

Non-Modularity in Aspect-Oriented Languages:
 Integration as a Crosscutting Concern for AspectJ

(revised and extended, June 6, 2002)

 Kevin Sullivan Lin Gu Yuanfang Cai
 University of Virginia University of Virginia University of Virginia
 Department of Computer Science Department of Computer Science Department of Computer Science
 151 Engineer’s Way 151 Engineer’s Way 151 Engineer’s Way
 P.O. Box 400740 P.O. Box 400740 P.O. Box 400740
 Charlottesville, VA 29903, USA Charlottesville, VA 29903, USA Charlottesville, VA 29903, USA
 +1 804 982 2206 +1 804 982 2200 +1 804 982 2200
 sullivan@virginia.edu lg6e@virginia.edu yc7a@virginia.edu

ABSTRACT
Aspect-oriented (AO) methods and languages seek to enable the
preservation of design modularity through mappings to program
structures, especially where common (object-oriented) languages
fail to do so. The general claim is made that AO approaches enable
the modularization of crosscutting concerns. The problem that we
address is that it is unclear to what extent such claims are valid. We
argue that there are meaningful bounds on the abilities of past,
present, and future languages to succeed in this regard—bounds
that we need to understand better. To make this idea concrete we
exhibit a significant bound: Component integration (Sullivan &
Notkin 1992, 1994) is not adequately modularizable in AspectJ.

Keywords
Aspect, non-modularity, integration

1. INTRODUCTION
Aspect-oriented languages aim explicitly to enable the preservation
of modularity in design where existing programming languages
and methods fail. The problem we address in this paper is that we
don’t yet understand the bounds of the validity of this claim. For
what important modular design structures, if any, do prominent
aspect-oriented languages provide no modular representations?
We show one interesting bound by example. We also present a
critical analysis of some basic terms of AO programming. In a
nutshell, we find that aspects are relative: Whether a module is an
aspect in one language depends on whether the concern it
represents has no modular representation in another. Our analysis
puts AO languages in a broader context of advances, dating to 1972
[10], concerned with preserving modular designs structures in
corresponding program representations. Finally, we suggest that
the intentional search for non-modularity-preserving properties of
prevailing languages and program design methods is a good way to
make progress. This paper illustrates the application of this
approach to modularity-preserving AO languages.

The rest of this paper is organized as follows. Section 2 addresses
modularity in design; its preservation—or not—through mappings
of designs to programs; how mapping problems have driven
innovation; and what aspects really are. Section 3 views behavioral
relationships—protocols that integrate objects into systems—as
aspectual for standard OO languages and methods. Section 4
presents the language of abstract behavioral types as one that is
modular for behavioral relationships. Section 5 shows that AspectJ
is not modular for such integration concerns. Section 6 concludes.

2. WHAT ARE ASPECTS?
The task of a software architect is, for given requirements, to
devise a design structure having the required runtime properties
and a modular structure that maximizes the value of the design in
the assumed environment [14]. Modularity can add value to a
system in the form of reduced cost of comprehension, real options
to vary and change the system, improved time to market through
parallelism in development, component reusability, and so forth.

Devising a design structure involves the selection of design
parameters, the structuring of dependences among their values, and
the choice of a value for each. A good modular design is one that
abstracts key design decisions as explicit design parameters and in
which dependences among design parameter values are such that
the values of certain key parameters can be chosen—i.e., design
decisions made or changed—largely independently of others.

The task of a program designer, by contrast, is to represent a given
design structure in a corresponding program structure. A program
structure, expressed in a programming language, is subject to the
constraints and possibilities inherent in the language, and to
additional constraints, e.g., as imposed by style rules.

For the benefits of modularity in design to be realized, the program
that represents a design must preserve its modular structure. We
will say that a program preserves modularity if independent
parameters in the design are represented by independent constructs
in the program. When modularity is not preserved, independent
design parameters are coupled though coupled representations.

There are many ways in which a program can fail to preserve
modularity. One special case occurs when each of several
independent design parameters is represented by a corresponding
program construct, but where the representation of some other
design parameter is scattered across and is merged into the previous
program constructs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 2002, Enschede, The Netherlands
Copyright 2002 ACM 1-58113-469-X/02/0004...$5.00

The representation of the latter parameter is said to crosscut the
other representations. 1 The design parameters are coupled
indirectly in the code, and the corresponding design decisions can
therefore no longer be made or changed entirely independently.

In structuring software, a good architect seeks to abstract and
decouple the key dimensions (design parameters) in which it is
worthwhile to be able to vary or change a system independently.
This is Parnas’s information hiding criterion [10]. A key goal of a
program designer then is to choose a program structure that
preserves the modular structure of the abstract design.

Yet there are bounds on the abilities of programming languages,
subject to the additional constraints of design methods, styles, and
conventions,2 to preserve such modular structures. If a design
exceeds the bounds of a language, we will say that the design is not
modularizable in the language, and that the language is not
modular for the design. In this case, any program representation of
the design in the language will exhibit undesirable coupling, such
as crosscutting implementation artifacts, that complicate software
design and evolution, increasing costs and complexity, reducing
dependability, and so forth.

A problem arises when, for one reason or another, a programmer
decides to use a language that is not modular for otherwise valuable
design structures. An even worse problem arises when architects
think in the terms of such languages. Then they might not even
conceive of adequately modular designs. These phenomena rise to
the level of major problems in practice and theory when prevailing
language paradigms are non-modular for important classes of well
modularized designs. Such paradigms strongly influence software
engineers to select inadequate design and program structures.

