
Matching in Description Logics:Preliminary ResultsFranz BaaderTheoretical Computer ScienceRWTH Aachen52074 Aachen, Germany Alex BorgidaDept. of Computer ScienceRutgers UniversityNew Brunswick, NJ, USA Deborah L. McGuinnessArti�cial Intelligence PrinciplesAT&T Labs{ResearchFlorham Park, NJ, USAAbstractMatching of concepts with variables (conceptpatterns) is a relatively new operation that hasbeen introduced in the context of concept de-scription languages (description logics), origi-nally to help discard unimportant aspects oflarge concepts appearing in industrial-strengthknowledge bases. This paper proposes a newapproach to performing matching, based on a\concept-centered" normal form, rather thanthe more standard \structural subsumption"normal form for concepts. As a result, match-ing can be performed (in polynomial time) us-ing arbitrary concept patterns of the descrip-tion language FL:, thus removing restrictionsfrom previous work. The paper also addressesthe question of matching problems with addi-tional \side conditions", which were motivatedby practical experience.1 IntroductionThe traditional inference problems for DescriptionLogic (DL) systems (like subsumption) are now well-investigated. This means that algorithms are availablefor solving the subsumption problem and related infer-ence problems in a great variety of DL languages of dif-fering expressive power. In addition, the computationalcomplexity of these inference problems has been investi-gated in detail. It has turned out, however, that buildingand maintaining large DL knowledge bases requires sup-port by additional inference capabilities, which have notbeen considered in the DL literature until very recently.The present paper is concerned with such a new inferenceservice, namely, matching of concept descriptions.Matching of Description Logic concepts was intro-duced in the Classic system (version 2), under thename of \�ltering", as a technique for specifying whichaspects of a concept should be selected for printing orexplanation. The need for this facility became appar-ent when dealing with large knowledge bases, involving

concepts whose description spans multiple pages of out-put: in many cases, such concepts carried details thateither were obviously true (e.g., the age of a person isa number) or were intended for some internal function(e.g., graphical display) rather than domain modeling.In either case, both the printing and the explaining ofresults provided by the more traditional inference ser-vices [8, 7] required pruning. In projects using Classic,pruning of the descriptions resulted in concepts that wereapproximately an order of magnitude smaller. In smallapplications such as [9], this actually saved 3{5 pages ofprintout; in larger applications such as [11, 10] it mightsave up to 30 pages.This pruning mechanism was �rst formalized in [7]as a purely syntactic match involving terms/conceptswith variables, and then given a semantics and a syn-tactic implementation in [3]. Given a concept patternD (i.e., a concept description containing variables) anda concept description C without variables, the matchingproblem introduced in [3] asks for a substitution � (of thevariables by concept descriptions) such that C v �(D).More precisely, one is interested in a \minimal" solutionof the matching problem, i.e., � should satisfy the prop-erty that there does not exist a substitution � such thatC v �(D) @ �(D). For example, the minimal matcherof the pattern D := 8research-interests:X against the de-scription C:8pets:Catu8research-interests:ArtIntu8hobbies:Gardeningassigns ArtInt to the variable X , and thus �nds the sci-enti�c interests (in this case Arti�cial Intelligence) de-scribed in the concept. (The concept pattern can bethought of as a \format statement", describing what in-formation is to be displayed (or explained), if the patternmatches successfully against a speci�c concept. If thereis no match, nothing is displayed.)In some cases, this pruning e�ect can be improved byimposing additional side conditions on the solutions ofmatching problems. For example, the information thatthe research interests lie in the area of Arti�cial Intel-1



