
An Enhanced Fault-Tolerant Routing Algorithm for Mesh Network-on-Chip

Arshin Rezazadeh1, Mahmood Fathy1, Gholamali Rahnavard2
1 Department of Computer Engineering

1 Iran University of Science and Technology, Tehran, Iran
rezazadeh@comp.iust.ac.ir, mahfathy@iust.ac.ir

2 School of Computer Engineering
2 Shahid Chamran University of Ahvaz, Ahvaz, Iran

rahnavard@scu.ac.ir

Abstract—Fault-tolerant routing is the ability to survive failure
of individual components and usually uses several virtual
channels (VCs) to overcome faulty nodes or links. A well-
known wormhole-switched routing algorithm for 2-D mesh
interconnection network called f-cube3 uses three virtual
channels to pass faulty regions, while only one virtual channel
is used when a message does not encounter any fault. One of
the integral stages of designing Network-on-Chips (NoCs) is
the development of an efficient communication system in order
to provide low latency networks. We have proposed a new
fault-tolerant routing algorithm based on f-cube3 as a solution
to reduce the delay of network packets which uses less number
of VCs in comparison with f-cube3. Moreover, in this method
we have improved the use of VCs per each physical link by
reducing required channels to two. Furthermore, simulations
of both f-cube3 and our algorithm based on same conditions
have been presented.

Keywords-Network-on-Chip, virtual channel, deterministic
routing, wormhole switching, delay, fault-tolerant

I. INTRODUCTION
Interconnection networks have become a popular means

for interconnecting components of parallel computers. In
these networks, nodes are connected to only a few nodes, its
neighbors, according to the topology of the network and
communicate with each other by passing messages. The 2-
dimensional (2-D) mesh network is currently one of the most
popular topologies for interconnection systems. Low-
dimensional mesh networks, due to their low node degree,
are more popular than the high dimensional mesh networks.

A possible approach for getting over the limiting factor in
future system-on-a-chip designs is to use an on-chip
interconnection network instead of a global wiring [8]. On-
chip networks relate closely to interconnection networks for
parallel computers, in which each processor is an individual
chip [18]. The tile-based network-on-chip architecture is
known as a suitable solution for overcoming communication
problems in future VLSI circuits [8] [11] [13]. Such chips
are composed of many tiles regularly positioned in a grid
where each tile can be, for example, an embedded memory,
or processor, connected to its adjacent tiles through routers
[8][14]. Each tile has two segments to operate in
communication and computation modes separately [10].

This enables us to use packets for transferring
information between tiles without requiring dedicated
wirings. A NoC is a regular/irregular set of routers that are
connected to each other on a point to point link in order to
provide a communication backbone to the cores of a SoC.
The most common template for NoC is a 2-D mesh where
each resource or set of resources is connected with a router
[1]. In brief, NoCs present the scalable performance needed
by systems which grow with each new generation [3]. They
allow the wiring energy consumption to be reduced by
avoiding the use of long global wires. Furthermore, NoCs are
reusable templates and aid to reduce design productivity gap.
Finally, bus architecture will not meet all the requirements of
future SoCs, as NoCs assure to do. In on-chip networks,
information of routing is distributed, and the determination
of the network status is distributed among the nodes which
exchange information with each other. This type of
algorithm is used in the large-scale networks.

The wormhole switching technique proposed by Dally
and Seitz [6] has been widely used in the interconnections
such as [12]. In this technique, a packet is divided into a
sequence of fixed-size units of data, called flits, and
transmitted from source to destination in asynchronous
pipelined manner. If a communication channel transmits the
header flit of a message, it must transmit all the remaining
flits of the same message. As the header flit containing
routing and control information moves forward along a
specific route; the sequential flits follow it in a pipelined
fashion [5]. When the header flit is blocked due to lack of
output channels, all of the flits wait at their current nodes for
available channels.

Routing algorithms can be generally classified as
adaptive routing and deterministic routing. In the former
models, there are many paths between the source and the
destination. The adaptive nature of this type of routing
algorithms makes them very attractive [15]. In the latter,
however, the path between the source and the destination of
a packet is determined by the source, and it benefits from its
simplicity in router design. Since adaptive algorithms are
complex for NoCs, a flexible deterministic algorithm is a
suitable one due to simple router implementation [7] [8].