What is needed in such a case is a new language in a new paradigm.
One desirable property of such a language is that it be modular for
valuable designs that were modular in the old language: Nothing
should be lost. The new language should also be modular for
valuable but previously non-modularizable designs.

One key driver of the evolution of language paradigms is the
discovery of valuable new ways of structuring abstract designs.
Prevailing languages are sometimes found to be non-modular for
such designs. New languages that are modular are then developed.

For example, Parnas saw a valuable new class of designs in which
data-structure-valued design parameters are kept independent. He
argued that the prevailing top-down, structured programming
approach was not modular for such designs because it called for
procedures to communicate through shared data structures,
coupling the designs of procedures through the data structures. He
then showed how the introduction and proper use of abstract data

1 In the AOSD community there is no apparent consensus on the
definitions of the terms crosscut and tangle. In this paper, we use
these terms more or less interchangeably. An alternative definition
uses crosscut to refer to inherent intermingling of behavior related
to different concerns, and tangle to refer to non-modular source
code representations of such behavior. By this alternate definition,
an aspect is a modular representation of a crosscutting concern.
2 Henceforth, for brevity, we will simply say languages. By this
term we mean both the programming language itself and additional
style and usage rules or conventions that constrain the expression
of concepts using the programming language.

type interfaces could preserve the modularity of designs in which
concrete data structure design decisions were decoupled from other
design decisions. His work thus helped to establish the next
paradigm: object-orientation.

Subsequent experience has taught that object-orientation is not
ideal. There are valuable design structures for which standard
object-oriented languages and design method are non-modular.
The problem is not in the concept of information hiding, but in the
commitment to the abstract type interface as the key mechanism for
supporting the information hiding design strategy. The discovery
of non-modularity properties of prevailing language paradigms for
important design structures continues to drive such innovation.

New languages are emerging to accommodate innovative modular
design structures for which traditional object-oriented languages
are non-modular. Such new languages are called aspect-oriented
[2]. These languages, which include AspectJ [1] and HyperJ [9],
are described using relatively new terms: notably aspect and
crosscutting implementation.

The preceding discussion positions us to analyze these terms to
better understand what they mean. What we will find, in a nutshell,
is that, under one common set of definitions of the terms, aspects
are relative. We now explain what we mean by this statement.

Kiczales et al. [6] define an aspect to be “a modular unit of
crosscutting implementation.” We try to make this idea precise in
the following terms, distinguishing between two separate ideas:
when a program structure can be said to be an aspect, and when a
design parameter can be said to be an aspect.

Kiczales defines an aspect as a program structure—a certain kind
of module. However, in our experience, we have found the term
aspect also widely used to refer to design parameters that are hard
to express in modular form in traditional languages. We need to
distinguish these usages of the term and make their definitions
somewhat more precise. We start with the design-level meaning of
the term.

Suppose D is design structure; I, a design parameter in D; and New
and Old, two languages. At the design level, I can be said to be an
aspect relative to New and Old if and only if Old is not modular for
I, and New is. For example, a tracing policy—a common example
of a design parameter with no satisfactory modular representation
in typical object-oriented languages—could be called an aspect
relative to an OO language and an aspect-oriented language. It is a
design-level aspect because it cannot be modularized well in the
old language but it can be modularized in the new language.

An alternative design-level definition—and perhaps the most
common—is that I is an aspect relative to a language L if L is
non-modular for I. Thus tracing could be said to be an aspect for a
typical object-oriented language.

Finally, we could define a design parameter I to be an essential
aspect if there is no language in which I could possibly have a
modular expression. We will return to the issue of accidental and
essential aspects at the end of this paper.

Turning to the program representation level, a representation P of I
in the language New is said to be an aspect relative to languages
New and Old if and only if I is an aspect relative to New and Old,
and P is actually represented as a module in the New language.
Thus the representation of a tracing design parameter as a modular
expression in a language such as AspectJ, or perhaps in a language

with object-oriented reflection [7], can be said to be an aspect
precisely because its representation is modular in the new language
whereas there was no available modular representation in the old
(e.g., object-oriented) language. The modular expression of the
design parameter is thus a modular unit of (otherwise) crosscutting
implementation. The term crosscutting here tacitly assumes the old
OO language, in which the implementation of the design parameter
is necessarily crosscutting. The tracing design parameter that is an
aspect for the old language is not for the new language. It is thus,
under one common set of definitions, that aspects are relative.

3. INTEGRATION IS AN ASPECT, FOR OO
In earlier work [11][13] Sullivan and Notkin identified a class of
design structures for integrated systems in which the objects to be
integrated and the behavioral relationships that integrate them are
conceived and structured as separate, explicit design parameters.
They showed that these design structures have the potential to
significantly ease the design and evolution of integrated systems,
but that standard OO languages and methods are not modular for
these structures. Such languages unavoidable tangle object and
integration concerns, causing major problems for the design,
development, and evolution of integrated systems. In other words,
integration is aspect for standard OO languages.

To address this problem, Sullivan and Notkin developed the
abstract behavioral type (ABT) as a language mechanism, and
showed that ABT-based languages are modular for such designs.
They coined the term mediator to mean a modular, ABT-based
representation of an otherwise crosscutting behavioral relationship.
In an experimental systems style they tested the hypothesis that
structuring designs this way and preserving their structures in
programs would ease the design, development, and evolution of
integrated systems [12].