ligence may not provide interesting information if ourknowledge base is concerned only with AI researchers. Aside condition stating that the solutions for the variableX must be subsumed by KnowlRep would make sure thatmatching succeeds only if the research interests belongto (a sub�eld of) Knowledge Representation. Thus, thedescription C from above no longer matches the patternD, whereas C 0:8pets:Cat u 8research-interests:DL u 8hobbies:Gardeningwould still yield a solution (provided that DL is de�nedby a description that is subsumed by KnowlRep). Sideconditions become especially useful once we have indi-vidual role �llers that can match variables, since theyallow us to state complex conditions on the matchingindividual.In some cases we would like to have a matching processwhich succeeds only if the variable X is substituted forby a value that is strictly subsumed by some description(or pattern). The utility of such strict side-conditionsmight be more clearly seen in an example where the con-cept Person is known to have Number restrictions on theage attribute, and we are interested in seeing the valuerestriction for age only if it represents some additional(i.e., stricter) constraint. Another point worth notingis that according to the standard Description Logic se-mantics, every description is subsumed by all concepts ofthe form 8R:>, where > denotes the universal concept.Hence the pattern D above (concerning research inter-ests) matches every concept. Side conditions requiringthe value substituted for a variable to be strictly sub-sumed by > prevent such \trivial" matches.Matching algorithms for a DL containing most of theconstructs available in Classic are introduced in [7] and[3]. These algorithms are based on the role-centered nor-mal form1 of concept descriptions usually employed bystructural subsumption algorithms. The main drawbackof these algorithms is that they cannot treat arbitrarymatching problems since they require the concept pat-tern to be in structural normal form.In [2], Baader and Narendran consider uni�cation ofconcept descriptions in FL0, which allows for conjunc-tion (u), value restriction (8R:C), and the top concept(>). Matching modulo equivalence, i.e., the questionwhether, for a given pattern D and a description C,there exists a substitution � such that C � �(D), can beseen as a special case of uni�cation where one of the de-scriptions (namely C) does not contain variables. SinceC v �(D) i� C � �(C u D), matching modulo sub-sumption (as introduced above) is an instance of match-1We call this normal form \role-centered" since it groupssub-descriptions by role names, whereas the concept-centerednormal form used in this paper groups value restrictions byconcept names.

ing modulo equivalence. The polynomial matching al-gorithm described in [2] does not impose restrictions onthe form of the patterns. However, it is restricted to thesmall language FL0.In the present paper, we show that this algorithm canbe extended to treat matching in languages allowing forinconsistent concept descriptions, namely FL?, whichextends FL0 by the bottom concept (?), and FL:,which extends FL? by primitive negation (:A, where Ais an atomic concept). In addition, we consider match-ing under additional conditions on the variable bindings,which also arose in examples in [9, 7] and were respon-sible for about 25% of our space savings in our deployedexample. In this paper, we consider two di�erent vari-ants of these \side conditions": subsumption conditionsand strict subsumption conditions. Subsumption con-ditions are of the form X v E, where X is a vari-able and E is a pattern (i.e., it may contain