Routing is the process of transmitting data from one node
to another in a given system. To avoid deadlocks among

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.89

503

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.89

503

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.89

503

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.89

503

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.89

505

2009 International Conference on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.89

505

messages, multiple virtual channels (VC) are simulated on
each physical channel [4]. Each unidirectional virtual
channel is realized by an independently managed pair of
message buffers [9]. The tradeoff design of NoCs can be
achieved by varying the following parameters: topology,
width of physical links, buffer allocation, switching
techniques and routing algorithms [2]. Subsequently, in this
paper we introduce a fault-tolerant routing algorithm based
on Sui-Wang’s [19] deterministic algorithms.

The fault model is a block fault model, called f-ring and
f-chain. In the block fault model, each connected set of faults
has a convex shape (for example, rectangular in 2-D meshes)
[4]. Our approach in this paper is to demonstrate techniques
which enhance known f-cube3 fault-tolerant routing
algorithm to provide communication under faults by better
latencies. To illustrate this, we apply our technique to the
deterministic e-cube for meshes with rectangular faults.

We suppose that if a message has not reached its
destination and is blocked due to busy channels, then it will
continue to hold the channels it has already obtained and not
yet released. Consequently, deadlocks can occur because of
cyclic dependencies on channels. To avoid deadlocks,
multiple virtual channels are simulated on each physical
channel and they are allocated to messages systematically
[6]. When faults occur, the dependencies are even more
common, and more virtual channels may need to be used or
the use of channels may have to be restricted further. Using
extra buffers, multiple virtual channels can be simulated on a
physical channel in a demand time-multiplexed manner to
overcome the problem. We specify the number of virtual
channels on per physical channel basis and denote the ith
virtual channel on a physical channel with ci.

This paper presents a fault-tolerant routing algorithm for
2-D mesh Network-on-Chips base that enhances a previously
proposed technique. The primary distinction between the
previous method and the method presented in this paper is in
the use of virtual channels in the network. The algorithm
considers both node and link faults. Simulation results show
that delay of communication by f-cube3 algorithm is worse
than the improved one, if-cube2 in the network. We simulate
two algorithms for 3.5, 7, and 10.5% of all links faulty with
uniform and hot spot traffic and different packet lengths.
Results for all situations show that our algorithm has lower
latency and can work in higher message injection rates, with
higher saturation point.

The rest of the paper is organized as follows. In section II
discusses some deterministic-based routing algorithms are
discussed. In section III explains the new if-cube2 fault-
tolerant routing algorithm is explained followed by Section
IV in which discusses our experimental result are discussed.
Finally, Section V summarizes and concludes the work.

II. DETERMINISTIC ROUTING ALGORITHMS
Routing is the act of moving information from a source

to a destination following the shortest possible path. Packet
based communication has been brought to NoCs from the
Internet. Currently, most of the proposals for routing in
NoCs are based upon deterministic routing mechanisms –
XY routing algorithm [8]. The remaining of this section

discusses such algorithms that use deterministic routing even
in the presence of nodes/links failure.

A. Routing Architecture
All routers have five ports, where one is used for its

processor/core and the other four ports are used for
communication channel between other switches. Each input
port has a controller for handshaking and an input buffer. As
a consequence of insensitivity to distance, pipelined flow of
messages, and small buffer requirements, we have used
wormhole technique for the switching [4]. After receiving
the packet header, first the routing unit determines which
output should be used for routing this packet according to its
destination and then the arbiter requests for a grant to inject
the packet to a proper output using the crossbar switch. For
example we can see a 3 x 3 2-D mesh NoC in figure 1 with
four pair links for neighbor links and one pair link for core
link.

Figure 1. An Example of Regular 3 x 3 2-D Mesh Network-on-Chip

B. Deterministic-Based Fault-Tolerant Routing
Algorithms
Some fault-tolerant algorithms use adaptive routing and

some of them use deterministic routing. In deterministic ones
a message route through network by XY-routing until the
message encounters fault. At this point, several papers
propose numerous methods for routing the blocked message
to reach the destination. One of these algorithms was
proposed by Boppana and Chalasani [4] that used
deterministic e-cube and implemented by four virtual
channels. Another deterministic-based algorithm introduced
by Sui and Wang [19] that improved the Boppana and
Chalasani’s algorithm by using one less virtual channel. We
modify this algorithm by using one less virtual channel by
reducing VCs to two, twice. The mechanism which we use in
the paper is described in the next section.

