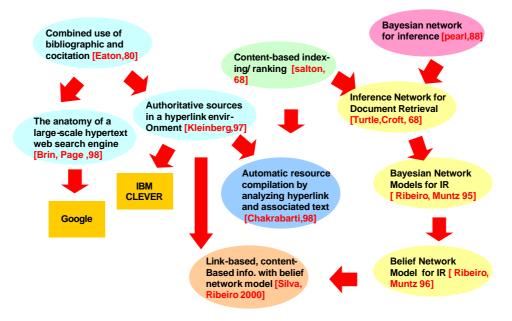
Link-based and Content-based Evidential Information in a Belief Network Model

I. Silva, B. Ribeiro-Neto, P. Calado, E. Moura, N. Ziviani Best Student Paper in SIGIR '2000

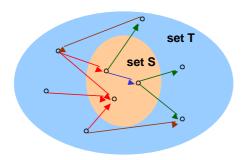

Ruey-Lung, Hsiao presented on Oct 11, 2000

Introduction ___

- Strategies to determine the ranking of documents in Web Search Engine
 - Content-Based
 - Link-based
 - Combination of Content-based and Link-based
- Inference Network / Belief Network Model
 - Can be used as a general framework for classical IR
 - Allows combining features of distinct models into the same representation scheme

In this paper, the authors purpose a retrieval model, which provides a framework for combining information extracted from the content of the documents with information derived from cross-references among the documents, based on belief network model.

History

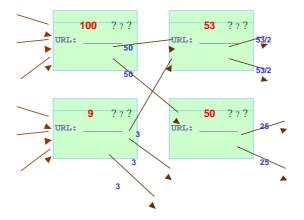


Related Work (1/4)

- Link-based information
 - Kleinberg(HITS) algorithm [kleinberg '97] [12]
 - hub/authority value for local set
 - PageRank algorithm [Brin, Page '98] [4]
- Bayesian Network Model for Information Retrieval
 - Judea Pearl purpose bayesian network to represent and infer in intelligent system. [13]
 - Turtle, Croft first use bayesian network to model information retrieval problem [19]
 - B. Ribeiro and Muntz generalize bayesian network model to be belief network model. [14,15]
- · Combination of link-based/content-based information
 - Automatic resource compilation by analyzing hyperlink structure and associated text , [Chakrabarti 98] [5]
 - Improved algorithm for topic distillation in a hyperlinked environment [Bharat] [2]

Related Work (2/4)

- HITS algorithm
 - · Start with a root set S
 - S_s is relatively small (typically up to 200 pages)
 - S_s is rich in relevant pages
 - S_s contains most (or many) of the strongest authorities.
 - Recursively compute the degree of authority and hub for each element.

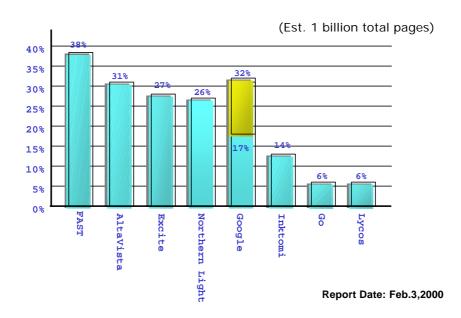


$$a(p) = \underset{q?}{?} h(q)$$

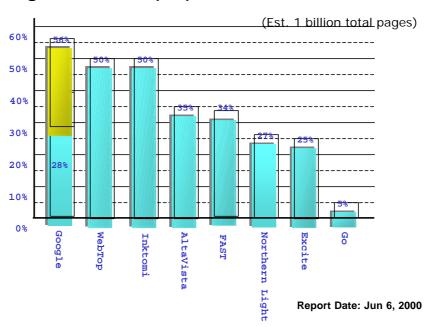
$$h(p) = \frac{?}{p^2 q} a(q)$$

Related Work (3/4)

- PageRank algorithm
 - · Propagation of ranking through links

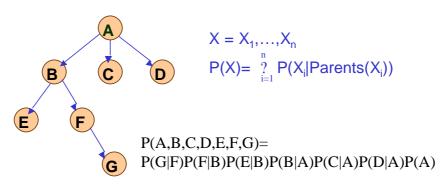


 B_u : back link F_u : forward link $N_u = |F_u|$


$$N_u = | F_u$$

$$R'(u) = {c \choose c}^{R'(v)} + cE(u)$$

Coverage of the Web (1/2)



Coverage of the Web (2/2)

Related Work (4/4)

- Belief Network Model
 - Based on Bayesian Network
 - Subsumes the classical models in IR
 - More general than the inference network model

