
Mae—A System Model and Environment for
Managing Architectural Evolution

ROSHANAK ROSHANDEL
University of Southern California
ANDRÉ VAN DER HOEK
University of California, Irvine
and
MARIJA MIKIC-RAKIC and NENAD MEDVIDOVIC
University of Southern California

As with any other artifact produced as part of the software life cycle, software architectures evolve
and this evolution must be managed. One approach to doing so would be to apply any of a host of
existing configuration management systems, which have long been used successfully at the level of
source code. Unfortunately, such an approach leads to many problems that prevent effective man-
agement of architectural evolution. To overcome these problems, we have developed an alternative
approach centered on the use of an integrated architectural and configuration management system
model. Because the system model combines architectural and configuration management concepts
in a single representation, it has the distinct benefit that all architectural changes can be precisely
captured and clearly related to each other—both at the fine-grained level of individual architec-
tural elements and at the coarse-grained level of architectural configurations. To support the use of
the system model, we have developed Mae, an architectural evolution environment through which
users can specify architectures in a traditional manner, manage the evolution of the architectures

This research was supported by the National Science Foundation under Grant numbers CCR-
9985441, CCR-0093489, and IIS-0205724.
This effort was also sponsored by the Defense Advanced Research Projects Agency, Rome Labora-
tory, Air Force Materiel Command, USAF under agreement numbers F30602-00-2-0615, F30602-
00-2-0599, and F30602-00-2-0607. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.
This effort was also sponsored by the Jet Propulsion Laboratory, U.S. Army TACOM, Xerox Corpo-
ration, and Intel Corporation.
Authors’ addresses: R. Roshandel, M. Mikic-Rakic, and N. Medvidovic, Computer Science Depart-
ment, University of Southern California, Henry Salvatori Computer Center 300, Los Angeles, CA
90089; email: {roshande,marija,neno}@usc.edu; A. van der Hoek, Department of Informatics, Uni-
versity of California, Irvine, 444 Computer Science Building, Irvine, CA 92697-3425; email: an-
dre@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1049-331X/04/0400-0240 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004, Pages 240–276.

Mae—Model and Environment for Managing Architectural Evolution • 241

using a check-out/check-in mechanism that tracks all changes, select a specific architectural con-
figuration, and analyze the consistency of a selected configuration. We demonstrate the benefits of
our approach by showing how the system model and its accompanying environment were used in
the context of several representative projects.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.9 [Software Engineering]: Management; D.2.11 [Software Engineer-
ing]: Software Architectures

General Terms: Design

Additional Key Words and Phrases: Design environment, evolution, Mae, system model

1. INTRODUCTION

Consider the following scenario. An organization specializing in software de-
velopment for mobile platforms is commissioned by a local fire department to
produce an innovative application for on-the-fly deployment of personnel in
situations such as natural disasters and search-and-rescue efforts. Following
good software engineering practices, the organization first develops a proper
architecture for the application in a suitable architectural style, then models
this architecture in an architecture description language (ADL), refines the
architecture into a module design, and, finally, implements the application im-
peccably. The new application is an instant hit, and fire and police departments
across the country adopt it. Motivated by this success, as well as by demands for
similar capabilities from the military, the organization enters a cycle of rapidly
advancing the application, creating add-ons, selling upgrades, adapting the
application to different hardware platforms (both stationary and mobile), spe-
cializing the application for its various customers, and generally increasing its
revenue throughout this process.

Configuration management (CM) systems [Burrows and Wesley 2001] have
long been used to provide support for these kinds of situations. This, however,
leads to problems with the above scenario: as the application evolves, so does its
architecture. These architectural changes must be managed in a manner much
like source code, allowing the architecture to evolve into different versions and
exhibit different variants [Kuusela 1999]. One solution is to store the entire
architectural description in a single file and track its evolution using an existing
CM system. The problem with this solution is that: (1) it only tracks changes at
the level of an architecture as a whole; (2) it requires extensive use of branching
to capture variations in an architecture; and (3) it does not support the use of
multiple versions of the same artifact (e.g., a single component) within a single
architecture. An alternative solution is to version each architectural element
in a separate file. This leads to a different set of problems: (1) it results in
potential inconsistencies due to duplication of information in the CM system
and the architectural specification; (2) it requires breaking up an architectural
specification into numerous small files; and (3) it still requires extensive use of
branching to manage variability. Thus, while it is possible to use an existing
CM system to manage architectural evolution, the problems associated with
either solution prevent doing so effectively.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

242 • R. Roshandel et al.

In this article, we introduce a novel approach for managing architectural evo-
lution, called Mae, that overcomes these problems. Mae combines techniques
from the fields of software architecture and configuration management to make
two unique contributions: (1) an integrated architectural and configuration
management system model that facilitates capturing the evolution of an archi-
tecture and its constituent elements, and (2) an integrated environment that
supports managing the evolution of architectures.

Mae’s first contribution, its system model, focuses on capturing architectural
evolution. We formed the system model by extending a “notional” architectural
model, based on the concepts commonly present in existing architecture de-
scription languages [Medvidovic and Taylor 2000], with selected configuration
management modeling concepts. In particular, we carefully integrated the fol-
lowing concepts into the notional model to form a single architectural and CM
system model: revisions to capture linear evolution, inter-file branching to cap-
ture diverging paths of evolution, guarded variants to capture alternatives,
guarded options to capture nonmandatory architectural elements, and subtyp-
ing relations to capture the nature of changes. Tight integration of all these
concepts into a single system model is necessary not only to capture the history
of architectural evolution, but also to annotate that history with meaningful in-
formation regarding the compatibility among different versions of architectural
elements as they have evolved over time.

Mae’s second contribution, its architecture evolution environment, builds
upon the system model to provide an architect with powerful capabilities
for managing architectural evolution. The environment offers a carefully
crafted combination of architectural and configuration management capabil-
ities. Specifically, it supports architects in designing and visualizing a software
architecture, checking out and checking in individual architectural elements
and entire architectures, selecting a particular architectural configuration, and
analyzing whether the behaviors and constraints of all selected architectural
elements match in such a configuration.

Our usage of Mae demonstrates that it is an effective solution for managing
architectural evolution, circumventing the problems that occur when using a
traditional CM system for this purpose. In particular, we have applied Mae to
manage the specification and evolution of three different systems: (1) an audio/
video entertainment system—patterned after an existing architecture for con-
sumer electronics, (2) a Troops Deployment and battle Simulations system—a
research prototype designed by a different part of our research group at the
University of Southern California, and (3) the SCRover project—a mobile robot
system built in cooperation with the NASA Jet Propulsion Laboratory (JPL)
using the JPL Mission Data System (MDS) framework. Collectively, these ex-
periences show that Mae not only represents a feasible approach, but is also
usable, scalable, and applicable to real world problems.

Our approach of tightly integrating CM concepts in the architectural repre-
sentation (and, in parallel, CM functionality in the architectural evolution en-
vironment) represents a significant departure from traditional CM approaches,
which strongly advocate keeping CM separate from the artifacts they ver-
sion and manage [Estublier et al. 2002]. It also is at odds with research

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 243

that attempted to integrate fine-grained support for evolution into databases
[Agrawal et al. 1991; Franconi et al. 2000; Wei and Elmasri 2000] and program-
ming languages [Habermann and Perry 1981; Winkler 1986], arguably neither
of which was very successful at addressing the breadth of issues that arise
(e.g., at best, these solutions integrate a version identifier, but they do not ad-
dress such issues as optionality and variability). In contrast to these attempts,
we believe our approach has significant merit. First, architectures differ con-
siderably from databases and programming languages in that they are struc-
tural and coarse-grain in nature, which makes them much more suitable for
integrating configuration management concepts. Second, existing architectural
and configuration management system models have began gravitating towards
each other [van der Hoek et al. 1998b], a trend culminating to date in the ap-
proach presented in this article. Finally, our approach successfully overcomes
the aforementioned problems, is easy to use, and even affords development of
several new functional capabilities (as discussed in Section 5.4). Clearly, this
has serious implications for CM research, which must rethink the position of
always keeping CM separate from its target environment and must examine
the potential implications of tightly integrating CM functionality with other
representations and activities in the software lifecycle (e.g., requirements, test
plans, cost models, etc.). While we do not know whether such integrations will
have the same kinds of benefits as discussed here, the rest of this article demon-
strates that at least in the case of software architecture tight integration is an
advantageous endeavor.

The remainder of this article is organized as follows: First, in Sections 2 and
3, we briefly present background information and an example scenario that,
together, set the stage for the ensuing discussion. Section 4 introduces our
architectural system model and its realization in an extensible, XML-based,
architectural modeling notation. Section 5 discusses the architecture and im-
plementation of Mae’s architectural evolution environment that leverages the
system model to provide an architect with the actual ability of specifying and
evolving an architecture. Section 6 evaluates the usability, scalability, and ap-
plicability of Mae in the context of three specific experiences. We discuss related
work in Section 7 and present our conclusions in Section 8.

2. BACKGROUND

Our research builds upon concepts from the fields of software architecture and
configuration management. This section briefly introduces the relevant con-
cepts in each field. Given that the basis of our approach is an integrated archi-
tectural and configuration management system model, our discussion focuses
on introducing and comparing the particular system modeling constructs used
in each field.

2.1 Software Architecture

As software systems grew more complex, their design and specification in
terms of coarse-grain building blocks became a necessity. The field of soft-
ware architecture addresses this issue and provides high-level abstractions

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

244 • R. Roshandel et al.

for representing the structure, behavior, and key properties of a software sys-
tem. Software architectures involve: descriptions of the elements from which
systems are built, interactions among those elements, patterns that guide their
composition, and constraints on these patterns [Perry and Wolf 1992]. In gen-
eral, a particular system is defined in terms of a collection of components (loci
of computation) and connectors (loci of communication) as organized in an
architectural configuration.

To date, many architecture description languages (ADLs) have been devel-
oped to aid architecture-based development [Medvidovic and Taylor 2000].
ADLs provide formal notations for describing and analyzing software systems.
They are usually accompanied by various tools for parsing, analysis, simula-
tion, and code generation of the modeled systems. Examples of ADLs include
C2SADEL [Medvidovic et al. 1999], Darwin [Magee and Kramer 1996], Rapide
[Luckham and Vera 1995], UniCon [Shaw et al. 1995], xADL [Dashofy et al.
2002a], and Wright [Allen and Garlan 1997]. A number of these ADLs also pro-
vide extensive support for modeling behaviors and constraints on the properties
of components and connectors [Medvidovic and Taylor 2000]. These behaviors
and constraints can be leveraged to ensure the consistency of an architectural
configuration throughout a system’s lifespan (e.g., by establishing conformance
between the services of interacting components).

Some ADLs also support subtyping, a particular class of constraints that
may be used to aid the evolution of architectural elements. As shown in
Medvidovic et al. [1998], the notion of subtyping adopted by ADLs is richer than
that typically provided by programming languages: it involves constraints on
both syntactic (e.g., naming and interface [Garlan et al. 1997]) and semantic
(e.g., behavior [Luckham and Vera 1995]) aspects of a component or connector.
ADLs’ supporting tools are used to ensure that the desired subtyping relation-
ships are preserved at the architectural level.