III. THE IF-CUBE2: A MODIFIED FAULT-TOLERANT
ROUTING ALGORITHM

This section shows how we enhance an existing
technique for fault-tolerant wormhole routing in Network-
on-Chips with a mesh-based topology. The routing algorithm
considered in this paper is a deterministic e-cube routing as
long as no faults occur. When a faulty node or link is
encountered and a given flit cannot be routed along its
normal e-cube route, it changes direction as given by a set of

504504504504506506

rules and is re-routed along a fault chain or fault ring around
the faulty nodes/links. These rules give by Sui and Wang in
[19]. The main idea describes in the rest of this section.

A. f-cube3: Primitive Algorithm
The algorithm presented by Sui and Wang [19], f-cube3,

uses one less VC than the algorithm is discussed in [4]. Since
each node in this algorithm needs fewer buffers, the area
used by buffers of a chip would be reduced. Such an
algorithm is able to pass faulty ring and faulty chain even
with overlapped faulty regions [19]. Each message is
injected into the network as a row message and its direction
is set to null. Messages are routed along their deterministic
e-cube hop if they are blocked by faults. When faults are
encountered, depending on the message type and the relative
position of the destination nodes to the source nodes, the
direction of messages are set to clockwise or counter-
clockwise by use of Set-Direction(M) procedure as shown in
[19]. Messages are routed on faulty rings or faulty chains
according to the specified directions. The direction of a
message which is passed the faulty region would be set to
null again. When an end point of fault chain is reached,
messages take a u-turn and their directions are reversed.

B. if-cube2: Modification to Routing Algorithm
First, we show how to enhance the well-known f-cube3

routing algorithm. The e-cube routes a message in a row
until the message reaches a node that is in the same column
as its destination, and then routes it in the column. For fault-
free meshes, the e-cube provides deadlock-free shortest path
routing without requiring multiple virtual channels to be
simulated. At each point during the routing of a message, the
e-cube specifies the next hop to be taken by the message.
The message is said to be blocked by a fault, if its e-cube hop
is on a faulty link. The proposed modification uses only two
virtual channels, c1 and c2 on each physical channel and
tolerates multiple block faults with overlapped f-rings. An
entire column/row fault disconnects meshes and is not
considered. An example of f-ring (F2) and f-chain (F1 and
F3) showed in figure 2 and showed by bold lines.

To route messages around f-rings or f-chains, messages
are classified into one of the following types: EW (East-to-
West), WE (West-to-East), NS (North-to-South), or SN
(South-to-North). A message is labeled as either an EW or
WE message when it is generated, depending on its direction
of travel along the row. Once a message completes its row
hops, it becomes a NS or a SN message depending on its
direction of travel along the column. Thus, EW and WE
messages can become NS or SN messages; however, NS and
SN messages cannot change their types. EW and WE
messages are collectively known as row messages and NS
and SN as column messages [19]. As new algorithm is
similar to previous one, f-cube3, additional information and
usage of virtual channels on f-regions can be found at [19].

The technique presented in this paper has one primary
advantage over the one presented in the previous work.
According to [19], as long as no fault occurs, a flit always
uses a fixed virtual channel (channel 0). When faults are
encountered and a flit is re-routed, it uses two other possible

virtual channels depending on a pre-defined set of rules that
explained in [19]. However, in the current paper, a flit is
allowed to use all virtual channels instead of just one fixed
virtual channel. Using this modification, simulations are
performed to evaluate the performance of the enhanced
algorithms in comparison to the algorithms proposed in prior
work. Simulation results indicate an improvement in the
average message delay and average message wait times
(both at the source and en-route) for different fault rates,
different traffics, and different message lengths.
Furthermore, the enhanced approach can handle higher
message injection rates (i.e., it has a higher saturation rate).
This modification allows us to use only two virtual channels
instead of three because when a message routes on a faulty
condition, it uses predefined virtual channels mentioned in
[19], and while routed in non-faulty hops, it uses that two
virtual channels. We show an example in the rest of this
section. Since this algorithm is based on [19], deadlock/live-
lock freeness features of this fault-tolerant routing algorithm
are proven in prior work [19].

