
Zero-Overhead Composable Aspects for .NET

Rasmus Johansen, Peter Sestoft, and Stephan Spangenberg

IT University of Copenhagen, Denmark
{johansen,sestoft,spangenberg}@itu.dk

Abstract. We present a new static aspect weaver for C#. The weaver,
which is called Yiihaw, works by transforming a program’s bytecode and
types, stored in so-called assemblies, and performs extensive checks at
weave-time to ensure correctness of the resulting woven assembly. The de-
sign makes four contributions: (a) Application of generic advice is type-
safe; (b) application of “around” advice incurs no runtime overhead; (c)
woven assemblies can be further woven; and (d) advice can itself be woven
before being applied to target code – in effect advice can be composed.
These contributions are achieved by minimal means, basing much of the
type checking on the bytecode’s generic type system. Yiihaw’s aspects are
less expressive than those of AspectJ: an aspect does not have an identity
of its own; only static join points are supported; and the pointcut language
does not allow logical combinations of join points. However, Yiihaw is suf-
ficiently expressive for many purposes, and for these purposes it provides
statically typesafe weaving and highly efficient woven code.

1 Introduction

This paper presents a new static aspect weaver for C# and other programming
languages based on Microsoft .NET, also known as the Common Language In-
frastructure (CLI). The weaver works by transforming CLI/.NET assemblies in
the form of .dll and .exe files and performs extensive checks at weave-time to
ensure the correctness, including static type correctness, of the resulting woven
assemblies. This aspect weaver, which is called Yiihaw, is intended to address
those applications of Aspect Oriented Programming (AOP) in which static type
safety and efficiency of the woven code is of paramount importance, and for
which some reduction in aspect expressiveness is acceptable.

The design and implementation of Yiihaw makes four contributions, all giving
significant practical advantages: (a) Application of generic advice is typesafe; (b)
application of “around” advice incurs no runtime overhead; (c) woven assemblies
can be further woven; and (d) advice can itself be woven before being applied
to target code – in effect advice can be composed.

These contributions are achieved by rather minimal means, where Microsoft’s
C# compiler and the type system of the CLI take care of most of the type
checking. In particular, contributions (a) and (b) rely on the generic methods of
the CLI bytecode. Hence it is unlikely that the same advantages can be as easily
achieved in aspect weavers for Java, because the Java Virtual Machine bytecode
does not include generic types.

E. Börger and A. Cisternino (Eds.): Software Engineering, LNCS 5316, pp. 185–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 R. Johansen, P. Sestoft and S. Spangenberg

In return for these advantages, Yiihaw imposes a number of restrictions: an
aspect does not have an identity or instance of its own; only join points that
can be evaluated statically are supported and hence no “cflow” advice; only ex-
ecution join points [22] are supported; and the pointcut language does not offer
logical combinations of join points. Hence Yiihaw’s aspects are considerably less
expressive than those of, say, AspectJ [22]. Also, advice supported by Yiihaw is
currently generic in the specific sense of parametric polymorphism in the tar-
get method’s return type, not the more general sense investigated by Kniesel
and Rho [23]. However, Yiihaw is sufficiently expressive for many purposes,
and for these purposes provides statically typesafe weaving and highly efficient
woven code.

For instance, in one application we decompose a collection library into a simple
core and a set of features (in the sense of additional functionality), and then use
Yiihaw to subsequently, and optionally, add those features again by weaving,
without loss of efficiency; see section 7.3. This permits strong modularization of
the collection library.

Another potential application is customization of a layered enterprise system,
where the ability to further-weave an already woven assembly (section 5), and
the ability to compose advice with advice (section 6), are useful.

Many current implementations of AOP for C# and Java use reflection, prox-
ies or similar auxiliary constructs to implement interceptions, which may cause
considerable runtime overhead compared to what could be achieved by “manual
weaving” of aspects. By contrast, AOP implementations for C and C++, such
as AspectC++ [35], generally favour efficiency over flexibility of the aspects.
Modern implementations of AspectJ avoid much of the runtime overhead too,
though not all [7,17].

Our aspect weaver for CLI/.NET uses inlining of bytecode instructions when
applying advice to a target assembly, and hence its goals and its way of working
are closer to those of weavers for C and C++ than to those of many weavers for
C# and Java. Bytecode inlining restricts the expressiveness of aspects, but avoids
many of the auxiliary constructs that other aspect weavers add to the woven
assemblies, such as assembly references, transformed copies of advice and target
methods, and “around” closures [17]. This means that the program structure
defined in the target assemblies is preserved by weaving.

Our current prototype supports various AOP constructs, such as introductions
and typestructure modifications. The weaver performs static typechecking on
all constructs and guarantees that only valid assemblies are generated, that is,
assemblies that are verifiable by the CLI/.NET bytecode loader. Empirical tests
show that the weaver prototype does not introduce any runtime overhead in the
generated assemblies, making it suitable for applying aspects in performance-
critical applications.

Yiihaw source code and its usage guide [21] can be downloaded at

http://yiihaw.tigris.org/

Zero-Overhead Composable Aspects for .NET 187

2 Introduction to Yiihaw

Yiihaw is an aspect weaver for CLI/.NET that statically applies aspects to CLI-
compatible assemblies.

2.1 An Example Weaving

First consider a simple use of the Yiihaw weaver. A target class Invoice, declared
in file LowerLayer.cs, has a method GrandTotal() that returns the invoice
grand total:

public class Invoice {
public virtual double GrandTotal() {
double total = ... computation ...;
return total;

}
}

Now we want to apply advice to this method so that it provides a 5 percent
discount if the grand total exceeds 10 000 Euros. Let this advice class be declared
in file Advice1.cs:

public class MyInvoiceAspect {
public double DoDiscountAspect() {
double total = JoinPointContext.Proceed<double>();
return total * (total < 10000 ? 1.0 : 0.95);

}
}

and let the pointcut file be this:

around * * double Invoice:GrandTotal()
do MyInvoiceAspect:DoDiscountAspect;

Next we use the C# compiler csc to compile the target class and the advice
class, and then invoke yiihaw to weave the advice into the target:

csc LowerLayer.cs
csc /r:YIIHAW.API.dll /t:library Advice1.cs
yiihaw pointcut1.txt LowerLayer.exe Advice1.dll

Note that the C# compiler separately typechecks the target and advice assem-
blies, and subsequently the weaver ensures that the advice method is applicable
around the target method. The resulting woven assembly LowerLayer.exe is en-
tirely equivalent to that which would be obtained by compiling this source code:

public class Invoice {
public virtual double GrandTotal() {
double total = ... computation ...;
return total * (total < 10000 ? 1.0 : 0.95);

}
}

188 R. Johansen, P. Sestoft and S. Spangenberg

In particular, there is no runtime overhead in the woven method relative to the
above hand-written method. The actual CLI/.NET bytecode of the GrandTotal
method, the DoDiscountAspectmethod and the woven method are shown below.

The Target Method GrandTotal
The target method code computes a double, stores it in local variable total at
offset 0 (using stloc.0), loads it again (using ldloc.0) and returns it:

.locals init ([0] float64 total)

... computation ...
stloc.0
ldloc.0
ret

The Advice Method DoDiscountAspect
The advice method DoDiscountAspect first calls Proceed and stores the re-
sult in the local variable total. Then total is loaded twice onto the stack by
ldloc.0; first for use in the multiplication and then for the comparison with
10 000 at the conditional branch instruction blt.s. The ldc.r8 instruction
pushes a double constant, and the mul instruction multiplies:

.locals init ([0] float64 total)
call ... JoinPointContext::Proceed<float64>()
stloc.0
ldloc.0
ldloc.0
ldc.r8 10000.
blt.s label
ldc.r8 0.95
br.s label2
label: ldc.r8 1.
label2: mul
ret

The Woven Method
In the woven method, instructions from the target and the advice method have
been merged, replacing the call to Proceed by the target method’s instructions.
Hence the woven method is completely self-contained; it does not use reflection
or proxies and does not call auxiliary methods:

.locals init ([0] float64 total,
[1] float64 V_1)

... computation ...
stloc.1
ldloc.1
stloc.0
ldloc.0
ldloc.0
ldc.r8 10000.

