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Abstract 
 
The automatic co-registration of point clouds, representing 3D surfaces, is a relevant problem 
in 3D modeling. This multiple registration problem can be defined as a surface matching task. 
We treat it as least squares matching of overlapping surfaces. The surface may have been 
digitized/sampled point by point using a laser scanner device, a photogrammetric method or 
other surface measurement techniques. Our proposed method estimates the transformation 
parameters of one or more 3D search surfaces with respect to a 3D template surface, using the 
Generalized Gauss-Markoff model, minimizing the sum of squares of the Euclidean distances 
between the surfaces. This formulation gives the opportunity of matching arbitrarily oriented 
3D surface patches. It fully considers 3D geometry. Besides the mathematical model and 
execution aspects we address the further extensions of the basic model. We also show how 
this method can be used for curve matching in 3D space and matching of curves to surfaces. 
Some practical examples based on the registration of close-range laser scanner and 
photogrammetric point clouds are presented for the demonstration of the method. This surface 
matching technique is a generalization of the least squares image matching concept and offers 
high flexibility for any kind of 3D surface correspondence problem, as well as statistical tools 
for the analysis of the quality of final matching results.  
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1. Introduction
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Laser scanners can measure directly 3D coordinates of huge amounts of points in a short 
time period. Since the laser scanner is a line-of-sight instrument, in many cases the object has 
to be scanned from different viewpoints in order to completely reconstruct it. Because each 
scan has its own local coordinate system, all the local point clouds must be transformed into a 
common coordinate system. This procedure is usually referred to as registration. Actually the 
registration is not a problem specific to the laser scanner domain. Also in photogrammetry we 
face many similar problems. The emphasis of our work is to investigate the most general 
solution of the registration problem on a theoretical basis and to give practical examples for 
the demonstration of the method. 

The following section gives an extensive literature review on previous work about 3D 
surface and curve matching, covering a diversity of scientific disciplines.  

The proposed method is mathematically based on the Least Squares Matching (LSM), 
which is a fundamental measurement algorithm and a powerful solution for many essential 
photogrammetric tasks. Section 3 briefly lists the algorithmic developments, and describes 
where the proposed method stands among them. Section 4 explains the basic estimation 
model and gives a comprehensive discussion on the implementation details, precision and 
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reliability issues, convergence behaviour, and computational aspects. The same model can 
also be used for the matching of 3D space curves with each other or with a surface. This issue 
is addressed conceptually in Section 5. Section 6 presents some experimental results based on 
the registration of close-range laser scanner and photogrammetric point clouds to demonstrate 
the capabilities of the method. Finally, Section 7 gives the conclusions, pointing out further 
extensions and future works.  
 
2. Literature review 

2.1. Review of previous work on surface matching 

In the past, several efforts have been made concerning the registration of 3D point clouds, 
especially in the Computer Vision area. One of the most popular methods is the Iterative 
Closest Point (ICP) algorithm developed by Besl and McKay (1992), Chen and Medioni 
(1992), and Zhang (1994). The original version of ICP is based on the search of pairs of 
nearest points in the two sets, and estimating the rigid transformation, which aligns them. 
Then, the rigid transformation is applied to the points of one set, and the procedure is iterated 
until convergence. The ICP assumes that one point set is a subset of the other. When this 
assumption is not valid, false matches are created which negatively influences the 
convergence of the ICP to the correct solution (Fusiello et al., 2002). Several variations and 
improvements of the ICP method have been made (Masuda and Yokoya, 1995; Bergevin et 
al., 1996). From a computational expense point of view it is highly time consuming due to the 
exhaustive search for the nearest point (Sequeira et al., 1999). In Besl and McKay (1992), and 
Zhang’s (1994) works the ICP requires every point in one surface to have a corresponding 
point on the other surface. An alternative approach to this search schema was proposed by 
Chen and Medioni (1992). They used the distance between the surfaces in the direction 
normal to the first surface as a registration evaluation function instead of point–to–nearest 
point distance. The point-to-tangent plane distance idea was originally proposed by Potmesil 
(1983). In Dorai et al. (1997) the method of Chen and Medioni was extended to an optimal 
weighted least-squares framework. Zhang (1994) proposed a thresholding technique using 
robust statistics to limit the maximum distance between points. Masuda and Yokoya (1995) 
used the ICP with random sampling and least median square error measurement that is robust 
to a partially overlapping scene. 

Okatani and Deguchi (2002) proposed the best transformation to align two range images by 
taking into account the measurement error properties, which mainly dependent on both the 
viewing direction and the distance to the object surface. Ikemoto et al. (2003) presented a 
hierarchical method to align warped meshes caused by scanner calibration errors.  

In the ICP algorithm and its variants main emphasis is put on the estimation of a 6-
parameter rigid body transformation without uniform scale factor. There are a few reports in 
which higher order geometric deformations are parameterized (Feldmar and Ayache, 1996; 
Szeliski and Lavallee, 1996). 

To tackle the exhaustive search problem of ICP Park and Subbarao (2003) gave a fast 
method for searching correspondences using the sensor acquisition geometry. In addition they 
gave an overview over the three mostly employed methods, i.e. point-to-point, point-to-
(tangent) plane, and point-to-projection. Another fast implementation of the ICP using the 
multi-resolution and neighborhood search was given in Jost and Huegli (2003).  

In Turk and Levoy (1994) a method for combining a collection of range images into a 
single polygonal mesh that completely describes the object was proposed. This method first 
aligns the meshes with each other using a modified ICP, and stitches together adjacent meshes 
to form a continuous surface that correctly captures the topology of the object. Curless and 
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Levoy (1996) proposed a volumetric method for integration of the range images. Two other 
volumetric approaches were given in Pulli et al. (1997), and Hilton and Illingworth (1997). 

A quite different registration approach has been proposed in Johnson and Hebert (1998), 
(1999). Pairwise registration is accomplished using spin images, an alternative representation 
finding point correspondences. The final transformation is refined and verified using a 
modified ICP algorithm. To generate the spin image of a point in a 3D point cloud, a local 
basis is computed at an oriented point (3D point with surface normal) on the surface of an 
object represented as a polygonal surface mesh. The positions of other points with respect to 
the basis can then be described by two parameters. By accumulating these parameters in a 2D 
array, a descriptive image associated with the oriented point is created. Because the image 
encodes the coordinates of points on the surface of an object with respect to the local basis, it 
is a local description of the global shape of the object and is invariant to rigid transformations 
(Johnson and Hebert, 1998). In Guarnieri et al. (2003) spin images were used for the 
automatic detection of common areas, and initial alignment between the range image pairs.  

The Iterative Closest Compatible Point (ICCP) algorithm has been proposed in order to 
reduce the search space of the ICP algorithm (Godin et al., 1994; Godin and Boulanger, 1995; 
Godin et al., 2001). In the ICCP algorithm, the distance minimization is performed only 
between the pairs of points considered compatible on the basis of their viewpoint invariant 
attributes (normalized color/intensity, curvature, and other attributes). In Sharp et al. (2002) a 
conceptually similar method called Iterative Closest Points using Invariant Features (ICPIF) 
has been introduced. This method chooses nearest-neighbor correspondences according to a 
distance metric, which is a scaled sum of the positional and feature distances. Roth (1999) 
proposed a method that exploits the intensity information supplied by the laser scanner 
device. It firstly finds the points of interest in the intensity data of each range image using an 
interest operator. Then, the 3D triangles, which are constructed by 2D interest points, are 
matched. In Stamos and Leordeanu (2003) another feature based registration approach, which 
searches line and plane pairs in 3D point cloud space instead of 2D intensity image space, has 
been adopted. The pairwise registrations generate a graph, in which the nodes are the 
individual scans and the edges are the transformations between the scans. Finally, the graph 
algorithm registers each individual scan with respect to a central pivot scan. There can be 
found many other feature-based ICP approaches in the literature (Higuchi et al., 1995; Chua 
and Jarvis, 1996; Feldmar and Ayache, 1996; Thirion, 1996; Soucy and Ferrie, 1997; Yang 
and Allen, 1998; Vanden Wyngaerd et al., 1999).  