2.2 Configuration Management

The discipline of configuration management (CM) traditionally has been con-
cerned with capturing the evolution of a software system at the source code
level [Burrows and Wesley 2001]. Research and development over the past
twenty-five years have produced numerous contributions in the field [Conradi
and Westfechtel 1998; Estublier et al. 2002], evolving CM system functionality
through three distinct generations. The first generation consists of such CM
systems as SCCS [Rochkind 1975], Sablime [Bell Labs Lucent Technologies
1997], and RCS [Tichy 1985]. The creation of this generation was a direct re-
sult of two immediate needs: (1) to prevent multiple developers from making
simultaneous changes to the same source file and (2) to track the evolution over
time of each source file. Both needs were satisfied through the use of versioned
archives. Each archive contained a series of revisions to a single source file (us-
ing delta storage techniques to save disk space [Hunt and Tichy 1998]) as well
as locks to indicate modifications in progress. Recognizing the need for multi-
ple lines of development as well as the need for temporary parallel work, RCS
introduced the use of branches to store logical variants in a versioned archive

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 245

Table I. Comparison of System Modeling Capabilities (Adapted from
van der Hoek et al. [1998b])

Software Architecture Configuration Management
Composition ∗ ∗ ∗ ∗
Consistency ∗ ∗ ∗ ∗∗
Evolution ∗ ∗ ∗ ∗
Selection ∗∗

Legend: 0 marks = no support; 1 mark = some support; 2 marks = moderate support;
3 mark = extensive support

file and merging as a method of moving changes from one branch to another.
Combined, all revisions and variants create a version tree, which is the central
entity through which users interact with a first-generation CM system.

In order to support tracking of compound changes to groups of source
files, research into system models [Estublier and Casalles 1994; Perry 1989;
Tryggeseth et al. 1995] sparked the inception of the second generation of CM
systems. System models and their associated modeling languages provide a way
of capturing the structure of software via a configuration, which precisely speci-
fies a set of versions of specific source files. To capture the potential evolution of
the structure itself, configurations can exist in different revisions and variants,
just as individual source files can. Through automation of workspace manage-
ment via configuration specifications (sets of rules indicating which version of
which source file to place in a workspace), changes to a multitude of source
files can be stored back in a repository in a single step. To guide developers
in maintaining consistent configurations in this process, some system models
were enhanced to include such elements as interfaces [Estublier and Casalles
1994] and behavioral specifications [Perry 1989].

Flexibility was the key driving force behind the emergence of the third gener-
ation of CM systems. Researchers recognized that a single method of interaction
(checking out artifacts into a workspace, modifying them as needed, and check-
ing them back into the repository) was not adequate for all situations. Instead,
different CM policies [Parisi and Wolf 2000; van der Hoek 2000; Wiborg Weber
1997] are required to support situations in which, for example, a large num-
ber of developers operate on a small set of source files or in which distributed
groups of developers modify a single piece of software.

2.3 Comparison of System Modeling Capabilities

Of interest to this article is the fact that the system modeling capabilities offered
by different approaches in the fields of software architecture and configuration
management have, over time, gravitated toward each other. For instance, the
Koala ADL incorporates modeling facilities for specifying variation points [van
Ommering 2002]. Conversely, Ragnarok is a configuration management sys-
tem modeling language that incorporates architectural constructs [Christensen
1998]. Many other such examples exist [Shaw et al. 1995; Tryggeseth 1995;
Westfechtel and Conradi 2001].

As part of our previous work, we extensively studied this trend by comparing
and contrasting in detail the capabilities provided by ADLs with those provided
by CM system modeling languages [van der Hoek et al. 1998a, 1998b]. Table I

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

246 • R. Roshandel et al.

summarizes the results of this study as relevant to the work presented in this
article. The number of bullets in a cell indicates the level of support for the
particular concern. For instance, the field of software architecture provides an
extensive array of modeling constructs to capture the composition of a software
system (e.g., types and instances, components and connectors, configurations,
interfaces). On the other hand, the field of configuration management only
supports the concepts of configurations and interfaces.

A detailed review of our analysis of the two fields is outside the scope of
this article. The conclusions of our previous work, however, represent a crit-
ical basis for the work presented here. In particular, our studies resulted in
three conclusions regarding the system modeling constructs provided by the
two fields:

(1) While the system modeling constructs developed by both fields are gravi-
tating towards each other, they still are disparate and tend to be developed
in isolation.

(2) When system modeling constructs differ, they tend to be developed for a
different purpose and differ in an orthogonal manner; that is, they address
different concerns and do not interfere with each other.

(3) When system modeling constructs are similar, they usually are developed
for the same purpose and any differences are of a syntactic rather than
semantic nature.

Our overall conclusion, therefore, is that it should be possible to meaningfully
combine modeling constructs from the two fields to create a single representa-
tion that forms a system model for capturing architectural evolution. Moreover,
we conclude that by first carefully unifying similar constructs and then adding
the remaining, orthogonal constructs, the system model can be created such
that it is free of conflicts and void of otherwise unforeseen problems. In the rest
of the article, we substantiate these conclusions.

3. MOTIVATING EXAMPLE

One way of managing architectural evolution is to use an existing configuration
management system. This would have the benefits of the system already being
operational in the organization, well understood by its users, and used to man-
age other artifacts. However, such an approach leads to numerous problems. In
this section, we discuss how several such problems may arise in the context of
an example application.

3.1 Example Application

TDS, Troops Deployment and Battle Simulations, is an application that sup-
ports distributed, on-the-fly deployment of personnel in situations such as mil-
itary crises and search-and-rescue efforts. TDS operates in a heterogeneous
hardware environment and facilitates communication and interaction among a
computer at Headquarters and a set of (handheld) devices used by Commanders
and Soldiers in the battlefield. This application was designed and developed as

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 247

Fig. 1. TDS architecture.

part of a separate research effort and is similar to the application outlined in
the Introduction.

Figure 1 illustrates the architecture of TDS, consisting of three subsystems,
one for each type of user. A detailed discussion on all the details and design
issues of TDS is provided elsewhere [Mikic-Rakic and Medvidovic 2002]. Here,
we focus on the characteristics of the architecture of TDS that make managing
its evolution challenging.

(1) Several components are part of more than one subsystem (e.g., Resource-
Monitor, Clock). Each subsystem, however, may evolve separately. This can
lead to situations in which multiple versions of the same component exist
in the overall architecture. For instance, Headquarters may independently
decide to upgrade its subsystem to include a newer version of ResourceMon-
itor, while the Commander subsystem retains the old version.

(2) Some components are optional. For example, the Weather and WeatherAna-
lyzer components are only used in cases in which weather is of importance
to the battlefield situation.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

248 • R. Roshandel et al.

(3) Several components exist in different variants. Different incarnations of
StrategyAnalyzerAgent and DeploymentAdvisor, for example, provide al-
ternative deployment strategies and associated analyses.

(4) Some components are both optional and variant, which is the case for the
StrategyAnalyzerAgent component in the Headquarters subsystem. (Note
that, at the same time, a single, specific variant of that component is a
mandatory part of the Commander subsystem.)

(5) Finally, some relations exist among optional and variant components that,
although not visible in a typical architectural diagram, determine their de-
sired and/or valid combinations. For example, the optional WeatherAnalyzer
and Weather components either both have to be instantiated or neither of
them is to be present in the system.

These five characteristics are not unique to the TDS architecture. As demon-
strated in other situations involving the evolution of other software archi-
tectures [Bosch 2001; Speck et al. 2002; van Ommering 2002], any evolving
architecture introduces the same five kinds of issues. As such, any approach to
managing architectural evolution must provide effective support for addressing
all of these issues. One approach that has been attempted is to use an existing
CM system to version the architectural specification. Below, however, we dis-
cuss in detail how such an approach fails, regardless of whether the architecture
is versioned in a coarse-grained or fine-grained manner.

3.2 Coarse-Grained Versioning

One possible approach to using an existing CM system for managing architec-
tural evolution is to store and version the entire architectural description as
a single file. This solution is akin to storing and versioning the entire source
code of a software program as a single file. It is common knowledge in the field
of CM that managing artifacts at such a coarse-grained level leads to severe
problems. Projected to software architecture, this means tracking the evolu-
tion of an architecture as a whole—clearly an undesirable situation as any
single change, no matter how localized, would result in a new version of the
entire architectural specification. Moreover, the presence of multiple optional
and variant elements leads to a combinatorial explosion of branches, due to the
fact that each potential combination of these elements results in a different
architecture that must be explicitly specified. Finally, this approach prevents
the use of multiple versions of the same artifact within a single architecture,
something that a typical application such as TDS clearly requires. In sum, these
shortcomings make versioning an entire architectural specification as a single
artifact a highly undesirable solution for managing architectural evolution.

3.3 Fine-Grained Versioning

In the field of configuration management, versioning fine-grained artifacts is
considered a better approach to managing source code evolution than coarse-
grained versioning. This analogy, however, does not hold when applied to
architectural evolution. In particular, fine-grained versioning leads to serious

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 249

consistency management problems due to the fact that the architectural spec-
ification and the CM system capture duplicate information about the architec-
tural configuration. Any change in the composition of the architectural configu-
ration must be reflected in the CM system, and vice-versa. Given that much of
architectural design resolves around composing an architectural configuration,
this becomes a recurrent and potentially error-prone activity.

This approach also requires extensive use of branching to manage op-
tionality and variability. Traditional CM techniques that support branching
(e.g., differencing and merging) work well for source code, but simply do not
work for architectural configurations. The issue is that these techniques oper-
ate on a line-by-line basis, whereas differencing and merging of architectures
must be performed at the level of architectural elements such as components,
connectors, interfaces, and so on. While a line-based approach may acciden-
tally work, to guarantee proper operation, architecture-specific differencing and
merging algorithms are needed [Van der Westhuizen and van der Hoek 2002].
As a result, the differencing and merging techniques embedded in current CM
systems cannot be used, and an architect is forced into storing each potential
architectural configuration on a separate branch.

Finally, this approach requires breaking up an architectural specification
into numerous small files to be managed separately. Even for a medium-sized
application such as TDS, this results in hundreds of small files that must be
managed. While automated tools could be created to address this problem, the
aforementioned problem of keeping the architectural specification and the CM
system synchronized remains a significant obstacle.

To summarize, neither coarse-grained nor fine-grained versioning provides
an adequate solution for capturing and managing architectural evolution. In
the next section, we present our solution, which relies on the use of an integrated
architectural and CM system model to avoid the problems discussed here.

4. INTEGRATED ARCHITECTURAL AND CM SYSTEM MODEL

As discussed in the Introduction, the first part of our solution to managing
architectural evolution consists of a novel system model that combines soft-
ware architecture and configuration management concepts into a single repre-
sentation. The integrated nature of the system model has the distinct benefit
that all architectural changes can be precisely captured and clearly related
to each other. As a result, architectural evolution is addressed in a natural
and meaningful way—natural, because the system model inherently operates
at the architectural level, and meaningful, because the system model anno-
tates changes with semantic information describing the particular nature of
the changes.