In this section, we review in more detail why integration is an
aspect for OO, using an archetypal scenario for the design, program
representation, and evolution of integrated systems. In the next
section, we show that ABT’s are modular for integration concerns.
In brief, behavioral relationships have modular representations in
ABT terms. Thereafter we exploit the example that we develop
here to test whether integration remains an aspect for OO languages
augmented with the novel aspect-oriented constructs of AspectJ.

Suppose that you are asked to construct a system that integrates the
behaviors of several binary digit, or Bit, objects. The initial system
configuration has two Bits, b1 and b2, each of which can be viewed
and manipulated directly by clients of the system (such as other
objects in the system). The state space of a Bit is a single Boolean
digit. The applicable operations include Set and Clear, which set
the state of a Bit respectively to 1 and 0. The Get operation returns
the current state of Bit. A standard OO approach would be to
define a Bit class and to create the running system in part by
instantiating two objects of this class, b1 and b2.

Suppose now that the system integration requirements call for b1
and b2 to work together as follows: if any client Set’s (or Clears)
either Bit, the other must be Set (Cleared). The behaviors of the Bits
have to be integrated by a behavioral relationship, which we will
call Equality, that maintains a state-equality constraint. The
diagram in Figure 1 illustrates a design structure in which the
behavioral relationship is conceived as a separate design parameter.
Sullivan and Notkin called this kind of design structure a
behavioral entity-relationship model. The key is that the constraint
pertains to (crosscuts) several objects in the system.

Equalityb1 b1

Figure 1:Design with two objects and a behavioral relationship.

Now consider a step in the evolution of the design—an
augmentation step. Two more Bit objects, b3 and b4, are added to
the system. Bit b3 is required to work with b2 in a second instance
of the Equality behavioral relationship. Thus, if any of the first
three bits are Set or Cleared, the others will be, too.

Bit b4 is required to work with b3 in a different relationship, which
we call Trigger: If any client Sets b3, then b4 must be Set, too. In
the resulting system, b4 can be Set and Cleared with no effect on
the other Bits. If b3 is Cleared, there is no effect on b4 (but b2 will
have to be cleared and then b1). However, if b3 is Set, the Trigger
relationship requires that b4 be Set, too.

One reason that structuring designs this way is valuable is that such
structures are easy to extend locally with system-wide behavioral
effects—the property we want in an integrated system. The
augmented design structure is illustrated in Figure 2:

Figure 2: The augmented design structure.

When we try to map these design structures into object-oriented
programs in standard ways we find that the behavioral relationships
end up expressed in crosscutting implementations. Standard OO
languages and methods are not modular for designs in which
behavioral relationships are independent design parameters. We
now make this point concrete.

A straightforward OO approach would start by mapping Bits to
instances of a Bit class, and the relationships to code that is tangled
in the Bit class methods. Within the implementation of Set, for
example, code might appear to find and update related Bit objects.

Consider, for example, the design in which b1 and b2 are integrated
by Equality. The Bit class would have instance variables to
represent the value of the bit and the identity of any related Bit
objects. The code implementing Set and Clear would also
implement the propagation of effects to related Bits. The
representation of the relationship is tangled with and scattered
across the representations of the objects that are related. Standard
OO approaches do not preserve the modularity of even simple
integrated system designs in this style.

The consequences of the loss of modularity are significant. First,
the lack of an abstract representation of the Equality relationship
makes the system unnecessarily hard to understand. Second, we
cannot easily remove the behavioral relationship from the system
because its representation is hardwired into the Bit code. Third, we
cannot easily reuse the Bit class because each object assumes a
corresponding object and an Equality relationship with it. Fourth,

we cannot develop the programming code for the Bit and Equality
abstractions independently. Fifth, we cannot test and debug their
implementations independently. Sixth, we cannot reuse the
relationship code independently; and so on. In other words, all of
the well known costs of a serious loss of modularity and abstraction
are incurred by the standard OO representation in this case.

More sophisticated OO methods do not adequately resolve these
problems. One idea is be to use Gamma’s mediator design pattern
[3] to represent the Equality relationship as a separate object.3 In
this design, Equality is abstracted as a class Equality containing the
code for updating one bit when the other changes. The problem is
that Bit objects have to call this mediator, directly or indirectly; so
the Bit class still ends up coupled either directly to the definition of
the Gamma-style mediator.

This design is better in that the relationship now has a first-class
abstract representation, making the code easier to understand; but
several representations are still coupled: relationship-related calls
are hardwired into the Bit code. Reusing Bit is precluded because
its objects assume the presence of external mediators. Nor can we
develop the programming code for the Bit independently of that for
the Equality abstraction because the Bit code uses the Equality code
substantively. We cannot test and debug the Bit implementation
independently. We cannot reuse the relationship code because it
assumes the presence of two Bit objects; and so on. This solution is
somewhat better, but not genuinely modular.

Nor does using implicit invocation by itself (event notification, or
the Gamma-style Observer pattern [3]) solve these problems. It is
not much better for each Bit to register with the other to receive
updates than for each Bit to call the other. We see this problem in
the Model-View-Controller pattern (see [3]). Here, views register
with models to be notified of relevant changes and implement the
“update” code. The code to manage model-view relationships thus
crosscuts the code for the views.