In Silva et al. (2003) Genetic Algorithms (GA) in combination with hill-climbing heuristics 
were applied to the range image registration problem. Some comparative studies of ICP 
variants have been made in Rusinkiewicz and Levoy (2001) and Dalley and Flynn (2002). A 
highly detailed survey on the registration methods as well as recognition and 3D modeling 
techniques was given in Campbell and Flynn (2001). 

Since most of the developed range image registration methods need an initial approximate 
alignment, there are some works on the issue of pre-alignment. In Murino et al. (2001) a 
method based on 3D skeletons was introduced. 3D skeletons are first extracted from both 
range images, and then matched to each other in order to find the pre-alignment. A frequency 
domain technique based on Fourier transformation was given in Lucchese et al. (2002) as a 
pre-alignment method. An automatic pre-alignment method without any prior knowledge of 
the relative viewpoints of the sensor or the geometry of the imaging process was given in 
Vanden Wyngaerd and Van Gool (2002). It matches bitangent curve pairs, which are pairs of 
curves that share the same tangent plane between two views. An interesting and problem-
specific pre-alignment method was given in Sablatnig and Kampel (2002). They presented a 
method that pre-aligns the front and back views of rotationally symmetric objects, which are 
archeological ceramic fragments, using 3D Hough transformation. An identical voting 
scheme (Habib and Schenk, 1999) based on the Hough technique was used in order to find the 
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initial approximations of the unknown 3D similarity transformation parameters between two 
overlapping airborne laser point clouds. This method can solve the transformation parameters 
in parameter space without point correspondence. The final registration is achieved using a 
similar method to Chen and Medioni’s (1992) point-to-tangent plane distance error 
minimization formula.  

The well known approach for the multiple range image registration is to sequentially apply 
pairwise registration until all views are combined. Chen and Medioni (1992) proposed a 
method, which registers successive views incrementally with enough overlapping area. Each 
next view is registered and merged with the metaview, which is the topological union of the 
former pairwise registration. In Blais and Levine (1995) couples of images were 
incrementally registered together with a final registration between the first and last view. It is 
based on reversing the range finder calibration process, resulting in a set of equations, which 
can be used to directly compute the location of a point in a range image corresponding to an 
arbitrary point in three dimensional space. Another multi image registration method based on 
inverse calibration, called Iterative Parametric Point (IPP), was given in Jokinen and 
Haggren (1995). In Bergevin et al. (1996) an algorithm, which considers the network of views 
as a whole and minimizes the registration errors of all views simultaneously, was introduced. 
This leads to a well-balanced network of views in which the registration errors are equally 
distributed. Pulli (1999) first aligned the scans pairwise and generated the virtual mates, 
which are uniformly sub-samples of the overlapping areas. The multiview alignment was 
performed incrementally using the virtual mates. In Dorai et al. (1998) a seamless integration 
method based on a weighted averaging technique for the registered multiview range data to 
form an unbroken surface was proposed. In Eggert et al. (1998) a force based optimization 
technique for simultaneous registration of multiview range images was introduced. They 
report that the final registration accuracy of their method typically approaches less than 1/4 of 
the interpoint sampling resolution of the range image.  

Williams and Bennamoun (2001) proposed a new technique for the simultaneous 
registration of multiple point sets. The global point registration technique presented in this 
paper is a generalization of Arun et al.’s (1987) well known pairwise registration method, 
which uses the Singular Value Decomposition (SVD) to compute the optimal registration 
parameters in the presence of point correspondences. This method is a closed-form solution 
for the 3D rigid transformation between two 3D point sets. It first reduces the unknown 
translation parameters, shifting all points to the center of gravity, and calculates the unknown 
rotation matrix using the SVD of a 3x3 matrix, and finally calculates the translation 
parameters. During that time two other similar methods had been developed independently 
based on unit quaternions (Horn, 1987; Faugeras and Hebert, 1986), but as pointed out by 
Horn et al. (1988) these methods were not entirely novel, since the same problem had already 
been treated in the Psychometry (Quantitative Psychology) literature (Schoenemann, 1966; 
Schoenemann and Carroll, 1970) in the name of Procrustes Analysis. An interesting note here 
is that the mathematical background of SVD, introduced by Eckart and Young (1936), comes 
from the Psychometry area. It is also known as Eckart-Young Decomposition. From a 
mathematical point of view a similar method to Williams and Bennamoun’s (2001) proposal 
was given in Beinat and Crosilla (2001). They proposed the Generalized Procrustes Analysis 
as a solution to the multiple range image registration problem in the presence of point 
correspondences. More details for the Procrustes Analysis can be found in Crosilla and Beinat 
(2002). A further stochastic model taking into account different a priori accuracies of the tie 
point coordinate components was proposed by Beinat and Crosilla (2002). In fact both of the 
presented methods (Williams and Bennamoun, 2001; Beinat and Crosilla, 2001) use Gauss-
Seidel or Jacobi type iteration techniques in order to register multiple range images 
simultaneously. Photogrammetric block adjustment by independent models has been proposed 
as another solution (Scaioni and Forlani, 2003). 
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Masuda (2002) proposed a method to register multiple range images using the signed 
distance field (SDF), which is a scalar field determined by the signed distance of an arbitrary 
3D point from the object surface. In Krsek et al. (2002) an automatic hybrid registration 
algorithm was presented. It works in a bottom-up hierarchical mode: points – differential 
structures – surface. The final refinement of the estimation is carried out using Iterative 
Closest Reciprocal Point (ICRP) algorithm (Pajdla and Van Gool, 1995). In Castellani et al. 
(2002) a multiple range image registration method was given for the 3D reconstruction of 
underwater environment from multiple acoustic range views acquired by a remotely operated 
vehicle. In addition, several reviews and comparison studies for the multiple range image 
registration are available in the literature (Jokinen and Haggren, 1998; Williams et al., 1999; 
Cunnington and Stoddart, 1999). 

In Dijkman and van den Heuvel (2002) a semi-automatic registration method based on least 
squares fitting of the parameters of the models (cylinder and plane) was introduced. The 
registration is performed using the parameters of the models measured in different scans. The 
Global Positioning System (GPS) was also used to determine the 3D coordinates of the 
homologous points, which were used to merge the different scans (Balzani et al., 2002). Use 
of GPS allows combining all scans in a common system even if they do not have overlapping 
parts. To solve the point correspondence problem between two laser scanner point clouds 
before the 3D similarity transformation, an automatic method was proposed based on the 
assumption that the Z-axes of two scans are vertical (Bornaz et al., 2002). In this work retro-
reflective targets, which are attached to the object surface before the scanning process, are 
used as common points. The idea is to search the homologous points based on two spherical 
coordinates (range and elevation). A similar automatic method has been given in Akca (2003) 
using the template shaped targets. In this work the space angles and the distances are used to 
solve the point correspondence problem, since they are translation and rotation invariant 
parameters among the different laser scanner viewpoints. The ambiguity problem, which is 
rare but theoretically and practically possible, is solved using consistent labeling by discrete 
relaxation. 

This fairly exhaustive description of related research activities and achievements 
demonstrates the relevance of the problem. We also notice that a fully satisfying solution has 
still to be found, implemented and tested (see some critical comments at the beginning of 
Section 3). 

2.2. Related work in terrain modeling 

Since 3D point clouds derived by any method or device represent the object surface, the 
problem should be defined as a surface matching problem. In photogrammetry, the problem 
statement of surface patch matching and its solution method was first addressed by Gruen 
(1985a) as a straight extension of Least Squares Matching. 