Table II presents the elements of Mae’s system model. Each conceptual
element is listed with actual capabilities that an architect would use when
modeling the concept. For example, components, connectors, and interfaces are
supported in the system model by allowing an architect to define types and use
instances of those types to create architectures. As another example, compati-
bility rules among components can be specified using behaviors and constraints.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

250 • R. Roshandel et al.

Table II. Elements of the Mae Integrated System Model

Concept Modeling Capability
Components, connectors, interfaces Types and instances
Compatibility rules & expectations Behaviors and constraints
Hierarchical composition Subarchitectures
Linear evolution Revisions
Diverging paths of evolution Inter-file branches
Alternatives (variation points) Guarded variants
Non-mandatory architectural elements Guarded options
Type evolution constraints Subtyping

We note that our system model borrows from many previous contributions, as
each of the concepts and its related modeling capabilities have been previously
explored. Our system model is unique, however, in combining them in a single,
flexible representation. The particular combination of concepts is a key contri-
bution of our approach: it creates an advanced, rich kind of system model that
remains centered on the explicit use of architectural elements, but incorporates
sufficient information to effectively capture architectural evolution.

While a large number of CM concepts are available for potential use in our
integrated system model [Conradi and Westfechtel 1998], we only selected few
based upon the following criteria:

—Simplicity. The combination of selected CM concepts should address all of
the problems raised in Section 3, but without introducing unnecessary com-
plexity. Ideally, therefore, the resulting system model contains the smallest
possible set of constructs that combined are expressive enough to capture all
aspects of architectural evolution.

—Focus on Architecture. Each concept should preserve the architecture-centric
nature of the system model. In particular, the addition of CM concepts should
not take the main focus away from architecture, since the primary activity
of an architect is design and he or she should not be distracted from that
activity by having to specify a multitude of CM concepts.

—No Interference. The CM concepts should not interfere either with one an-
other or with the existing architectural concepts in the system model. In
particular, each of the CM concepts should be integrated in a manner that
avoids overlaps and prevents any undesirable interactions that may result
from such overlap.

As a result of stringently applying these criteria while forming our system
model, some advanced CM concepts such as change sets [Munch 1993], change
packages [Wiborg Weber 1997], and advanced branching strategies [Walrad and
Strom 2002] are not included. Our aim was to first build and demonstrate the
feasibility of a system model that addresses the concerns raised in Section 3.
While an exploration of more advanced techniques may lead to a more advanced
solution, we leave such an exploration to future work.

Throughout the rest of this section, we discuss the details of Mae’s system
model by first introducing a “notional” architectural model and then detailing

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 251

our extensions for capturing evolution. We conclude the section with a discus-
sion on the realization of the system model as a series of xADL 2.0 schemas.

4.1 Notional Architectural Model

Rather than tying our system model to one particular ADL, we wish to demon-
strate how our approach may be applied to arbitrary ADLs. We therefore build
our system model around a notional architectural model, which captures the
elements commonly found in most existing ADLs [Medvidovic and Taylor 2000].
In particular, the notional architectural model is based upon the familiar con-
cepts of components, connectors, and interfaces, supports the specification of
subarchitectures, strongly separates types from instances, and leverages be-
havioral and constraint specifications to help enforce architectural consistency.
The result is shown in the first two columns of Table III, which present the
detailed constructs used to model each architectural element. The notation in
Table III uses underlining to designate a set of fields that uniquely identify the
element (“keys”); italics to denote identifiers that point to other elements in
the model (“foreign keys”); asterisks to indicate zero or more elements; square
brackets to indicate fields that may or may not be present; and curly braces to
indicate groups of elements. In the notional architectural model, for example,
a component type is identified by its name, has zero or more interfaces that are
defined separately, may be hierarchically composed out of a set of independently
defined components and connectors, and could have associated behavioral and
constraint specifications that detail its functionality and interactions.

4.1.1 Interface Types. At its core, the notional architectural model lever-
ages interface types to define abstract sets of services that a component may
provide to, or require from, the system. Moreover, an interface type may be
specified using a set of interfaceElements that detail the methods’ signature
exposed by a component or connector. To actually use an interface type, an in-
stance of that type must be created. Such an instance is typically defined in
terms of a name that distinguishes it from other instances of the same type.
Additionally, each interface instance has a direction: “in” for provided services,
“out” for required services, and “in/out” for services that are both provided and
required. Finally, an interface instance maintains a pointer to its originating
interfaceType, and thus automatically inherits the interfaceElements from the
interface type.

4.1.2 Component Types. Component types are the primary building block
of all ADLs and thus, the primary building block of our notional architectural
model. A component type provides and/or requires a set of services via its inter-
faces, each of which is an instance of an existing interfaceType. It also may hier-
archically contain other component and connector instances that, together, form
its internal subarchitecture. In such cases, a set of interfaceMappings maps
interfaces from the composite component to the interfaces on its constituent
component or connector instances. Finally, behaviors and constraints specify
the rules and limitations by which a component’s interfaces may be accessed.
Particularly, behaviors describe externally visible protocols of interaction as

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

252 • R. Roshandel et al.

Table III. Comparison of Notional Architectural Model with Mae’s Integrated System Model

Notional Architectural
Element Model Mae Integrated System Model
Interface
Type

name
{interfaceElement}*

name
revision
{interfaceElement}*
ascendant*
descendant*

Interface
instance

name
direction
interfaceType

name
direction
interfaceType

Component
type

name
interface*
component*
connector*
{interfaceMapping}*
behavior*
constraint*

name
revision
{interface [, guard]}*
{component [, guard]}*
{connector [, guard]}*
{interfaceMapping}*
behavior*
constraint*
subtype*
ascendant*
descendant*

Component
instance

name
componentType

name
componentType | variantComponentType

Connector
Type

name
interface*
component*
connector*
{interfaceMapping}*
behavior*
constraint*

name
revision
{interface [, guard]}*
{component [, guard]}*
{connector [, guard]}*
{interfaceMapping}*
behavior*
constraint*
subtype*
ascendant*
descendant*

Connector
instance

name
{sourceInterface

[, myDestInstance]}*
{[mySourceInterface,]

destInterface}*
connectorType

name
{sourceInterface [, myDestInterface] [,guard]}*
{[mySourceInterface,] destInterface [, guard]}*
connectorType | variantConnectorType

Variant
component
type

— name
revision
{interface [, guard]}*
{componentType | variantComponentType,
guard}*
subtype*
ascendant*
descendant*

Variant
connector type

— name
revision
{interface [, guard]}*
{connectorType, | variantConnectorType, guard}*
subtype*
ascendant*
descendant*

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 253

cause-and-effect relations among incoming and outgoing services. Constraints
restrict behaviors by specifying the internal conditions of a component or con-
nector that must hold for a service to be invoked. For example, a behavioral
rule may specify that before a divide service can be used, an init service has to
be invoked. Furthermore, it may state that an invocation of divide will always
be followed by an invocation to other components to communicate the results.
A constraint rule, on the other hand, may state that an invocation of a divide
service can only be performed if the denominator is nonzero. In essence, con-
straints are used to specify and limit the internal functional conditions that
must be satisfied before and after invocation of services.

4.1.3 Connector Types. The final key concept in our notional architectural
model is that of a connector type. It is generally accepted that components and
connectors do not differ in their structure, but only differ in their particular
purpose. As such, they should be explicitly distinguished. We therefore treat
connector types as first-class elements in the notional architectural model. How-
ever, unlike instances of component types, instances of connector types often
include some additional information that further defines their role in an ar-
chitecture. In particular, since connector instances form the bindings among
components, a connector instance must define links from source interfaces on
some component instances to destination interfaces on other component in-
stances. Depending on the nature of a connector, the connector’s own interfaces
may or may not be used in this process. Since two schools of thought exist in
the field of software architecture (one in which connectors do not have inter-
faces [Taylor et al. 1996] and one in which they do [Allen and Garlan 1997]),
we designed the notional architectural model so that it can support both cases:
connector instances may link component interfaces either directly or via the
connector’s interfaces.

Overall, the particular combination of concepts in the notional architectural
model creates a representation that is similar, if not equivalent, to the core of
most ADLs [Medvidovic and Taylor 2000]. While the remainder of our discus-
sion builds upon this notional model, we believe that our contributions can,
therefore, be applied equally effectively to other specific ADLs.

4.2 Mae’s Architectural System Model

Recall from the discussion in Section 3 that any solution to managing architec-
tural evolution must support an architect in using: (1) multiple versions of a
single architectural element that are part of the same configuration, (2) optional
elements, (3) variant elements, (4) elements that are both optional and variant,
and (5) relations among optional and variant elements. To achieve this in our
approach, we have extended the notional architectural model with three broad
categories of modeling support: optionality, variability, and evolution. Below,
we discuss each category in detail and describe how their combination creates
an effective solution that provides support for all five modeling needs.

4.2.1 Optionality. As an architecture evolves, some elements may become
useful only in certain architectural configurations and thus may or may not

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

254 • R. Roshandel et al.

need to be present when a particular configuration is instantiated. Mae’s system
model supports optionality through the use of Boolean guards that are attached
to particular elements in the system model. In particular, Boolean guards spec-
ify conditions that can be associated with the interfaces, components, and con-
nectors that constitute a component or connector type. To determine whether
an optional element is included in a specific architectural configuration, a se-
lection mechanism is required to evaluate the guards. (Section 5.2 introduces
an implementation of such a mechanism.)

Optionality also plays an important role in the specification of connector
instances. In particular, a connector instance specifies links to and from inter-
faces on components. If such an interface is optional, the link must inherit the
Boolean guard of the optional interface. This avoids the problem of dangling
links when the interface is not included in a particular architectural configura-
tion. Architects, of course, can correlate any set of elements by using the same
Boolean guard for each element in the set. This creates the effect of a logically
coherent group of elements for which it is guaranteed that either all or none of
the elements are present in any selected configuration.

To illustrate the concept of optionality, Table IV contains excerpts from the
actual specification of the Troops Deployment and Battle Simulations (TDS)
system discussed in Section 3. Shown are the specifications of an interface type,
an interface instance, a component type, and a variant component type (some
of which will be discussed in later subsections to illustrate other aspects of the
system model). Consider the SIMULATIONAGENT component type, which is hier-
archically constructed from the AGENT, KNOWLEDGEBASE, and RESOURCEFETCHER

component instances, which in turn are connected by the FETCHERBUS con-
nector instance. (Although not included in the example, the specification of
this connector instance establishes the actual links among the component in-
stances, thereby defining the internal topology of the component type.) The
interfaceMapping field maps interface instances on the overarching compo-
nent type to interface instances on the constituent component instances. For
instance, the IGETRESOURCES interface instance is mapped to the interface in-
stance IGETALLRESOURCEINFO on the component instance RESOURCEFETCHER.

Of interest to this discussion are the RESOURCEFETCHER component and
the IGETRESOURCES interface. They both are optional, and their instantiation
depends on evaluation of their corresponding guards. Since the two guards
are identical, setting the variable FETCHLOCALLY to true and the variable
TIMETODISCONNECTION to a value less than 10 will result in inclusion of both
optional elements as a group. On the other hand, violation of either one of
those conditions will result in omission of both optional elements from the in-
stantiated configuration.

