains one type of query, referred to asproperty
verification query. The second subcategory contains two main types of queries,namely
common property queryanddiscrimination query.

In the following, we first introduce some preliminary notions, and then present more
details for each type of policy effect query (query for short), including their definitions and
functionalities.

4.1 Preliminary Notions

In our work, we assume the existence of a finite setA of names. Each attribute, charac-
terizing a subject or a resource or an action or the environment, has a namea in A, and a
domain, denoted bydom(a), of possible values. The following two definitions introduce
the notion of access request and policy semantics.

DEFINITION 1. Leta1, a2, ...,ak be attribute names in policyP , and letvi ∈ dom(ai)
(1 ≤ i ≤ k). r ≡ {(a1, v1), (a2, v2), · · · , (ak, vk)} is a request, andeP

r denotes the effect
of this request againstP .

EXAMPLE 1. Consider policyPol1 in Example 1. An example of request to which
this policy applies is that of a user from domain “.edu” wishing to access the data at
9am. According to Definition 1, such request can be expressedasr ≡ {(domain, “.edu′′),
(time, 9am)}.

DEFINITION 2. LetP be an access control policy. We define the semantics ofP as a 2-
tuple{Bpermit, Bdeny}, whereBpermit andBdeny are Boolean expressions corresponding
to permit and deny rules respectively.Bpermit andBdeny are defined as follows.

{

Bpermit = TP ∧ ((TPR1
∧ CPR1

) ∨ ... ∨ (TPRk
∧ CPRk

))
Bdeny = TP ∧ ((TDR1

∧ CDR1
) ∨ ... ∨ (TDRj

∧ CDRj
))

where,TP denotes a Boolean expression on the attributes of the policytarget;TPRi
and

CPRi
(i = 1, ...,k) denote the Boolean expressions on the attributes of the rule target and

rule condition of permit rulePRi; andTDRi
andCDRi

(i = 1, ..., j) denote the Boolean
expressions on the attributes of the rule target and rule condition of deny ruleDRi.

The Boolean expressions (B, T andC) that frequently occur in policies can be broadly
classified into the following five categories, as identified in [Agrawal et al. 2005] :

- Category 1: One variable equality constraints.
x = c, wherex is a variable andc is a constant.

- Category 2: One variable inequality constraints.
x ¤ c, wherex is a variable,c is a constant, and¤ ∈ {<,≤, >,≥}.

- Category 3: Real valued linear constraints.
∑n

i=1
aixi ¤ c, wherexi is variable,ai, ci are constants, and¤ ∈ {=, <,≤, >,≥}.

- Category 4: Regular expression constraints.
s ∈ L(r) or s /∈ L(r), wheres is a string variable, andL(r) is the language generated
by regular expressionr.

- Category 5: Compound Boolean expression constraints.
This category includes constraints obtained by combining Boolean constraints belonging
to the categories listed above. The combination operators are∨, ∧ and¬. By using¬,
we can represent the inequality constraintx 6= c as¬(x = c).

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 9

It is worth noting that Boolean expressions on the attributes of policy targets or rule targets
(TP , TPR) usually belong to Category 1.

The domains of the attributes that appear in the above Boolean expressions belong to
one of the following categories :

- Integer domain : The attribute domains in Boolean expressions of categories 1,2 and 5
can belong to this domain.

- Real domain : The attribute domains in Boolean expressionsof categories 1,2,3 and 5
can belong to this domain.

- String domain : The attribute domains in Boolean expressions of categories 1, 4 and 5
can belong to this domain.

- Tree domain : Each constant of a tree domain is a string, and for any constant in the tree
domain, its parent is its prefix (suffix). The X.500 directories, Internet domain names
and XML data are in the tree domain. For example, an Internet domain constant “.edu”
is the parent of an Internet domain constant “purdue.edu”. The attribute domains in
Boolean expression of categories 1 and 5 can belong to this domain.

4.2 Policy Effect Query

DEFINITION 3. Let Pol1, Pol2, ...,Poln ben (n ≥ 1) policies. A policy effect query
has the form:〈Bq, (eq1

, eq2
, ..., eqn

), fq〉, whereBq is a Boolean function on a subset of
attributes occurring in then policies,eqi

⊂ {Permit, Deny, NotApplicable2} (1 ≤ i ≤ n),
andfq is a Boolean expression on the number of requests.

To evaluate a policy effect query, we first find the requests that satisfyBq. For each
such request, we obtain the decisions fromn (n ≥ 1) policies and compare the decisions
with eq1

, ..., eqn
. If every eqi

(1 ≤ i ≤ n) is matched, insert the request to a result set
R. The last step is to checkfq. Currently, our system supports two types offq functions
and their combinations: (i)true, which means there is no constraint; (ii)|R| ¢ x (¢ ∈ {<
,≤,=, 6=, >,≥}), where|R| is the number of requests andx is a constant. For example,
|R| > 0 is a query constraint which checks if the corresponding query returns at least
one request. It is worth noting thatfq can be a more complicated function on a particular
set of attributes. Such flexibility in the definition onfq allows our query language to
cover various situations. The output of a policy effect query is a value “true” and a set of
requests whenfq is satisfied, otherwise the output is “false”. In what follows, we show
how to represent property verification query, common property query and discrimination
query through examples.
Property verification query (Qp). It checks if a policy can yield specified decisions given
a set of attribute values and constraints.