All of these problems are vastly complicated when designs start to
evolve. Consider what happens when we augment the design with
b3 and the Equality relationship linking it to b2. To represent this
design change in the program, we might complicate the Bit class to
enable Bits to participate in multiple relationships (e.g., b2 with b1
and b3). Alternatively, we might produce two different Bit classes,
the first designed for objects that participate in one Equality
relationship, such as b1 and b3, and the second for objects that
participate in two (b2). Code implementing the pair of Equality
relationships is now merged into the code for the second Bit class.

When we add b4 and a Trigger relationship linking b4 to b3, things
go from bad to worse. Although we can make b4 an instance of the
Bit class, we need a new class for b3: one that implements Bits that
participate in both the Equality and Trigger relationships. The
representations of multiple design parameters are truly tangled in
the representation of b3. It jumbles code for the Bit abstraction, and
for the Equality and Trigger relationships.

3 Gamma’s Mediator pattern is related to but not the same as ours.
In addition to representing relationships as separate objects, as in
Gamma’s pattern, our mediators employ implicit invocation (also
known as the Observer pattern) to decouple the representations of
the objects related from the mediator representing the relationship.

4. ABTS: MODULAR FOR INTEGRATION
The problems in our example scale into to major difficulties in the
design and evolution of real systems, such as integrated software
engineering and other kinds of environments. As the number of
relationships in a design increases, the structure of any standard
OO program representation degrades rapidly. The upshot is that
standard OO methods are not scalable for integrated system design.

Sullivan and Notkin [11][13] introduced mediator-based design as
a partial solution. The challenge was to extend standard OO
methods to make them modular for designs in the form of
behavioral entity relationship models. We give an example of what
this would mean.

In our design example, the Bit parameters would be represented in a
program by objects of a self-contained class, Bit, with simple Get,
Set, and Clear methods. The Equality and Trigger relationships
would be represented as objects of corresponding Equality and
Trigger classes. These objects (mediators) would be connected to
Bit objects at runtime to make them work together. The initial
design would be mapped to a program that creates Bits b1 and b2
and Equality object e(b1,b2). Any call to b1.Set would activate e,
which would call b2.Set in turn—with e preventing recursion.

One simple approach for preventing unbounded recursion is to
have the mediator maintain state that encodes whether it is already
in the midst of updating one Bit as a result of an action of the other.
In this case, any call to b1.Set would activate e, which would check
its busy bit, return if it indicates an update is already in progress;
and otherwise set it, call b2.Set, and then clear it before returning.

The approach preserves the modularity of the design. When the
design is extended locally, for example, the required program
changes are also localized: The program is extended to create two
more Bits, b3 and b4, an Equality mediator e2(b2,b3), and a
Trigger mediator t(b3,b4). Now b3.Set actives both t and e2; t calls
b4.Set; e2 calls b2.Set; that call activates e1, and e1 calls b1.Set.

Sullivan’s and Notkin’s aim was to ease the design and evolution of
integrated systems—a very broad class of systems, given that
objects always have to work together to achieve system objectives.
The solution had two parts: structure designs as behavioral entity
relationship models; and preserve their modular structures in
programs. Learning to design using behavioral ER models took
effort. Figuring out how to preserve their modularity in practical
programs required novel programming constructs and methods.

The programming solution, in turn, involved a combination of two
ideas. The first idea was to represent entities and relationships not
with abstract data types, as in OO languages, but in terms of
abstract behavioral types (ABT’s). The second idea was to map
entities and relationships to corresponding ABT-based objects in a
way that would avoid crosscutting implementations of behavioral
relationships. We now explain these two ideas in greater detail.

An ABT defines a class of objects not just in terms of operations
that can be applied to an object of the class but also in terms of
events that such an object can announce. Announcing an event
invokes (meta-level) operations implemented by other objects that
have registered to receive such events from a given object.

Figure 3 illustrates a Bit ABT with Get, Set, and Clear operations
and JustSet and JustCleared events. Mechanisms are provided for
objects to register for such events. The implementations of the
operations are responsible for announcing the events.

Figure 3: A Bit ABT

The key observation is that the “language” of ABT’s is modular for
designs in the form of behavioral entity-relationship models. There
are modularity preserving mapping from such designs to modular
program structures. Each behavioral relationship is represented as
mediator ABT without crosscutting the representations of the
objects to be integrated or those of other relationships.

The only problem is to ensure that relevant mediator operations are
invoked when integration actions need to be taken. Events serve
this function. A mediator implements relationship-maintaining
operations and registers these operations so that they are invoked
when objects signal possible needs for integration actions.

No mediator-specific code need be embedded in the objects to be
integrated. The representations of the objects are decoupled (for
compile-time, link-time, and, in general, run-time dependencies)
from the representations of the mediators that integrate them. Each
relationship in the design structure also has its own modular
representation in the program. The bottom line is that entity and
relationship representations no longer have to crosscut each other.

We now illustrate these ideas in terms of our running example.
Consider how mediators provide a modularity-preserving
representation of our integrated system of Bits. To represent the
Equality relationship, we define a mediator ABT Equality. The
ABT defines operations Bit1JustSet, Bit2JustSet, Bit1JustCleared,
and Bit2JustCleared that implement responses to the first and
second Bit respectively being Set or Cleared. The mediator is
given references to the Bit objects, Bit1 and Bit2, it is to integrate. It
uses these references to manipulate each Bit in response to the
event announcements of the other. Bit1JustSet, for example, calls
Bit2.Set. A mediator constructor or initialization operation takes
the references to two Bit objects and registers the mediator’s
response operations with the events of these Bit objects.