4.2.2 Variability. Traditional CM systems address two complementary
forms of variability: divergence and convergence. Divergence concerns elements
for which two or more separate paths of evolution are needed (e.g., to address
different demands by different customers). Convergence brings diverging paths
of evolution together at specific variation points, which designate places in
an architecture where one of multiple, logically alternative elements can be

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 255

Table IV. Example Excerpts from TDS Architecture Specification

Element TDS Example
Interface
type

name = IANALYZEDEFENSIVESTRATEGY

revision = 1
interfaceElement = {PERFORMDEFENSIVEANALYSIS (NEWREGION : REGION) }
ascendant = {IANALYZESTRATEGY 1.4}
descendant = { }

Interface
instance

name = IANALYZE

direction = in
interfaceType = {IANALYZEDEFENSIVESTRATEGY 1}

Component
type

name = SIMULATIONAGENT

revision = 3
interface = { {IGETRESOURCES, fetchLocally & timeToDisconnection < 10},

IGETRULES,
ISIMULATEBATTLE }

component = {AGENT,
KNOWLEDGEBASE,
{RESOURCEFETCHER, fetchLocally & timeToDisconnection < 10} }

connector = {FETCHERBUS}
interfaceMapping = {IGETRESOURCES ->
RESOURCEFETCHER.IGETALLRESOURCEINFO}
behavior = {(IGETRULES, IGETRESOURCES, ISIMULATEBATTLE*) }
constraint = {IGETRULES.POSTCOND(RulesInstantiated == TRUE),

IGETRESOURCES.PRECOND (timeToDisconnection < 10),
ISIMULATEBATTLE.PRECOND(RulesInstantiated == TRUE) }

ascendant = {SIMULATIONAGENT 2}
descendant = {SIMULATEANDFIGHT 1 }
subtype = {beh and int, SIMULATIONAGENT 2 }

Variant
component
type

name = DEPLOYMENTADVISOR

revision = 2
interface = {IDEPLOYTROOPS,

{IDEPLOYAMMUNITION, military mode == true},
{IDEPLOYTENTS, military mode == false }}

componentType = { {HUMANITARIANDEPLOYMENT 1, military mode == false},
{MILITARYDEPLOYMENT 2, military mode == true }}

ascendant = {DEPLOYMENTADVISOR 1, STRATEGYANALYSISKB 5}
descendant = { }
subtype = {{ beh DEPLOYMENTADVISOR 1}, {int STRATEGYANALYSISKB 5 } }

included. Our system model must naturally support both forms of variability
at the architectural level.

To capture diverging paths of evolution, we adopt interfile branching
[Seiwald 1996]1 as applied to each of the types in the system model. Interfile
branching prescribes that each new branch is formed by creating a new type
that has its own unique name and follows its own linear path of evolution. To
still maintain the relationship with the original type, the definition of each type
in Table II is extended with the fields ascendant and descendant. Upon creation
of a new branch, the ascendant of the new type is set to the original type (which
creates a “back” pointer). In addition, the set of descendants of the original type

1Because our system model does not pertain to files, interfile branching is not an ideal term here.
Nonetheless, we adopt the term because it identifies a well-known branching strategy.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

256 • R. Roshandel et al.

is updated with the new type (which creates a “forward” pointer). In essence,
the ascendant and descendant fields implicitly maintain a decentralized ver-
sion tree. Compared to the traditional mechanism of using a centralized version
tree, interfile branching has the distinct advantage of separating concepts (lin-
ear evolution as described in Section 4.2.3 and diverging paths of evolution as
described here) and identifying branches via an explicit type name rather than
an arbitrary number in a version tree [Seiwald 1996; Walrad and Strom 2002].

To capture convergence, we use variation points, which designate specific
places in an architecture where one of multiple, logically alternative elements
(termed variants) can be included. To represent variation points, Mae defines
variant component types and variant connector types. A variant component
type is specified as a set of other component types, each with an associated,
mutually exclusive Boolean guard. Instances of variant component types can
be used in exactly the same way as instances of “regular” component types.
The only time that a difference is noted is upon instantiation of a particular
architectural configuration. At that time, each instance of a variant com-
ponent type must be resolved to be of a specific type. To that purpose,
each of the Boolean guards within a variant component type is evaluated
and the instance is configured to be of the type for which the Boolean guard
evaluates to true.

The interfaces on a variant component type are not necessarily the same as
the interfaces on each of its variants. It may therefore happen that inclusion
of one particular variant in a configuration leads to a different set of interfaces
being available than inclusion of another variant. To avoid other component or
connector instances relying on the presence of such interfaces, Mae prescribes
that the overarching variant component type must use optional interfaces to
identify those interfaces that are not exposed by all of its variants. While this
incurs some extra work and care by the architect, it has already been demon-
strated by Koala that the added benefits of flexibility and evolvability outweigh
this shortcoming [van Ommering 2002].

Table IV shows the variant component type DEPLOYMENTADVISOR, which has
three interface instances and consists of two variants. One variant provides ad-
vice concerning humanitarian deployment (HUMANITARIANDEPLOYMENT) and the
other concerning military deployment (MILITARYDEPLOYMENT). When instantiat-
ing a configuration containing an instance of this variant component type, one
of the variants is selected based on the value of the variable military mode as
supplied by the architect: if the value is true, MILITARYDEPLOYMENT will be in-
stantiated; if the value is false, HUMANITARIANDEPLOYMENT will be instantiated.
Note that two of the interface instances of DEPLOYMENTADVISOR are optional to
reflect the fact that not all interface instances are provided by all of the vari-
ants. In particular, the interface instance IDEPLOYAMMUNICATION is only avail-
able when the MILITARYDEPLOYMENT variant is chosen, and the interface instance
IDEPLOYTENTS is only available when the HUMANITARIANDEPLOYMENT variant is
selected.

Combined, divergence and convergence allow efficient specification of vari-
ability: elements common to every configuration are modeled only once, while
variant types capture the exact differences among the configurations as isolated

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 257

variation points. Furthermore, divergence and convergence integrate orthogo-
nally with our approach to capturing optionality; that is, the two coexist and
can be combined without interfering with each other. For instance, it is possible
to specify optional instances of variant component types or optional interfaces
in variant component types.

It is important to note that the use of Boolean guards in specifying option-
ality and variability is key to an architect’s ability to establish relationships
among those elements within an architectural configuration. By using the same
Boolean guards to specify variants in two different variant component types,
for instance, an architect can ensure pair-wise inclusion of specific variants
(e.g., each variant in one of the variant component types is associated with
a particular variant in the other variant component type). As another exam-
ple, an architect could use mutually exclusive Boolean guards for some optional
elements to guarantee that only one of the options is included. Similar relation-
ships can be established among arbitrary sets of optional or variant elements.

4.2.3 Evolution. An architecture can change in many different ways. New
elements can be added, existing elements can be changed, elements can be re-
moved, elements can be converted into optional or variants elements (and back),
and so on. Mae’s system model captures all these changes using versioning and
subtyping. Versioning is used to identify different (historical) incarnations of
the same element; subtyping is used to annotate each change to indicate the
nature of that change.

Every type that is part of the system model is versioned through the use of the
revision field. The use of the word revision—and not version—is an intentional
choice. Since diverging paths of evolution are captured using interfile branches,
the revision field does not have to serve “double-duty”. In particular, whereas
existing CM systems use a detailed versioning scheme that encodes both linear
evolution and branching (e.g., a version number such as 1.3.4.2 indicates that an
element evolved to revision 4.2 on a separate branch that started from revision
1.3 of the main branch), our system model voids the need for such a versioning
scheme and captures each evolutionary concern using a separate mechanism.

The use of versioning alone is not sufficient. Even in a traditional CM sys-
tem, each change (theoretically, at least) is accompanied by an unstructured
textual comment describing the nature of the change. In our system model, we
provide a more systematic approach: each change to an architectural element
can be annotated with an indication of whether the change preserves certain
properties with respect to its predecessor. In particular, Mae uses the subtype
field to indicate whether the change preserves the name, interfaces, and/or be-
havioral constraints of its predecessor [Medvidovic et al. 1998]. For instance, if
a newer revision of a component type is both an interface and behavioral sub-
type [Liskov and Wing 1994] of its predecessor, its instances can be substituted
for the old component instances in the architecture. On the other hand, if no
subtype relation exists, substitutability may not be inferred. In other words,
subtyping information annotates the history of each type with meaningful in-
formation regarding the particular nature of its changes, and helps an architect
in understanding how an architecture has evolved.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

258 • R. Roshandel et al.

A subtyping relation can be specified not just for successive revisions of a
type, but also for arbitrary (variant) component and (variant) connector types
that are not necessarily related in a single version tree. This, again, preserves
the orthogonal nature of our system model and also allows for the system model
to contain much useful information about compatibility among architectural
elements that otherwise would have to be captured elsewhere.

To illustrate these concepts, we first note that every type in Table IV
is versioned. For instance, the interface type is IANALYZEDEFENSIVESTRATEGY

revision 1. Additionally, all references to types are versioned as well. For
example, IANALYZEDEFENSIVESTRATEGY revision 1 is derived from the inter-
face type IANALYZESTRATEGY revision 1.4, and the variant component type
IDEPLOYMENTADVISOR revision 2 consists of HUMANITARIANDEPLOYMENT revision 1
and MILITARYDEPLOYMENT revision 2.

The component type SIMULATEANDFIGHT revision 3 illustrates the use of
subtypes. It is a descendent of SIMULATIONAGENT revision 2 and, as a sub-
type, maintains interface and behavior compliance with that component type.
DEPLOYMENTADVISOR revision 2 also shows the use of subtypes and has two par-
ticular subtype relationships: it is a behavior subtype of DEPLOYMENTADVISOR

revision 1 and an interface subtype of STRATEGYANALYSISKB revision 5. This
dual relationship indicates that the DEPLOYMENTADVISOR component type ex-
poses interfaces that are compatible with those implemented by revision 5 of the
STRATEGYANALYSISKB component type, and provides behaviors that are compati-
ble with those exposed by revision 1 of the DEPLOYMENTADVISOR component type.

4.2.4 Concluding Remarks. Together, the examples shown in the discus-
sion in Section 4.2 illustrate each of the modeling concepts that we have added
to the notional system model: revisions to capture linear evolution, interfile
branching to capture diverging paths of evolution, guarded variants to capture
alternatives, guarded options to capture nonmandatory architectural elements,
and subtyping relations to capture the compatibility of different component and
connector types with their predecessors. Furthermore, we note that the exam-
ples illustrate how the newly introduced concepts address all of the problems
introduced in Section 3, that they preserve the architecture-centric nature of
the original notional model, and that they continue the tradition of orthogonal
design that is established by the notional model. In essence, their combina-
tion allows for an effective approach to capturing architectural evolution that
eliminates the problems associated with the use of traditional CM systems.