C. Example
We now consider the example of routing message M

from (3, 7) to (7, 3) in figure 2. The path taken by M is also
shown in figure 2. M is routed as an EW message from (3, 7)
to (3, 6). At (3, 6), its next e-cube hop is faulty and its
direction is set to clockwise. At (4, 6), its direction is reset to
null and M is routed along its e-cube hop to (4, 3). At (4, 3),
M becomes an NS message and travels from (4, 3) to (5, 3).
At node (5, 3), due to the fact that its next e-cube hop is
faulty, M travels in the counter-clockwise direction to (5, 0).
At (5, 0), M takes a u-turn and its direction is reversed to
clockwise, since an end node is encountered. M travels along
the f-chain of F2 in the clockwise direction from (5, 0) to (6,
3). Direction of M is reset to null again at (6, 3) and M is
routed along its e-cube hop to destination node (7, 3).

Figure 2. Example of routing message from (3,7) to (7,3). F2 is an

instance of f-chain, and F1 and F3 are cases of f-ring.

Steps 1, 3, 4 and 5 of the path use virtual channels hc1
- or

hc2
- because we can use both two virtual channels in

505505505505507507

modified method, step 2 uses vc1
- , steps 6, 14, and 16 use

vc1
- or vc2

- according to previous notes, steps 7, 8, 9, and 15
use hca

1 , and steps 10, 11, 12, and 13 use hcb
2. In steps 2, 7,

8, 9, 10, 11, 12, 13, and 15 only one virtual channel was used
as explained in [19] and showed by square-dot arrows. Steps
1, 3, 4, 5, 6, 14, and 16 all two virtual channels can be used
and demonstrated by solid arrows.

IV. RESULTS AND DISCUSSIONS
In this section, we describe how we perform the

simulation and acquire results from simulator. Furthermore,
we show the improvements of the primitive algorithm by our
modification.
A. Simulation Methodology

In order to model the interconnection network, an object-
oriented simulator was developed base on [17]. The
simulator is structured so that classes, such as the routing
algorithm or message traffic, can be changed without any
changes to the other components. A flit-level simulator has
been designed. We record average message latencies
measured in the network with the time unit equal to the
transmission time of a single flit, i.e. one clock cycle. Our
study is performed for different fault rates: 3.5%, 7.0%, and
10.5% of all links faulty. In our simulation studies, we
assume message length to be equal to 32 and 48 flits and we
use an 8 x 8 2-D mesh network. Two different traffic patterns
are simulated:

• Uniform – The source node sends messages to any
other node with equal probability.

• Hotspot – Messages are destined to a specific node
with a certain probability and are otherwise
uniformly distributed.

The number of messages generated for each simulation
result, depends on the network size and traffic distribution,
and is between 200,000 to 1000,000 messages. The simulator
has three phases: start-up, steady-state, and termination. The
start-up phase is used to ensure the network is in steady-state
before measuring message latency. For this reason we do not
gather the statistics for the first 10% of generated messages.
All measures are obtained from the remaining of messages
generated in steady-state phase. Messages generated during
the termination phase are also not included in the results. The
termination phase continues until all the messages generated
during steady-state phase have been delivered [17].

Finally, in the remaining of this section, we study the
effect of using two VCs on the performance of deterministic
routing in the mesh network. We perform this analysis under
a different traffic distribution pattern. It is noted that due to
lack of space, only parts of simulation results are presented
in this paper.
B. Uniform and Hotspot Traffic

Figures 3 and 4 show the simulation results for three
different fault cases, 3.5, 7, and 10.5 percent, with uniform
and hotspot (p=10%) traffic. Uniform traffic is the most used
traffic model in the performance analysis of interconnection
networks [17]. Figure 3(a), 3(b), 3(c), 3(d), 3(e), and 3(f)
display the effect of the improvement on the performance of
2-D mesh network for this traffic pattern.

Figure 3(a), and 3(b) show the average message delay
(AMD) over the message injection rate (MIR) for all fault
rates with 32 and 48 flit messages on 8 x 8 mesh network.
This delay illustrates the number of cycles between the time
in which the first flit of a message injected into the network
and the time that last flit of that message reached to the
destination node. As we can see, the network which uses
f-cube3 algorithm is saturated with low MIR while the
if-cube2 algorithm has a higher saturation point, even with
one less virtual channel. As an example in 10.5% case of
f-cube3 with 32 flits, the AMD for 0.007 MIR is over 290
cycles, yet the other algorithm, if-cube2, works normally
even for 0.0085 MIR. In fact our fault-tolerant routing
algorithm has lower AMD for higher MIRs.