variables),and they restrict the matchers to substitutions � sat-isfying �(X) v �(E). It should be noted that such aside condition is not a matching problem since variablesmay occur on both sides. We shall see, however, thatin many cases matching under subsumption conditionscan be reduced in polynomial time to matching withoutsubsumption conditions. In contrast, strict subsumptionconditions may increase the complexity of the matchingproblem. Such conditions are of the form X @ E, whereX is a variable and E is a pattern, and they restrict thematchers to substitutions � satisfying �(X) v �(E) and�(X) 6� �(E). Even for the small languagesFL0, match-ing under strict subsumption conditions is NP-hard.Except for the proofs of the two main lemmas, whichprovide us with our polynomial matching algorithm, weomit all the proofs. Detailed proofs can be found in [1].2 Formal preliminariesIn this section, we �rst introduce syntax and semanticsof the description languages considered in this paper.Then, we formally introduce matching problems, andstate some simple results about matching problems andtheir solutions.De�nition 1 Let C and R be disjoint �nite sets repre-senting the set of atomic concepts and the set of atomicroles . The set of all FL:-concept descriptions over Cand R is inductively de�ned as follows:� Every element of C is a concept description (atomicconcept).� The symbols > (top concept) and ? (bottom con-cept) are concept descriptions.� If A 2 C, then :A is a concept description (atomicnegation).� If C and D are concept descriptions, then C uD isa concept description (concept conjunction).2



� If C is a concept description and R 2 R is an atomicrole, then 8R:C is a concept description (value re-striction).In the sublanguage FL0 of FL:, atomic negation and? may not be used, whereas in FL? only atomic nega-tion is disallowed.The following de�nition provides a model-theoretic se-mantics for FL: and its sublanguages:De�nition 2 An interpretation I consists of anonempty set �I , the domain of the interpretation, andan interpretation function that assigns to every atomicconcept A 2 C a set AI � �I , and to every atomicrole R 2 R a binary relation RI � �I � �I . Theinterpretation function is extended to complex conceptdescriptions as follows:>I := �I ;?I := ;;(:A)I := �I nAI ;(C uD)I := CI \DI ;(8R:C)I := fd 2 �I j 8e 2 �I :(d; e) 2 RI ! e 2 CIg:Based on this semantics, subsumption and equivalenceof concept descriptions is de�ned as follows: Let C andD be FL:-concept descriptions.� C is subsumed by D (C v D) i� CI � DI for allinterpretations I .� C is equivalent to D (C � D) i� CI = DI for allinterpretations I .� C is strictly subsumed by D (C @ D) i� C v D andC 6� D.In order to de�ne matching of concept descriptions, wemust introduce the notion of a concept pattern and ofsubstitutions operating on patterns. For this purpose,we introduce an additional set of symbols X (conceptvariables), which is disjoint from C [ R.De�nition 3 The set of all FL:-concept patterns overC, R, and X is inductively de�ned as follows:� Every concept variable X 2 X is a pattern.� Every FL:-concept description over C and R is apattern.� If C and D are concept patterns, then C u D is aconcept pattern.� If C is a concept pattern and R 2 R is an atomicrole, then 8R:C is a concept pattern.Thus, concept variables can be used like atomic con-cepts, with the only di�erence being that atomic nega-tion may not be applied to variables.