EXAMPLE 2. Consider a scenario from a content delivery network(CDN) built on P2P
network, e.g. Lockss [Baker et al. 2005] and LionShare [Morr2007], in which parties can
replicate their data in storage made available by third party resource providers. There are
usually two types of parties: data owner and resource owner.The policies of a data owner
specify which users can access which data, among these ownedby the data owner, under
which conditions. The access control policies of the resource owners specify conditions
for the use of the managed resources. For example,Pol1 is a policy of a data owner who

2We do not distinguish “NotApplicable” and “Non-determinism”in this paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 ·

allows any user from domain “.edu” to access his data from8am to 10pm everyday.Pol2
is a policy of a resource owner who allows any user from domain“ .edu” or affiliated with
“ IBM” to access his machine from6am to 8pm everyday, and allows his friend Bob to
access his machine anytime if the sum of uploading and downloading file sizes is smaller
than 1GB. According to Definition 2, policyPol1 andPol2 are represented as function (1)
and (2) respectively.

{

Bpermit = (domain = “.edu”) ∧ (8am ≤ time ≤ 10pm)
Bdeny = NULL

(1)







Bpermit = ((domain = “.edu” ∨ affiliation = “IBM”) ∧ (6am ≤ time ≤ 8pm))
∨ (user = “Bob” ∧ upload + download < 1GB)

Bdeny = NULL
(2)

Suppose that the resource owner would like to carry out system maintenance in the
time interval [10pm,12am], and hence he may want to check if policy Pol2 will deny any
external access to the resource between 10pm and 12am. Such aquery can be expressed
as follows:

Qp ≡ 〈10pm ≤ time ≤ 12am, ({Permit}), |R| = 0〉.
The query first checks if any request with the time attribute in the range of 10pm and 12pm
is permitted, and stores such requests inR. Then, the query verifies the constraintfq. In
this example, some requests from “Bob” during [10pm,12am] will be permitted and hence
R is not empty which violatesfq. The property verification query will return “false” as an
answer.

Common property query (Qc). In large dynamic environments, we cannot expect poli-
cies to be integrated and harmonized beforehand, also because policies may dynamically
change. Therefore, a subject wishing to run a query has to comply with both the access
control policy associated with the queried data and the access control policy of the resource
to be used to process the query. Because such parties may not have the same access control
policies, in order to maximize the access to the data, it is important to store the data at the
resource owner having access control policies similar to the access control policies associ-
ated with the data. Common property query are used to find common properties shared by
multiple policies.

EXAMPLE 3. Consider Pol1 and Pol2 in Example 2, an example common property
query is to find all the requests permitted by both policies, which is written asQc ≡ 〈true,
({Permit}, {Permit}), true〉. In this query,Bq andfq are true, which means there is no
constraint on the attributes of a request. “({Permit}, {Permit})” indicate that any request
be permitted by both policies will be returned as an answer.

The following example shows a common property query with constraints on the at-
tributes of a request.

EXAMPLE 4. Determine when the requests of users from domain “.edu” are permitted
by policy Pol1 and Pol2. This query consists of two parts. First, we need to find all requests
of users from domain “.edu” that can be permitted by both policies, which is a common
property query with the constraint on thedomainattribute. It can be written asQc ≡
〈domain = “.edu”, ({Permit}, {Permit}), true〉. After the result setR is obtained, the
second step is to post processR and extract the values of thetimeattribute.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 11

Discrimination query (Qd). Besides determining the common parts of the access control
policies shared by multiple parties, one party may also be interested in checking if certain
key requests can be successfully handled by its potential collaborators. In other words,
one may want to know if the difference among the multiple access control policies has a
negative effect on some important tasks. A discrimination query is thus used to find the
difference between one policy and the others.

EXAMPLE 5. A patient needs to be transferred from a local hospital to a specialistic
hospital. He is satisfied with the privacy policies in the local hospital because, for example,
the local hospital protects patient data from being used forlab research without the patient
agreement. Before the transfer, he wants to make sure that the specialistic hospital will also
well protect his medical data. He can then issue a discrimination query likeQd ≡ 〈true,
({Deny}, {Permit}), true〉 to find out the requests denied by the local hospital’s policybut
permitted by the specialist hospital’s policy.

Both the common property query and the discrimination queryfocus on a partial view
of policies. The common property query only considers the intersections of request sets
with the same effects, and the discrimination query only considers the mutually exclusive
request sets. To obtain an overview of relationships between policies, we combine the
common property queries and discrimination queries. Example 6 shows how to check
policy equivalence.

EXAMPLE 6. To determine whetherP1 is the same asP2, i.e. for any requestr, P1 and
P2 yield the same effect, we can use the following set of discrimination queries.







Qd1 ≡ 〈true, ({Permit},{Deny,NotApplicable}), |R| = 0〉
Qd2 ≡ 〈true, ({Deny},{Permit,NotApplicable}), |R| = 0〉.
Qd3 ≡ 〈true, ({NotApplicable},{Permit,Deny}), |R| = 0〉.

Qd1 checks if there exists any request permitted byP1 but not permitted byP2. Qd2 and
Qd3 check the other two effects. When all queries return “true”,P1 equalsP2. Note that
though there are multiple queries, they can be executed simultaneously (see Section 5.4).