The next parameter we have examined is the average
message waiting in source node (AMWS) which illustrates
average number of cycles that a message waited to inject into
the network because no buffer is available. As it is shown in
figure 3(a), and 3(c), a large portion of delays which
messages are encountered by, is the delay of waiting for an
empty buffer in source nodes. For instance, comparing figure
3(c) and 3(e) it is clear that over 128 cycles of 297 cycles of
AMD in 0.007 MIR are caused by waiting in source nodes.
This condition is repeated for the other fault cases shown in
figures with different message lengths.

The average message waiting in middle nodes (AMWM)
is the last parameter simulated for comparing the power of
if-cube2 algorithm and f-cube3 algorithm to work in a faulty
condition. As figures 3(e) and 3(f) illustrate, the f-cube3
algorithm cannot route messages neither does if-cube2
algorithm because of delays in middle nodes. These results
show that by using the new approach on routing, we could
achieve higher performance with less virtual channels.

In order to generate hotspot traffic we used a model
proposed in [16] [17]. According to this model each node
first generates a random number. If it is less than a
predefined threshold, the message is sent to the hotspot node.
Otherwise, it is sent to other nodes of the network with a
uniform distribution.

As the mesh interconnection network is not a symmetric
network, we have considered two types of simulation for
hotspot traffic in this network. In one group of simulations, a
corner node is selected as the hotspot node and in the other
group; a node in the middle of the network is chosen as the
hotspot node, and finally averaged. Hotspot rate is also
considered in our study, namely 10%.

As mentioned above, the hotspot traffic is a form of
uniform traffic, so most of the results attained for uniform
traffic also hold for low hotspot traffic rates. Fig. 4(a), 4(b),
4(c), 4(d), 4(e), and 4(f) illustrate the effect of the hotspot
traffic on the performance of 2-D mesh, for the case with a
hotspot node with 10% hotspot rate. Simulation results
reveal that in the presence of hotspot traffic in high traffic
rates, the network immediately saturates.

All of the abovementioned observations hold for this
traffic pattern showed in figure 4. By comparing the results
of mesh networks, it can be concluded that the effect that
changing the message lengths and different traffics have on
performance in low traffic loads is great for mesh networks.

506506506506508508

(a) (b)

(c) (d)

(e) (f)

Figure 3. The Average Message Delay (AMD), a) 32 flits message, b) 48 flits message, Average Message Waiting in Source Node (AMWS), c) 32 flits
message, d) 48 flits message, and Average Message Waiting in the Middle Nodes (AMWM) e) 32 flits message, f) 48 flits message; as a function of

Message Injection Rate (MIR) in 2-D mesh with uniform traffic.

V. CONCLUSION
Designing a deadlock-free routing algorithm that can

tolerate unlimited number of faults with two virtual channels
is not an easy job. Faulty blocks are expanded, by disabling
good nodes, to be rectangular faults in existing literature to
facilitate the designing of deadlock-free routing algorithms
for 2-D mesh networks. The simulation results show that up
to 60% improvement of network latencies, which are needed
to work with rectangular faults, can be recovered if the
number of original faulty links is less than 10% of the total
network links.

In this paper, for the purpose of reducing the number of
virtual channels, we proposed a method to shrink, by using
two virtual channels, these block faults.

We also showed that in various traffics and different
message lengths these block faults can be handled. The
deterministic algorithm is enhanced from the non-adaptive
counterpart by utilizing the virtual channels that are not used
in the non-faulty conditions. The method we used for
enhancing the if-cube2 algorithm is simple, easy and its
principle is similar to the previous algorithm, f-cube3. There
is no restriction on the number of faults tolerated and only

two virtual channels per physical channel are needed in the
proposed algorithm.

ACKNOWLEDGMENT
This research was supported in part by Shahid Chamran

University of Ahvaz grant 2009. We would like to thank Dr.
Hamid Sarbazi-Azad for his interesting consultations.