A substitution � is a mapping from X into the set ofall FL:-concept descriptions. This mapping is extendedto concept patterns in the obvious way, i.e.,� �(A) := A and �(:A) := :A for all A 2 C,� �(>) := > and �(?) := ?,� �(C uD) := �(C) u �(D), and� �(8R:C) := 8R:�(C).For example, applying the substitution � := fX 7! A u8R:A; Y 7! Bg to the pattern X u Y u 8R:X yields thedescription A u (8R:A) uB u 8R:(A u 8R:A).Obviously, the result of applying a substitution to anFL:-concept pattern is an FL:-concept description.2An FL0-substitution maps concept variables to FL0-concept descriptions. FL?-substitutions are de�nedanalogously.Subsumption can be extended to substitutions as fol-lows. The substitution � is subsumed by the substitution� (� v �) i� �(X) v �(X) for all variables X 2 X .De�nition 4 An FL:-matching problem is of the formC �? D where C is an FL:-concept description and Dis an FL:-concept pattern. A solution or matcher ofthis problem is a substitution � such that C � �(D).A subsumption condition in FL: is of the form X v?E where X is a concept variable and E is an FL:-concept pattern. The substitution � satis�es this condi-tion i� �(X) v �(E).A strict subsumption condition in FL: is of the formX @? E where X is a concept variable and E is anFL:-concept pattern. The substitution � satis�es thiscondition i� �(X) @ �(E).Matching problems and (strict) subsumption condi-tions in FL0 and FL? are de�ned analogously. Notethat also the solutions are then constrained to belong tothe respective sublanguage.Instead of a single matching problem, we may alsoconsider a �nite system fC1 �? D1; : : : ; Cm �? Dmg ofsuch problems. The substitution � is a solution of thissystem i� it is a solution of all the matching problemsCi �? Di contained in the system. However, it is easyto see that solving systems of matching problems canbe reduced (in linear time) to solving a single matchingproblem.Lemma 5 Let R1; : : : ; Rm be distinct atomic roles.Then � solves the system fC1 �? D1; : : : ; Cm �? Dmgi� it solves the single matching problem8R1:C1 u � � � u 8Rm:Cm �? 8R1:D1 u � � � u 8Rm:Dm:2Note that this would not be the case if we had allowedthe application of negation to concept variables.3



Consequently, we may (without loss of generality) re-strict our attention to single matching problems with orwithout �nite sets of (strict) subsumption conditions.In [3, 7], a di�erent type of matching problems hasbeen considered. We will refer to those problems asmatching modulo subsumption in order to distinguishthem from the matching problems modulo equivalenceintroduced above.De�nition 6 A matching problem modulo subsumptionis of the form C v? D where C is a concept descriptionand D is a pattern. A solution of this problem is asubstitution � satisfying C v �(D).For any description language allowing conjunction ofconcepts, matching modulo subsumption can be reduced(in linear time) to matching modulo equivalence:Lemma 7 The substitution � solves the matching prob-lem C v? D i� it solves C �? C uD.For FL:, and more generally for any description lan-guage in which variables in patterns may only occur inthe scope of \monotonic" operators, solvability of match-ing problems modulo subsumption can be reduced tosubsumption:Lemma 8 Let C v? D be a matching problem modulosubsumption in FL:, and let �> be the substitution thatreplaces each variable by >. Then C v? D has a solutioni� �> solves C v? D.Thus, solvability of matching problems modulo sub-sumption in FL: and its sublanguages is not an inter-esting new problem. This changes, however, if we con-sider such matching problems together with additional(strict) subsumption conditions. In fact, these condi-tions may exclude the trivial solution �>. In addition,one is usually not interested in an arbitrary solution ofthe matching problem C v? D, but rather in computinga \minimal" solution:De�nition 9 Let C v? D be a matching problem mod-ulo subsumption. The solution � of C v? D is calledminimal i� there does not exist a substitution � suchthat C v �(D) @ �(D).Lemma 10 Let C v? D be an FL:-matching problemmodulo subsumption. If � is the least solution of C v? Dw.r.t. subsumption of substitutions, i.e., � v � for allsolutions �, then � is also a minimal solution.It should be noted that talking about the least solutionis a slight abuse of language since the least solution of agiven matching problem is unique only up to equivalence:if � and � are both least solutions of the same matchingproblem then they subsume each other, which meansthat �(X) � �(X) for all variables X 2 X .The converse of Lemma 10 need not hold. For exam-ple, for the matching problem 8R:A v? 8R:A u 8R:X ,