Zero-Overhead Composable Aspects for .NET 189

blt.s label
ldc.r8 0.95
br.s label2
label: ldc.r8 1.
label2: mul
ret

Also note that the ret instruction found in the original GrandTotal method has
been removed, so execution falls through to the first instruction of the advice
method, namely stloc.0. Similarily, local variable offsets have been updated
where necessary, so the bytecode instructions continue to refer to the correct
variables.

The woven method has the exact same name, signature, return type and
accessibility as the original target method. This ensures that callers of the target
method need not be modified or instrumented, and permits further weaving of
advice into the woven method; see section 5.

The main drawback of not using a proxy for the behaviour represented by
Proceed is that one must allow at most one occurrence of Proceed in the advice
method, or else risk a serious increase in code size. The main advantage of having
no proxies is that the structure of the code remains unchanged; further weaving
does not need to take proxy methods into account.

2.2 Interceptions

Yiihaw supports interception of all kinds of methods, regardless of their return
type, arguments, scope, and so on. Only “around” interception is supported, as
it generalizes “before” and “after” interception. Some aspect weavers support
“before” and “after” interception because they implement these with less run-
time overhead than “around” interception. Since Yiihaw implements “around”
interception without any runtime overhead, there is no performance reason to
support “before” and “after” interception. Yiihaw does not support “cflow” and
other dynamic forms of advice as supported by e.g. AspectJ.

2.3 Introductions

Yiihaw supports introduction of methods, properties, classes, struct types, fields,
enum types, delegate types and events into the target assembly. The body of an
advice method can refer to constructs that are being introduced into the target
assembly by the same weaving; in this case, Yiihaw will automatically update
these references so they refer to the corresponding constructs introduced within
the target assembly. For details, see section 4.7.

2.4 Modifications

Yiihaw supports modification of any class or struct type defined within the target
assembly, either by changing its basetype or by making it implement one or more
additional interfaces. In either case, Yiihaw will verify that all required abstract
methods, properties and events are implemented by the target class.

190 R. Johansen, P. Sestoft and S. Spangenberg

3 Generic Types in “Around” Advice

As can be seen from the preceding section, one goal of Yiihaw is to minimize
the runtime overhead introduced when applying advice to an assembly, and the
bytecode inlining approach guarantees that no auxiliary instructions, references
or other constructs are introduced by weaving.

Another goal of Yiihaw is to provide a familiar and efficient programming
model for advice code. Many existing aspect weavers provide a primitive advice
language that leads to wrapping and unwrapping overhead when implementing
even simple advice methods. In Yiihaw we want to avoid this.

3.1 Why Wrapping/Unwrapping Overhead?

To see why wrapping/unwrapping overhead occurs, consider the following ex-
ample written in the syntax of the AspectDNG [5] aspect weaver for CLI/.NET:

Object Advice(JoinPointContext jpc) {
double result = (double)jpc.Proceed();
return result + 2.0;

}

In AspectJ for Java, and in AspectDNG and most other CLI/.NET weavers,
the Proceed method has return type Object. The reason is that different tar-
get methods may have different return types, and obviously the advice language
should support interception of all types of target methods. Type Object is used
by AspectDNG as a placeholder for all types. If the user wishes to alter or use the
returned value in the advice method, he must typecast the result from Proceed,
which incurs runtime overhead. Furthermore, when returning a CLI/.NET value
type such as double in the example above, boxing occurs: the value must be
wrapped as a reference type and allocated in the runtime heap. These problems
(or similar ones) exist in almost all current aspect weavers for CLI/.NET. How-
ever, the AspectC++ [35] weaver for C++ avoids much overhead and in general
is closer to our goals for Yiihaw; see section 7.4.

3.2 The Proceed Method

We propose a simple solution to these problems using the generic types of
CLI/.NET, which eliminates the need for boxing, typecasting and unboxing.
The signature of Yiihaw’s Proceed method for use in advice methods is this:

public T Proceed<T>();

The Proceed method takes a type parameter T. Advice code specifies the target
method’s return type by instantiating this type parameter, and hence avoids
typecasts on the return value:

public double Advice() {
return JoinPointContext.Proceed<double>();

}

Zero-Overhead Composable Aspects for .NET 191

Moreover, the Yiihaw weaver will check that the return type specified as an
argument to Proceed equals the target method’s return type. Two advantages
are obtained. First (a) advice is strongly typed, because the C# compiler will
check the advice method’s use of the value returned by the Proceed method,
before applying the advice, and Yiihaw verifies that the specified return type
equals the return type of the intercepted methods. Secondly (b) after these
compile-time and weave-time checks, it is unnecessary to insert any run-time
boxing, typecast or unboxing operations, so no runtime overhead is incurred.
This would be impossible to achieve if a too general return type were used on
the advice method, such as Object in AspectDNG.

Using or Modifying the Value Returned. Yiihaw allows the advice code to
use and modify the value returned from the Proceed method in any conceivable
way that agrees with its stated type:

public double Advice() {
return JoinPointContext.Proceed<double>() + 2.0;

}

The advice code can even replace the target method completely with a new
implementation by not invoking Proceed at all:

public double Advice() {
...
return 3.0;

}

In this case, Yiihaw will make sure that no instruction or variable defined in
the original target method is retained in the generated assembly. The “call” to
Proceed can also appear in a conditional, a loop, a try-catch block and so on,
but there can be at most one call to Proceed in the advice method source code.
This restriction is imposed only to rule out the explosion in code size that could
otherwise result from bytecode inlining.

3.3 Generic Advice Methods

Now one might think that the type argument T in Proceed<T>() means that
a given advice method Advice() can be applied only to a single type of tar-
get method. It turns out that we can again use generic types to overcome this
apparent limitation.

Namely, we can make the advice method itself generic by giving it a type
parameter T, to obtain T Advice<T>(...) where its return type equals its type
parameter T. In this case Yiihaw will allow it to be applied to a target method
with any return type, and indeed to any number of target methods with any
number of different return types.

192 R. Johansen, P. Sestoft and S. Spangenberg

Consider the following generic advice:

public static T Advice<T>() {
T result = JoinPointContext.Proceed<T>();
...
return result;

}

We can think of the type parameter T of Advice<T> as representing “any type”.
At weave-time, Yiihaw will replace T with the actual return type of the target
method being intercepted. This means that the woven method has the exact
same return type as the original target method, which helps support further
weaving of woven assemblies as well as composition of advice; see sections 5
and 6. For details about replacement of generic variables, see section 4.3.

3.4 Bounded Generic Advice

If the return type of an advice method T Advice<T>(...) is the same as the
generic type parameter T of the method, it is essentially completely abstract,
and there is very little the advice method can do with the returned value.
More precisely, the effective base class [13] of the return type is Object, so it
is known only to implement methods such as Equals(Object), GetHashCode()
and ToString() that are supported by all CLI/.NET types.

In CLI/.NET and its languages, such as C#, a type parameter can be con-
strained to implement particular interfaces. This can be used in connection with
generic advice methods to (i) tell the advice method what can be done with
the return value, and (ii) limit the application of the advice to only such target
methods whose return type implements the same interfaces.

3.5 Using the Receiver Object

Like most aspect weavers, Yiihaw supports getting and using the receiver object,
that is, the object enclosing the method being intercepted (for non-static target
methods). This is done using the GetTarget method of the Yiihaw API, which
has the following signature:

public T GetTarget<T>();

This method uses the same principle as Proceed: The user is forced to specify
the actual type T of the value he expects GetTarget<T> to return. At weave-time
Yiihaw will verify that this type corresponds to the actual type being intercepted.