We should also note that the examples use a particular semantics for some
of the fields. For instance, we use first-order logic to specify the constraints
of the component type SIMULATIONAGENT revision 1, and we use a particular
numbering scheme to designate the revisions of each type element. The system
model itself, however, is agnostic with respect to the semantics of its individual
elements. Just as the notional model is neutral with respect to existing ADLs
(e.g., it does not prescribe the actual notation or format used for specifying
interfaces or behaviors), our system model is neutral with respect to the details
of the configuration management extensions. For example, we do not prescribe a
particular version numbering scheme or a notation for Boolean guards. Rather,

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 259

the system model only enforces their presence; exact notations, format, and
conventions will be imposed by the support environment described in Section 5.
Our examples shown in Table IV follow those conventions.

4.3 Realization of the System Model

Mae’s system model may be implemented in a variety of ways. For instance, it
could be implemented as a specialized library in a widely-used programming
language such as Java or C++, or, as another example, it could be implemented
using database schemas. However, such implementations would limit future
extensions and adaptation for different domains. For this reason, we have con-
cretely realized all of the system model’s concepts using xADL 2.0 [Dashofy et al.
2002a], an extensible, XML-based [Extensible Markup Language 2004] archi-
tecture description language. xADL 2.0 is a collection of modularly-organized
XML schemas that represent architectural elements. It provides a base set of
features that support representation of components, connectors, and interfaces
through both types and their instances. Furthermore, as inspired by Mae’s ar-
chitectural system model, xADL 2.0 already includes facilities for capturing
some CM-related information (e.g., optional elements; variant component and
connector types; versions of component, connector, and interface types). Finally,
the xADL 2.0 XML schemas that capture these concepts have been intention-
ally designed to be extensible. Implementing our system model, therefore, was
a relatively straightforward activity.

To complete Mae’s system model realization as an extension to xADL 2.0,
we needed to build five additional kinds of modeling concepts upon the core
functionality provided by xADL 2.0:

(1) Boolean guards, to guide the inclusion of optional and variant elements;
(2) Subtyping, to model the relationships among different versions of compo-

nent and connector types;
(3) Services, to model the details of interface types as sets of interface elements

with typed parameters and return values;
(4) Behaviors to model the interactions of components and connectors in the

system;
(5) Constraints, to restrict execution of components’ services using a set of pre-

and post-conditions.

To add these concepts, we created two XML schemas. The first schema simply
extends the optional and variant definitions of xADL 2.0 with an actual Boolean
expression language as used by Mae to model guards. A Boolean expression is a
valid combination of operands and logical operators (and, or, not), comparisons
(equal, greater than, less than, not equal), Boolean values (true, false), and
operators on ordered and unordered collections (in-range, in-set).

Our second XML schema is more complex: it provides constructs to model
subtyping relationships and enhances a component’s service specification with
modeling constructs for interfaces, behaviors, and constraints. Table V shows
selected extracts from the schema along with example TDS specifications
related to these extracts. Specifically, the table shows the XML definitions of

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

260 • R. Roshandel et al.

Table V. Mae Schema Extracts and Examples

IN
T

E
R

FA
C

E
E

L
E

M
E

N
T

<xsd:complexType name="InterfaceElementDecl">

<xsd:complexContent>

<xsd:extension base="archtypes:Signature">

<xsd:sequence>

<xsd:element name="parameter" type="Variable" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="result" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

O
P

E
R

A
T

IO
N

S

<xsd:complexType name="OperationDecl">

<xsd:sequence>

<xsd:element name="dir" type="archinstance:Direction"/>

<xsd:element name="localVars" type="Variable" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="preDecl" type="xsd:string"/>

<xsd:element name="postDecl" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="id" type="archinstance:Identifier"/>

</xsd:complexType>

T
D

S
E

X
A

M
P

L
E

S

<beh:interfaceDecl xsi:type="c2:InterfaceElementDecl"

types:id="igetMap">

<types:description xsi:type="instance:Description"> iGetMap

</types:description>

<types:direction xsi:type="instance:Direction"> prov

</types:direction>

<beh:parameter xsi:type="beh:VarDecl">

<beh:name xsi:type="xsd:string"> submapID </beh:name>

<beh:type xsi:type="xsd:string"> Integer </beh:type>

</beh:parameter>

<beh:result xsi:type="xsd:string"> MapType </beh:result>

</beh:interfaceDecl>

<beh:operationDecl xsi:type="beh:OperationDecl" beh:id="ogetMap">

<beh:dir xsi:type="instance:Direction"> prov </beh:dir>

<beh:localVars xsi:type="beh:Variable">

<beh:name xsi:type="xsd:string"> id </beh :name>

<beh:type xsi:type="xsd:string"> Integer </beh:type>

</beh:localVars >

<beh:preDecl xsi:type="xsd:string">(id \greater 0)\and(id \less 17)

</beh:preDecl>

<beh:postDecl xsi:type="xsd:string"> (\result = theMap)

</beh:postDecl>

</beh:operationDecl>

interfaceElements and operations that together describe part of a component’s
external behavior. InterfaceElements enhance a standard xADL 2.0 interface
with a sequence of services, each defined as a set of input parameters and
their types, as well as the service’s return type. Operation declarations capture
constraints on the execution behavior of interfaceElements as pre- and post-
conditions. Our schemas do not enforce the semantics of these fields. However,
the Mae environment (described in Section 5) requires them to be specified
using first-order logic.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 261

In the example shown in Table V, the iGetMap interface element takes a
submapID of type Integer as an input parameter while its return type is Map-
Type. Its pre-condition requires that the input parameter has a value between
1 and 16 (the TDS application handles up to 16 different submaps), and the
post-condition specifies that the result of this operation is stored in variable
theMap. Note that an architect does not have to directly edit these kinds of
XML specifications; the Mae architecture evolution environment discussed in
the next section shields the architect from all of the XML details and provides
them with a high-level graphical user interface for specifying all aspects of the
system model.

5. ARCHITECTURE EVOLUTION ENVIRONMENT

The second part of our solution for managing architectural evolution is Mae’s
architecture evolution environment. While the system model provides the fa-
cilities for capturing architectural evolution, the environment provides and en-
forces the specific procedures through which an architecture is created and
evolved. Not surprisingly, the environment does so by providing a tightly inte-
grated combination of functionality that covers both architectural aspects, such
as designing and specifying an architecture or analyzing it for its consistency,
and CM aspects, such as checking out and checking in elements that need to
change or selecting a particular architectural configuration out of the available
version space.

As shown in Figure 2, the Mae architectural evolution environment con-
sists of four major subsystems. The first subsystem, the xADL 2.0 data binding
library [Dashofy et al. 2002a], forms the core of the environment. The data bind-
ing library is a standard part of the xADL 2.0 infrastructure that, given a set
of XML schemas, provides a programmatic interface to access XML documents
adhering to those schemas. In our case, the data binding library provides ac-
cess to XML documents described by the XML schemas discussed in Section 4.3.
Therefore, the xADL 2.0 data binding library, in essence, encapsulates our sys-
tem model by providing a programmatic interface to access, manipulate, and
store evolving architecture specifications.

The three remaining subsystems each perform separate but complemen-
tary tasks as part of the overall process of managing the evolution of a
software architecture:

—The design subsystem combines functionality for graphically designing and
editing an architecture with functionality for versioning the architectural ele-
ments. This subsystem supports architects in performing their day-to-day job
of defining and maintaining architectural descriptions, while also providing
them with the familiar check out/check in mechanism to create a historical
archive of all changes they make.

—The selector subsystem enables a user to select one or more architectural
configurations out of the available version space. Once an architecture has
started to evolve, and once it contains a multitude of optional and variant
elements, the burden of manually selecting an architectural configuration
may become too great. To overcome this burden and automatically extract a

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

262 • R. Roshandel et al.

Fig. 2. Mae’s architecture.

single architecture based upon a user-specified set of desired properties, Mae
provides the selector subsystem as an integral part of its environment.

—Finally, the analysis subsystem provides sophisticated analyses for detecting
inconsistencies in architectural configurations. This subsystem typically is
used after a particular architectural configuration has been selected, and
helps to ensure that the architectural configuration is not only structurally
sound, but also consistent with the expected behaviors and constraints of
each component and connector in the configuration.

Below, we first detail each of these subsystems and their role in managing
architectural evolution. We then highlight several new capabilities that are fa-
cilitated by our system model and architecture evolution environment. These
novel capabilities directly leverage our system model and would be more diffi-
cult to attain using alternative approaches.

5.1 Design Subsystem

The design subsystem of Mae supports an architect in his or her day-to-day
activities. At its core, this subsystem operates as any other graphical design
editor: an architect defines new interface types, component types, and connec-
tor types, and instantiates these types to define an architectural configuration.
Mae distinguishes itself, however, by integrally supporting a check-out/check-
in policy to manage the changes that occur when an architecture evolves. Each
architectural element, whether a simple interface type or a complex composite
component type, must be checked out first, then modified, and finally checked
back in once the modifications are complete. As a result, a version history is
incrementally created, allowing an architect to retrieve and examine previ-
ous versions of architectural elements. Note that changes may pertain to any
aspect of our system model. In addition to coarse-grained changes to archi-
tectures, components, connectors, and interface types, Mae integrally supports

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 263

fine-grained changes to behaviors, constraints, subtype relations, and other
properties associated with a particular version of an architectural element.

Once a version of an element has been checked in, that version becomes
immutable. It can no longer be modified in order to protect any other parts of the
architecture that depend on the immutable element. This feature guarantees
incremental stability as the architecture is designed. It also guarantees the
integrity of the old versions of the architecture during maintenance.

The user interface of the design subsystem is shown in Figure 3. The GUI is
divided into three parts: the design palette (left), listing all versions of all types
currently defined; the version pane (top), showing the version tree associated
with the currently selected type; and the canvas (main area), supporting an
architect in viewing or modifying an architecture. It should be noted that every
element is shown with its associated version number. For example, the compo-
nent TopLevelArchitecture that is currently being modified is version 2.1, and
consists of, among others, a component instance clock (of type Clock version 1)
and component instance weatherComp (of type Weather version 2). Having this
information visually present ensures that an architect is always aware of ex-
actly which element he or she is changing, and which elements are being used
in the process. More importantly, it makes it possible for an architect to incor-
porate more than one version of a single component, connector, or interface type
in the same architecture—something that cannot be done using an existing CM
system. Finally, it makes it possible for an architect to spot elements that are
out-of-date and for which newer versions are available.2

In the figure, the architect is in the process of changing the architecture
by adding an optional component instance. After the architect selects the type
and version of the desired component type to be instantiated, inputs the name
under which the component instance will be created, and specifies its Boolean
guard, the new optional component is added to the architecture. Note that it
is not immediately linked to the other components. To do so, a new connector
may be added or an existing connector may be modified to add links to the
new optional component. Other types of elements (e.g., nonoptional component
instances, interface instances, connector instances, and so on) are added in
an analogous way. Naturally, the environment also supports an architect in
removing and modifying elements.