REFERENCES
[1] M. Ali, M. Welzl, M. Zwicknagl, S. Hellebrand, “Considerations for

fault-tolerant network on chips,” The 17th International Conference
on Microelectronics, pp. 178-182, 13-15 Dec. 2005

[2] N. Banerjee, P. Vellanki, K.S. Chatha, “A Power and Performance
Model for Network-on-Chip Architectures,” Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition
(DATE’04), vol. 2, pp. 1250 - 1255, 16-20 Feb. 2004

[3] L. Benini, G. De Micheli, “Networks on chips: A new SoC
paradigm,” IEEE Computer, pp. 70-78, Jan. 2002

[4] R.V. Boppana, S. Chalasani, “Fault-tolerant wormhole routing
algorithms for mesh networks,” IEEE Trans. Computers, vol. 44, no.
7, pp. 848-864, July 1995

[5] B.V. Dao, J. Duato, S. Yalamanchili, “Dynamically configurable
message flow control for fault-tolerant routing,” IEEE Transactions
on Parallel and Distributed Systems vol.10, pp. 7–22, 1999

507507507507509509

[6] W.J. Dally, C.L. Seitz, "Deadlock-free message routing in
multiprocessor interconnection networks," IEEE Trans. Computers,
vol. 36, no. 5, pp. 547-553, 1987

[7] W.J. Dally, B. Towles, Principles and practices of interconnection
networks, Morgan Kaufman Publishers, 2004

[8] W.J. Dally, B. Towles, “Route packets, not wires: On-chip
interconnection networks,” Proceedings. Design Automation
Conference, pp. 684-689, Las Vegas, NV, USA, 18-21 Jun 2001

[9] J. Duato, S. Yalamanchili, L. Ni, Interconnection networks: An
engineering approach, Morgan Kaufmann Publishers, 2003

[10] P. Guerrier, A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” Proceedings. Design Automation and
Test in Europe Conference and Exhibition, pp. 250-256, Paris,
France, 27-30 Mar. 2000

[11] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg,
and D. Lindqvist. “Network on chip: An architecture for billion
transistor era,” In Proc. of the IEEE NorChip Conf., pp. 120-124,
Nov. 2000.

[12] A.E. Kiasari, H. Sarbazi-Azad, “Analytic performance comparison of
hypercubes and star graphs with implementation constraints,” Journal
of Computer and System Sciences, vol. 74, iss. 6, pp. 1000-1012,
Sep. 2008

[13] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell,
K. Tiensyrj, and A. Hemani. “A network on chip architecture and

design methodology,” In Proc. Symposium on VLSI, pp. 117-124,
April 2002.

[14] H. Matsutani, M. Koibuchi, Y. Yamada, A. Jouraku, H. Amano,
“Non-minimal routing strategy for application-specific networks-on-
chips,” ICPP 2005, International Conference Workshops on Parallel
Processing, pp. 273-280, 14-17 June 2005

[15] L. M. Ni and P. K. McKinley, “A survey of wormhole routing
techniques in direct networks,” IEEE Tran. on Computers, vol. 26,
pp. 62-76, Feb. 1993.

[16] G. Pfister, V. Norton “Hotspot contention and combining in
multistage interconnection networks,” IEEE Trans. Computers, vol.
34, no. 10, pp. 943-948, 1985.

[17] M. Rezazad, H. Sarbazi-Azad, “The Effect of Virtual Channel
Organization on the Performance of Interconnection Networks,”
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), 4-8 April 2005

[18] K. Srinivasan, K.S. Chatha, “A technique for low energy mapping
and routing in network-on-chip architectures,” ISLPED'05, pp. 387-
392, San Diego, California, USA, 8-10 Aug. 2005

[19] P.H. Sui, S.D. Wang, “An improved algorithm for fault-tolerant
wormhole routing in meshes,” IEEE Trans. on Computers, Vol. 46,
NO. 9, pp. 1040-1042, Sept. 1997

(a) (b)

(c) (d)

(e) (f)

Figure 4. The Average Message Delay (AMD), a) 32 flits message, b) 48 flits message, Average Message Waiting in Source Node (AMWS), c) 32 flits
message, d) 48 flits message, and Average Message Waiting in the Middle Nodes (AMWM) e) 32 flits message, f) 48 flits message; as a function of

Message Injection Rate (MIR) in 2-D mesh in presence of hotspot traffic with p=10%.

508508508508510510