Similarly, we can also use combinations of queries to represent other relationships like
policy inclusion, policy incompatibility and policy conflict. In particular, policy inclusion
means: for any requestr that is applicable toP1, if P1 andP2 yield the same effect forr,
we sayP1 is included byP2. Policy incompatibility means: there exists a requestr such
thatP1 andP2 yield different effects; also there exists a requestr such thatP1 andP2 yield
same effect. Policy conflict means: for every requestr that is applicable toP1 andP2, P1

andP2 yield different effects.
From the previous discussion, we can observe that the execution of each policy query

essentially corresponds to the evaluation of a set of requests. For clarity, we would like
to distinguish a policy query from general requests in two aspects. First, a policy query
usually specifies some constraints on some attributes. A request that only contains the
specified attributes is not sufficient for evaluating the policy property, because the policy
will consider other attributes as “don’t care” and most possibly yields the effect “Not Ap-
plicable”. Therefore, for a policy query, we need to consider all possible combinations of
value assignments for the attributes that are not specified in the query. Second, a policy
query often needs to analyze a set of requests. It may not be efficient to treat these re-
quests separately. Later on in the paper, we present our query algorithms which take the

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 ·

advantages of the common parts of these requests and evaluate them together.

5. POLICY SIMILARITY ANALYZER

PSA is the key component of EXAM in that it implements the analysis queries. In what
follows, we describe its architecture, detailed construction algorithms and the query pro-
cessing strategies.

5.1 Architecture of PSA

As we mentioned in Section 2, policies can be represented as Boolean formulae (also
called constraints). The problem of analyzing policies is then translated into the problem of
analyzing Boolean formulae. The main task of the PSA module is to determine all variable
assignments that can satisfy the Boolean formulae corresponding to one or more policies,
and also variable assignments that lead to different decisions for different policies. The
basic idea is to combine the functionalities of the policy ratification technique [Agrawal
et al. 2005] and MTBDD technique [Fisler et al. 2005] by usinga divide-and-conquer
strategy.

Figure 3 shows the architecture of PSA. Policies are first passed to apreprocessorwhich
identifies parts to be processed by theratification moduleand parts to be directly trans-
mitted to theMTBDD module. The ratification module then generates unified nodes and
a set of auxiliary rules that are transmitted to the MTBDD module. The MTBDD module
then creates a combined MTBDD that includes policies and additional rules. By using the
combined MTBDD, the PSA module can thus process the queries that we introduced in
Section 4. Specifically, queries on a single policy are carried out on the MTBDD of the
policy being queried, whereas queries on multiple policiesare carried out on the CMTBDD
of corresponding policies. Finally, the result analyzer reformats the output of the MTBDD
module and reports it to the users.

PSA

Preprocessor
Query

Ratification
Module MTBDD

Module

Policy Preprocessor

QPnP2P1

Result Analyzer

Fig. 3. Architecture of the Policy Similarity Analyzer (PSA)

In the following sections, we first introduce how to represent a policy using a MTBDD

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 13

and then present the details of policy analysis based on suchrepresentation. Finally, we
discuss the policy query processing.

5.2 Policy Representation

Given an input policy, the policy preprocessor translates it into at most two compound
Boolean expressions (Boolean expressions of category 5) which correspond to the permit
and deny effects respectively. The compound Boolean expressions are composed of atomic
Boolean expressions which usually belong to the first four categories, i.e., one variable
equality, one variable inequality, real valued linear and regular expression constraints as
presented in Section 4.1. Example 2 shows the Boolean expressions of policyPol1 and
Pol2.

The compound Boolean expressions of a policy are represented as a MTBDD. The struc-
ture of a MTBDD is a rooted acyclic directed graph. The internal nodes represent atomic
Boolean expressions and the terminals represent policy effects, i.e., Permit(P), Deny(D)
and NotApplicable (NA). Each non-terminal node has two edges labeled 0 and 1 which
means that the atomic Boolean expression associated with this node is unsatisfied or sat-
isfied respectively. Nodes along the same path have “∧”(AND) relationship and nodes in
the different paths have “∨” (OR) relationship. Each path in the MTBDD represents a set
of requests that satisfy the atomic Boolean expressions in the nodes with 1-edge along the
path, and the terminal at the end of the path represents the effect of the policy for the set
of requests. While in the worst case the number of nodes in an MTBDD is exponential in
the number of variables, in practice the number of nodes is often polynomial or even linear
[Fisler et al. 2005].

EXAMPLE 7. Figure 7 shows the MTBDD for policyPol2. The MTBDD has five nodes
and three terminals. Nodesd, a, t, u andf stand for atomic Boolean expressions (domain
= “.edu”), (affliation= “IBM”), (6am ≤t≤8pm), (user=“Bob”) and (upload + download
< 1GB), respectively. Terminals “N”, “CP” and “P” stand for “NotApplicable”, “Con-
ditional Permit” and “Permit” respectively.

Pol2

a

N

tu

f

CP P

d
0

1

1

0 1

10

0 1

0

Fig. 4. The MTBDD for policy Pol2

Take the right most path as an example. Such path indicates that if a request satisfies
Boolean expressions in nodesd andt, the request will be permitted by policyPol2.

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 ·

From Figure 7, we notice a new terminal “CP” which meansconditional permit. Such a
terminal indicates that there exist some requests satisfying the Boolean expressions along
the paths ending at this terminal but the variable assignments cannot be directly derived
from the internal nodes due to the existence of linear constraints or regular expressions.
Checking whether the Boolean expressions along that path issatisfiable is the task of the
ratification module which will be detailed in the next subsection. Similarly, we can define
another terminal “CD” (conditional deny).