Figure 4 illustrates the mapping for the two-Bit case. The design
structure is depicted above; the mapping to the program structure,
in the middle; and the program structure, below. The program
preserves the modularity of the design. Among other things, the
mediator is defined to reference Bit objects (to register with their
events and to call their operations), but the definition of Bit remains
independent. Thus, the modular extensibility properties of the
design are maintained: design extensions map to local program
extensions without loss of modularity.

Figure 4: A modular representation of an integrated system design.

ABT’s treat events in object interfaces at the same level as
operations. It is possible to emulate multiple-event interfaces in a
range of languages [8]. In Java, for example, each logical event to
be exposed can be represented by three operations implemented by
an underlying event-valued instance variable of the object. The
three operations allow clients to Register and Unregister for event
notifications, and for the object itself to Announce the event. Each
underlying event object implements the Observer pattern. This
approach makes the kinds of events that an object can announce
explicit in its advertised interface, rather than implicit in the
parameter values sent on a single Subject-to-Observer channel.

5. INTEGRATION: ASPECT FOR ASPECTJ
We can now reformulate and give a somewhat surprising answer to
the question at the beginning of the paper. Aspect-oriented
programming languages appear provide new possibilities for the
modular representation of important kinds of design structures.
Yet, we don’t understand for what valuable design structures they
languages remain non-modular. What are the bounds?

We now show one somewhat surprising bound. AspectJ is not fully
modular for behavioral relationships—the interaction protocols
that integrate objects into desired systems. We believe, but do not
argue in this paper, that other prominent aspect-oriented languages,
including HyperJ, share this non-modularity property.

We refine the question further. Are there design structures (1) that
are known to be valuable in practice, (2) that are not modularizable
in standard OO languages, (3) that conceivably or demonstrably are
modularizable in some practical programming language, (4) for
which one can reasonably expect OO languages extended with
prominent AO mechanisms to be modular, (5) but that can be
shown to be non-modularizable in these languages? If we can
exhibit such cases, then we have discovered interesting bounds on
the claimed modularity properties of the languages. Discovering
these bounds can help show the way to future progress.

We have shown that the integrated systems design structures
discussed now satisfy properties (1)–(3): Designs with independent
behavioral relationships have value; they are not modularizable in
standard OO languages; and they are modularizable, using
mediators, in a practical extension to OO, the language of ABT’s.

In this section, we identify AspectJ as a language satisfying
conditions (4) and (5). We might reasonably expect that the
powerful AO extensions provided by AspectJ would make it

modular for integration concerns; but they don’t. The problem, it
turns out, is in AspectJ’s limited model of aspect instances.

Starting with point (4), we might reasonably expect AspectJ to be
modular for integration concerns because a mediator, as a modular
representation of an integration concern, can clearly be seen as a
special and precursor case of the more general aspect construct of
the AspectJ language. It would be surprising for a language that is
intended to address the general case not to be able to address an
important special case. We now argue that mediators are special
case of aspect modules as defined by AspectJ.

First, mediators meet the definition of aspect: they are modular
units of crosscutting implementation (relative to OO languages).
This point is reinforced by the clear mapping of mediator-related
constructs to fundamental elements of an aspect-oriented language.
An event is a join point—a point in program execution to which
meta-level actions can be attached. Meta-level mediator methods
that are registered to be invoked when events are announced are
advice constructs. A mediator is a special case aspect module.

Second, at first glance, the ABT language is strictly less expressive
than AspectJ. AspectJ implicitly defines a very broad range of join
points, relieving the program designer of having to declare them
explicitly (as with events). AspectJ also provides the powerfully
expressive mechanism of the pointcut for concisely identifying sets
of join points of interest, and for attaching advice to all join points
in a given pointcut. Finally, AspectJ has other mechanisms with no
analogs in the language of ABTs, including mechanisms to add
state to class definitions and for short-circuit parameter passing.

Thus, we might reasonably expect that AspectJ is strictly better for
representing behavioral relationships as aspects. We hypothesized
that we could use AspectJ join points and pointcuts to avoid having
to explicitly define and announce events and to register for all
events in given pointcut equivalents. We tested this hypothesis by
exploring a number of approaches to representing mediators as
aspects in AspectJ.

We now turn to point (5). Our exploration led us to reject the
hypothesis. AspectJ aspects cannot fully emulate ABT mediators.
We trace the problem to limitations of the AspectJ model of aspect
instances. This result suggests that future AspectJ versions might
profitably incorporate a more flexible model of aspect instances.

Our idea was to represent behavioral relationships as aspects using
join points, rather than as mediators using event notification. To
make this idea concrete and to show that it works in a simple case,
we present an AspectJ programs for the case of two Bit’s integrated
in an Equality relationship. This program starts with the Bit class
presented in Figure 5.

Figure 5: A simple Bit class in Java.

The aspect in Figure 6 implements an Equality relationship for two
Bits. It stores references to two Bit objects. The map function

expects a reference to one of the Bits as an argument, and it returns
the other. When the aspect advice is activated by one of the Bits
being Set or Cleared the aspect calls map to get a reference to the
other Bit and then updates it. The pointcut specifications enable
attachment of advice to the appropriate points in program
execution: where calls to Bit.Set and Bit.Clear occur.

The first advice runs after Bit.Set is called. To prevent unbounded
recursion, as in the mediator solution, the code checks a guard bit
and does nothing if it is set. Otherwise the code obtains the Bit to
be updated, sets the guard bit, updates the other Bit, clears the guard
bit, and returns. The second advice does the same for Clear.