the substitutions � := fX 7! Ag and � := fX 7! >gare both minimal solutions, but � obviously cannot bea least solution. This example also demonstrates thatminimal solutions of a given matching problem need notbe unique up to equivalence.3 Matching in FL?The purpose of this section is to show that solvability ofFL?-matching problems can be decided in polynomialtime. In addition, for matching problems modulo sub-sumption we can compute a minimal solution in poly-nomial time. Our algorithm is based on a \concept-centered" normal form for FL?-concept descriptions.First, let us recall the concept-centered normal formfor FL0-concept descriptions introduced in [2]. It iseasy to see that any FL0-concept description can betransformed into an equivalent description that is ei-ther > or a (nonempty) conjunction of descriptions ofthe form 8R1: � � � 8Rm:A for m � 0 (not necessarily dis-tinct) atomic roles R1; : : : ; Rm and an atomic conceptA 6= >. We abbreviate 8R1: � � � 8Rm:A by 8R1 : : : Rm:A,where R1 : : : Rm is considered as a word over the al-phabet � := R of all atomic roles. In addition, in-stead of 8w1:A u : : : u 8w`:A we write 8L:A whereL := fw1; : : : ; w`g is a �nite set of words over �. Theterm 8;:A is considered to be equivalent to >. Usingthese abbreviations, any pair of FL0-concept descrip-tions C;D containing the atomic concepts A1; : : : ; Akcan be rewritten asC � 8U1:A1 u : : : u 8Uk:Ak;D � 8V1:A1 u : : : u 8Vk:Ak;where Ui; Vi are �nite sets of words over the alphabet ofall atomic roles. This normal form provides us with thefollowing characterization of equivalence of FL0-conceptdescriptions [2]:Lemma 11 Let C;D be FL0-concept descriptions withnormal forms as introduced above. Then C � D i� Ui =Vi for all i; 1 � i � k.This characterization can in turn be used to reducematching of FL0-concept descriptions to a certain for-mal language problem, which can easily be shown to besolvable in polynomial time (see [2] for details).If we treat ? like an arbitrary atomic concept, FL?-concept descriptions C;D can still be represented in theform3 C � 8U0:?u 8U1:A1 u : : : u 8Uk:Ak;D � 8V0:?u 8V1:A1 u : : : u 8Vk:Ak:3We shall call this the FL0-normal form of the descrip-tions.4



However, equivalence of the descriptions no longer corre-sponds to equality of the languages Ui and Vi. The rea-son is that 8R1: � � � 8Rm:? is subsumed by any value re-striction of the form 8R1: � � � 8Rm: 8Rm+1: � � � 8Rm+n:A.This fact is taken into account by the following charac-terization of equivalence of FL?-concept descriptions:Lemma 12 Let C;D be FL?-concept descriptions withFL0-normal forms as introduced above. ThenC � D i� U0��� = V0��� andUi [ U0��� = Vi [ V0���for all i; 1 � i � k;where �� is the set of all words over the alphabet of allatomic roles and � stands for concatenation.If D is an FL?-pattern containing the variablesX1; : : : ; X`, then its FL0-normal form is of the formD � 8V0:?u 8V1:A1 u : : : u 8Vk:Ak u8W1:X1 u : : : u 8W`:X`:If we want to match D with the description C (withnormal form as above), we must solve the following \for-mal language" equations (where Xj;i are interpreted asvariables for �nite sets of words):(?) U0��� = V0��� [W1�X1;0��� [ : : : [W`�X`;0���;and for all i; 1 � i � k,(Ai) Ui [U0��� = Vi [W1�X1;i [ : : :[W`�X`;i [U0���:Theorem 13 Let C be an FL?-concept description andD an FL?-concept pattern with FL0-normal forms asintroduced above. Then the matching problem C �? Dhas a solution i� the formal language equations (?) and(A1); : : : ; (Ak) are each solvable.Example 14 As a running example, we will considerthe problem of matching the patternD := X1 u (8R:X1) u (8S:X2)against the descriptionC := 8R:((8S:A1) u (8R:?)) u 8S:8S:?:The FL?-normal forms of C and D areC � 8fRR;SSg:?u 8fRSg:A1;D � 8;:?u 8;:A1 u 8f";Rg:X1 u 8fSg:X2:Thus, the matching problem C �? D is translated intothe following two equations:(?) fRR;SSg��� = ;��� [ f";Rg�X1;0��� [fSg�X2;0���(A1) fRSg [ fRR;SSg��� = ; [ f";Rg�X1;1 [fSg�X2;1 [ fRR;SSg���

If we want to utilize Theorem 13 for deciding matchingproblems in FL?, we must show how solvability of theequations (?), (A1), ..., (Ak) can be tested. First, weaddress the problem of solving equation (?).Lemma 15 Equation (?) has a solution i� replacingXj;0��� by the sets \w2Wj w�1�(U0���)solves equation (?).4Proof. To show the only-if direction, we assume thatthe assignment X1;0 := M1;0; : : : ; X`;0 := M`;0 solvesequation (?).First, we prove that Mj;0��� � Tw2Wj w�1�(U0���)holds for all j; 1 � j � `. Thus, let v 2 Mj;0��� andw 2 Wj . Since Wj �Mj;0��� � U0���, we know thatwv 2 U0���, and thus v 2 w�1�(U0���). This showsthat Mj;0��� � w�1�(U0���) for all w 2 Wj , and thusMj;0��� � Tw2Wj w�1�(U0���).As an immediate consequence, we obtainU0��� = V0��� [W1�M1;0��� [ : : : [W`�M`;0���� V0��� [W1� \w2W1 w�1�(U0���) [ : : : [W`� \w2W` w�1�(U0���):It remains to be shown that the inclusion in the otherdirection holds as well. Obviously, we have V0��� �U0��� since there exists a solution of (?). To concludethe proof of the only-if direction, assume that u 2 Wjand v 2 Tw2Wj w�1�(U0���). We must show that uv 2U0���. Obviously, u 2 Wj implies v 2 u�1�(U0���), andthus uv 2 U0���.To prove the if direction, it is su�cient to show thatthere exist �nite sets of words Lj;0 (j = 1; : : : ; `) suchthat Lj;0��� = Tw2Wj w�1�(U0���). This is an immedi-ate consequence of the fact that languages of the formL��� for �nite L are closed under (binary) intersectionand left quotients (see (1) and (2) of Lemma 16 below).Lemma 16 Let U; V be �nite languages and w a word.1. There exists a �nite language L1 such that L1��� =w�1�(U ���).2. There exists a �nite language L2 such that L2��� =U ��� \ V ���.3. U ��� [ V ��� = (U [ V )��� and U �(V ���) =(U �V )���.4For a word w and a set of words L we have w�1�L :=fu j wu 2 Lg. This language is called a left quotient of L.5



For the matching problem of Example 14, we replaceX1��� byR�1�(fRR;SSg���) \ "�1�(fRR;SSg���) =fRg��� \ fRR;SSg��� = fRRg���and X2��� byS�1�(fRR;SSg���) = fSg���:It is easy to see that this replacement solves the equa-tion. The �nite languages Lj;0 are de�ned as L1;0 :=fRRg and L2;0 := fSg:Now, let us consider the equations (Ai) for 1 � i � k.Lemma 17 Equation (Ai) has a solution i� replacingthe variables Xj;i by the sets bLj;i := Tw2Wj w�1�(Ui [U0���) yields a solution of (Ai).Proof. The proof of the only-if direction is very sim-ilar to the proof of this direction for Lemma 15. Inparticular, one can show that any assignment X1;i :=M1;i; : : : ; X`;i := M`;i that solves (Ai) satis�es Mj;i �bLj;i.To prove the if direction, it is su�cient to show thatthere exist �nite sets of words Lj;i such that Wj �Lj;i [U0��� =Wj �bLj;i [ U0���.We have bLj;i = Tw2Wj (w�1�Ui [ w�1�(U0���)).By applying distributivity of intersection over union,this intersection of unions can be transformed intoa union of intersections. Except for the intersectionTw2Wj w�1�(U0���), all the intersection expressions inthis union contain at least one language w�1Ui for aword w 2 Wj . Since Ui is �nite, this shows thatTw2Wj w�1�(U0���) is the only (possibly) in�nite lan-guage in the union. Consequently, if we de�ne Lj;i :=bLj;i nTw2Wj w�1�(U0���), then Lj;i is a �nite language.In order to prove that Wj �bLj;i [ U0��� = Wj �Lj;i [U0���, it is su�cient to show that u 2 Wj and v 2bLj;i n Lj;i implies uv 2 U0���. By de�nition of Lj;i, weknow that v 2 Tw2Wj w�1�(U0���), and thus u 2 Wjimplies uv 2 U0���.For the matching problem of Example 14, we havebL1;1 = R�1�(fRSg [ fRR;SSg���) \"�1�(fRSg [ fRR;SSg���)= (fSg [ fRg���) \ (fRSg [ fRR;SSg���)= fRSg [ fRRg���;bL2;1 = S�1�(fRSg [ fRR;SSg���)= fSg���:Again, it is easy to see that replacing the variables Xj;1by bLj;1 yields a solution of equation (A1). The �nite