5.3 Policy Comparison

To compare policies, their MTBDDs are combined to form a combined MTBDD (CMTBDD)
by a binary operation calledApply [Fujita et al. 1997]. MTBDDs to be combined need to
follow the same variable ordering, i.e. the ordering that determines which node precedes
another. We first consider the CMTBDD constructed from two policies. TheApply oper-
ation is a recursive operation that traverses two MTBDDs simultaneously starting from the
root node. If the currently retrieved nodes of the two MTBDDsare the same, the node will
be kept and theApply operation is applied to the left children of both nodes, and the right
children of both nodes separately. If nodeN1 of MTBDD1 precedesN2 of MTBDD2, N1

will be kept in the CMTBDD and theApply operation continues to compareN2 with both
left and right children ofN1. When the terminals of both MTBDDs are reached, the termi-
nal of the CMTBDD is obtained by combining the effects of the two terminals. Since each
MTBDD has five terminals: P(Permit), D(Deny), CP(Conditional Permit), CD(Conditional
Deny) and N(NotApplicable), a CMTBDD has twenty-five terminals, one for each ordered
pair of results from the policies being compared (such as P-P, P-D). A high level descrip-
tion of theApply operation is shown in Figure 5. For multiple policies, we canconstruct
CMTBDD for each pair of policies to be compared and then aggregate the analysis results.

The construction of the CMTBDD is for the purpose of supporting policy analysis
queries. However, if we construct the CMTBDD without analyzing the Boolean expres-
sions represented by nodes in MTBDDs, the resulting CMTBDD could contain useless
information as shown in the following examples.

EXAMPLE 8. The left part of Figure 8 shows the MTBDDs of policies P3 and P4and
their CMTBDD P34 constructed by theApply operation. Policy P3 allows access during
time 6am to 8am while policy P4 allows access during time 2pm to 4pm. Since these two
time ranges are disjoint, the path shown as a dashed line in their CMTBDD should not
exist, i.e., no request can satisfy this path.

The right part of Figure 8 shows the MTBDDs of policies P5 and P6 and their CMTBDD
P56. Policy P5 allows access when the condition “x < 0 ∧ x + y > 10” is satisfied.
Policy P6 allows access when the condition “y < 0” is satisfied. Without considering the
relationship between Boolean expressions of each node, theconstructed CMTBDD P56
contains one path (shown by the broken line) which can never be satisfied.

The problem in the above examples is mainly due to the existence of complex Boolean
expressions of category 2, 3 and 4. To solve the problem, we propose two important
operations termed asnode unificationandauxiliary rule generation, which are carried out
in the ratification module before the MTBDD construction. Weproceed to present how to
apply the two operations to each type of Boolean expression.Note that we do not need
to take special care of Boolean expressions of category 5 since they are just combinations
of previous types of Boolean expressions and such combinations are naturally reflected by

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 15

Procedure Apply(N1, N2)
Input : N1, N2 are MTBDD nodes

1. initiateNc // Nc is the node in the CMTBDD
2. if N1 andN2 are terminalsthen
3. Nc ← (N1.var + N2.var, null, null)
4. else
5. if N1.var = N2.var then
6. Nc.var ← N1.var

7. Nc.left ← Apply(N1.left, N2.left, OP )
8. Nc.right ← Apply(N1.right, N2.right, OP )
9. if N1.var precedesN2.var then
10. Nc.var ← N1.var

11. Nc.left ← Apply(N1.left, N2, OP )
12. Nc.right ← Apply(N1.right, N2, OP )
13. if N2.var precedesN1.var then
14. Nc.var ← N2.var

15. Nc.left ← Apply(N2.left, N1, OP )
16. Nc.right ← Apply(N2.right, N1, OP )
17. returnNc

end Apply.

Fig. 5. Description of theApply operation

CP−N

N P

2pm<t<4pm

N P

6am<t<8am

2pm<t<4pm

6am<t<8am

2pm<t<4pm

x<0

CP−PP−P

x<0

x+y>10

N CP

y<0

N P

y<0

x+y>10

y<0
P4

0 1

P3

0 1

P34

0 1

P56

0 1

0 1

1

N−N

P5

P6

1
0

0 1

0 1

1

1

0

0 1

0

0

1

P−NN−PN−N N−P

Fig. 6. Examples of CMTBDDs

the MTBDD structure.
Boolean expressions of category 1.For one variable equality constraints, we need to be
careful about variables in the tree domain. For values alongthe same path in the tree,
an auxiliary rule is needed to guarantee that if a variable cannot be assigned a certain
value, then none of its children value can be satisfied. For example, suppose there are two
constraints, “domain = .edu” and “domain = purdue.edu”. Theauxiliary rule will specify
that if the node of “domain=.edu” isfalse, the node of “domain=purdue.edu” should also
befalse. We will present how to generate such an auxiliary rule.

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 ·

An auxiliary rule is represented as a Boolean expression. Let x be a variable in a tree
domain andf1, ..., fk be a set of equality constraints onx occurring in policies to be
compared. Suppose thatf1, .., fk are in an ascending order of values ofx, i.e., value infi

is the ancestor of the value infj in the tree domain wheni < j. Then we have the following
auxiliary which specifies thatfj can be true only when everyfi (i < j) is satisfied. The
effect of the rule is permit.