Consider the following example:

public static T Advice<T>() {
...
TargetClass tgt;
tgt = JoinPointContext.GetTarget<TargetClass>();
tgt.SomeMethod();
return JoinPointContext.Proceed<T>();

}

Zero-Overhead Composable Aspects for .NET 193

The GetTarget method is invoked with type parameter TargetClass, assumed
to exist within the target assembly. As GetTarget returns a value of this type, no
typecasting or boxing is needed. When applying this advice, Yiihaw will verify
at weave-time that (1) the target method is non-static and (2a) that the receiver
is actually of type TargetClass or (2b) TargetClass is Object and the receiver
has reference type, and hence can be cast to Object without boxing.

3.6 Example: Universal and Statically Typesafe Synchronization

Using GetTarget<Object> and the generic Proceed<T> method (section 3.3),
one can write a completely generic, yet statically typesafe, aspect for synchro-
nization or locking. For instance, consider a class Out with instance methods for
writing output, for counting the number of bytes written, and the like:

class Out {
void WriteByte(byte b) { ... }
void WriteInt(int i) { ... }
void WriteChar(char c) { ... }
int BytesWritten() { ... }

}

It seems sensible to add synchronization as an aspect, by wrapping the C#
statement lock(this){...} around the body of each method. With Yiihaw,
universal synchronization advice can be expressed like this:

class AspectConstructs {
T SyncAspect<T>() {
lock (JoinPointContext.GetTarget<Object>()) {

return JoinPointContext.Proceed<T>();
}

}
}

This advice can be applied, in a statically typesafe way, to any instance method
on any reference type. In AspectJ for Java 5.0, such universal locking advice ap-
parently cannot be written in a statically typesafe way according to Jagadeesan
et al. [18]. Also, note that the restriction to receivers of reference types is nat-
ural and essential. In C#, receiver-based locking is meaningless for value types,
because the receiver would be boxed anew in every execution of lock(this), so
locking would always succeed.

The C# compiler expands the lock statement to a try-finally block with
calls to entry and exit methods from a monitor library, and the Yiihaw weaver
then inlines each target method into such a try-finally clause.

3.7 The Applicability of Advice

The rules for applying an advice method to target methods are as follows:

1. A non-static advice method can only be used for intercepting non-static tar-
get methods, because it can refer to the target method’s receiver reference

194 R. Johansen, P. Sestoft and S. Spangenberg

this. A static advice method can be used for intercepting both static and
non-static advice methods, because it cannot refer to the target’s this.

2. The sequence of parameter types of the advice method must be a prefix of
the sequence of parameter types of the target method. This implies that
the target method must take at least the same number of parameters as
the advice method, and all parameter types must match those of the advice
method.

3. The return type of the advice method must equal the return type of the
target method. Alternatively, the advice method may use a generic return
type, see section 3.3, or Object in case the target method’s return type is a
reference type.

Yiihaw will enforce these rules at weave-time.

4 Yiihaw Implementation

Yiihaw is implemented using the Cecil bytecode manipulation library [9]. Cecil
was chosen as it is simple and efficient and supports the low-level operations
needed for merging bytecode instructions.

4.1 Assembly Rewriting

Invoking Yiihaw requires that the user specifies (i) a valid pointcut file as a text
file, (ii) an existing target assembly to which the aspects should be applied, and
(iii) an existing aspect assembly containing advice and other constructs that
should be introduced.

The resulting woven assembly is of the same kind — exe, winexe, library or
module — as the target assembly. The woven assembly will be completely self-
contained; it does not depend on the aspect assembly.

4.2 Handling Interceptions

The weaver applies the advice to one target method at a time. Multiple advice
may be applied to the same target method, if specified by the pointcut file; the
advice will be applied in the order specified. Hence the application of advice
by Yiihaw can be seen as a transformation of the (bytecode of) target methods
and target types. This transformation is static, performed after compilation but
before loading the compiled bytecode. The strengths (type safety, efficiency)
and limitations (aspects do not have identity, no dynamic join points) of Yiihaw
derive from this staticness. Moreover, such transformations are composable as
we shall see in section 6.

The rest of this section describes the approach used for applying advice to a
single target method. This approach is repeated for each interception statement
in the pointcut file and for each target method.

Zero-Overhead Composable Aspects for .NET 195

Merging the Target and Advice. Prior to performing any merging of the
advice and the target method, a copy of all instructions of the target method
is created. For the sake of discussion, we refer to this copy as the original body
throughout this section. If the advice contains no call to the Proceed method,
then the original target method will be ignored, as explained in section 3.2.

The weaver therefore cannot assume that the original implementation should
always be kept available. Creating a copy of the body of the target method allows
subsequent deletion of some or all instructions in the target method. This way,
all instructions of the advice method can just be copied one by one to the woven
method without considering whether they fit into any existing method body.
Whenever a call to Proceed is encountered in the advice, the weaver simply
copies all instructions from the original body into the woven method. This will
be elaborated upon later in this section.

Local Variable Renumbering. Before the original body is inserted into the
target method, all references to local variables are updated to make sure that
they refer to the correct local variable. This is necessary because local variables
of the advice method are prepended to the local variables of the original target
method.

Handling Return Instructions. When inserting the original body the weaver
also replaces all ret (return) instructions with br (unconditional branch) in-
structions that jump to a fresh label. This is necessary to maintain the correct
control flow; a ret instruction would prematurely terminate the woven method.

Consider the following target method bytecode:

ldarg.1
ldc.i4.5
ble.s label
ldarg.1
ldc.i4.2
mul
ret
label: ldarg.1
ret

which corresponds to this C# source method:

int M(int x) { if (x > 5) return x * 2; else return x; }

Further, suppose we want to apply the following advice to that method:

call int YIIHAW.API.JoinPointContext::Proceed<int>()
stloc.0
ldstr "advice"
call void [mscorlib]System.Console::Write(string)
ldloc.0
ret

196 R. Johansen, P. Sestoft and S. Spangenberg

This advice bytecode calls Proceed and then prints the string "advice" and
returns the original return value. It might be written like this in C#:

int Advice() {
int res = JoinPointContext.Proceed<int>();
Console.Write("advice");
return res;

}

During weaving, the call to Proceed in the latter bytecode fragment must be
replaced by all instructions from the target method, from the former bytecode
fragment. Doing this naively would produce this wrong woven result:

ldarg.1 // From target
ldc.i4.5 // From target
ble.s label // From target
ldarg.1 // From target
ldc.i4.2 // From target
mul // From target
ret // From target
label: ldarg.1 // From target
ret // From target
stloc.0 // From advice henceforth
ldstr "advice"
call void [mscorlib]System.Console::Write(string)
ldloc.0
ret

When executing this method, the advice starting with the stloc.0 instruction
would never be reached, because the method would return as soon as it reached
either of the ret instructions from the target method (instructions number 7
and 9).

Yiihaw therefore replaces any ret instruction with an unconditional branch
to a fresh label, just after the last instruction of the target method:

ldarg.1
ldc.i4.5
ble.s label
ldarg.1
ldc.i4.2
mul
br.s label2 // <-- replaces ret instruction
label: ldarg.1 // <-- fallthrough instead of ret
label2: stloc.0
ldstr "advice"
call void [mscorlib]System.Console::Write(string)
ldloc.0
ret

This maintains the expected control flow. As a small optimization, if the last
instruction of the target method is ret, Yiihaw will just delete it so that control

Zero-Overhead Composable Aspects for .NET 197

falls through to the advice method’s code. This explains why the second ret
instruction from the target method is not replaced in the woven method shown
above.

Verifiability of the Generated Bytecode. The procedure described above
will produce verifiable bytecode. To see why, consider a given non-void target
method R M(...), with concrete return type R. Whenever execution of the target
method reaches an exit point, represented by a ret instruction, the stack contains
a value of type R and nothing else [14, I.12.4]; the net effect of executing the target
method’s body is to push its return value on the stack before reaching ret. Since
each ret is replaced with a jump br to the first instruction Presume following
the call to Proceed, this means that when Presume is reached in the woven
method, the stack top holds a value of type R on top of any contents that was
already there before executing the code inserted from the target method instead
of Proceed<R>(). This relies on Yiihaw’s weave-time check, prior to applying
any advice, that the type R expected by the advice code is compatible with the
return type of the target method. This applies to generic advice methods and
target methods of type void as well, as we shall see in the next section.