languages Lj;1 are de�ned as L1;1 := fRSg and L2;1 :=;. Lemma 15 and 17 provide us with a polynomial algo-rithm for deciding solvability of matching problems inFL?.Theorem 18 Solvability of matching problems in FL?can be decided in polynomial time.The proofs of Lemma 15 and 17 also show how tocompute a matcher of a given solvable FL?-matchingproblem in polynomial time. In fact, if the matchingproblem is solvable, then the following substitution � isa matcher:� := fX1 7! 8L1;0:?u kui=1 8L1;i:Ai;: : : ;X` 7! 8L`;0:?u kui=1 8L`;i:Aig;where the languages Lj;0 (1 � j � `) are de�nedas in the proof of Lemma 15, and the languages Lj;i(1 � j � `, 1 � i � k) are de�ned as in the proof ofLemma 17. It should be noted that the language Lj;i =bLj;i n Tw2Wj w�1�(U0���) is a subset of Sv2Wj v�1Ui,and thus its size is polynomial in the size of the match-ing problem.For the matching problem of Example 14, we thus ob-tain the matcherfX1 7! (8R:8R:?)u (8R:8S:A1); X2 7! 8S:?g:Lemma 19 Assume that the given FL?-matching prob-lem C �? D is solvable. Then the substitution � de�nedabove is the least solution of C �? D.This lemma, together with Lemma 10, immediatelyimplies the following theorem:Theorem 20 Let C v? D be a solvable matching prob-lem modulo subsumption. Then the least solution ofC �? C u D is a minimal solution of C v? D, andthis solution can be computed in polynomial time.4 Matching in FL:The results for matching in FL? can easily be extendedto the language FL:. In principle, negated atomic con-cepts are treated like new atomic concepts. The fact thatAu:A is inconsistent (i.e., equivalent to ?) is taken careof by extending the language in the value restriction forthe concept ? appropriately.To be more precise, let C;D be FL?-concept descrip-tions, and A1; : : : ; Ak the atomic concepts occurring inC;D. By treating the negated atomic concepts :Ai likenew atomic concepts, we can transform C and D into6



their FL0-normal forms:C � 8U0:?u 8U1:A1 u : : : u 8Uk:Ak u8Uk+1::A1 u : : : u 8U2k::Ak ;D � 8V0:?u 8V1:A1 u : : : u 8Vk:Ak u8Vk+1::A1 u : : : u 8V2k::Ak:If we de�nebU0 := U0[ k[i=1(Ui\Uk+i) and bV0 := V0[ k[i=1(Vi\Vk+i);then Lemma 12 can be generalized to FL: as follows:Lemma 21 Let C;D be FL:-concept descriptions withFL0-normal forms as introduced above. ThenC � D i� bU0��� = bV0��� andUi [ bU0��� = Vi [ bV0���for all i; 1 � i � 2k;where �� is the set of all words over the alphabet of allatomic roles.Consequently, all the results for matching in FL?carry over to FL:: we simply have to replace k by 2kand the sets U0; V0 by bU0; bV0.Theorem 22 Let C �? D be an FL:-matching prob-lem. Solvability of C �? D can be tested in polynomialtime. If C �? D is solvable, then a least solution ofC �? D can be computed in polynomial time.5 Matching under side conditionsIn this section, we �rst consider strict subsumption con-ditions, and then briey mention some results for (non-strict) subsumption conditions.Strict subsumption conditionsRecall that a strict subsumption condition is of the formX @? E whereX is a concept variable and E is a conceptpattern. If the concept patterns of a set of strict sub-sumption conditions do not contain variables (i.e., theexpressions E on the right-hand sides of the strict sub-sumption conditions are concept descriptions), then itis su�cient to compute a least solution of the matchingproblem, and then test whether this solution also solvesthe strict subsumption conditions.Theorem 23 Let C �? D be an FL:-matching prob-lem, and X1 @? E1; : : : ; Xn @? En be strict subsump-tion conditions such that E1; : : : ; En are FL:-conceptdescriptions. Then solvability of C �? D under theseconditions is decidable in polynomial time.