While designing an architecture, behaviors and constraints can be specified
using ArchEdit [Dashofy et al. 2002a], a syntax-based editor that is a standard
part of the xADL 2.0 toolkit. We have integrated ArchEdit with our design envi-
ronment to allow easy editing of behaviors and constraints. Similarly, subtype
relations can also be specified using ArchEdit.

5.2 Selector Subsystem

Mae supports an architect in selecting a specific configuration using its selec-
tor subsystem. Selection of a configuration is performed in two phases: first, an

2While it is possible to do so manually and an architect will often have sufficient knowledge to do
so, automated support is desired. Mae provides this support in the form of a toggle that turns on
or off automatic highlighting of all out-of-date elements.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

264 • R. Roshandel et al.

Fig. 3. Mae’s design subsystem as applied to TDS.

architect selects a “starting point” by choosing a particular version of an archi-
tecture or subarchitecture (shown in the top part of Figure 4); then, the architect
specifies a set of properties as name-value pairs (shown in the middle part of
Figure 4). Using these properties, Mae hierarchically traverses the architecture
and attempts to resolve each of the Boolean guards that it encounters. If it can
fully resolve a Boolean guard to true, the respective element is included. If it
can fully resolve a Boolean guard to false, the respective element is removed.
If a Boolean guard can only be partially resolved, the element is included with
the reduced Boolean guard attached. A single selection, thus, may not always
result in resolution of all optional and variant elements. Iterative use of the
selector subsystem, however, should eventually result in the selection of a fully
resolved architecture if the user is careful to input properties that resolve the
remaining Boolean guards.

5.3 Analysis Subsystem

The analysis subsystem completes Mae’s architectural evolution environment.
It complements the other components by providing an architect with the ability
to ensure the consistency of a selected architectural configuration. Consistency
can be checked at both the syntactic and semantic level. At the syntactic level,
the analysis subsystem checks for simple constraints concerning the topological
and structural specification of an architecture. This includes, among others, ver-
ifying whether the names of all component and connector instances are unique
and (optionally) ensuring that the topology of the architecture adheres to a

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 265

Fig. 4. Mae analysis subsystem as applied to TDS.

particular style. The latter is achieved using a pluggable topological constraint
checker component with a generic API that can be adapted to any specific stylis-
tic set of constraints.

To verify the semantic correctness of an architectural configuration, the
analysis subsystem employs type-checking techniques. Given an architecture,
Mae analyzes each component to ensure that its interfaces, behaviors, and
constraints are satisfied by other components along its communication links
[Medvidovic et al. 1999]. First, Mae makes sure that all provided and required
services of communicating components properly match, and then it interprets
the behaviors and constraints of each component (specified in first-order pred-
icate logic) to verify whether they are satisfied. Finally, Mae verifies whether
the subtyping relations specified within the architectural configuration hold.

Figure 5 shows the UI of the analysis subsystem. The top window indicates
the progress of each step that comprises the process of verifying the overall con-
sistency of an architecture. The bottom window shows the analysis output of
each step. In this particular case, a mismatch is detected: the components Sim-
ulationAgent version 3, StrategyAnalysisKB version 5, and Weather version 2

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

266 • R. Roshandel et al.

Fig. 5. Mae analysis subsystem as applied to TDS.

all require the interface Tick, but none of them is connected to a component
that provides that interface.

5.4 Additional Capabilities

In building Mae, we discovered that its integrated system model enabled us
to build several novel capabilities that significantly enhance the environment.
While these capabilities are considered to be add-ons rather than core function-
ality of the environment, we discuss them here to further demonstrate how our
integrated system model provides significant benefits in terms of the manage-
ment of architectural evolution.

5.4.1 Version-Aware Design Assistance. Consider a situation in which a
developer needs to replace a faulty new version of a component with an older
version. Since the overall configuration may also have evolved, the developer
has to search for a version of the component that is compatible with the rest
of the configuration. In a typical CM system, such a search involves the de-
veloper checking out a version of the component, compiling the system, and
subsequently executing and testing the system to verify its correctness. This
process may need to be repeated multiple times until eventually (and hopefully)
a suitable version is found.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 267

Mae automates this process by leveraging the integrated nature of its system
model. In particular, we have implemented a preliminary version of a Compli-
ance Analyzer subsystem that, given a particular version of a component or
connector, presents an architect with a list of related versions that exhibit a de-
sired subtyping relationship to the original version. For instance, an architect
may request a list of all versions that are interface compliant or just a list of
those versions that are behaviorally compliant.

The Compliance Analyzer implements this functionality by traversing the
ascendant and descendant relations of the element in question and, for each
version, analyzing whether the desired relationship holds. This clearly relies on
the integrated nature of the system model, since the Compliance Analyzer needs
both architectural information (i.e., behaviors, constraints, and interfaces) and
CM information (i.e., ascendants, descendants) to properly operate.

Note that when the Compliance Analyzer traverses the version tree of an
architectural type, it repeatedly determines the subtyping relationship that
may exist among two versions of that type. This feature is useful in and of itself,
and we are currently investigating the adaptation of that feature in the Mae
environment such that it is automatically invoked each time a new version of a
component or connector is checked in. This would allow automated annotation
of every change with the proper subtyping relationship, and would relieve a
developer from having to document this fact manually.

5.4.2 Component-Level Patches. By relying on a mapping from architec-
tural components to implementation classes, several approaches have used
software architecture to interpret change descriptions at the architectural level
and dynamically administer the corresponding changes at run-time [Gorlick
and Razouk 1991; Magee and Kramer 1996, Oreizy et al. 1998]. For instance,
the use of extension wizards offers architecture-level patches that contain a
series of differences between an actual architecture and a new, desired ver-
sion of the same architecture [Oreizy et al. 1998]. The differences are precisely
specified in terms of additions and removals of components and connectors,
and form a logical recipe for updating a running system. One drawback
of the current approach to extension wizards is that they have to be cre-
ated by hand. In case a large number of differences exists between the ac-
tual and desired version of an architecture, this can be a cumbersome and
error-prone task.

Mae’s system model contains all the information necessary to automate the
processes of architectural differencing (to create an architecture-level patch)
and architectural merging (to apply an architecture-level patch). To explore this
opportunity, we first created a xADL 2.0 extension for capturing architectural
differences [Van der Westhuizen and van der Hoek 2002]. A unique aspect of this
representation is the fact that it not only identifies instances of the architectural
elements that need change, but also contains the types of those elements. As
a result, the patch is self contained and can be applied independently of the
originating architecture.

The second part of our solution consists of the implementation of an ar-
chitectural differencing algorithm and an architectural merging algorithm

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

268 • R. Roshandel et al.

[Van der Westhuizen and van der Hoek 2002]. By mapping the merging algo-
rithm onto a run-time management system [Dashofy et al. 2002b], we success-
fully replaced the manual approach of extension wizards with a fully automated
run-time patch creation and patch application mechanism. While the details of
the approach are beyond the scope of this article, and further information and
detailed algorithms can be found elsewhere [Van der Westhuizen and van der
Hoek 2002], it is important to note that the algorithms are rather simple and
that the overall approach could be quickly constructed. Mae’s integrated system
model provides all the information necessary and guarantees critical proper-
ties, such as unique identifiers and an accurate versioning history, which the
algorithms leverage.

5.4.3 Multiversioning Connectors. A special case of run-time upgrade oc-
curs when a new version of an already existing component must be incorporated
into a running system. Traditional approaches, discussed in Section 5.4.2, will
simply swap out the old component for the new one. Prior to performing this
swap, however, it is important to assess its impact onto the running system. In
Section 5.3, we already discussed how Mae’s analysis subsystem can be used
to ensure that the new version of the component matches with the rest of the
system. However, there is no guarantee that the implemented version of the
component will preserve the desired properties and relationships established
at the architectural level.

Mae’s system model can be leveraged to address this problem. Because Mae
is built on top of xADL 2.0, it inherits the implementation mappings to re-
late architecture-level elements with implemented Java classes and interfaces
[Dashofy et al. 2002a]. Using these facilities, we built special-purpose software
connectors to address the problem of ensuring reliable component upgrades.
These connectors, called multiversioning connectors (MVC),3 allow any compo-
nent in a system to be replaced with a set of its versions. Although executing in
parallel, these components are wrapped by MVC’s to appear to the rest of the
system as a single component. The role of each MVC is to relay any invocation
that it receives from the system to all component versions it encapsulates, and
to propagate the generated result(s) to the rest of the system.

Each component version may produce some result in response to an invo-
cation. The MVCs allow a system’s architect to specify the component author-
ity [Cook and Dage 1999] for different operations. A component designated as
authoritative for a given operation will be considered nominally correct with
respect to that operation. Should any of the other versions deviate from these
results, this inconsistency will be detected and reported by the MVC—allowing
an architect to discover unexpected run-time deviations in functionality and
behavior. Further details and examples of the usage of MVC may be found in
Rakic and Medvidovic [2001].

3This usage of the MVC acronym is entirely unrelated to the Model-View-Controller approach to
constructing Smalltalk applications [Krasner and Pope 1998].

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 269

6. EXPERIENCE

In this section, we discuss our experience with Mae to demonstrate its util-
ity with respect to critical attributes such as usability, scalability, and ap-
plicability to real-world problems. Particularly, Mae has been successfully
used in three different settings as the primary architectural development
and evolution environment. Our first experience involved applying Mae to
an audio/video entertainment system, patterned after an existing architec-
ture for consumer electronics [Van der Westhuizen and van der Hoek 2002].
We next applied Mae to create and evolve the software architecture of
the Troops Deployment and Battle Simulations system (TDS) [Mikic-Rakic
and Medvidovic 2002] that was introduced in Section 3.1. Finally, we ap-
plied Mae to SCRover, an independent research project at the University of
Southern California (USC) conducted in collaboration with NASA’s Jet Propul-
sion Laboratory (JPL). These settings collectively represent three very dif-
ferent applications, and include an in-house application with extensive ar-
chitectural variation, a highly scalable application with potentially hundreds
of component and connector instances, and an application to an embedded
system.

6.1 Usability

In using Mae for the specification and evolution of our three example systems,
we paid particular attention to whether the presence of configuration manage-
ment functionality hinders or obscures the process of designing an architecture.
Our evaluation of usability, therefore, focuses on whether it was possible to
create the three respective architectures much like one would create those ar-
chitectures in existing environments such as ArchStudio [Dashofy et al. 2002a]
or AcmeStudio [Garlan et al. 1997]. In general, our experience shows this to
be the case. A good example is the action of adding a connector to an existing
configuration. In existing environments, this is performed by selecting a con-
nector type and choosing the interfaces to which it connects. In Mae, this action
is performed in exactly the same way should a regular connector be added.
Mae’s functionality only deviates if it is desired that an optional connector is
added. This deviation is minor, however, as the only additional action to be per-
formed by the user is to specify the Boolean guard governing the inclusion of
the connector.

We compared each of the actions supported by Mae to their counterparts
in ArchStudio and AcmeStudio. We learned that some special attention has to
be paid at certain times. For example, instead of simply choosing a type, an
architect must choose a type and a version; a Boolean guard must be specified
when an optional or variant element is included in the architecture; and finally,
elements must be checked out and checked in. The fundamentals of the process
of designing an architecture, however, does not change. Moreover, the user only
needs to do something different when the unique features of Mae are used; at
other times, the process remains exactly the same. The inclusion of configura-
tion management functionality, thus, incurs minimal overhead as compared to
traditional architectural design.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

270 • R. Roshandel et al.