The attractiveness of AspectJ for the design and evolution of
integrated system implementations using a mediator-like approach
is clear. We have succeeded in integrating two Bit’s in a behavioral
relationship without having to compromise modularity. The Bit
code remains unadulterated and we have a modular representation
for the otherwise crosscutting Equality relationship. This design
also creates the options to add, remove or change the behavior of
the relationship independently.

Unfortunately, although this simple case works, it does not scale.
This program is limited to integrating two Bits with a single global
instance of the Equality aspect. To accommodate the addition of a
third and fourth Bit and the Trigger relationship requires merging
their code and data into this single aspect module. Independent
concerns in the design thus crosscut each other in the program.

Figure 7 presents a flawed attempt at a better solution. The fault in
the program points to the problem with the idea of implementing
mediators as aspects. We discuss the flaw momentarily.

This program represents in a single aspect zero or more pairs of Bits
related by Equality. The aspect uses introduction declarations to
cause state and behavior needed to represent Equality on a per
Bit-pair basis to be appended to the Bit class. Each Bit object is thus
imbued with the means to participate in one Equality relationship.

A program can now create two Bits and place them in an Equality
relationship by calling Bit.relate (introduced by the aspect into the
Bit class) with the identity of the other Bit as a parameter. The
introduced inRelation variable is set to true in each Bit, and the
value of each Bit’s peer is set to refer to the other. Aspect advice
that runs after Bit.Set and Bit.Clear checks whether the invoking
Bit is in a relationship (inRelation is true), and, if so, updates the
other Bit as appropriate. The aspect uses the same busy construct to
terminate the otherwise unbounded recursion.

The fault in this program has to do with this busy variable. Before
we address that problem, however, we note that a more obvious
problem with this design is that each Bit is limited to being in at
most one Equality relationship. An improvement is to inject into
the Bit class an instance variable storing a List of Bits: to hold
references to the zero or more Bits to which a given Bit is related.
The advice would traverse this list, updating peers, taking
appropriate measures to avoid unbounded recursion.

Program 1
public class Bit {
 boolean value;
 public Bit(){value=false;}
 public void Set(){value=true;}
 public void Clear(){value=false;}
 public boolean Get(){return value;}
}

Figure 6: A mediator-like aspect for Equality.

Finally, we note that yet another solution is available. The lists of
Bits could be removed from individual Bit objects to be unified in a
single relational table maintained by the aspect. This table would
contain an entry for each pair of Bits related by Equality. The
aspect would provide a function for putting pairs of Bits in or
remove them from the relation. The map function would look up
the set of Bits related to a given Bit, namely this (the Bit that caused
the advice to be run). In response to a Bit.Set, for example, the
advice would use map to compute the image of the Bit, and iterate
over all the related Bits, updating their states as necessary.

Figure 7. A (faulty) aspect solution using introduction.

Each of these solutions has problems. The first is limited to one
relationship instance for the whole system, and it does not scale as
more entities and relationships are added to the design. The second
limits each Bit to participating in one Equality relationship. That is
not adequate to support our design scenario, in which b2 eventually
participates in two such relationships, with b1 and b3. The third
and fourth solutions solve this problem by allowing each Bit to be
related to any number of other peer Bits in equality relationships.

The third and fourth solutions are attractive, too, in providing a
solution for representing the Trigger relationship. A second aspect
is introduced for this purpose. It is closely modeled on the Equality
aspect. We have thus succeeded in representing Bits without
crosscutting relationship code, and in representing two kinds of
relationships without crosscutting each other. What remains?

The problem is highlighted by the fault involving busy. In our third
solution (Figure 7), the busy variable belongs to the aspect type.
The problem is that we need a busy variable per relationship
instance. Consider how the extended system with four Bits fails.
Suppose b1 is Set, The Equality advice after-callSet is invoked. It
finds busy clear, sets it, and then Sets b2. The after-callSet advice
is invoked recursively for b2 (which is correct). It finds busy on,
and so returns immediately. The setting of b2 should have resulting
in the subsequent setting of b3. The second instance of the Equality
relationship, linking b2 to b2, was not handled properly.

Program 3
aspect Equality {
 static boolean busy;
 public boolean Bit.inRelation = false;
 public Bit Bit.peer;
 public void Bit.relate(Bit b){
 this.inRelation = true;
 this.peer= b;
 this.peer.inRelation = true;
 this.peer.peer = this;
 }
 pointcut callSet(Bit b):
 target(b) && call(void Set());
 pointcut callClear(Bit b):
 target(b) && call(void Clear());
 after(Bit b): callSet(b) {
 if (b.inRelation == true){
 if (!busy) {
 busy = true;
 b.peer.Set();
 busy = false;
 }
 }
 }
 after(Bit b): callClear(b) {
 if (b.inRelation == true) {
 if (!busy) {
 busy = true;
 b.peer.Clear();
 busy = false;
 }
 }
 }
}

Program 2
aspect Equality {
 static boolean busy;
 Bit b1;
 Bit b2;

Equality(Bit bit1, Bit bit2){
 b1 = bit1;
 b2 = bit2;
 }

 Bit map(Bit b){
 if (b == b1) return b2
 else return b1;
 }

 pointcut callSet():
 call(void Bit.Set());

 pointcut callClear():
 call(void Bit.Clear());

 after(): callSet(){
 if (!busy) {
 Bit peer = map(
 (Bit)thisJoinPoint.getTarget());
 busy = true;
 peer.Set();
 busy = false;
 }
 }

 after(): callClear(){
 if (!busy) {
 Bit peer = map(
 (Bit)thisJoinPoint.getTarget());
 busy = true;
 peer.Clear();
 busy = false;
 }
 }
}

The basic problem that this example reveals has two parts. First,
each behavioral relationship instance can have an arbitrarily
complex and stateful behaviors. Our example exhibits this point in
the simplest non-trivial way: The one-bit busy variable represents
the dynamic state of a behavioral relationship instance. Second, by
default, there is only one instance of an aspect module per system.