(f1 ∧ ¬f2 · · · ∧ ¬fk) ∨ (f1 ∧ f2 ∧ ¬f3 · · · ∧ ¬fk) ∨ · · · ∨ (f1 ∧ f2 · · · ∧ fk−1 ∧ fk)
Boolean expressions of category 2.To generate unified nodes containing the Boolean
expressions of category 2, i.e. one variable inequality constraints, we need to first find the
disjoint domain ranges of the same variable occurring in different policies. Assume that the
original domains of a variablex are[d−1 , d+

1 ], [d−2 , d+

2 ], ..., [d−n , d+
n ], where the superscript

‘-’ and ‘+’ denote lower and upper bound respectively,d−i can be−∞, andd+

i can be+∞
(1 ≤ i ≤ n). We sort the domain bounds in an ascending order, and then employ a plane
sweeping technique which scans the sorted domain bounds from left to right and keeps
the ranges of two neighbor bounds if the ranges are covered inthe original domain. The
obtained disjoint ranges:[d′−1 , d′+1 ], [d′−2 , d′+2 ], ..., [d′−m , d′+m ], satisfy the following three
conditions. It is easy to prove thatm is at most4n − 2.

(i) d−i , d+

i ∈ D, D = {d−1 , d+

1 , ..., d−n , d+
n }.

(ii) ∪m
i=1[d

′−

i , d′+i ] = ∪n
j=1[d

−

j , d+

j ].

(iii) ∩m
i=1[d

′−

i , d′+i ] = ∅.

After having obtained disjoint domain ranges, all related Boolean functions are rewritten
by using new domain ranges. Specifically, an original Boolean functiond′−

j ¢ x ¢ d+

j

(1 ≤ j ≤ n, ¢ ∈ {<,≤}) is reformatted as∨k
i=1(d

′−

i ¢ x ¢ d+

i ), where∪k
i=1[d

′−

i , d′+i ] =
[d−j , d+

j ]. Then, the ratification module generates unified nodes of theform of N(f(x)),
wheref(x) is an inequality function in the form ofd′−i ¢ x ¢ d+

i .
Next, we construct auxiliary rules to indicate that each time only one node ofx can

be assigned the valuetrue. In other words, this rule tells the MTBDD module that each
variable can only have one value or belong to one disjoint range during each round of the
assessment. In particular, given a set of constraints onx: f1, ...,fk, we have the following
auxiliary rule with the permit effect.

(f1 ∧¬f2 · · · ∧¬fk)∨ (¬f1 ∧ f2 ∧¬f3 · · · ∧¬fk)∨ · · · ∨ (¬f1 ∧¬f2 · · · ∧¬fk−1 ∧ fk)
An example of such auxiliary rule will be given in Example 9 atthe end of this section.

Boolean expressions of category 3.This type of Boolean expressions is handled during
the combination of two MTBDDs. Given any one path inMTBDD1 and any one path
in MTBDD2, the path in the CMTBDD is obtained by merging the two paths using the
Apply operation. There are two cases where we need to invoke the SATsolver. In one
case, that is, when both paths contain nodes3 of linear constraints, we need to use the SAT
solver to check the satisfiability of the merged path. In the other case, that is, when only
one of the two paths contains nodes of linear constraints andthe other path contains other
constraints (e.g. equality constraint) on the variables occurring in the linear constraints,
we also need to use the SAT solver to check the satisfiability of the merged path. If the
Boolean expression corresponding to the merged path is satisfiable, the terminal in the
CMTBDD is the combination of the terminals ofMTBDD1 andMTBDD2. Otherwise,

3Here, we only need to consider nodes with 1-edge

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 17

the terminal in the CMTBDD is “NA-NA” which means the variable assignment along the
merged path does not satisfy policies corresponding toMTBDD1 andMTBDD2. The
above steps are integrated into theApply operation, specifically line 3 in Figure 5 which
is revised to take into account the types of Boolean expressions, satisfiability check and
terminal changes.

To exemplify, consider policiesP5 andP6 in Example 8. When the path “x < 0 ∧ x +
y > 0” is merged with path “y < 0”, we need to check the satisfiability of “x < 0∧x+y >
0 ∧ y < 0”. Since it is unsatisfiable, the terminal of this path shouldbe “N-N” instead of
“CP-P” shown in Figure 8.
Boolean expressions of category 4.For the Boolean functions of category 4, we use finite
automata techniques to determine satisfiability [Hopcroftand Ullman 1979]. In particular,
when combining two MTBDDs, we check whether the regular expression constraints along
the same path in the CMTBDD can be satisfied simultaneously. For example, consider two
constraints “x ∈ L(“A ∗ ”)” and “x ∈ L(“B ∗ ”)” which requirex to be a string with
starting letterA andB respectively. Obviously, there is no assignment ofx that can satisfy
both constraints at the same time and we call these two constraintsconflicting constraints.
More generally, for all regular expression constraints, wefirst find all pairs ofconflicting
constraints. Then for each pairfi andfj , we construct an auxiliary rule with permit effect:
(fi∧¬fj)∨(¬fi∧fj), which specifies that each time only one constraints can be satisfied.