Belief Network Model - Ranking

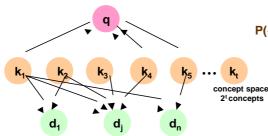
Degree of coverage of the space U by c

$$P(c) = \underbrace{?_u}_{1} P(c|u) \times P(u)$$

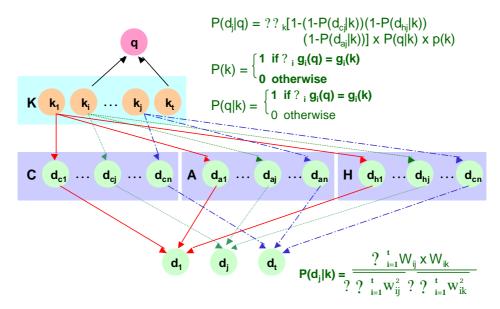
$$P(u) = (\underbrace{1}_{2})^t$$

Ranking

$$P(d_i|q)$$
? ? $_u$ $P(d_i|u)$ x $P(q|u)$ x $P(u)$



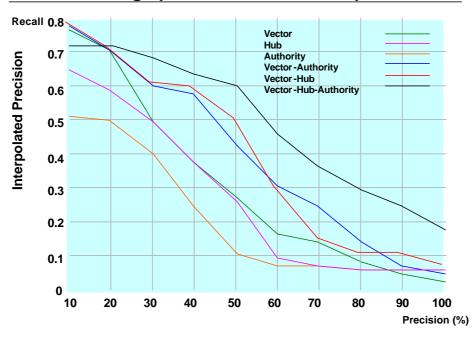
$$P(q|u) = \begin{cases} 1 & \text{if ? } k_i, g_t(q) = g_t(u) \\ 0 & \text{otherwise} \end{cases}$$


$$P(\sim q|u) = 1 - p(q|u)$$

$$P(d|u) = \frac{? \int_{i=1}^{t} W_{ij} \times W_{ik}}{? \int_{i=1}^{t} W_{ij}^{2} ? ? \int_{i=1}^{t} W_{ik}^{2}}$$

$$P(\sim d|u) = 1 - p(d|u)$$

Modeling Content/Link-Based Evidence


Evaluation

Reference collection

- 3,027,540 pages of the Brazilian Web. (collected by CoBWeb, indexed by inverted lists)
- 20 queries are selected from hot queries of TodoBR search engine logs.
- For each of the 20 queries, use top 10 documents to compose query pool (so each query contains at most 60 distinct pages).
 - Average number of pages per query pool is 38.15
 - Average number of relevant pages per query pool is 17.05

Number		0	# of queries	O .	- 1 - 3	Ave. # of relevant
	keywords	word / page		word / query	/ query pool	page / query pool
3,027,540	3,456,910	512	20	1.6	38.15	17.05

Conclusion

- Belief network model provides powerful mechanisms to model the information retrieval problem, specially when distinct sources of evidence are available.
- Hub and authority values performs better in combination than in isolation.

Average Precision and Gains							
Recall	Vector	Vector-	Gain	Vector-	Gain	Vector-hub	Gain
		authority		authority		authority	
10%	0.765	0.780	+1%	0.776	+1%	0.722	-5%
20%	0.700	0.700	+0%	0.690	-1%	0.726	+3%
30%	0.502	0.604	+20%	0.605	+20%	0.685	+36%
40%	0.366	0.574	+56%	0.591	+61%	0.640	+74%
50%	0.275	0.447	+62%	0.503	+82%	0.604	+119%
60%	0.166	0.312	+87%	0.295	+77%	0.439	+164%
70%	0.154	0.250	+62%	0.144	-6%	0.368	+138%
80%	0.080	0.144	+79%	0.098	+22%	0.297	+271%
90%	0.035	0.062	+77%	0.096	+174%	0.247	+605%
100%	0.020	0.040	+100%	0.037	+84%	0.162	+710%
Average	0.306	0.391	+27%	0.384	+25%	0.489	+59%

Reference

	Title	Author	From
	13. Probabilistic Reasoning in Intelligent Systems	Judea Pearl	Book 1988
<u> </u>	14. Bayseian network model for ir	B. Ribeiro , I. Silva	Soft Computing
Mode	15. A belief network model for ir	B. Ribeiro , R. Muntz.	SIGIR '96
	19. Evaluation of an inference network-based retrieval model	H. Turtle , W. Croft	ACM trns. IS '91
	21. A probabilistic inference model for information retrieval.	S. Wong and Y. Yao	Info. System '91
⊑	04. The anatomy of a large-scale hypertext web search engine	S. Brin , L. Page	WWW '98
ji k	12. Authoritative sources in a hyperlinked environment.	J. M. Kleinberg	ACM-SIAM '98
ဂ္ဂ	01. Modern Information Retrieval	R. Baesz-Yates, B. Ribe	iro Book '99
Content	16. Introduction to Modern Information Retrieval	G. Salton , M. McGill	Book 1983
ent	17. Automatic Information Organization and Retrieval	G. Salton	Book 1968
Ŧ	02. Improved algorithms for topic distillation in a hyperlink environment	K. Bharat , M. R. Henzinger	SIGIR '98
Hybrid	05. Automatic resource compilation by analyzing hyperlink structure	ctureand associated text G. Salton	Book 1998