4.3 Replacing Generic Variables during Weaving

Recall from section 3.3 that when applying generic advice, Yiihaw will change
the type of a variable that stores the result of Proceed. Consider again this
generic advice method from section 3.3:

public static T Advice<T>() {
T result = JoinPointContext.Proceed<T>();
...
return result;

}

At weave-time, Yiihaw will replace T with the actual return type of the method
being intercepted. Consider a target method with return type int:

public int Target() {
...

}

Yiihaw will modify the variable result from type T to int. Hence, the type
parameter T will only exist in the advice, not in the woven methods.

When intercepting methods that return void one should not attempt to mod-
ify the type of the variable storing the result from Proceed, as the variable will
contain no value and void is not a legal CLI/.NET type for local variables.
In this case, Yiihaw will instead remove the variable altogether along with any
instructions that refer to it (such as ldloc and stloc instructions).

Verifiability of the Generated Bytecode. Replacing the generic type pa-
rameter with the actual return type of the target method produces CLS-compliant

198 R. Johansen, P. Sestoft and S. Spangenberg

bytecode. Consider any non-void target method R M(...), which returns con-
crete type R: When reaching the point Presume (as defined in section 4.2), we
know that a value of type R is on top of the stack. Since the stloc instruction
following the call to Proceed stores this value in the local variable, it is safe to
modify that variable to have type R, because that is the type of the value on top
of the stack.

For a void target method void M(...), Yiihaw removes the local variable
along with any ldloc or stloc instructions that refer to it. Since the target
method obviously does not return anything, the net effect of the original body
is to not place any return value on top of the stack, and there will be no value
to load and store. Removing the ldloc and stloc instructions means that no
value will exist on the stack at the time a ret instruction is reached, which is
just what is intended when intercepting methods of type void.

4.4 Updating Code and Variable References

When all instructions have been transferred to the woven method, the weaver
scans all of these instructions, looking for dangling code addresses and unopti-
mized instructions. A dangling code address might occur if an instruction refers
to another instruction that has been removed. For instance, instructions that
load or store the return value are either modified or removed by the weaver, as
described above. If a reference exists to such an instruction it will be invalid
at this point. The weaver updates all such references using a mapping table
that is built and maintained as instructions get replaced or removed during the
weaving. Also, for optimization purposes the weaver checks each instruction to
see whether modifying it to a short-form instruction is possible, for instance to
modify ldloc to the shorter ldloc.s.

4.5 Handling GetTarget during Weaving

The GetTarget method can be used to get the target method’s receiver object,
as described in section 3.5. Consider again this example from section 3.5:

public static T Advice<T>() {
...
TargetClass tgt;
tgt = JoinPointContext.GetTarget<TargetClass>();
tgt.SomeMethod();
return JoinPointContext.Proceed<T>();

}

At weave-time, Yiihaw will verify that the type argument TargetClass is com-
patible with the target method’s receiver type. If so, the call to the GetTarget
method will simply be replaced by a ldarg.0 instruction which loads the target
method’s this reference. This is possible because the instructions from the ad-
vice method and target method are merged, which implies that SomeMethod can
now be invoked directly on the receiver. Hence, no typecasts, proxies or reflexive
calls are introduced for this purpose.

Zero-Overhead Composable Aspects for .NET 199

4.6 The Join Point API

Besides the Proceed and GetTarget methods, which we have already described,
the Yiihaw API contains several properties that can be invoked from an advice
method. These are summarized in table 1.

Table 1. The Yiihaw API’s methods and properties. The type Type below is Sys-
tem.Type from the CLI/.NET Framework Class library.

Property/method Type Value

AccessSpecifier string Access specifier(s) of the intercepted method
DeclaringType Type Declaring type of the intercepted method
DeclaringTypeAsString string Name of the declaring type of the intercepted method
GetTarget〈T〉 T Target method’s receiver: its this reference
IsStatic bool True if the target method is static, else false
Name string Name of the target method
ParameterNames string[] Parameter names of the intercepted method
ParameterTypes Type[] Parameter types of the intercepted method
Proceed〈T〉 T Execute the intercepted method and get its value
ReturnType Type Return type of the intercepted method
ReturnTypeAsString string Name of the return type of the intercepted method
Signature string Signature of the intercepted method

All calls to these methods or properties are determined and replaced at weave-
time. Consider the following advice, which prints the signature of the target
method:

public static T Advice<T>() {
Console.WriteLine(JoinPointContext.Signature);
return JoinPointContext.Proceed<T>();

}

Yiihaw will replace the call to the Signature property with a ldstr instruction,
such as this:

ldstr "Foo(int x, double y, string z)"

Similar transformations are performed for all other properties. Hence, using the
Yiihaw API does not introduce any runtime overhead in the woven assembly.
In particular, the API is not linked in and does not contribute to the size or
runtime footprint of the woven code.

4.7 Weave-Time Checks

The following checks are performed at weave-time by Yiihaw:

1. If any target construct (such as a method that should be introduced) cannot
be found, the weaving is aborted.

200 R. Johansen, P. Sestoft and S. Spangenberg

2. If an advice method contains more than one call to Proceed, the weaving is
aborted.

3. In a call to Proceed<TA> where the type argument TA is not a generic pa-
rameter of the enclosing advice method, TA must equal the target method’s
return type.

4. When implementing interfaces or changing the basetype, Yiihaw will verify
that (i) all required abstract methods, properties and events are already im-
plemented by the target class or (ii) that implementations of these methods
are being introduced in the same weaving.

5. When an advice method is generic, its type parameter T can be used only
as the type argument of Proceed, as the type of local variables, and in the
expressions default(T) and typeof(T). Any other use of T will be rejected
by Yiihaw, as T is only used as a substitute for the actual return type and
only exists in the advice method.

6. When introducing types, Yiihaw will verify that any assemblies referenced by
the aspect assembly are also referenced by the generated assembly, if needed.
However, Yiihaw will never make the generated assembly refer to the aspect
assembly, only to other assemblies referred by the aspect assembly.

7. If advice is applied to a target method and that advice refers to another
construct in the aspect assembly (such as a field), then that construct must
be inserted into the target assembly as well. Yiihaw will require that the
construct is inserted. Furthermore, Yiihaw updates that reference so that it
refers to the “new” copy inserted into the generated assembly, not to the
“old” construct in the aspect assembly. For instance, when introducing this
class into the woven assembly:

namespace Aspects {
public class Foo {

...
}

}

Yiihaw will update the CLI/.NET reference from Aspects.Foo to Foo in the
target namespace.

Some of these checks, such as rule (3) on Proceed<TA>, could be relaxed to admit
certain subtypes of TA without compromising correctness of the woven assembly.
See section 10 on future work.

4.8 Properties of the Woven Result

The assembly resulting from the weaving process has several noteworthy prop-
erties:

– The woven method that results from weaving advice into a target method
has the exact same signature — name, argument types, and result type

Zero-Overhead Composable Aspects for .NET 201

— as the original target method. In particular, no name mangling occurs,
no wrapper methods are generated, and the return type does not change
(section 3). This property enables further weaving of a woven assembly, and
further weaving can be done in the exact same way as any other weaving.
Moreover, it enables weaving of advice into an advice method before it in
turn is woven into a target method; see section 6.

– Inserted fields have the same type and name they had in the advice assembly.
Again, there is no name mangling of fields, and no need to represent fields
as properties or similar.

– Applying “around” advice to a target does not introduce any runtime casts
or any overhead in order to wrap value type results as objects.