There have been some studies on the absolute orientation of stereo models using Digital 
Elevation Models (DEM) as control information. This work is known as DEM matching. The 
absolute orientation of the models using Digital Terrain Models (DTM) as control 
information was first proposed by Ebner and Mueller (1986), and Ebner and Strunz (1988). 
Afterwards, the functional model of DEM matching has been formulated by Rosenholm and 
Torlegard (1988). This method basically estimates the 3D similarity transformation 
parameters between two DEM patches, minimizing the least square differences along the Z-
axes. Several applications of DEM matching have been reported (Karras and Petsa, 1993; 
Pilgrim, 1996; Mitchell and Chadwick, 1999; Xu and Li, 2000).  

Further studies have been carried out to incorporate the DEMs into aerial block 
triangulation as control information (Ebner et al., 1991; Ebner and Ohlhof, 1994; Jaw, 2000). 
Jaw (2000) integrated the surface information into aerial triangulation by hypothesizing plane 
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observations in object space, with a goal function that minimizes the distance along the 
surface normal.  

Maas (2000) successfully applied a similar method to register airborne laser scanner strips, 
among which vertical and horizontal discrepancies generally show up due to GPS/INS 
accuracy problems. Another similar method has been presented for registering surfaces 
acquired using different techniques, in particular, laser altimetry and photogrammetry 
(Postolov et al., 1999).  

Furthermore, techniques for 2.5D DEM surface matching have been developed, which 
correspond mathematically to least squares image matching. The DEM matching concept can 
only be applied to 2.5D surfaces, whose analytic function can be described in the explicit form 
as a single valued function, i.e. ),( yxfz = . 2.5D surfaces are of limited value in case of 
generally formed objects. As a result, the DEM matching method is not fully able to solve the 
correspondence problem of solid 3D surfaces. 

2.3. Review of previous work on curve matching 

Objects in the scene can also be delineated by use of space curves instead of surfaces. In 
many cases the space curves carry valuable information related to the dimension and shape of 
the object. They can represent boundaries of regions, ridgelines, silhouettes, etc.  

Matching of 2D curves is a very active research area in Computer Vision. Several 
algorithms, which are not explained here in detail, have been proposed in the literature. The 
contour matching is frequently used as another name for the same problem statement. In spite 
of presence of much work on curve/contour/line segment/arc matching in 2D space, only few 
works have been done on the problem of 3D curve matching. 

As far as the current methods in Computer Vision literature are concerned, the problem has 
mostly been defined as that of matching of 1D feature strings, obtained from higher degree 
regression splines. The general attempt is to use some derived features (differential 
invariants, semi-differential invariants, Fourier descriptors, etc.) instead of the whole data 
directly (Schwartz and Sharir, 1987; Parsi et al., 1991; Kishon et al., 1991; Gueziec and 
Ayache, 1994; Cohen and Wang, 1994; Wang and Cohen, 1994; Pajdla and Van Gool, 1995). 

Actually the ICP was proposed to solve the curve matching problem as well in both 2D and 
3D space, as explained in its original publications (Besl and McKay, 1992; Zhang, 1994). 
Lavallee et al. (1991) presented a method that matches 3D anatomical surfaces acquired by 
MRI (Magnetic Resonance Imaging) or CT (Computed Tomography) to their 2D X-ray 
projections. 

In photogrammetry, the problem statement was first touched by Gruen (1985a): “… It may 
even be utilized to match and analyse non-sensor data sets, such as digital height models, 
digital planimetric models and line map information”. The LSM has been addressed as the 
solution, but not developed yet.  

Much work has been done on the matching of line segments in image space using feature 
based matching or relational matching considering the sensor geometry, auxiliary 
information, etc., using tree-search or relaxation techniques. Most of the work in this context 
focuses on automatic extraction of buildings and/or roads from aerial images.  

Forkert et al. (1995) gave a method that reconstructs free-formed spatial curves represented 
in cubic spline form. The curve is adjusted to the bundles of rays coming from two or more 
images. Zalmanson and Schenk (2001) used 3D free form curves for indirect orientation of 
pushbroom sensors. They addressed the advantage of using these features for providing 
continuous control information in object space. Although the last two references are not 
directly related the 3D curve matching, they give some examples on the utilization of 3D 
curves in photogrammetry.  
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An innovative work was introduced in Gruen and Li (1996) with the LSB-Snakes (Least 
Squares B-spline Snakes). The method of active contour models (Snakes) was formulated in a 
least squares approach and at the same time the technique of least squares template matching 
was extended by using a deformable contour instead of a rectangle as the template. This 
elegant method considerably improves the active contour models by using three new 
elements: (1) the exploitation of any a priori known geometric and photometric information 
to constrain the solution, (2) the simultaneous use of any number of images, and (3) the solid 
background of least-squares estimation. Through the connection of image and object space, 
assuming that the interior and exterior orientation of the sensors are known, any number of 
images can be simultaneously accommodated and the feature can be extracted in a 2D as well 
as in a fully 3D mode. 

 
3. Our proposed method 

Although the registration of 3D point clouds is a very active research area in many 
disciplines, there is still the need for a contribution that responds favourably to the following 
four properties: matching of non-rigidly deformed data sets, matching of full 3D surfaces (as 
opposed to 2.5D), fitting of the mathematical model to the physical reality of the problem 
statement as well as possible, and mechanisms for internal quality control. Our proposed 
method meets these requirements. 

The Least Squares Matching concept had been developed in parallel by Gruen (1984; 
1985a), Ackermann (1984) and Pertl (1984). It has been applied to many different types of 
measurement and feature extraction problems due to its high level of flexibility and its 
powerful mathematical model: Adaptive Least Squares Image Matching (Gruen, 1984; Gruen, 
1985a), Geometrically Constrained Multiphoto Matching (Gruen and Baltsavias, 1988), 
Image Edge Matching (Gruen and Stallmann, 1991), Multiple Patch Matching with 2D 
images (Gruen, 1985b), Multiple Cuboid (voxel) Matching with 3D images (Maas, 1994; 
Maas and Gruen, 1995), Globally Enforced Least Squares Template Matching (Gruen and 
Agouris, 1994), Least Squares B-spline (LSB) Snakes (Gruen and Li, 1996). For a detailed 
survey the authors refer to Gruen (1996). If 3D point clouds derived by any device or method 
represent an object surface, the problem should be defined as a surface matching problem 
instead of the 3D point cloud matching. In particular, we treat it as Least Squares Matching of 
overlapping 3D surfaces, which are digitized/sampled point by point using a laser scanner 
device, the photogrammetric method or other surface measurement techniques. This definition 
allows us to find a more general solution for the problem as well as to establish a flexible 
mathematical model in the context of LSM. 

Our mathematical model is a generalization of the Least Squares (LS) image matching, in 
particular the method given by Gruen (1984; 1985a). The LS image matching estimates the 
location of a synthetic or natural template image patch on a search image patch, modifying 
the search patch by an affine transformation, minimizing the sum of squares of the grey level 
differences between the image patches. Geometric and radiometric image deformations are 
simultaneously modeled via image shaping parameters and radiometric corrections. In the LS 
cuboid matching (Maas, 1994; Maas and Gruen, 1995) a straightforward extension to 3D 
voxel space working with volume data rather than image data was given. The LS surface 
matching conceptually stands between these two approaches. 