The unified nodes and auxiliary rules are fed into the MTBDD module. The MTBDD
module constructs a MTBDD for each policy and each auxiliaryrule. Then the MTBDDs
are combined and auxiliary rules are applied to the CMTBDD. When the effect of the
auxiliary rule isPermit, the terminal function follows the original CMTBDD. When the
effect of the rule isNotApplicable, the corresponding terminal function changes to “NA-
NA”. Figure 7 summarizes the CMTBDD construction procedurefollowed by the PSA
module.

To illustrate the above steps, let us consider again policy Pol1 and Pol2 in Example 2.

EXAMPLE 9. Policy Pol1 and Pol2 are first translated into Boolean formulae as shown
in function (1) and (2) in Example 6. There are six variables occurring in these policies,
namely “domain”, “time”, “affiliation”, “user”, “upload” a nd “download”.

For variables “domain”, “affiliation” and “user”, whose Boolean expressions belong to
the first category, the preprocessor generates nodesd(domain = “.edu′′), a(affiliation =
“IBM ′′) andu(user = “Bob”), and sends them to the MTBDD module. For the Boolean
formulae of variable “time” which are inequality constraints, the preprocessor sends them
to the ratification module. The ratification module computesthe disjoint range of the vari-
ables and obtain three nodes:t1(6 ≤ time < 8), t2(8 ≤ time ≤ 20), t3(20 < time ≤
22). Correspondingly, Pol1 and Pol2 are rewritten as:

Pol1

{

Bpermit = (domain = “.edu”) ∧ ((8 ≤ time ≤ 20) ∨ (20 < time ≤ 22))
Bdeny = NULL

(3)

Pol2















Bpermit = ((domain = “.edu” ∨ affiliation = “IBM”)
∧ (6 ≤ time < 8 ∨ 8 ≤ time ≤ 20))
∨ (user = “Bob” ∧ upload + download < 1GB)

Bdeny = NULL

(4)

An auxiliary is associated with the variable “time”, which is expressed as follows.

ACM Journal Name, Vol. V, No. N, Month 20YY.



18 ·

Procedure CMTBDD Construction(P1, P2, ...,Pn)
Input: Pi is a policy,1 ≤ i ≤ n

/* Policy Preprocessor */
1. translate policies into Boolean formulaeBF1 andBF2

2. for each variablex in BF1 andBF2

3. Cx ← [f1(x), ..., fn(x)] // a cluster of atomic Boolean expressions withx

/* Ratification Module */
4. if Cx contains only Boolean expressions of category 1
5. construct nodeN(fi(x)) for everyfi(x)(1 ≤ i ≤ n)
6. construct auxiliary rules for the domain constraint
7. if Cx contains Boolean expressions of category 2
8. compute disjoint domains ofx
9. convert everyfi(x) to f ′

i(x) by using new domains
10. construct auxiliary rules for the domain constraint
11. construct nodeN(f ′

i(x)) for everyf ′

i(x)
12. if Cx contains Boolean expressions of category 4
13. construct nodeN(fi(x)) for everyfi(x)
14. find conflicting constraints
15. construct auxiliary rules for each conflicting constraint

/* MTBDD Module */
16. construct an MTBDD for each policy
17. construct an MTBDD for each auxiliary rule
18. combine MTBDDs and create the CMTBDD,

invoke the ratification module when Boolean expressions of category 3 are encountered
19. combine the CMTBDD with auxiliary rules
end CMTBDDConstruction.

Fig. 7. Procedure of CMTBDD Construction

(t1 ∧ ¬t2 ∧ ¬t3) ∨ (¬t1 ∧ t2 ∧ ¬t3) ∨ (¬t1 ∧ ¬t2 ∧ t3)
Variables “upload” and “download” appear in a linear function. The ratification mod-

ule checks its satisfiability and then inform the MTBDD module to construct the terminal
“CP” for it.

By taking the unified nodes and new Boolean formulae as inputs, the MTBDD module
first constructs the MTBDD for each policy and auxiliary rules as shown in Figure 9.
Notice the difference between the MTBDDs of Pol2 in Figure 7 and Figure 9 where node
t in Figure 7 is split into nodest1 andt2 in Figure 9. Then these MTBDDs are combined
into one CMTBDD. In the following subsection, we show how theCMTBDD is used to
execute policy analysis queries.

5.4 Query Processing Strategy

Policy analysis queries are carried out based on the MTBDDs and CMTBDDs. For the
same set of policies, we only need to construct their MTBDDs and CMTBDDs once and
store them in the policy repository for the query processing. In what follows, we propose
a generic query processing algorithm that applies to all types of queries on both single and
multiple policies. Note that the technique used for querieson a single policy is a special
case of the technique used for queries on multiple policies;thus we only discuss queries
on multiple policies in the following.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 19

1

t2

t3

PN

t1

t2

t3 t3

P

t2

N

1

1

1

0

0

0
0

1

1

0

Auxiliary Rule

a

N

u

f

CP P

t2

Pol1

0
1

0

0 1

d

1

d
0

1

1

0 1

10

0

0

Pol2

t1

1 0

Fig. 8. MTBDD of policies Pol1 and Pol2 and the auxiliary rule

Recall that each query has three types of constraints,Bq, eq and fq, whereBq is a
Boolean expression onAttrq, eq is the desired effect andfq is a constraint on a set of
requests. The query algorithm consists of three steps. The first step preprocesses the
query, the second step constructs the query MTBDD and performs model checking, and
the final step performs some post-processing.