5 Further Weaving: Advising Woven Code

Since the result of weaving is an ordinary assembly, an already-woven assembly
can be further woven, as shown in figure 1 (a). For a concrete example, consider
the woven invoice assembly from section 2.1 and assume that we want to advise
it so that when the customer is a charity it returns a grand total of 0 Euros, but
adds the grand total to a running sum of tax-deductible gifts. The advice class
might look like this, in file Advice3.cs:

Target

YiihawAdvice 1

YiihawAdvice 2

T+A1+A2

T+A1

Advice 1

Yiihaw

Target

Yiihaw

T+A1+A2

A1+A2

Advice 2

(a) Further weaving (b) Advice composition

Fig. 1. (a) Further weaving, where Advice 1 is first woven into Target, giving the
assembly T+A1, then Advice 2 is woven into that assembly. (b) Advice composition,
where Advice 2 is first woven into Advice 1, giving assembly A1+A2, then that assembly
is woven into Target. Given appropriate pointcut files, the final woven result is the same
in both cases.

202 R. Johansen, P. Sestoft and S. Spangenberg

public class MyNewInvoiceAspect {
private bool noncharity;
private double deductible;

public double CharityAspect() {
double total = JoinPointContext.Proceed<double>();
if (!noncharity) {

deductible += total;
Console.WriteLine("Deducing {0:F2}", total);
total = 0;

}
return total;

}
}

and the pointcut file then says to insert the noncharity and deductible fields
into the target assembly (which is the already-woven assembly from section 2.1):

insert field private instance bool
MyNewInvoiceAspect:noncharity into Invoice;

insert field private instance double
MyNewInvoiceAspect:deductible into Invoice;

around * * double Invoice:GrandTotal()
do MyNewInvoiceAspect:CharityAspect;

The necessary compilation and weaving commands are:

csc /r:YIIHAW.API.dll /t:library Advice3.cs
yiihaw pointcut2.txt LowerLayer.exe Advice3.dll

The result is a new assembly LowerLayer.exe, which is equivalent to one that
would be obtained by compiling this source code:

public class Invoice {
private bool noncharity;
private double deductible;
public virtual double GrandTotal() {
double total = ... computation ...;
total = total * (total < 10000 ? 1.0 : 0.95);
if (!noncharity) {

deductible += total;
Console.WriteLine("Deducing {0:F2}", total);
total = 0;

}
return total;

}
}

6 Advice Composition: Advising Advice

Since advice is represented by an assembly, and Yiihaw works by weaving assem-
blies, Yiihaw can apply advice to advice; see figure 1 (b). With an appropriate

Zero-Overhead Composable Aspects for .NET 203

pointcut file, this amounts to composition of advice, in a disciplined manner as
also proposed, but apparently not implemented for aspects, by Lopez-Herrejon,
Batory and Lengauer [28].

The double weaving

t
a−→ a(t) b−→ b(a(t))

can instead be realized by advising the advice

a
b−→ b(a)

and then applying the composed advice to the target:

t
b(a)−→ (b(a))(t)

The latter approach may have several advantages: It gives early checking of the
advice composition, it speeds up advice application when advice a and b must be
applied to many target assemblies, it is easier to distribute and apply one piece
of advice than multiple pieces of advice, and it makes for conceptual neatness
and closure.

For a concrete example, we now show that the two-step weaving of the Invoice
class shown in sections 2.1 and 5 can be achieved in a different way. First we
weave the two advice assemblies together, then we apply the composite advice
to the target Invoice class.

In the first step we now use this pointcut file:

insert field private instance bool
MyNewInvoiceAspect:noncharity into MyInvoiceAspect;

insert field private instance decimal
MyNewInvoiceAspect:deductible into MyInvoiceAspect;

around * * decimal MyInvoiceAspect:DoDiscountAspect()
do MyNewInvoiceAspect:CharityAspect;

and these compilation and weaving steps, which advise the target Advice1.dll
with advice Advice3.dll:

csc /r:YIIHAW.API.dll /t:library Advice1.cs
csc /r:YIIHAW.API.dll /t:library Advice3.cs
yiihaw pointcut3.txt Advice1.dll Advice3.dll

The result is a woven version of Advice1.dll which represents the composition
of the two advice classes. In the second step we can now apply this composite
advice to the Invoice target class (section 2.1), using this pointcut file:

insert field private instance bool
MyInvoiceAspect:noncharity into Invoice;

insert field private instance decimal
MyInvoiceAspect:deductible into Invoice;

around * * decimal Invoice:GrandTotal()
do MyInvoiceAspect:DoDiscountAspect;

204 R. Johansen, P. Sestoft and S. Spangenberg

and these compilation and weaving commands:

csc LowerLayer.cs
yiihaw pointcut4.txt LowerLayer.exe Advice1.dll

The resulting woven assembly LowerLayer.exe is identical to that obtained by
further-weaving in section 5.

7 Evaluation and Applications

Here we discuss two potential applications of Yiihaw, show that it introduces no
runtime overhead for generic “around” advice, and compare its capabilities with
other aspect weavers for .NET.

7.1 Generating Customized Collection Libraries

The C5 collection library provides generic collection classes for C# and other
CLI languages [24]. The library includes the core functionality usually found in
a collection library (lists, sets, bags, and so on), but it also provides many extra
features, such as support for update events and fail-early enumerations, slidable
updateable list views, hash indexes on arraylists and linked lists, and much more.
While these extra features will be useful in some scenarios, in other scenarios
they will just waste space and time.

By implementing a generator that can build specialized versions of the library,
it would be possible to create versions of the library containing only the features
actually needed in a given context [19]. The idea is to make a base library that
contains only the core functionality, and then generate customized versions by
adding features to the base library.

Having defined the base library (with the core functionality), and the extra
features represented as advice and aspects, the generator can build a pointcut
file based on the selections made by the user. Yiihaw can then weave the desired
features into the base library. As Yiihaw uses inlining, the generated library will
correspond, in structure and runtime efficiency, to hand-specialized versions of
the library.

This vision has been implemented [20] for a small subset of the C5 collection
library. The base library implements linked lists and array lists without update
events and fail-early enumerations. Here is an outline of the linked list class,
where the methods Add, Remove, RemoveAt and the this set accessor perform
updates:

public class LinkedList : IList {
internal int size;
public Node first, last;
public class Node { ... }
public int Count { get { ... } }
public Object this[int index] { set { ... } }
public bool Add(int i, Object item) { ... }

Zero-Overhead Composable Aspects for .NET 205

public Object Remove() { ... }
public object RemoveAt(int i) { ... }
public bool Contains(Object item) { ... }

}

The implementation of the event aspect consists of an event handler field, a
generic advice method AddCallToOnChanged<T> to apply around all update
methods, and an auxiliary method to raise the event, if any event handler has
been added:

class EventConstructs {
public event EventHandler changed;
public T AddCallToOnChanged<T>() {
OnChanged(System.EventArgs.Empty);
return JoinPointContext.Proceed<T>();

}
public void OnChanged(System.EventArgs e) {
if (changed != null)

changed (this, e);
}

}

The event field and the auxiliary method are inserted into the linked list class
and the array list class using these pointcut statements:

insert event public * EventHandler EventConstructs:changed
into Collections.LinkedList;

insert event public * EventHandler EventConstructs:changed
into Collections.ArrayList;

insert method public instance void EventConstructs:OnChanged(EventArgs)
into Collections.LinkedList;

insert method public instance void EventConstructs:OnChanged(EventArgs)
into Collections.ArrayList;

The event advice method AddCallToOnChanged<T> is wrapped around the four
update methods of the two list classes using these pointcut statements:

around public * * Collections.*:Add(int,object)
do EventConstructs:AddCallToOnChanged;

around public * * Collections.*:Remove(object)
do EventConstructs:AddCallToOnChanged;

around public * * Collections.*:RemoveAt(int)
do EventConstructs:AddCallToOnChanged;

around public * * Collections.*:set_Item(*)
do EventConstructs:AddCallToOnChanged;

The other feature, fail-early enumerations, can be added in the form of an aspect
that inserts an update stamp instance field into each collection class, wraps an
update stamp increment around each update method, and inserts a method that
returns an enumerator. (The stamp is required for the enumerator to throw an

206 R. Johansen, P. Sestoft and S. Spangenberg

exception if an update method is called while the enumerator is being used).
This aspect can be applied either before or after the above-mentioned update
event aspect.