The proposed method, Least Squares 3D Surface Matching (LS3D), matches one or more 
3D search surfaces to a 3D template surface, minimizing the sum of squares of the Euclidean 
distances between the surfaces. This formulation gives the opportunity of matching arbitrarily 
oriented 3D surface patches. An observation equation is written for each element on the 
template surface patch, i.e. for each sampled point. The constant term of the adjustment is 
given by the observation vector whose elements are the Euclidean distances between the 
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template and search surface elements. The geometric relationship between the conjugate 
surface patches is defined as a 7-parameter 3D similarity transformation. This parameter 
space can be extended or reduced, as the situation demands it. The unknown transformation 
parameters are treated as stochastic quantities using proper a priori weights. This extension of 
the mathematical model gives control over the estimation parameters. For the estimation of 
the parameters the Generalized Gauss-Markoff model of least squares is used. Since the 
estimation model provides the mechanisms for internal quality control, the localization and 
elimination of the gross erroneous and occluded surface subparts during the iteration is 
possible.  
 
4. Least squares 3D surface matching (LS3D) 

4.1. The basic estimation model 

Assume that two different partial surfaces of the same object are digitized/sampled point by 
point, at different times (temporally) or from different viewpoints (spatially). Although the 
conventional sampling pattern is point based, any other type of sampling pattern is also 
accepted. ),,( zyxf  and ),,( zyxg  are conjugate regions of the object in the left and right 
surfaces respectively. In other words ),,( zyxf  and ),,( zyxg  are discrete 3D representations 
of the template and search surfaces. The problem statement is estimating the final location, 
orientation and shape of the search surface ),,( zyxg , which satisfies minimum condition of 
Least Squares Matching with respect to the template ),,( zyxf . The functional model is 
 

),,(),,( zyxgzyxf =               (1) 
 

According to Equation (1) each surface element on the template surface patch ),,( zyxf  
has an exact correspondent surface element on the search surface ),,( zyxg , or vice-versa, if 
both of the surfaces would analytically be continuous surfaces without any deterministic or 
stochastic discrepancies. In order to model the stochastic discrepancies, which are assumed to 
be random errors, and may stem from the sensor, environmental conditions or measurement 
method, a true error vector ),,( zyxe  is added as: 
 

),,(),,(),,( zyxgzyxezyxf =−             (2) 
 

Equation (2) are observation equations, which functionally relate the observations 
),,( zyxf  to the parameters of ),,( zyxg . The matching is achieved by least squares 

minimization of a goal function, which represents the sum of squares of the Euclidean 
distances between the template and the search surface elements: 
 

min|||| 2 =∑ d
r

               (3) 

 
and in Gauss form 
 
[ ] min=dd                (4) 
 
where d

r
 stands for the Euclidean distance. The final location is estimated with respect to an 

initial position of ),,( zyxg , the approximation of the conjugate search surface ),,(0 zyxg .  
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To express the geometric relationship between the conjugate surface patches, a 7-parameter 
3D similarity transformation is used:  
 
[ ] 0

T Rxt mzyx +=               (5) 
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where ),,( κϕω= Rijr  are the elements of the orthogonal rotation matrix, T][ zyx ttt  is the 
translation vector, and m is the uniform scale factor.  

Depending on the deformation between the template and the search surfaces, any other type 
of 3D transformations could be used, e.g. 12-parameter affine, 24-parameter tri-linear, or 30-
parameter quadratic family of transformations. 

In order to perform least squares estimation, Equation (2) must be linearized by Taylor 
expansion, ignoring 2nd and higher order terms. 
 

dz
z

zyxgdy
y

zyxgdx
x

zyxgzyxgzyxezyxf
∂

∂
+

∂
∂

+
∂

∂
+=−

),,(),,(),,(),,(),,(),,(
000

0    (7) 

 
with 
 

i
i

i
i

i
i

dp
p
zdzdp

p
ydydp

p
xdx

∂
∂

=
∂
∂

=
∂
∂

=                     ,,         (8) 

 
where },,,,,,{ κϕω∈ mtttp zyxi  is the i-th transformation parameter in Equation (6). 
Differentiation of Equation (6) gives: 
 

κ+ϕ+ω++= dadadadmadtdx x 13121110  
κ+ϕ+ω++= dadadadmadtdy y 23222120           (9) 
κ+ϕ+ω++= dadadadmadtdz z 33323130  

 
where ija  are the coefficient terms, whose expansions are trivial. Using the following 
notation 
 

z
zyxgg

y
zyxgg

x
zyxgg zyx ∂

∂
=

∂
∂

=
∂

∂
=

),,(,),,(,),,( 000

                       (10) 

 
and substituting Equations (9), Equation (7) results in the following: 
 

)),,(),,(()()(

)()(),,(
0

332313322212

312111302010

zyxgzyxfdagagagdagagag

dagagagdmagagagdtgdtgdtgzyxe

zyxzyx

zyxzyxzzyyxx

−−κ+++ϕ++

+ω++++++++=−

                   
             (11) 
 

In the context of the Gauss-Markoff model, each observation is related to a linear 
combination of the parameters, which are variables of a deterministic unknown function. This 
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function constitutes the functional model of the whole mathematical model. The terms 
},,{ zyx ggg  are numeric 1st derivatives of this function ),,( zyxg .  

Equation (11) gives in matrix notation 
 

P          lAxe ,−=−           (12) 
 
where A is the design matrix, ][T κϕω= ddddmdtdtdt zyxx  is the parameter vector, 

and ),,(),,( 0 zyxgzyxf −=l  is the constant vector that consists of the Euclidean distances 
between the template and correspondent search surface elements. In our implementation the 
template surface elements are approximated by the data points. On the other hand, the search 
surface elements are represented by user selection of one of the two different types of 
piecewise surface forms (planar and bi-linear), as it will be explained in Section 4.2. In 
general, both surfaces (template and search) can be represented in any kind of piecewise 
form.  

With the statistical expectation operator E{} and the assumptions 
 

}{,),0(~ 12
0

2
0

2
0

Τ− Ε==σ=σσΝ eeKPQ          Qe llllllll      (13) 
 
the system (12) and (13) is a Gauss-Markoff estimation model. llll PP  Q =,  and llK  stand for 
a priori cofactor, weight and covariance matrices respectively. 

The unknown transformation parameters are treated as stochastic quantities using proper 
weights. This extension gives advantages of control over the estimating parameters (Gruen, 
1986). In the case of poor initial approximations for unknowns or badly distributed 3D points 
along the principal component axes of the surface, some of the unknowns, especially the scale 
factor m, may converge to a wrong solution, even if the scale factors between the surface 
patches are same.  

We introduce the additional observation equations regarding the system parameters as 
 

bbb P          lxIe ,−=−          (14) 
 
where I is the identity matrix, lb is the (fictitious) observation vector for the system 
parameters, and Pb is the associated weight coefficient matrix. The weight matrix Pb has to be 
chosen appropriately, considering a priori information of the parameters. An infinite weight 
value ( ∞→iib )(P ) excludes the i-th parameter from the system assigning it as constant, 
whereas zero weight ( 0)( =iibP ) allows the i-th parameter to vary freely assigning it as 
unknown parameter in the classical meaning.  

The least squares solution of the joint system Equations (12) and (14) gives as the 
Generalized Gauss-Markoff model the unbiased minimum variance estimation for the 
parameters 
 

)()(ˆ T1T
bbb lPPlAPPAAx ++= −   solution vector     (15) 

r
bbb vPvPvv TT

2
0ˆ

+
=σ     variance factor     (16) 

lxAv −= ˆ      residual vector for surface observations (17) 

bb lxIv −= ˆ      residual vector for parameter observations (18) 
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where ^ stands for the Least Squares Estimator, unr −=  is the redundancy, n is the number 
of observations that is equivalent to the number of elements of the template surface, and u is 
the number of transformation parameters that is seven here. When the system converges, the 
solution vector converges to zero ( 0ˆ →x ). Then the residuals of the surface observations vi 
become the final Euclidean distances between the estimated search surface and the template 
surface patches. 
 