The correct mapping of behavioral relationships in design to
aspects now becomes clear. An aspect represents a type of
behavioral relationship, and has to emulate OO-like creation,
manipulation, and deletion of instances.

The fourth and final program, in which the aspect maintains a table
of Bit pairs, can be repaired to provide a workable solution in this
style. Without details, the key is to associate per-instance state
with each pair of Bits in an aspect’s table, and to provide means,
e.g., in the form of static aspect methods, to get and set the state on
a per-pair basis. One solution would be to reify each behavioral
relationship as a record containing references to the objects it
integrates and the required state components. The aspect would
maintain a table of these tuples—a relation keyed by object pairs.

We can now characterize the modularity properties of AspectJ with
respect to design structures containing behavioral relationships as
independent parameters. AspectJ is not fully modular insofar as the
relationship instances of a given type are not represented as abstract
first-class objects in the program. Rather, their representations are
merged together (a kind of crosscutting implementation) and are
implicit in the state of a single aspect module. We have lost the
mediator-like mapping of behavioral relationships in design to
corresponding first-class objects in the program structure.

Second, a correct aspect-oriented solution could incur a significant
performance overhead for the table lookups required to retrieve and
manipulate the representations of behavioral relationship instances.
Using a hash table to store the relation would maintain constant
time in the number of instances, but at a significant cost in space,
and still a significant cost in time relative to direct access to objects.

The root of the problem is that the AspectJ model of aspect
instances is too limited to fully preserve the abstract structure of
our designs in terms of the modular constructs of the programming
language. This is the bound that we promised to exhibit. AspectJ
remains not fully modular for component integration concerns that
are abstracted as independent parameters in design.

There is one final detail. AspectJ does have a more general model
of aspect instantiation than we have discussed so far. The AspectJ
technical documentation states the following:

If an aspect A is defined perthis(Pointcut), then one
object of type A is created for every object that is the executing
object (i.e., "this") at any of the join points picked out by
Pointcut. The advice defined in A may then run at any join
point where the currently executing object has been associated
with an instance of A…. Similarly, if an aspect A is defined
pertarget(Pointcut), then one object of type A is
created for every object that is the target object of the join
points picked out by Pointcut.

In other words, it is possible to have more than one aspect instance
of a given type. Can we not use multiple instances in this way to
implement mediators? The short answer is, no. There are two
reasons. First, in our design an object can participate in several
instances of any given behavioral relationship type. Our b2 is

linked to both b1 and b3 by separate Equality relationships. The
per this and per target constructs of AspectJ, however, are limited
to attaching at most one instance of an aspect of a given type to any
given object. Second, these instances are limited to being attached
to just one object, but what we need to represent are relational
structures that connect co-equal participants in a relationship.

A final possible “hack” that we haven’t yet evaluated adequately is
to abuse the per constructs as follows. Define a proxy Java class in
AspectJ and an aspect as being per this for each proxy instance.
Proxy objects serve no purpose other than to circumvent the intent
of the designers of AspectJ’s to deny the programmer access to the
runtime system for aspect instantiation.

We leave open the question of whether this “hack” can be exploited
to emulate mediators with aspect instances. In any case, it so
violates the intended style constraints that we consider it to be not
properly in the realm of the AspectJ language and style. Our
conclusions appear to stand for the intended usage of the language.

6. CONCLUSION
Significant advances in programming languages and design
methods have been driven by the discovery of potentially valuable
design structures for which existing approaches are not modular.
The emergence of aspect-oriented programming is an example: it
responds to the problem that OO languages, in particular, cannot
preserve the modular structures of valuable, feasibly modularizable
designs—that OO representations of such structures cannot avoid
crosscutting representations of independent design parameters.

This perspective sheds some new light on some of the terminology
being used to describe AO. In particular, an aspect at the program
representation level is defined as a modular unit of crosscutting
implementation. We can now rephrase this: An aspect is a modular
representation of an independent design parameter in a “new”
language, for which there is no modular representation in some
other, often tacitly assumed, “old” language or language paradigm.

Looking back, we find that, by this definition, new languages have
been aspect-oriented all along. In this paper, we have seen just two
examples. Parnas found a new kind of design structure in which
valuable dimensions of change and variation are represented as
independent parameters in design. In his seminal paper he focused
on variation of data structure choices in particular. He showed that
the prevailing structured languages and related design methods
were not modular for such design structures: procedure
implementations were crosscut by assumptions about concrete data
structures. He then introduced an information hiding style based
on the use of ADT interfaces. In 1972, these were aspects: modular
units of previously crosscutting implementation.