Inspection shows that Yiihaw produces the same bytecode as one would have
expected by adding these features to the corresponding collection classes by
hand. Also, measurements confirm that Yiihaw introduces no runtime overhead;
see section 7.3.

7.2 Customization of a Layered ERP System

In a companion paper [33] in this volume, we consider the use of static aspects
for customization of enterprise systems, such as Microsoft Dynamics AX [11].

7.3 Performance of Woven Code

A prominent design goal for Yiihaw was that aspects should incur no runtime
overhead in woven code. This goal has been achieved as evidenced both by
microbenchmarks and by the case study discussed in section 7.1.

For one microbenchmark, consider a target class with a simple method that
takes two double arguments and returns a double:

class Target {
public double Linear(double x, double y) {
return x + 0.01 * y;

}
}

Now let us advise it with a generic advice method that simply counts the number
of calls:

public class CountAdvice {
private int count;
public R CountCall<R>() {
count++;
return JoinPointContext.Proceed<R>();

}
}

Using a pointcut file that inserts the count field into class Target, and intercepts
method Linear by wrapping CountCall around it, one obtains a woven class
equivalent to this handwoven class:

class Handwoven {
private int count;
public double Linear(double x, double y) {
count++;
return x + 0.01 * y;

}
}

Zero-Overhead Composable Aspects for .NET 207

Table 2. Performing 2 billion calls to method Linear

Runtime (s) Per call (ns)
Target before weaving 10.56 5.28
Target after weaving 10.77 5.38
Handwoven 10.84 5.42

Table 2 shows the execution time for 2 billion calls to the original method, to
the method woven by Yiihaw, and to the handwoven method shown above. Each
time measure is the average of 7 runs on a 1.6 GHz Pentium M processor and
Microsoft .NET 3.5 beta.

Clearly no runtime overhead at all is incurred by weaving the count++ state-
ment into method Linear. In fact, inspection of the bytecode generated by
weaving shows it to be identical to that compiled from Handwoven.

For a more substantial benchmark, consider the generation of customized
collection libraries discussed in section 7.1. We studied the performance of a
library obtained by adding update events and fail-early enumerations as aspects
to a core implementation of array lists and linked lists, and compared the results
to a handwritten library with those features [20, chapter 11]; see table 2. As
can be seen, also in this more substantial benchmark, the weaving by Yiihaw
introduces no overhead at all.

Table 3. Performance of three implementations of a collection library with update
events and fail-early enumerations. Execution time in milliseconds.

How implemented Events Enumeration
Handwritten 8547 602
Woven by Yiihaw 8545 600
Woven by AspectDNG 13941 30247

7.4 Related Work: Other Aspect Weavers

Yiihaw is far from the only aspect weaver to use bytecode rewriting to implement
interception. In particular, the AspectJ implementations ajc [17] and abc [7]
use bytecode rewriting to implement “around” advice in many cases. They still
seem to incur boxing and unboxing overhead when calling Proceed on target
methods with primitive return type, although the exact circumstances are not
so clear [7, §3.3].

What we believe is particular to Yiihaw is that it achieves type safety of
generic advice application and efficiency of the woven code by rather simple
means, relying on the generically typed bytecode of CLI/.NET. The resulting
predictably of the results and the implementational and conceptual simplicity
come at a cost, which is limited expressiveness relative to many other aspect
weavers. Nevertheless, Yiihaw fits an interesting and non-empty niche of appli-
cations.

208 R. Johansen, P. Sestoft and S. Spangenberg

Table 4. Comparison of available weavers for .NET. The Around column indicates
whether “around” advice incurs extra method calls, argument marshalling, or reflec-
tion overhead. The Proceed column indicates whether the use of Proceed in generic
“around” advice incurs overhead such as boxing, casting and unboxing for primitive
values. Notes: Aspect.NET has no Proceed but a RetValue property of type Object.
Wicca Phx.Morph binary weaving does not support “around”, only “before” and “af-
ter” advice; the only overhead incurred by before seems to be a method call and
parameter passing. It is plausible that Wicca Phx.Morph can support aspect composi-
tion but we have found no explicit mention or evidence of this.

Advice Further
Name Pointcuts Around Proceed weavable weavable Ref.
AspectDNG Static Overhead Overhead No Yes [5]
Aspect.NET Static Overhead Overhead No Yes [6,32]
Aspect# Dynamic Overhead Overhead No No [4]
DotSpect Static Overhead (No Proceed) No No [10]
EOS Dynamic Overhead Overhead No No [15]
NKalore Static Overhead Overhead No No [29]
PostSharp LAOS Static Overhead Overhead No Yes [30]
Rapier LOOM Dynamic Overhead Overhead No Yes [27]
Wicca Phx.Morph Static (No around) (No Proceed) No? Yes [38]
Yiihaw Static No overhead No overhead Yes Yes [20,39]

Table 4 compares several features of known weavers for CLI/.NET and shows
that only Yiihaw offers generic “around” advice without boxing, casting and
unboxing overhead. Also, Yiihaw is the only one known to support both ad-
vice composition (that is, pre-weaving of advice) and further-weaving of already
woven assemblies.

In addition to the .NET weavers listed, we are aware of AOP.NET [1], Gripper-
LOOM.NET [27], Setpoint [34] and Weave.NET [37], but these seem to be either
unavailable for experimentation or no longer maintained, which makes it difficult
or unfair to assess their capabilities.

Yiihaw admits only static pointcuts, not “cflow” and similar, and its design
goals and achievements appear more closely related to those of AspectC++ [35]
than to most Java aspect weavers such as AspectJ. In fact, for static point-
cuts Yiihaw seems to incur even less overhead than AspectC++ because some
shortcomings in current C++ compilers slightly impair the performance of As-
pectC++ [26].

AspectC++ seems to support typesafe application of generic “around” advice
and to avoid overhead when primitive type values are returned [25]. To our
knowledge no Java aspect weaver has this property, and no C# aspect weaver
has it except for the Yiihaw weaver presented in this paper.

Unlike Yiihaw, AspectC++ does not seem able to perform advice composition
by weaving, because AspectC++ weaving implies a relatively radical transfor-
mation of the target program.

Ways to control dynamic advice composition, in which advice may advise
itself, have been studied and implemented in the AspectJ* weaver [8]. Apel and

Zero-Overhead Composable Aspects for .NET 209

others [2] investigate the relation between aspect refinement, mixins and feature-
oriented programming.

8 Current Limitations of the Yiihaw Weaver

There are some limitations in the current version of Yiihaw that we may want
to lift in a future version.

8.1 Yiihaw Does Not Support Aspect Instances

In Yiihaw, an aspect does not have its own state, neither as a singleton (per
aspect declaration) nor per target, unlike in AspectJ and related systems.

8.2 No Dynamic Join Points

Yiihaw does not support join points, such as “cflow”, where advice is applied
only if a particular method has been called and has not yet returned. Dynamic
join points are clearly more expressive, and useful in some applications, but
we have not yet encountered a need for them in our motivating application:
collection library specialization. Also, they pose interesting implementation and
optimization challenges that we would rather avoid; we would prefer to statically
ensure that no runtime overhead (in time or space) is imposed, even at the cost
of limited expressiveness. The purpose of a collection library is to achieve high
performance, and we want to avoid any too-general mechanism that imposes
runtime overhead.

Although Yiihaw does adhere to the motto “aspect-oriented programming is
quantification and obliviousness” [16], the quantification permitted by Yiihaw
pointcuts is rather limited. Hence one might question whether Yiihaw can be
considered an aspect weaver at all, or whether it should be seen as a tool for
bytecode-level composition of mixins or roles; for a conceptual clarification see
Apel et al. [3].

8.3 Only Method Execution Pointcuts

Yiihaw supports interception by method execution pointcuts and constructor
execution pointcuts, but not advice around read access or write access to fields.
The latter could be implemented by bytecode weaving of the assemblies in which
the accesses occur, but would require access to all assemblies that use the advised
fields, which is undesirable.

Note that C# properties P and indexers this[] can be advised, by targeting
the methods get_P, set_P, get_Item and set_Item to which they are compiled.