},...,1{,),,(),,(ˆ nizyxfzyxg iii =−=           v         (19) 
 

The function values ),,( zyxg  in Equation (2) are actually stochastic quantities. This fact is 
neglected here to allow for the use of the Gauss-Markoff model and to avoid unnecessary 
complications, as typically done in LSM (Gruen, 1985a). This assumption is valid and the 
omissions are not significant as long as the random errors of the template and search surfaces 
are normally distributed and uncorrelated. In the extreme case when the random errors of the 
both surfaces show systematic and dependency patterns, which is most probably caused by 
defect or imperfectness of the measurement technique or the sensor, it should be an 
interesting study to investigate the error behavior using the Total Least Squares (TLS) 
method (Golub and Van Loan, 1980). The TLS is a relatively new adjustment method of 
estimating parameters in linear models that include errors in all variables (Schaffrin and 
Felus, 2003). 

The functional model is non-linear. The solution iteratively approaches a global minimum. 
With the solution of linearized functional models there is always a danger to find local 
minima. A global minimum can only be guaranteed if the function is expanded to Taylor 
series at such a point where the approximate values of the parameters are close enough to 
their true values ( ∈≅ ii pp 0 u ; i=1,…,u) in parameter space. We ensure this condition by 
providing of good quality initial approximations for the parameters in the first iteration: 
 

},,,,,,{ 00000000 κϕω∈ mtttp zyxi         (20) 
 

After the solution vector (15) has been solved for, the search surface is deformed to a new 
state using the updated set of transformation parameters, and the design matrix A and the 
constant vector l are re-evaluated. The iteration stops if each element of the alteration vector 
x̂  in Equation (15) falls below a certain limit: 
 

}7,,2,1{,},,,,,,{, ...iddddmdtdtdtdpcdp zyxiii =κϕω∈<                        (21) 
 

Adopting the parameters as stochastic variables allows adapting the dimension of the 
parameter space in a problem specific manner. In the case of insufficient a priori information 
on the geometric deformation characteristics of the template and search surfaces, the 
adjustment could be started employing a high order transformation, e.g. 3D affine. However, 
this approach very often leads to an over-parameterization problem. Therefore, during the 
iterations an appropriate test procedure that is capable to exclude nondeterminable parameters 
from the system should be performed. For a suitable testing strategy we refer to Gruen 
(1985c).  
 
4.2. Implementation issues 

The terms },,{ zyx ggg  are numeric 1st derivatives of the unknown surface ),,( zyxg . Their 
calculation depends on the analytical representation of the surface elements. As a first 
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method, let us represent the search surface elements as planar surface patches, which are 
constituted by fitting a plane to 3 neighboring knot points, in the non-parametric implicit 
form  
 

0),,(0 =+++= DzCyBxAzyxg         (22) 
 
where A, B, C, and D are the parameters of the plane. The numeric 1st derivation according to 
the x-axis is 
 

x
zyxgzyxxg

x
zyxgg

xx Δ
−Δ+

=
∂

∂
=

→Δ

),,(),,(lim),,( 00

0

0

       (23) 

 
where the numerator term of the equation is simply the distance between the plane and the 
off-plane point ),,( zyxx Δ+ . Then using the point-to-plane distance formula, 
 

222222

)(
CBA

A
CBAx

DCzByxxAg x
++

=
++Δ

+++Δ+
=        (24) 

 
is obtained. Similarly gy and gz are calculated numerically:  
 

222222
,

CBA
Cg

CBA
Bg zy

++
=

++
=                  (25) 

 
Actually these numeric derivative values },,{ zyx ggg  are x-y-z components of the local 

surface normal vector nr  at that point: 
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For the representation of the search surface elements as parametric bi-linear surface 

patches, a bi-linear surface is fitted to 4 neighboring knot points Pi: 
 

[ ]T0 ),(),(),(),( wuzwuywuxwug =
r          (27) 

uwPwuPwuPwuPwug 4321
0 )1()1()1)(1(),(

rrrrr
+−+−+−−=       (28) 

 
where u,w ∈ [0,1]2  and  iPwug

rr   ,),(0  ∈ 3. The vector ),(0 wugr is the position vector of any 
point on the bi-linear surface that is bounded by 4 knot points Pi. Again the numeric 
derivative terms },,{ zyx ggg  are calculated from components of the local surface normal 
vector nr  on the parametric bi-linear surface patch: 
 

0

00

0

0
),(),(

g
w

wug
u

wug

g

g

g
g
g

n
z

y

x

∇
∂

∂
×

∂
∂

=
∇

∇
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= r

rr

r

r
r         (29) 



 
ISPRS Journal of Photogrammetry and Remote Sensing 59 (3), 2005: 151-174 

 13

 
where ×  stands for the vector cross product. With this approach a slightly better a posteriori 

0σ -value could be obtained due to better surface modeling.  
Conceptually derivative terms },,{ zyx ggg  constitute a normal vector field with unit 

magnitude 1|||| =nr  on the search surface. This vector field slides over the template surface 
towards the final solution, minimizing the Least Squares objective function.  
 
4.3. Precision and reliability 

The standard deviations of the estimated transformation parameters and the correlations 
between themselves may give useful information concerning the stability of the system and 
quality of the data content (Gruen, 1985a):  
 

1T
0 )(,ˆˆ −+=∈σ=σ bxxppppp qq PPAAQ                 (30) 

 
where Qxx is the cofactor matrix for the estimated parameters. As pointed out in Maas (2000), 
the estimated standard deviations of the transformation parameters are usually too optimistic 
due to the stochastic properties of the search surface, which are not taken into consideration.  

In order to localize and eliminate the occluded parts and the outliers a simple weighting 
scheme adapted from the Robust Estimation Methods is used: 
 

⎩
⎨
⎧ σ<= else0

|)(|if1)( 0Ki
ii

vP           (31) 

 
In our experiments K is selected as >10, since it is aimed to suppress only the large outliers. 

Because of the high redundancy of a typical data arrangement, a certain amount of occlusions 
and/or smaller outliers do not have significant effect on the estimated parameters. As a 
comprehensive strategy, Baarda’s (1968) data-snooping method can be favourably used to 
localize the occluded or gross erroneous measurements.  
 
4.4. Convergence of solution vector 

In a standard least squares adjustment calculus, the function of the unknowns is unique, 
exactly known, and analytically continuous everywhere. Here the function ),,( zyxg  is 
discretized by using a finite sampling rate, which leads to slow convergence, oscillations, 
even divergence in some cases with respect to the standard adjustment. The convergence 
behaviour of the proposed method basically depends on the quality of the initial 
approximations and quality of the data content. For a good data configuration it usually 
achieves the solution after 5 or 6 iterations (Fig. 1), which is  typical for LSM. To stop the 
iteration we select ci criteria as 1.0e-5, 1.0e-4 (in given unit), and 1.0e-3 (grad) for the scale 
factor, translations and rotation angles respectively.  
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Fig. 1. Typical examples for fast convergence (a) and slow convergence (b). Note that here 
the scale factor m is fixed to unity. 
 
 
4.5. Computational aspects 

The computational effort increases with the number of points in the matching process. The 
main portion of the computational complexity is to search the correspondent elements of the 
template surface patch on the search surface, whereas the adjustment part is a small system, 
and can quickly be solved using Cholesky decomposition followed by back-substitution. 
Searching the correspondence is an algorithmic problem, and needs professional software 
optimization techniques and programming skills, which are not within the scope of this paper.  

In the case of insufficient initial approximations, the numerical derivatives },,{ zyx ggg  can 
also be calculated on the template surface patch ),,( zyxf  instead of on the search surface 

),,( zyxg  in order to speed-up the convergence. This speed-up version apparently decreases 
the computational effort of the design matrix A as well, since the derivative terms },,{ zyx fff  
are calculated only once in the first iteration, and the same values are used in the following 
iterations. As opposed to the basic model, the number of the observation equations 
contributing to the design matrix A is here defined by the number of elements on the search 
surface patch ),,( zyxg . 