The only exception to having minimal overhead is the check out operation: an
architect must manually check out, one by one, all the elements he/she intends
to modify. This clearly is cumbersome, and will be addressed in an upcoming
version of Mae’s design subsystem. In particular, we intend to implement a
modified check-out operation that, instead of requiring manual checkouts, au-
tomatically and transparently checks out artifacts when an architect begins to
modify them. This should further reduce the impact of the presence of configu-
ration management functionality on the core tasks of architectural design.

6.2 Scalability

The scalability of Mae was demonstrated in all three contexts. The architec-
ture of the audio/video entertainment system consists of 25 component types,
3 connector types, and 3 interface types, all available in a number of different
versions. Numerous variation points exist in the architecture, resulting in the
availability of about 100 different configurations. The structure of the Troops
Deployment and Battle Simulations system (TDS) contains a moderate number
of component types (20) and connector types (3). However, the number of compo-
nent and connector instances can be in the hundreds, depending on the number
of Commander and Soldier subsystems included, since those subsystems can
be replicated multiple times. Finally, the SCRover architecture contains about
30 component types, 9 interfaces types, and 3 connector types that are all de-
signed to strictly adhere to the stylistic rules defined by NASA JPL’s Mission
Data Systems (MDS) framework [Dvorak et al. 1999].

Mae successfully supported the initial specification and subsequent evolution
of all three systems, and did so regardless of the number of architectural types
and instances. The only issue that surfaced was that Mae operated slower when
it had to graphically depict a large number of architectural elements. This is due
to Mae’s event-based communication, which requires the retrieval of the nec-
essary data from the underlying xADL 2.0 libraries before it can be displayed.
We are investigating ways of improving Mae’s response time by enabling an in-
ternal cache. Other, more minor issues, were resolved as they occurred, leading
to the final incarnation of Mae presented in this article.

6.3 Applicability

We evaluated Mae’s applicability to real-world settings in the context of
SCRover, a testbed for NASA’s High Dependability Computing Program
(HDCP). An independent research group at USC collaborated with JPL to model
and analyze the evolving software architecture of the SCRover application, a
mobile robot system built using JPL’s MDS framework [Dvorak et al. 1999]. The
SCRover architecture is designed to strictly adhere to the stylistic rules defined
by the MDS framework. To support the specification and analysis of SCRover
using Mae, we reconfigured and enhanced the Mae environment to support
the MDS architectural style. Reconfiguration involved adding xADL 2.0 exten-
sions that model MDS-specific constructs. Because of Mae’s extensibility, which
is inherited from the xADL 2.0 approach, no new code needed to be added
to the design subsystem to absorb the additional extensions. Enhancements

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 271

involved modifying Mae’s analysis subsystem to perform consistency analy-
sis on architectural models adhering to the MDS style, which specifies the
details of component and connector interfaces differently and in more de-
tail than our approach outlined in Section 4. The details of these modifica-
tions are beyond the scope of this paper, but can be found in Roshandel et al.
[2004].

The two most important aspects of the SCRover experience are that Mae is
being used by an external group of users, and that it is being applied to a real-
world application. While this is an ongoing project, so far the experience has
been extremely positive. All relevant aspects of the SCRover application could
be modeled, and the users were able to do so in a straightforward way. As a
result, Mae is currently being evaluated by JPL and several other universities
and research centers involved with the SCRover project.

7. RELATED WORK

Few approaches have combined software architecture and CM concepts in ad-
dressing architectural evolution. Two notable exceptions are UniCon [Shaw
et al. 1995] and Koala [van Ommering 2002]. UniCon was the first ADL to incor-
porate constructs for capturing variant component implementations. Based on
a property selection mechanism, each component in a given architectural config-
uration is instantiated with a particular variant implementation. Compared to
Mae, UniCon is limited: its system model does not provide facilities for captur-
ing architectural revisions or options. Moreover, the primary focus of UniCon is
implementation-level variability, not variability at the level of the definitions of
architectural elements.

On the other hand, the Koala ADL is specifically designed for capturing prod-
uct family architectures. While other approaches to capturing product family
architectures exist [Asikainen et al. 2002, 2003; Krueger 2002, Rochkind 1975],
Koala is the most advanced and provides the most complete set of features.
Specifically, Koala naturally models variability and optionality via a property
mechanism similar to Mae’s. Using a versioning system, Koala is even able
to capture the evolution of an application family. However, two critical differ-
ences exist between Koala and Mae. First, Koala does not integrate versioning
information inside its representation; it uses an external CM system instead.
This has the drawback of creating another, independent source of information
to be used in capturing architectural evolution. Second, Koala does not provide
mechanisms for capturing subtypes, behaviors, and constraints. Mae exten-
sively uses this kind of information in providing the functionality described in
Sections 5 and 6.

Mens and D’Hondt [2000] leverage the Object Constraint Language (OCL)
to capture the evolution of UML models. Specific constraints describe how one
model is different from another. Their technique formalizes the evolution of
UML models, but it is unclear whether it could be extended to other modeling
techniques. In comparison to Mae, their approach operates at a lower level of
abstraction (i.e., classes, objects) and does not explicitly address the issue of
versions, variants, and optionality.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

272 • R. Roshandel et al.

Several other approaches in the fields of CM and software architecture laid
the foundation for the work presented in this article. In the field of CM, Pro-
teus PCL introduced a system model in which components were explicitly rec-
ognized [Tryggeseth et al. 1995]. Adele introduced interfaces to be used in
verifying the consistency of selected configurations [Estublier and Casalles
1994]. Finally, Inscape used obligations and pre- and post-conditions in a man-
ner similar to Mae’s use of behavior and constraint specifications to guar-
antee proper interactions among components put together in a configuration
[Perry 1989]. Compared to Mae, these approaches provide some of the build-
ing blocks, but none of them integrates all the necessary facilities to manage
architectural evolution.

In the field of software architecture, several approaches have extensively
used explicit software connectors; prominent examples are Wright [Allen and
Garlan 1997], UniCon [Shaw et al. 1995], and C2 [Taylor et al. 1996]. Rapide
[Luckham and Vera 1995] uses an OO-like inheritance mechanism to support
component evolution, while Acme [Garlan et al. 1997] supports structural sub-
typing. Finally, GenVoca [Batory and O’Malley 1992] and Aesop [Garlan et al.
1994] were early examples of approaches that used styles as a means of guiding
and controlling architectural evolution. Once again, each approach provides one
or more building blocks, but none of them integrates them to precisely capture
all aspects of architectural evolution.

8. CONCLUSION

Perhaps the most challenging aspect of software engineering is effective
management of software systems’ evolution. This is evidenced by statistics
that place the costs of evolution at well over 50% of all development costs
[Ghezzi et al. 1991]. It is also evidenced by a large and growing number of aca-
demic and practitioner-oriented conferences, symposia, and workshops dealing
with different aspects of software maintenance and evolution.

However, current approaches to software evolution exhibit an interesting id-
iosyncrasy. On the one hand, it is widely accepted that architecture is a software
system’s centerpiece. As such, it would appear to be the natural starting point
for software evolution. On the other hand, aside from some notable exceptions
[Magee and Kramer 1996; Oreizy et al. 1998; van Ommering 2002], software
architecture has not been leveraged as the basis of software system evolution.
Further compounded by the fact that existing CM solutions are unable to ef-
fectively deal with architectural evolution, this effectively negates the central
importance of software architecture.

Our work presented in this article has been targeted precisely at this is-
sue. We have presented a novel approach to managing architecture-centered
software evolution. Our approach has indeed anchored the evolution process to
the architectural concepts of components, connectors, subtypes, and interfaces,
enhancing it with the power and flexibility of the CM concepts of revisions,
variants, options, and configurations. The result of this approach is a novel
architectural system model with a novel associated architecture evolution en-
vironment that, combined, effectively address architectural evolution.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 273

With the advent of our system model and the implementation of the Mae
environment, we have only begun to explore the richness of the problem of
properly managing architectural evolution from the time a system is designed
to its eventual deployment and execution in the field. For example, Mae’s novel
capabilities discussed in Section 5.4 represent only a set of starting points for
our work: although each capability already has been shown useful, none should
be considered complete as of yet. We continue to explore more advanced func-
tionality by further enhancing and applying our solutions. Specifically, we have
begun addressing the following three issues: (1) extending Mae with additional
design-time functionality by providing additional types of analyses and ad-
vanced change-based versioning support; (2) tightly integrating development-
time architectural evolution with the evolution of a deployed system at run-
time [Mikic-Rakic and Medvidovic 2002]; and (3) enhancing multi-versioning
connectors and the run-time infrastructure to further increase the reliability of
system upgrades. Moreover, our long-term interests are to further investigate
the relationship among typing, software architecture, and CM in addressing
evolution: these techniques are related and, at times, equivalent. A deeper un-
derstanding of their relationship and the tradeoffs among them is much needed.
We believe that Mae forms a solid foundation upon which we can perform these
investigations.

AVAILABILITY

For more information on the Mae environment, its xADL 2.0 extension schemas,
and the example applications presented in this article, visit the Mae Web Site at:

http://cse.usc.edu/∼softarch/mae.html
For information on the SCRover project visit USC’s High Dependability Com-

puting Web Site at:
http://cse.usc.edu/hdcp
Details of xADL 2.0 core schemas may be found at:
http://www.isr.uci.edu/projects/xarchuci/

ACKNOWLEDGMENTS

We wish to thank the following individuals for their involvement in the devel-
opment of Mae: Marwan Abi-Antoun, Ping Chen, Matt Critchlow, Eric Dashofy,
Ebru Dincel, Rob Egelink, Akash Garg, and Christopher Van der Westhuizen.

REFERENCES

AGRAWAL R., BUROFF S., GEHANI N. H., AND SHASHA, D. 1991. Object versioning in ODE. In Pro-
ceedings of the 7th International Conference on Data Engineering (Kobe, Japan), pp. 446–455.

ALLEN R. AND GARLAN D. 1997. A formal basis for architecture connection. ACM Trans. Softw.
Eng. Meth. 6, 3, 213–249.

ASIKAINEN, T., SOININEN, T., AND MÄNNISTÖ, T. 2003. Towards intelligent support for managing
evolution of configurable software product families. In Proceedings of the ICSE Workshops SCM
2001 and SCM 2003 Selected Papers. 86–101.

ATKINSON, C., BAYER, J., BUNSE, C., KAMSTIES, E., LAITENBERGER, O., LAQUA, R., MUTHIG, D., PAECH, B.,
WUST, J., AND ZETTEL, J. 2002. Component-Based Product Line Engineering with UML. Addison-
Wesley, Reading, Mass.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

274 • R. Roshandel et al.

BATORY, D., AND O’MALLEY, S. 1992. The design and implementation of hierarchical software sys-
tems with reusable components. ACM Trans. Softw. Eng. Meth. 1, 4.