8.4 Limited Pointcut Language

The pointcut language currently can express only pointcut literals, not logical
combinations such as intersection (“and”), union (“or”) or complement (“not”)
of pointcuts.

210 R. Johansen, P. Sestoft and S. Spangenberg

8.5 No Instances of Generic Advice Classes

While Yiihaw can weave generic advice methods into a target as shown in sec-
tion 3, it cannot weave particular type instances of generic advice classes and
generic advice methods. To some extent this is due to a temporary limitation in
the pointcut file syntax, which in turn is related to the C# compiler’s renam-
ing of a generic source class C<T,U> { ... T ... } to the generic bytecode
class C‘2[T,U] { ... !1 ... }. This renaming is standardized by Common
Language Subset rule 43 in the Ecma CLI standard [14, I.10.7.2].

For an example where advising with an instance of a generic advice class
would be extremely useful, consider the (hypothetical) caching aspect below,
which ought to be applicable to any one-argument method with static type
checks and no runtime overhead, even when the argument or return type is a
primitive type:

public class CacheAdvice<A,R> {
static Dictionary<A,R> cache = ...;

static R MethodAdvice(A x) {
if (cache.ContainsKey(x))

return cache[x];
else

return cache[x] = JoinPointContext.Proceed<R>();
}

}

8.6 No Generic Target Classes

Yiihaw does support the weaving of generic target methods, both with non-
generic and generic advice methods, but currently the pointcut file must specify
the names of the targeted methods in the CLI/.NET bytecode format Method‘2
instead of the source format Method<T,U>, using the renaming performed by
the Microsoft and Mono [31] implementations when compiling generic methods
(similar to the CLI generic class renaming mentioned above). This ability also
implies that generic advice can be composed (section 6) .

The pointcut language syntax does not allow a target class to be a generic
class such as List<T> or a type instance such as List<int> of a generic class.

8.7 The Proceed<T> Method Can Be Called Only Once in Advice

Since Yiihaw “around” advice is implemented by inlining the target method
at every occurrence of Proceed<T> in the advice method, multiple occurrences
would lead to code duplication. To avoid this, Yiihaw allows at most one oc-
currence of Proceed<T> in an advice method. The restriction could be lifted at
modest extra work (renaming of local variables) in the weaver, but the restriction
has not been onerous in the applications we have considered.

Zero-Overhead Composable Aspects for .NET 211

8.8 No Special Debugging Support

A woven assembly will consist of a mixture of the target assembly and any
number of copies of fragments from the advice assembly. A standard debugging
environment cannot track each type, member and bytecode instruction back to
the original source file without some assistance.

Currently Yiihaw does not provide any such assistance, but it might be ex-
tended to weave also debugging information in parallel with the assembly weav-
ing, for instance by manipulating .pdb (“program database”) files associated
with the .NET assemblies. Work in this direction can build on existing research
on debuggable aspect weaving [12].

8.9 Cannot Weave into Signed Assemblies

Yiihaw (naturally) cannot weave advice into signed assemblies, and therefore
cannot add aspects to the .NET Framework Library classes, for instance.

9 The Expression Problem

One touchstone for a program composition technique is whether it offers a plau-
sible solution to the expression problem. This is the well-known challenge of how
to organize expression syntax definition and expression processors so that the
set of data (syntax) variants and the set of processors can be extended indepen-
dently and in a typesafe manner. See Torgersen [36] or Zenger and Odersky [40]
for an introduction and references.

It would seem that one could use normal object-oriented structure for adding
new data variants, and use aspects for adding new processors. But the latter
does not quite work with the current Yiihaw weaver, because it does not take
into account that the base type of some other type has changed, and that new
operations have become available.

To see this, consider the following base target assembly where we have data
variants Num and Plus, and one operation Eval:

public interface IEval {
int Eval();

}
public interface IExpr : IEval { }
public class Num : IExpr {
int value;
public Num(int value) {
this.value = value;

}
public int Eval() {
return value;

}
}
class Plus : IExpr {

212 R. Johansen, P. Sestoft and S. Spangenberg

IExpr left, right;
public Plus(IExpr left, IExpr right) {
this.left = left;
this.right = right;

}
public int Eval() {
return left.Eval() + right.Eval();

}
}

Adding a new data variant, say Neg, can be done in one place in standard object-
oriented style. We will now try to add a new operation Show() as an aspect. We
can define a new interface IShow to describe the show method:

public interface IShow {
String Show();

}

and then either modify interface IExpr to extend that interface, or insert method
Show() into interface IExpr.

Then we can add Show() to the Num class, thus ensuring it implements the
modified IExpr interface, by defining an advice method and inserting it into the
existing Num class:

public class NumShow {
public String Show() {
return value.ToString();

}
}

However, this will be rejected by the C# compiler because there is no field
called value. One solution to this problem is to make NumShow a subclass of
Num, provided Num’s value field were not private.

Another solution is to add a “preliminary” field to the NumShow class, like
this:

public class NumShow {
int value;
public String Show() {
return value.ToString();

}
}

Then this advice file would compile. Moreover, the Yiihaw aspect weaver would
allow it to be applied to the Num target class, because that class has a field of the
same name and type, and the references to value in the advice method Show will
be adjusted to refer to the target class’s value field instead. Hence the weaving
should succeed from the point of view of the value field.

But even more is needed. Consider how to add Show() to the Plus class.
Using some foresight and the idea of “preliminary” fields from above, we add
fields of type IShow to the advice class:

Zero-Overhead Composable Aspects for .NET 213

public class PlusShow {
IShow left, right;
public String Show() {
return left.Show() + "+" + right.Show();

}
}

Again this advice file would be accepted by the C# compiler because the required
fields exist and their type has the Show() method. However, the weaver will now
have to realize not only that the target class (Plus) has fields called left and
right. It will also have to realize that while the declared type of those fields is
IExpr, that type has been extended to be a subtype of IShow, or at least declare
Show(), thanks to the ongoing weaving.

Since the woven classes Num and Plus implement IShow only thanks to the
same weaving, the weaver’s checks must find a maximal fixpoint (checking every-
thing under the assumption that all is well until proven otherwise) rather than
a minimal fixpoint (checking everything under the assumption that everything
is ill until proven otherwise). This is the subject of future work.

10 Future Work

In future work, we want to remove the type-related limitations listed in section 8
above, in particular to allow weaving with type instances of generic advice classes
(section 8.5) and weaving into generic target classes (section 8.6). Moreover, more
sophisticated weave-time checks (section 4.7) on required fields and methods
should permit a solution to the expression problem (section 9) while ensuring
that Yiihaw will produce only well-formed and verifiable CLI/.NET assemblies.

Other future work involves better pointcut file syntax for describing generic
advice and target classes, and in general for describing composite types.

It is not an immediate goal for Yiihaw to support more join points, such as
“cflow”, or to support aspect instances.

11 Conclusion

We have presented Yiihaw, a new static aspect weaver for C#, VB.NET and
other languages for the Common Language Infrastructure (CLI) [14], also known
as the Microsoft .NET platform. The design makes several practical advances,
in part by leveraging the CLI/.NET platform’s existing features well. We have
shown that for this reason the implementation is relatively simple and non-
redundant, and we have given a few examples of the application of the weaver.
Finally we have compared Yiihaw with other known weavers for CLI/.NET,
and we have listed Yiihaw’s limitations and some desirable improvements and
avenues for future work.

Acknowledgements. Thanks to Microsoft Development Center Copenhagen and
IFIP Working Group 2.11 on Program Generation for comments and feedback,

214 R. Johansen, P. Sestoft and S. Spangenberg

to Don Batory for comments, feedback and encouragement at the Ĺıpari 2007
summer school, to Sven Apel for pointers to the literature, and to the anonymous
referees of AOSD’08 and the Lipari volume for their constructive comments.

Yiihaw is a recursive acronym for Yiihaw is an intelligent and high performing
aspect weaver.