Two 1st degree C0 continuous surface representations are implemented. In the case of multi-
resolution data sets, in which point densities are significantly different on the template and 
search surfaces, higher degree C1 continuous composite surface representations, e.g. bi-cubic 
Hermit surface (Peters, 1974), should give better results, of course increasing the 
computational expenses. 
 
4.6. Pros and cons of LS3D compared to some other methods 

The ICP algorithm always converges monotonically to a local minimum with respect to the 
mean-square distance objective function (Besl and McKay, 1992). The estimation of the 6-
parameters of the rigid transformation is a linear least squares solution, whereas the overall 
procedure is iterative. In the ICP and its variants the goal function, which minimizes the 
Euclidean distances between two point clouds by least squares, is achieved indirectly by 
estimating and applying the rigid transformations consecutively. Our mathematical model is 
substantially different from the ICP and its variants, since it directly formulates the goal 
function in a Generalized Gauss-Markoff model. The selected 3D transformation model 
(Equations 6 and 8) only relates the surfaces geometrically. The ICP needs a relatively high 
number of iterations (see for example Pottmann et al., 2004), while LS3D usually needs 5-8 
iterations, depending also on the quality of the approximations. On the other hand, LS3D 
needs quite good approximations (i.e. has small convergence radius), while with ICP the 
requirements on the quality of the approximations are less.  
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In Neugebauer (1997) and Szeliski and Lavallee (1996) two gradient descent type of 
algorithms were given. They calculate the Euclidean distances as evaluation function value by 
interpolation using point-to-projection and octree spline methods respectively. They adopt the 
Levenberg-Marquardt method, in which diagonal elements of the normal matrix N are 
augmented by a damping matrix D in order to prevent numerical problems: nδDN =+ )λ(  
where λ>0 is the stabilization factor that varies during the iterations. The damping matrix D is 
often chosen as an identity matrix I or a diagonal matrix containing the diagonal elements of 
the normal matrix (diag(N)). The Generalized Gauss-Markoff model might be seen as 
identical to the Levenberg-Marquardt, as the weight matrix Pb has a damping effect on the 
normal matrix. But it is a thorough statistical approach considering the a priori stochastic 
information (Equation 14), and a straightforward result of the least squares formulation 
(Equation 15). The Levenberg-Marquardt method is rather a numerical approach with no 
direct stochastical justification.  

Assume that two planes are the subject of the matching process. During the solution of a 
standard least squares adjustment, the normal matrix becomes singular, since there is not a 
unique solution geometrically. This numerical reflex issues a warning to the user. On the 
other hand Levenberg-Marquardt will give one of the solutions out of the infinite number. 
Geometrically ill configured data sets are reasons for the near-singularity cases. When 
singularity or ill conditioning occurs, one must carefully inspect the system and diagnose the 
data, instead of doing numerical manipulations.  
 
4.7. An extension: Simultaneous multi-subpatch matching 

The basic estimation model can be implemented in a multi-patch mode, that is the 
simultaneous matching of two or more search surfaces ),,( zyxgi , ki ,...,1= , to one template 
surface ),,( zyxf .  
 

11111 , P          lxAe −=−  

22222 , P          lxAe −=−          (32) 
MM                         

kkkk P          lxAe k ,−=−  
 

Since the parameter vectors kxx ,...,1  do not have any joint components, the sub-systems of 
Equation (32) are orthogonal to each other. In the presence of auxiliary information those sets 
of equations could be connected via functional constraints, e.g. as in the Geometrically 
Constrained Multiphoto Matching (Gruen, 1985a; Gruen and Baltsavias, 1988) or via 
appropriate formulation of multiple (>2) overlap conditions. 

An ordinary point cloud includes a large amount of redundant information. A 
straightforward way to register such two point clouds could be matching of the whole 
overlapping areas. This is computationally expensive. We propose multi-subpatch mode as a 
further extension to the basic model, which is capable of simultaneous matching of sub-
surface patches, which are selected in cooperative surface areas. This leads to the observation 
equations 
 

1111 , P          lxAe −=−  

2222 , P          lxAe −=−          (33) 
MM                       

kkkk P          lxAe ,−=−  
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with ki ,...,1=  subpatches. 
They can be combined as in Equation (12), since the common parameter vector x joints 

them to each other. The individual subpatches may not include sufficient information for the 
matching of whole surfaces, but together they provide a computationally effective solution, 
since they consist only of relevant information rather than using the full data set. One must 
carefully select the distribution and size of the subpatches in order to get a homogeneous 
quality of the transformation parameters in all directions of the 3D space. For an example of 
multi-subpatch matching see project Wangen-façade of Section 6.4. 
 
5. Least squares 3D curve matching 

5.1. The mathematical modelling in cubic spline form 

Assume that two 3D curves of the same object are either directly measured by use of a 
contact measurement device, photogrammetric method, etc. or derived using any other 
technique. They can be matched in 3D space, since they represent the same object (Fig. 2). 
The curves may have been measured or extracted in a point by point fashion, but can also be 
in different sampling patterns. The problem statement is finding the corresponding part of the 
template curve ),,( zyxf  on the search curve ),,( zyxg . The analytical representation of the 
curves is carried out in cubic spline form, but any other piecewise representation scheme can 
also be considered. 

In general, a parametric space curve is expressed, e.g. for the template curve, as: 
 

[ ]T)()()()( uzuyuxu =f            (34) 
 
where u ∈ [0,1] and f(u) ∈ 3 is the position vector of any point on the curve. It has three 
components x(u), y(u), and z(u) which may be considered as the Cartesian coordinates of the 
position vector (Rogers and Adams, 1976).  
 

z

x

y

 
Fig. 2. Matching of free-form space curves. 

 
 
In the cubic spline representation 
 

3
4

2
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i BBBBBf +++== ∑

=

−         (35) 

 
the coefficient vectors Bi ∈ 3 are determined by specifying the boundary conditions for the 
spline segments. The expanded form shows a 4th order 3rd degree analytical definition. A 
cubic degree ensures the second-order continuity (C2). This implies that the first (slope) and 
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second (curvature) order derivatives are continuous across the joints of the composite curve. 
Similar expressions are also valid for the search curve: 
 

3
4

2
321)( uuuu DDDDg +++=           (36) 

 
Using the parametric 3D space curve definition the observation equations are formulated in 

the same manner as explained in Section 4: 
 

)()()( uuu gef =−             (37) 
 

Considering the same assumptions, which have been made in the previous part, with 
respect to the stochastic model, the geometric relationship between the template and search 
curves, and the Taylor expansion, the linearized functional model evolves as: 
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The relations between the Cartesian coordinate domains of the template and search curves 

are established via a 7-parameter 3D similarity transformation, where it is also possible to 
extend or reduce the parameter space of the 3D transformation upon necessity.  

The differentiation of the transformation equations results in: 
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where },,,,,,{ κϕω∈ mtttp zyxi  is the i-th transformation parameter in Equation (6).  

The expression below 
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describes the numeric derivative terms. After further expansions, in the same manner as in the 
previous section, considering the parameters of the 3D transformation as fictitious 
observations, using an appropriate stochastic model, and with the assumptions 0}E{ =e  and 

12
0

T }E{ −σ= Pee  the system can be formulated as a Generalized Gauss-Markoff model: 
 

P          lxAe ,−=−             (42) 

bbb P          lxIe ,−=−             (43) 
 

The least squares solution of the joint system Equations (42) and (43) gives the unbiased 
minimum variance estimation for the parameters: 
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)()(ˆ T1T
bbb lPPlAPPAAx ++= −  solution vector      (44) 

r
bbb vPvPvv TT

2
0ˆ

+
=σ     variance factor      (45) 

lxAv −= ˆ      residual vector for curve observations  (46) 

bb lxIv −= ˆ      residual vector for parameter observations (47) 
 

The functional model is non-linear, and the solution is iterative. The iteration stops if each 
element of the alteration vector x̂  in Equation (44) falls below a certain limit.  