Similarly, Sullivan and Notkin saw that behavioral relationships,
interactions protocols by which object behaviors are composed into
systems, can profitably be abstracted as independent parameters in
design. They then showed that such protocols are not
modularizable in standard OO languages, but that they are
modularizable in some practical languages: e.g., using ABTs to
represent behavioral relationships as mediators. In this paper, we
have shown that mediators are aspects not only in being modular
units of otherwise crosscutting implementation, but also in having a
direct mapping to the terms of modern AO language design: join
points and advice. Aspect-Oriented languages are the latest (and
perhaps the greatest) in a line of “aspect-oriented” languages
stretching back more than thirty years.

Looking back, at each turning point someone had an insight that
there is some kind of important design parameter that remains an
aspect: for which the prevailing best language remains
non-modular. With such an insight in hand, the task of inventing
the next mechanism for preserving design modularity in programs
can begin in earnest, and a new kind of modular program structure
can be developed that can reasonably called an aspect relative to
the previous language. When such mechanisms become common,
what at first was seen as special, an aspect, becomes the new
baseline against which new non-modularity properties are found.

Looking forward, then, the question for today is the old one: What
kinds of design parameters remain aspects for today’s best
languages? For what important kinds of design parameters do the
languages remain non-modular? In this paper, we ask the question,
what remains an aspect for AspectJ?. We showed one such bound:
that integration remains an aspect, to some degree, for AspectJ.

We do not suggest in this paper how to solve this problem. It is
clear from earlier work on mediators and OO reflection that
“weaving aspects dynamically” to modularize integration concerns
is feasible. The real question is what are the tradeoffs? AspectJ is
one a number of languages, including HyperJ, in which reflective
behaviors are set up statically. These languages reap advantages
from this constraint. One example is the pointcut language of
AspectJ? Another is the performance gain of being able to compile
away meta-level indirection. To what extent can the pointcut
language and performance be preserved, while permitting runtime
creation and binding of aspect instances? It is not clear.

Finally, we end with a bigger question—really the one we asked at
the beginning. Brooks has distinguished between accidental and
essential difficulties in software development. Each advance in
aspect-oriented design shows that some previously intractable
difficulty with crosscutting implementation was accidental: an
artifact of a now evidently solvable problem in language design.
Some bounds on the abilities of languages to preserve modularity
in design are accidental.

The question is, What are the essential bounds on the modularity of
program code, if any? For what kinds of concerns, abstracted as
independent parameters, can no practical programming language
ever be modular? Are there essential aspects? It appears that many
hard-to-achieve (so called non-functional) properties of programs,
such as dependability, might be inherently aspectual. Unreliability,
for example, arises from faults that are by their very nature
scattered about the code of a system. To modularize reliability as
an aspect would appear to require the localization of all of the
faulty code in a system—surely an absurd hope. What realistically
can we hope for? What are the bounds of reasonable expectation?

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under grants CCR-9804078 and ITR-0086003.

REFERENCES
[1] Xerox Corporation, AspectJ Team, The AspectJ

Programming Guide, 2001, available at URL
http://www.aspectj.org/ as of this writing.

[2] Elrad, T., R.E. Filman and A. Bader, guest editors,
Communications of the ACM 44, 10, Special Issue on
Aspect-Oriented Programming, October 2001.

[3] Gamma, Helm, Johnson and Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[4] Kalet, I.J., J.P. Jacky, M.M Austin-Seymour, S.M. Hummel,
K.J. Sullivan and J.M. Unger, ``Prism: a New Approach to
Radiotherapy Planning Software,'' International Journal of
Radiation Oncology, Biology and Physics, 36, 2, 1996, pp.
451--461.

[5] Kiczales,G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier and J. Irwin, “Aspect-oriented programming,” in
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Springer-Verlang, Lecture Notes on
Computer Science 1241, June 1997.

[6] Kiczales,G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and
W.G. Griswold, “An overview of AspectJ,” in Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP), 2001.

[7] Maes, P., “Concepts and experiments in computational
reflection. Proceedings of OOPSLA'87, ACM SIGPLAN
Notices, vol 22, 1987, pp 147-155.

[8] Notkin, D., D. Garlan, W.G. Griswold, and K. Sullivan,
“Adding Implicit Invocation to Languages: Three
Approaches,” Proceedings of the JSSST International
Symposium on Object Technologies for Advanced Software,
(November 1993). (Also appears as a Springer-Verlag
Lecture Notes in Computer Science volume \#742.)

[9] Ossher. H. and P. Tarr: Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluwer, 2000.

[10] Parnas, D.L., "On the Criteria to be Used in Decomposing
Systems into Modules," Communications of the ACM, 14(1):
221-227, 1972

[11] Sullivan, K.J., and D. Notkin, “Reconciling environment
integration and software evolution,” ACM Transactions on
Software Engineering and Methodology 1, 3, July 1992, pp.
229–268 (short form: Proceedings of the 4th SIGSOFT
Symposium on Software Development Environments, 1990,
pp. 22–33).

[12] K.J. Sullivan, I.J. Kalet, and D. Notkin, “Evaluating The
Mediator Method: Prism as a Case Study,” IEEE Transactions
on Software Engineering, 22, 8, August, 1996, pp. 563--579.

[13] Sullivan, K.J., Mediators: Easing the Design and Evolution of
Integrated Systems, Ph.D. dissertation, University of
Washington, 1994

[14] Sullivan,K.J., W.G. Griswold, Y. Cai and B. Hallen, “The
structure and value of modularity in software design,”
Proceedings of the European Software Engineering
Conference held jointly with the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, 2001, Vienna,
pp, 99–108.