References

1. AOP .NET.: Home page, http://sourceforge.net/projects/aopnet/
2. Apel, S., Kästner, C., Leich, T., Saake, G.: Aspect refinement. unifying AOP and

stepwise refinement. Journal of Object Technology 6(9), 13–33 (2007)
3. Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Transactions on

Software Engineering 34(2), 162–180 (2008)
4. Aspect#. Home page., http://www.castleproject.org/AspectSharp/
5. AspectDNG. Home page, http://aspectdng.tigris.org/
6. Aspect.NET. Home page,

http://www.academicresourcecenter.net/curriculum/pfv.aspx?ID=6801
7. Avgustinov, P.: Optimising AspectJ. In: Programming language design and imple-

mentation (PLDI 2005), pp. 117–128. ACM, New York (2005)
8. Bodden, E., Forster, F., Steimann, F.: Avoiding infinite recursion with stratified

aspects. In: Hirschfeld, R., Polze, A., Kowalczyk, R. (eds.) NODe 2006 GSEM
2006, GI-Edition edn., September 2006. Lecture Notes in Informatics, vol. P-88,
pp. 49–64. Gesellschaft für Informatik (2006)

9. Cecil. Home page., http://www.mono-project.com/Cecil/
10. DotSpect. Home page., http://dotspect.tigris.org/
11. Microsoft Dynamics. Home page, http://www.microsoft.com/dynamics/
12. Eaddy, M., Aho, A., Hu, W., McDonald, P., Burger, J.: Debugging aspect-enabled

programs. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp.
200–215. Springer, Heidelberg (2007)

13. Ecma International TC39 TG2. C# Language Specification. Standard ECMA-334,
3rd edition. Geneva, Switzerland (June 2005), http://www.ecma-international.
org/publications/standards/Ecma-334.htm

14. Ecma International TC39 TG3. Common Language Infrastructure (CLI). Stan-
dard ECMA-335, 3rd edition. Geneva, Switzerland (June 2005), http://www.
ecma-international.org/publications/standards/Ecma-335.htm

15. EOS. Home page, http://www.cs.iastate.edu/
16. Filman, R., Friedman, D.: Aspect-oriented programming is quantification and

obliviousness. In: Workshop on Advanced Separation of Concerns, OOPSLA 2000,
Minneapolis (October 2000)

17. Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In: Third international con-
ference on Aspect-oriented software development (AOSD 2004), pp. 26–35. ACM,
New York (2004)

18. Jagadeesan, R., Jeffrey, A., Riely, J.: Typed parametric polymorphism for aspects.
Science of Computer Programming 63(3), 267–296 (2006)

19. Johansen, R., Spangenberg, S.: Generation of specialized collection libraries. Four-
week project, IT University of Copenhagen (2006)

20. Johansenand, R., Spangenberg, S.: Yiihaw. An aspect weaver for. NET. Master’s
thesis, IT University of Copenhagen, Denmark (February 2007)

http://sourceforge.net/projects/aopnet/
http://www.castleproject.org/AspectSharp/
http://aspectdng.tigris.org/
http://www.academicresourcecenter.net/curriculum/pfv.aspx?ID=6801
http://www.mono-project.com/Cecil/
http://dotspect.tigris.org/
http://www.microsoft.com/dynamics/
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.cs.iastate.edu/

Zero-Overhead Composable Aspects for .NET 215

21. Johansen, R., Spangenberg, S., Sestoft, P.: Yiihaw .NET aspect weaver usage guide.
Technical report, IT University of Copenhagen, Denmark (September 2007)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

23. Kniesel, G., Rho, T.: A definition, overview and taxonomy of generic aspect lan-
guages. L’Objet, Special Issue on Aspect-Oriented Software Development 11(2–3),
9–39 (2006)

24. Kokholm, N., Sestoft, P.: The C5 Generic Collection Library for C# and CLI. Tech-
nical Report ITU-TR-2006-76, IT University of Copenhagen, 254 pages (January
2006)

25. Lohmann, D., Blaschke, G., Spinczyk, O.: Generic advice: On the combination of
AOP with generative programming in aspectC++. In: Karsai, G., Visser, E. (eds.)
GPCE 2004. LNCS, vol. 3286, pp. 55–74. Springer, Heidelberg (2004)

26. Lohmann, D., et al.: A quantitative analysis of aspects in the eCos kernel. In:
Berbers, Y., Zwaenepoel, W. (eds.) EuroSys 2006, Leuven, Belgium, April 2006,
pp. 191–204. ACM, New York (2006)

27. Rapier LOOM. Home page,
http://www.dcl.hpi.uni-potsdam.de/research/loom/

28. Lopez-Herrejon, R., Batory, D., Lengauer, C.: A disciplined approach to aspect
composition. In: PEPM 2006: Proceedings of the 2006 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pp. 68–77. ACM,
New York (2006)

29. NKalore. Home page, http://aspectsharpcomp.sourceforge.net/
30. PostSharp. Home page, http://www.postsharp.org/
31. Mono Project. Home page, http://www.mono-project.com/
32. Safonov, V.: Aspect.net: Concepts and architecture. NET Developer’s Journal (Oc-

tober 2004), http://dotnet.sys-con.com/read/46616.htm
33. Sestoft, P., Vaucouleur, S.: Technologies for evolvable software products. In: Börger,

E., Cisternino, A. (eds.) Software Engineering. LNCS, vol. 5316, pp. 216–253.
Springer, Heidelberg (2008)

34. Setpoint. Home page, http://setpoint.codehaus.org/
35. Spinczyk, O., Lohmann, D., Urban, M.: AspectC++: An AOP extension for C++.

Software Developer’s Journal 5(68-76) (2005)
36. Torgersen, M.: The expression problem revisited. In: Odersky, M. (ed.) ECOOP

2004. LNCS, vol. 3086, pp. 123–146. Springer, Heidelberg (2004)
37. Weave.NET. Home page, http://www.dsg.cs.tcd.ie/dynamic/?category
38. Wicca. Home page, http://www1.cs.columbia.edu/
39. Yiihaw. Home page, http://yiihaw.tigris.org/
40. Zenger, M., Odersky, M.: Independently extensible solutions to the expression prob-

lem. In: Workshop on Foundations of Object-Oriented Languages, Long Beach,
USA (January 2005)

http://www.dcl.hpi.uni-potsdam.de/research/loom/
http://aspectsharpcomp.sourceforge.net/
http://www.postsharp.org/
http://www.mono-project.com/
http://dotnet.sys-con.com/read/46616.htm
http://setpoint.codehaus.org/
http://www.dsg.cs.tcd.ie/dynamic/?category
http://www1.cs.columbia.edu/
http://yiihaw.tigris.org/

	Zero-Overhead Composable Aspects for .NET
	Introduction
	Introduction to Yiihaw
	An Example Weaving
	Interceptions
	Introductions
	Modifications

	Generic Types in ``Around'' Advice
	Why Wrapping/Unwrapping Overhead?
	The Proceed Method
	Generic Advice Methods
	Bounded Generic Advice
	Using the Receiver Object
	Example: Universal and Statically Typesafe Synchronization
	The Applicability of Advice

	Yiihaw Implementation
	Assembly Rewriting
	Handling Interceptions
	Replacing Generic Variables during Weaving
	Updating Code and Variable References
	Handling GetTarget during Weaving
	The Join Point API
	Weave-Time Checks
	Properties of the Woven Result

	Further Weaving: Advising Woven Code
	Advice Composition: Advising Advice
	Evaluation and Applications
	Generating Customized Collection Libraries
	Customization of a Layered ERP System
	Performance of Woven Code
	Related Work: Other Aspect Weavers

	Current Limitations of the Yiihaw Weaver
	Yiihaw Does Not Support Aspect Instances
	No Dynamic Join Points
	Only Method Execution Pointcuts
	Limited Pointcut Language
	No Instances of Generic Advice Classes
	No Generic Target Classes
	The Proceed<T> Method Can Be Called Only Once in Advice
	No Special Debugging Support
	Cannot Weave into Signed Assemblies

	The Expression Problem
	Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