Let us assume that the first three derivatives do exist and are linearly independent for a 
point g(u) on a parametric curve (Fig. 3). Then the first three derivatives )(ug′ , )(ug ′′ , and 

)(ug ′′′  form a local affine coordinate system with origin g(u). 
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g
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Fig. 3. Local affine system (left) and Frenet frame (right) (adapted after Farin, 1997). 

 
 
From this local affine system, one can easily obtain a local Cartesian system with origin 

g(u) and axes bnt
rrr

,,  by the Gram-Schmidt process of orthonormalization (Farin, 1997):  
 

tbn      
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= ,,          (48) 

 
The vectors bnt

rrr
,,  are called tangent, (main) normal, and bi-normal vectors respectively. 

The frame bnt
rrr

,,  is called moving trihedron or Frenet frame. It varies its orientation as u 
traces out the curve (Farin, 1997). 

Considering this definition, the numeric 1st order derivative terms },,{ zyx ggg  are the 
elements of the unit-length normal vector nr  at point g0(u). 
 
[ ] n

r
=

T
zyx ggg             (49) 

 
Using the proper degree and basis for curve representation, our method can handle multi-

resolution and multi-sensor data sets, including multi-scale curves. It can be straightforwardly 
re-formulated in 2D for the matching of free-form image features. 
 
5.2. Matching of 3D curves with a 3D surface 

The same formulation allows matching of one or more 3D curve(s) with a 3D surface 
simultaneously (Fig. 4). The problem is finding the correspondence of a 1D geometric 
definition (curve) on a 2D geometric definition (surface), where both of them are 
parametrically represented in 3D space.  
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Fig. 4. Matching of a 3D space curve with a 3D surface. 

 
 
6. Experimental results 

Five practical examples are given to show the capabilities of the method. All experiments 
were carried out using own self-developed C/C++ software that runs on Microsoft Windows® 
OS. Processing times given in Table 1 were counted on a PC, whose configuration is Intel® 
P4 2.53 GHz CPU, 1 GB RAM.  

In all experiments (except the example “face” in Section 6.1) the initial approximations of 
the unknowns were provided by interactively selecting 3 common points on both surfaces 
before matching. Since in all data sets there was no scale difference, the scale factor m was 
fixed to unity by infinite weight value ( ∞→iib )(P ). The iteration criteria values ic  were 
selected as 0.1 mm (except 0.01 mm in the example “face” in Section 6.1) for the elements of 
the translation vector (dtx , dty , dtz) and 10cc for the rotation angles dω, dφ, dκ. 
 
6.1. Face measurement 

The first example is the registration of three surface patches, which were 
photogrammetrically measured 3D point clouds of a human face from multi-images (Fig. 5). 
For the mathematical and implementation details of this automatic surface measurement 
method we refer to D’Apuzzo (2002).  

 
 

 
 (a)             (b)  (c)          (d)   (e) 

Fig. 5. Example “face”. (a) Left-search surface, (b) center-template surface, (c) right-search 
surface, (d) obtained 3D point cloud after LS3D surface matching, (e) shaded view of the 
final composite surface. 
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Left and right surface patches (Fig. 5-a and 5-c) were matched to the center surface patch 
(Fig. 5-b) by use of LS3D. Since the data set already came in a common coordinate system, 
the rotation angles (ω, φ, κ) were deteriorated by ~10g prior to the first iteration. Numerical 
results of the matching of the left surface and the right surface patches are given in parts I-L 
and I-R of Table 1. Relatively high standard deviations for the estimated tx and φ (note that a 
high physical correlation between tx and φ due to axes configuration occurs) are due to the 
narrow overlapping area along the x-axis. Nevertheless, the matching result is good. The 
estimated σ0 values prove the accuracy potential of the surface measurement method, given as 
0.2 mm by D’Apuzzo (2002). Since LS3D reveals the sensor noise level and accuracy 
potential of any kind of surface measurement method or device, it can also be used for 
comparison and validation studies. 
 
6.2. Matching of a bas-relief 

The second experiment refers to the matching of two overlapping 3D point clouds (Fig. 6), 
which represent a bas-relief on the wall of a chapel in Wangen, Germany. They were scanned 
using the IMAGER 5003 terrestrial laser scanner (Zoller+Fröhlich, Germany). Obtained 
results are given in part II of Table 1. 

In the depth direction matching can be easily achieved, but in the lateral direction it is 
problematic due to weak surface roughness, which is around 3-4 cm. In spite of this difficult 
data configuration the matching is successful. Relatively low theoretical precisions of the κ 
angle and the x, y elements of the translation vector reveal the presence of the problem. On 
the other hand good theoretical precision for tz proves the excellent fit along the depth 
direction.  

A comparison between the LS3D and ICP methods was carried out as well. The 
“registration” module of the Geomagic Studio v.6 (Raindrop Geomagic, Inc.) was used as the 
ICP implementation. The fixed and floating (to be transformed) surfaces were selected as 
template and search surfaces, respectively. The initial approximations were given by 
interactively selecting 3 common points on both surfaces as identical to both procedures. 
Since statistical results regarding the quality of the registration were not available from the 
Geomagic Studio, we compared the residuals between fixed and transformed surfaces using 
the “3D compare” module of the same software (Fig. 6-e,f). Our proposed method gives a 
slightly better result than the ICP considering the distribution pattern and the magnitudes of 
the residuals. The RMS error between the surfaces after the ICP matching is 2.55 mm, and 
after the LS3D matching 2.40 mm.  
 
6.3. The Virgin Mary 

This is another comparison study with respect to the ICP method. The object is a statue of 
the Virgin Mary on a wall of Neuschwanstein Castle in Bavaria, Germany. The IMAGER 
5003 laser scanner was used to obtain the data. The search surface (Fig. 7-c) was matched to 
the template surface (Fig. 7-b). Obtained results are given in part III of Table 1. The data has 
an occlusion part as well as a weak configuration along the lateral direction due to the lack of 
sufficient geometrical information.  

Again Geomagic Studio v.6 was used both for the ICP implementation and evaluation of 
the residuals. In this experiment both methods show a similar distribution pattern of residuals, 
but the LS3D method gives a slightly better RMS error (2.09 mm) than the ICP method (2.12 
mm). However, the difference between the RMS errors is not significant. 
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           (a)                                (b) 

 
           (c)                                 (d) 

 
 
 

  
                      (e)                                    (f) 
 

 
                                           (g) 

Fig. 6. Example “Wangen-relief”. (a) Template surface, (b) search surface, (c) intensity image 
of the bas-relief, (d) final composite of the template and search surfaces after the LS3D 
matching method, (e) colored residuals between the fixed and transformed surfaces after the 
ICP method and (f) the LS3D surface matching method, (g) the residual bar in millimeter 
unit. 
 