In particular, for a given query, first we normalize itsBq, map the specified ranges of
attributes to the existing unified nodes, and represent the specified ranges as corresponding
unified nodes. Then, we construct the query MTBDD. Here, we can treat the normalized
Bq and effecteq in a query as a rule, and then construct the MTBDD for it. With reference
to Example 1, a query likefind the time interval when the user from domain “.edu” can
access the datacan be translated as “given Domain = “.edu”, Decision =permit, find all
possible requests”. Figure 9 shows the corresponding queryMTBDD.

1

N P

d

Query

0

Fig. 9. Query MTBDD

After we obtain the query MTBDD, we combine it with the MTBDD or CMTBDD of
the policies being queried, where we obtain a temporary structure called Query CMTBDD.
By using the model checking technique on the Query CMTBDD, weare now able to find
the requests satisfying theAq and eq. As for the example query, we just need to find
all paths in the Query CMTBDD which leads to the terminal named “P-P”. Note that for
conditional decisions, the nodes along the path may need to be examined by plugging the
specific variable values.

As for the policy queries with an empty set ofBq, such as the policy relationship eval-
uation queries, the processing is even simpler. We only needto check the terminals of the
CMTBDD. For example, to check if two policies are equivalent, we check whether there

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 ·

exist only three terminals containing “P-P”, “D-D” and “N-N”, which means two policies
always yield same effects for incoming requests.

Finally, a post-processing may be required if there are constraints specified byfq. This
step is straightforward since we only need to execute some simple examinations on the
requests obtained from the previous step. The results will then be collected and organized
by the result analyzer before being presented to the user.

6. EXPERIMENTAL EVALUATION

We have developed a prototype of PSA in Java. An implementation of the modified sim-
plex algorithm [Agrawal et al. 2005] has been used for processing Boolean expressions
with real value linear constraints. The modified CUDD library developed in [Fisler et al.
2005] has been used for the MTBDD module. In order to test our implementation, we
generated XACML policies with a random number of rules. For each policy rule, we first
randomly generated atomic Boolean expressions of the first three types introduced in Sec-
tion IV.B4, and then concatenated them with the operatorandor or. The atomic Boolean
expression (ABE for short) usually contains a pair of attribute name and value except for
the atomic linear inequality function which has multiple attributes. The attributes in each
atomic Boolean expression were randomly selected from a predefined attribute set. We
performed policy similarity analysis between pairs of generated XACML policies with
varying number of rules and attributes. Each point in the figure is the average number
of 10 experiments. The experiments were conducted on a IntelPentium4 CPU 3.00GHz
machine with 512 MB RAM.

The performance of our policy similarity analyzer is determined by two main modules:
the ratification module and MTBDD module. In what follows, wefirst evaluate the pre-
processing time taken by ratification module and then reportthe overall response time.

6.1 CMTBDD Construction

6.1.1 Preprocessing Time.Compared to Margrave [Fisler et al. 2005], our policy simi-
larity analyzer supports more rich classes of policies. Theperformance difference between
the two approaches mainly lies in the preprocessing time taken by the ratification module
which analyzes the relationships between atomic Boolean expressions before sending them
to the MTBDD module. Therefore, in the first round of experiments, we examined the time
consumed by the ratification module.

We plotted the time taken by the ratification module in Figure10 for policy pairs. The
average number of atomic Boolean expressions was varied between 50 and 150 for each
policy. The number of rules in each policy was varied between8 and 32. We can see that
the processing time is linear with the number of rules and atomic Boolean expressions.
Specifically, in the case where each policy has 32 rules and 150 atomic Boolean expres-
sions, the processing time is about 0.5% percent of the overall response time. We can
conclude that the overall response time is mainly dominatedby the MTBDD module.

6.1.2 Total Response Time.We now evaluate the total time taken to obtain the final
CMTBDDs for policies to be compared. Figure 11 shows the results when we increase the
number of atomic Boolean expressions associated with policies. For visual clarity, we have
plotted the time in log scale. It is not surprising to see thatincreasing the number of atomic

4We have not fully tested the automata technique for processing regular expression constraints.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 21

Fig. 10. Response Time Taken for Preprocessing a Pair of Policies

Boolean expressions results in an increase in the time needed for similarity analysis. We
also observe that the actual minimum and maximum response time obtained were 0.1s and
50.4s respectively. Considering that the number of the attribute value pairs (i.e. atomic
Boolean expressions) in policies tend to lie in the range of 20 to 100 as reported in [Fisler
et al. 2005], our approach yields reasonable response time for the general case in practice.

In another experiment, results of which are reported in Figure 12, we fixed the number
of atomic Boolean expressions in each policy and varied the number of pairs of policies to
be analyzed for similarity. We examined policies with an average of 100 atomic Boolean
expressions, and ran the experiments for policies with 8 and16 rules. We observe that
the time taken to construct CMTBDDs for a few hundred policies is about one minute. In
particular, the minimum and maximum response time obtainedfor these experiments is
0.44s and 63s respectively. The results again demonstratesthe feasibility of our approach
to be adopted in real world applications.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of policy similarity analysis. We identified
and defined three types of basic policy analysis queries, which can be combined to repre-
sent a variety of advanced analysis. We proposed a comprehensive environment EXAM
that takes advantage of different techniques and thus addresses the limitations of previous

Fig. 11. Total Response Time for Varying Number of Atomic Boolean Expressions

ACM Journal Name, Vol. V, No. N, Month 20YY.