BELL LABS LUCENT TECHNOLOGIES. 1997. Sablime v5.0 User’s Reference Manual. Lucent Technolo-
gies, Murray Hill, N.J.

BOSCH J., FLORIJN, G., GREEFHORST, D., KUUSELA, J., OBBINK, J. H., AND POHL, K. 2001. Variability
issues in software product lines. In Proceedings of the Product Family Architecture Workshop. pp.
13–21.

BURROWS, C. AND WESLEY, I. 2001. Ovum evaluates configuration management. Ovum, Ltd.,
Burlington, Mass.

CHRISTENSEN, H. B. 1998. Experiences with architectural software configuration management
in Ragnarok. In Proceedings of the 8th International Symposium on System Configuration
Management.

CONRADI, R. AND WESTFECHTEL, B. 1998. Version models for software configuration management.
ACM Computing Surveys 30, 2, 232–282.

COOK, J. E. AND DAGE, J. A. 1999. Highly reliable upgrading of components. In Proceedings of the
1999 International Conference on Software Engineering. pp. 203–212.

DASHOFY, E. M., VAN DER HOEK, A., AND TAYLOR, R. N. 2002. An infrastructure for the rapid develop-
ment of XML-based architecture description languages. In Proceedings of the 24th International
Conference on Software Engineering (ICSE2002), Orlando, Florida.

DASHOFY, E. M., VAN DER HOEK, A., AND TAYLOR, R. N. 2002. Towards architecture-based self-healing
systems. In Proceedings of the 1st ACM SIGSOFT Workshop on Self-Healing Systems. ACM,
New York.

DVORAK, D., RASMUSSEN, R., REEVES, AND SACKS, A. 1999. Software architecture themes in JPL’s
mission data system. In Proceedings of the AIAA Space Technology Conference and Exposition
(Albuquerque, N.M.).

ESTUBLIER, J. AND CASALLES, R. 1994. The adele configuration manager. In Configuration Manage-
ment. W. F. Tichy, Ed. Wiley: London, Great Britain, pp. 99–134.

ESTUBLIER, J., LEBLANG, D., VAN DER HOEK, A., CONRADI, R., CLEMM, G., TICHY, W., AND WIBORG-WEBER,
D. 2002. Impact of the research community on the field of software configuration manage-
ment: Summary of an impact project report. ACM SIGSOFT Softw. Eng. Notes 27, 5, 31–
39.

EXTENSIBLE MARKUP LANGUAGE (XML). 2004. http://www.w3.org/XML/.
FRANCONI, E., GRANDI, F., AND MANDREOLI, F. 2000. A semantic approach for schema evolution and

versioning in object-oriented databases. In Proceedings of the 6th International Conference on
Rules and Objects in Databases (DOOD 2000).

GARLAN, D., ALLEN, R., AND OCKERBLOOM, J. 1994. Exploiting style in architectural design environ-
ments. In Proceedings of SIGSOFT’94: Foundations of Software Engineering (New Orleans, La.).
ACM, New York, 175–188.

GARLAN, D., MONROE, R., AND WILE, D. 1997. ACME: An architecture description interchange
language. In Proceedings of CASCON’97.

GHEZZI, C., JAZAYERI, M., AND MANDRIOLI, D. 1991. Fundamentals of Software Engineering,
Prentice-Hall, Englewood Cliffs, New Jersey.

GORLICK, M. M. AND RAZOUK, R. R. 1991. Using weaves for software construction and analysis.
In Proceedings of the 13th International Conference on Software Engineering (ICSE13) (Austin,
Tex.).

HABERMANN, A. N. AND PERRY, D. E. 1981. System composition and version control for Ada. In Soft-
ware Engineering Environments, H. Huenke, Ed. North-Holland, Amsterdam, The Netherlands,
pp. 331–343.

HUNT, J. J. AND TICHY, W. F. 1998. Delta algorithms: An empirical analysis. ACM Trans. Softw.
Eng. Meth. 7, 2, 192–214.

KRASNER, G. E. AND POPE, S. T. 1988. A cookbook for using the model-view-controller user interface
paradigm in smalltalk-80. J. Obj.-Orient. Prog. 1, 3, 26–49.

KRÜEGER, C. W. 2002. Variation management for software production lines. In Proceedings of the
2nd International Software Product Line Conference. pp. 37–48.

KUUSELA, J. 1999. Architectural evolution. In Proceedings of the 1st Working IFIP Conference on
Software Architecture. Kluwer Academic: Boston, Mass.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

Mae—Model and Environment for Managing Architectural Evolution • 275

LISKOV, B. H. AND WING, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Prog. Lang.
Syst. 16, 6, 1811–1841.

LUCKHAM, D. C. AND VERA, J. 1995. An event-based architecture definition language. IEEE Trans.
Softw. Eng. 21, 9, 717–734.

MAGEE, J. AND KRAMER, J. 1996. Dynamic structure in software architectures. In Proceedings of
the 4th ACM SIGSOFT Symposium on the Foundations of Software Engineering. ACM New York,
pp. 3–13.

MEDVIDOVIC, N., ROSENBLUM, D. S., AND TAYLOR, R. N. 1998. A type theory for software architectures.
Tech. Rep. UCI-ICS-98-14, University of California, Irvine, Irvine, Calif.

MEDVIDOVIC, N., ROSENBLUM, D. S., AND TAYLOR, R. N. 1999. A language and environment for
architecture-based software development and evolution. In Proceedings of the 1999 International
Conference on Software Engineering. pp. 44–53.

MEDVIDOVIC, N. AND TAYLOR, R. N. 2000. A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng. 26, 1, 70–93.

MENS, T., D’HONDT, T. 2000. Automating support for evolution in UML. Auto, Softw. Eng. 7, 1,
39–59.

MIKIC-RAKIC, M., MEDVIDOVIC, N. 2002. Architecture-level support for software component de-
ployment in resource constrained environments. In Proceedings of 1st International IFIP/ACM
Working Conference on Component Deployment (Berlin, Germany). ACM, New York.

MUNCH, B. P. 1993. Versioning in a software engineering database—The change-oriented Way.
Ph.D. dissertation. Division of Computer Systems and Telematics, The Norwegian Institute of
Technology.

OREIZY, P., MEDVIDOVIC, N., AND TAYLOR, R. N. 1998. Architecture-based runtime software evolu-
tion. In Proceedings of the 20th International Conference on Software Engineering (Kyoto, Japan).
177–186.

PARISI, F. AND WOLF, A. L. 2000. Foundations for software configuration management policies us-
ing graph transformations. In Fundamental Approaches to Software Engineering 2000. Springer-
Verlag, New York, pp. 304–318.

PERRY, D. E. 1989. The inscape environment. In Proceedings of the 11th International Conference
on Software Engineering. pp. 2–11.

PERRY, D. E. AND WOLF, A. L. 1992. Foundations for the study of software architectures. ACM
SIGSOFT Softw. Eng. Notes 17, 4, 40–52.

RAKIC, M. AND MEDVIDOVIC, N. 2001. Increasing the confidence in off-the-shelf components: A soft-
ware connector-based approach. In Proceedings of the 2001 Symposium on Software Reusability
(Toronto, Canada).

ROSHANDEL, R., SCHMERL, B., MEDVIDOVIC, N., GARLAN, D., AND ZHANG, D. 2004. Understanding
tradeoffs among different architectural modeling approaches. In Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architecture (WICSA 2004), (Oslo, Norway). IEEE Computer
Society Press, Los Alamitos, Calif.

ROCHKIND, M. J. 1975. The source code control system. IEEE Trans. Softw. Eng. SE-1, 4.
SEIWALD, C. 1996. Inter-file branching—A practical method for representing variants. In Proceed-

ings of the 6th International Workshop on Software Configuration Management. Springer-Verlag,
New York, pp. 67–75.

SHAW, M., DELINE, R., KLEIN, D., ROSS, T., YOUNG, D., AND ZELESNIK, G. 1995. Abstractions for
software architecture and tools to support them. IEEE Trans. Softw. Eng. 21, 4.

SPECK, A., PULVERMÜLLER, E., AND CLAUSS, M. 2002. Versioning in software modeling. In Proceed-
ings of the 6th International Conference on Integrated Design and Process Technology.

TAYLOR, R. N, MEDVIDOVIC, N., ANDERSON, K., WHITEHEAD, J. AND, ROBBINS, J. 1996. A component-
and message-based architectural style for GUI software. IEEE-Trans. Softw. Eng. 22, 6.

TICHY, W. F. 1985. RCS, A system for version control. Softw.–Pract. Exper. 15, 7, 637–654.
TRYGGESETH, E., GULLA, B., AND CONRADI, R. 1995. Modeling systems with variability using the

PROTEUS configuration language. In Proceedings of the 5th International Workshop on Software
Configuration Management, Springer-Verlag, New York, pp. 216–240.

VAN DER HOEK, A. 2000. A generic, reusable repository for configuration management policy
programming. Ph.D dissertation. Dept. Computer Sci., Univ. Colorado, Boulder, Boulder, Col.,
Jan.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

276 • R. Roshandel et al.

VAN DER HOEK, A., HEIMBIGNER, D. H, AND WOLF, A. L. 1998a. Investigating the applicability of
architecture description in configuration management and software deployment. Tech. Rep.
CU-CS-862-98. University of Colorado at Boulder, Boulder, Col.

VAN DER HOEK, A., HEIMBIGNER, D. H, AND WOLF, A. L. 1998b. Software architecture, configuration
management, and configurable distributed systems: A ménage a trois, Tech. Rep. CU-CS-849-98,
University of Colorado, Boulder, Boulder, Col.

VAN DER WESTHUIZEN, C. AND VAN DER HOEK, A. 2002. Understanding and propagating architectural
change. In Proceedings of the 3rd IEEE/IFIP Working International Conference on Software
Architectures (Montreal, Ont., Canada). IEEE Computer Society Press, Los Alamitos, Calif.

VAN OMMERING, R. 2002. Building product populations with software components. In Proceedings
of the 24th International Conference on Software Engineering (ICSE2002), (Orlando, Fla).

WALRAD, C. AND STROM, D. 2002. The importance of branching models in SCM. IEEE Comput. 35,
9 31–38.

WESTFECHTEL, B. AND CONRADI, R. 2001. Software architecture and software configuration man-
agement. In Proceedings of the International Workshop on Software Configuration Management.

WEI, H. AND ELMASRI, R. 2000. PMTV: A schema versioning approach for bi-temporal databases.
In Proceedings of the 7th International Workshop on Temporal Representation and Reasoning
(TIME ’00) (Nova Scotia, Canada). pp. 143–151.

WIBORG WEBER, D. 1997. Change sets versus change packages: Comparing implementations of
change-based SCM. In Proceedings of the 7th International Workshop on Software Configuration
Management. pp. 25–35.

WINKLER, J. F. H. 1986. The integration of version control into programming languages. In Pro-
ceedings of the International Workshop on Advanced Programming Environments (Trondheim,
Norway), pp. 230–250.

Received November 2002; revised August 2003; accepted April 2004

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 2, April 2004.