If the right-hand sides of strict subsumption condi-tions may contain variables, then solvability becomesNP-hard, even for the language FL0. This can be shownby reducing 3SAT [5] to the matching problem understrict subsumption conditions.Theorem 24 Matching under strict subsumption con-ditions is NP-hard, even for the small language FL0.It should be noted that our reduction of 3SAT tomatching under strict subsumption conditions dependson the fact that we consider matching modulo equiva-lence, rather than matching modulo subsumption. Thus,it is still open whether the NP-hardness result also holdsfor matching modulo subsumption under strict subsump-tion conditions.Theorem 24 provides us only with a hardness result formatching under strict subsumption conditions. Anotheropen question is how to extend the matching algorithmfor FL: to an algorithm that can also handle strict sub-sumption conditions.Subsumption conditionsIf the subsumption conditions do not introduce cyclicvariable dependencies, then a matching problem withsubsumption conditions can be reduced to an ordinarymatching problem. To be more precise, the sequenceof subsumption conditions X1 v? E1; : : : ; Xn v? En isacyclic i� for all i; 1 � i � n, the pattern Ei does notcontain the variables Xi; : : : ; Xn. Given such an acyclicsequence of subsumption conditions, we can de�ne a sub-stitution5 � inductively as follows:�(X1) := Y1 uE1 and�(Xi) := Yi u �(Ei) (1 < i � n);where the Yi are new variables. We can show thatthe matching problem C �? D is solvable under thesubsumption conditions X1 v? E1; : : : ; Xn v? En i�C �? �(D) is solvable without subsumption conditions.Unfortunately, the new pattern �(D) may be exponen-tially larger than the original matching problem withsubsumption conditions. However, we conjecture thata compact representation of �(D) may be used to ob-tain a polynomial algorithm for matching under acyclicsubsumption conditions in FL:.The reduction we have just described is independentof the DL used for constructing the patterns and descrip-tions. For FL0, we can go one step further: cyclic sub-sumption conditions can here be reduced to acyclic ones.Let us illustrate this by two examples: (1) If � satis�esX1 v? X2 u E01; X2 v? X1 u E02, then �(X1) � �(X2),5Strictly speaking, this is not a substitution as introducedin Section 2 since variables are mapped to patterns, and notjust to descriptions. It should be clear, however, that thenotion of a substitution can be extended appropriately.7



which means that we can identify both variables; (2) If� satis�es X v? 8R:X , then �(X) � >, and thus X canbe replaced by >.6 Future WorkOur goal is to extend the results on matching to coverlanguages at least as expressive as the DL consideredin [3]. This requires extending the language to includerange constructors (min and max), an individual setconstructor (one-of), number restrictions (at-least andat-most), and a �lls constructor. For the constructorsmin, max, and one-of, this mainly requires an appro-priate treatment of disjointness, which we have alreadyachieved by our treatment of primitive negation. Num-ber restrictions and the �lls construct are more challeng-ing extensions; however, we expect to be able to ex-ploit the characterization of subsumption in cyclicALN -terminologies provided in [6] for our purposes.Another motivation for investigating matching mod-ulo equivalence may be found in merging heterogeneousdatabases. Consider a situation where there is a masterontology along with new database schemas that need tobe integrated into the master ontology. In this situation,the integrator would like to know how the new schemasmay be mapped onto the master ontology. Our idea isto represent the ontology and the schemas in an appro-priate DL, and to view the problem of �nding such amapping as a matching problem of the concepts of thenew schema onto the concepts of the master ontology.7 ConclusionWe have been motivated by the need to prune compli-cated structures in order to provide manageable objectpresentations and explanations. The pruning problemcan be viewed as a matching problem where there is acomparison between a pattern describing the interestingportions of the object and the larger object itself. Onlythose portions of the object that match the pattern ofinterest should be presented. We began with the �lteringwork introduced in Classic and the theoretical work onthe uni�cation of concept terms and generated a formaltreatment of matching in the description logic languageFL?. We presented results concerning the solvability ofthe problem including polynomial decidability and (forsolvable problems) polynomial computability of a leastsolution. We also extended the work to include matchingunder additional side constraints on the variables in thematching patterns. We showed that matching moduloequivalence with strict side conditions is NP-hard evenfor the small language FL0.References[1] F. Baader, A. Borgida, and D. L. McGuinness.Matching in description logics: Preliminary results.
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