22 ·

Fig. 12. Total Response Time for Varying Number of Policy Pairs

approaches. The key component of our environment is the policy similarity analyzer which
is able to perform various types of analysis. In particular,this policy analyzer integrates
the SAT-solver-based and MTBDD-based techniques, thus combining their advantages.
We have implemented our proposed analyzer and the experimental results demonstrates its
efficiency.

Several promising directions exist for the future work. First, we plan to complete the
development of the other components of the environment, which are still in a preliminary
development stage. The second direction is to examine more analysis techniques and tools
to determine whether they could extend the functionality ofthe current version of EXAM.
Also, we are interested in exploring new types of policy analysis queries and the problem
of separation of duties. Finally, we plan to exploit ontologies and ontological reasoning to
deal with cases in which policies use different name spaces,that thus need to be reconciled.

REFERENCES

Iso 10181-3 access control framework.
Parthenon xacml evaluation engine.http://www.parthenoncomputing.com/xacmltoolkit.html.
Sun’s xacml open source implementation.http://sunxacml.sourceforge.net.
2005. Extensible access control markup language (xacml) version 2.0.OASIS Standard.
AGRAWAL , D., GILES, J., LEE, K. W., AND LOBO, J. 2005. Policy ratification. InProceedings of the IEEE

International Workshop on Policies for Distributed Systems and Networks (POLICY). 223–232.
AHMED, T. AND TRIPATHI, A. R. 2003. Static verification of security requirements in role based cscw systems.

In Proceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT). 196–203.
BACKES, M., KARJOTH, G., BAGGA, W., AND SCHUNTER, M. 2004. Efficient comparison of enterprise

privacy policies. InProceedings of the 2004 ACM Symposium on Applied Computing (SAC). 375–382.
BAKER, M., K IMBERLY, K., AND SEAN, M. 2005. Why traditional storage systems do not help us save stuff

forever.HPL-2005-120. HP Labs 2005 Technical Reports.
BERTINO, E. AND MARTINO, L. 2007. A service-oriented approach to security - concepts and issues. In

Proceedings of the International Symposium on Autonomous Decentralized Systems (ISADS) and of the IEEE
International Workshop on Future Trends of Distributed Computing Systems. 21–23.

BLAZE , M., FEIGENBAUM, J., IOANNIDIS, J.,AND KEROMYTIS, A. D. 1999. The KeyNote trust-management
system, version 2. IETF RFC 2704.

BLAZE , M., FEIGENBAUM, J., AND M.STRAUSS. 1998. Compliance checking in the policymaker trust man-
agement system. InProceedings of the International Conference on Financial Cryptography. 254 – 274.

FISLER, K., KRISHNAMURTHI, S., MEYEROVICH, L. A., AND TSCHANTZ, M. C. 2005. Verification and
change-impact analysis of access-control policies. InProceedings of International Conference on Software
Engineering (ICSE). 196–205.

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 23

FUJITA, M., MCGEER, P. C.,AND YANG, J. C.-Y. 1997. Multi-terminal binary decision diagrams: An efficient
datastructure for matrix representation.Formal Methods in System Design 10,2-3, 149–169.

GUELEV, D. P., RYAN , M., AND SCHOBBENS, P. 2004. Model-checking access control policies. InProceedings
of the Information Security Conference (ISC). 219–230.

HOPCROFT, J. E. AND ULLMAN , J. D. 1979. Introduction to automata theory, languages and computation.
Addison Wesley.

KOCH, M., MANCINI , L. V., AND P.-PRESICCE, F. 2001. On the specification and evolution of access control
policies. InProceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT).
121–130.

KOLOVSKI, V., HENDLER, J.,AND PARSIA, B. 2007. Analyzing web access control policies. InProceedings
of the International World Wide Web Conference. 677.

L IN , D., RAO, P., BERTINO, E.,AND LOBO, J. 2007. An approach to evaluate policy similarity. InProceedings
of the ACM Symposium on Access Control Models and Technologies (SACMAT). 1 – 10.

LUPU, E. AND SLOMAN , M. 1999. Conflicts in policy-based distributed systems management.IEEE Transac-
tions on Software Engineering (TSE) 25,6, 852–869.

MAZZOLENI , P., BERTINO, E.,AND CRISPO, B. 2006. Xacml policy integration algorithms. InProceedings of
the ACM Symposium on Access Control Models and Technologies(SACMAT). 223–232.

MCDANIEL , P. AND PRAKASH, A. 2006. Methods and limitations of security policy reconciliation. ACM
Transactions on Information and System Security (TISSEC) 9, 3, 259 – 291.

MOFFETT, J. D.AND SLOMAN , M. S. 1993. Policy conflict analysis in distributed system management.Journal
of Organizational Computing.

MORR, D. 2007. Lionshare: A federated p2p app. InInternet2 members meeting.
RAO, P., LIN , D., AND BERTINO, E. 2007. Xacml function annotations. InIEEE Workshop on Policies for

Distributed Systems and Networks.
UNITED STATE DEPARTMENT OFHEALTH. Health insurance portability and accountability act of 1996. Avail-

able at http://www.hhs.gov/ocr/hipaa/.
ZHANG, N., RYAN , M., AND GUELEV, D. P. 2005. Evaluating access control policies through model checking.

In Proceedings of the Information Security Conference (ISC). 446–460.

ACM Journal Name, Vol. V, No. N, Month 20YY.