        
        (a)   (b)        (c)     (d)            (e)      (f) 

Fig. 7. Example “The Virgin Mary”. (a) Intensity image of the object, (b) template surface, 
(c) search surface, (d) colored residuals between the fixed and transformed surfaces after the 
ICP method and (f) the LS3D surface matching method, (e) the residual bar in millimeter unit. 
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Table 1 
Experimental results of projects face, Wangen-relief, The Virgin Mary, Neuschwanstein 
Data 
set 

Surface 
mode 

No. 
points 

Iterations time ~ point 
spacing 0σ̂  tztytx σσσ ˆ/ˆ/ˆ  κϕω σσσ ˆ/ˆ/ˆ  

    (sec) (mm) (mm) (mm) (1.0e-02 grad) 
I-L P 2497 7 0.6 1.5 0.19 0.15 / 0.07 / 0.05 0.96 / 2.44 / 1.90 
 B  7 1.3  0.19 0.15 / 0.07 / 0.05 0.96 / 2.42 / 1.91 
I-R P 3285 6 0.5 1.5 0.21 0.13 / 0.03 / 0.05 0.68 / 2.25 / 1.73 
 B  6 1.4  0.21 0.13 / 0.03 / 0.05 0.69 / 2.26 / 1.75 
II P 31520 10 6.4 10 2.45 0.22 / 0.16 / 0.07 0.24 / 0.27 / 0.48 
 B  9 15.8  2.46 0.22 / 0.16 / 0.07 0.25 / 0.27 / 0.53 
III P 61885 10 15.5 5 (1) 2.12 0.07 / 0.11 / 0.08 0.44 / 0.15 / 0.50 
 B  10 25.7  2.07 0.07 / 0.11 / 0.08 0.43 / 0.15 / 0.48 
IV-L P 379121 12 294.5 9 2.20 0.01 / 0.02 / 0.02 0.06 / 0.04 / 0.03 
 B  11 438.8  2.19 0.01 / 0.02 / 0.02 0.06 / 0.04 / 0.03 
IV-R P 54469 10 17.6 6 1.71 0.04 / 0.02 / 0.04 0.06 / 0.05 / 0.06 
 B  9 23.7  1.73 0.04 / 0.02 / 0.04 0.06 / 0.05 / 0.06 

(1) Point density on the template surface. 
I: Face (L) left and (R) right, II: Wangen-relief, III: The Virgin Mary, IV: Neuschwanstein (L) left and (R) right. 
P: Plane surface representation, B: bi-linear surface representation. 
 
 
6.4. Walls of Neuschwanstein Castle 

The third experiment is the matching of three overlapping 3D point clouds (Fig. 8) of scans 
of a corridor in Neuschwanstein Castle in Bavaria, Germany. The scanning was performed by 
the IMAGER 5003 laser scanner. Obtained results are given as IV-L and IV-R of Table 1. The 
theoretical precision values of the parameters are highly optimistic. One reason for this are 
the stochastic properties of the search surface ),,( zyxg  which have not been considered as 
such in the estimation model. Secondly, the high redundancy number with respect to the 
number of unknowns leads to an unrealistic precision estimation. 

 
 

     
  (a)           (b)            (c) 

 
    (d)      (e) 

Fig. 8. Example “Neuschwanstein”. (a) Left-search surface, (b) center-template surface, (c) 
right-search surface, (d) laser scanner derived intensities are back-projected onto the 
composite point cloud after LS3D matching, (e) shaded view of the final composite surface. 
Note that the point clouds (a), (b), and (c) are thinned out for better visualization.  
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6.5. Façade of Wangen chapel 

The last experiment is the matching of six scans of a façade of the chapel in Wangen (Fig. 
9). The scanning was performed by use of the IMAGER 5003 (Z+F) terrestrial laser scanner. 
Five consecutive matching processes were carried out using the simultaneous multi-subpatch 
approach of the LS3D. The results are given in Table 2.  

The rightmost scan is matched to the template in both mono-subpatch (Fig. 9-b) and multi-
subpatch (Fig. 9-c) modes of LS3D for comparison purposes. The visual and numerical 
results are given in Fig. (9-d,e) and in part V-1 of Table 2. The multi-patch approach gives a 
more homogeneous distribution of the residuals along the whole surface (see more alternating 
dark and light grey tones in Fig. 9-e compared to 9-d), depending on the distribution of the 
patches, and gives slightly better theoretical precision values. As in a conventional block 
adjustment, it also increases the a posteriori 0σ -value, since every added patch into the 
system plays a quasi-control information role. In addition, the parametric bi-linear surface 
representation gives a slightly better convergence rate. 
 

(a) 

    
    (b)      (c) 

(d)             (e) 

Fig. 9. Example “Wangen–façade”. (a) Shaded view of the final composite surface after 
LS3D matching, (b) template and search (left and right) intensity images in mono-subpatch 
mode, (c) template and search (left and right) intensity images in multi-subpatch mode, (d) 
result of LS3D matching in mono-subpatch mode, (e) result of LS3D matching in multi-
subpatch mode. Note that in (d) and (e) the template and search surfaces are shown in dark 
and light grey, respectively.  
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Table 2 
Experimental results of multi-subpatch approach of Wangen chapel 
Data  
set 

Surface 
mode 

No. 
points 

Iterations No. 
patches 

~ point 
spacing 0σ̂  tztytx σσσ ˆ/ˆ/ˆ  κϕω σσσ ˆ/ˆ/ˆ  

     (mm) (mm) (mm) (1.0e-02 grad) 
V-1 (1) P 12371  5 1 15 2.66 0.13 / 0.62 / 0.58 0.51 / 0.42 / 0.45 
 B   5   2.67 0.13 / 0.62 / 0.58 0.51 / 0.42 / 0.45 
V-1 (2) P 12248  6 8 15 3.42 0.06 / 0.33 / 0.15 0.24 / 0.12 / 0.24 
 B   5   3.42 0.06 / 0.34 / 0.14 0.24 / 0.12 / 0.24 
V-2 P 18242  7 8 15 3.70 0.05 / 0.28 / 0.21 0.24 / 0.15 / 0.19 
 B   6   3.73 0.05 / 0.28 / 0.21 0.25 / 0.16 / 0.20 
V-3 P 22753  5 5  8 3.87 0.11 / 0.41 / 0.15 0.23 / 0.07 / 0.16 
 B   6   3.85 0.11 / 0.41 / 0.15 0.23 / 0.07 / 0.16 
V-4 P 41889  9 6 10 3.68 0.13 / 0.43 / 0.19 0.16 / 0.10 / 0.15 
 B   7   3.70 0.14 / 0.47 / 0.19 0.16 / 0.10 / 0.16 
V-5 P 30335 10 5 10 4.53 0.28 / 0.75 / 0.33 0.21 / 0.14 / 0.21 
 B   8   4.50 0.29 / 0.78 / 0.33 0.22 / 0.14 / 0.21 

(1) Fig. (9-d) mono-subpatch mode.  
(2) Fig. (9-e) multi-subpatch mode.  
Part V-2,3,4, and 5 are statistical results of the sequential LS3D matching processes of scans from the right part 
to the left part of the façade shown in Fig. 9-a. 
 
 
7. Conclusions 

The proposed 3D surface matching technique is a generalization of the least squares 2D 
image matching concept and offers high flexibility for any kind of 3D surface correspondence 
problem, as well as monitoring capabilities for the analysis of the quality of the final results 
by means of precision and reliability criterions. Another powerful aspect of the method is its 
ability to handle multi-resolution, multi-temporal, multi-scale, and multi-sensor data sets. The 
technique can be applied to a great variety of data co-registration problems. In addition, time 
dependent (temporal) variations of the object surface can be inspected, tracked, and localized 
using the statistical analysis tools of the method. 

Our method also allows the matching of space curves with each other or with a 3D surface. 
This gives us a hybrid formulation for feature-based matching, i.e. matching of 3D features 
based on the solid theory of Least Squares Matching. We also have shown how the 
computational effort for matching of large and many data sets can be substantially reduced by 
applying a sub-patch matching concept. This approach uses only a selected number of small 
patches instead of the whole surface(s) for matching.  

In this contribution, we have demonstrated the capability of this technique with the help of 
five different data sets. In all cases, our experiences were very positive and the procedures for 
internal quality control worked very well. There are several ways to refine and extend the 
technique. 

Future work will include the verification of the theoretical expectations by more practical 
experimentation in order to utilize the full power of the technique. Also, we plan to use the 
method in a variety of different applications, including the implementation and testing of the 
3D curve matching approach. Another prospect is the simultaneous matching of geometry and 
attribute information, e.g. temperature, intensity, color, etc., under a combined estimation 
model.  
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