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Abstract—Fault-tolerant routing is the ability to survive failure 
of individual components and usually uses several virtual 
channels (VCs) to overcome faulty nodes or links. A well-
known wormhole-switched routing algorithm for 2-D mesh 
interconnection network called f-cube3 uses three virtual 
channels to pass faulty regions, while only one virtual channel 
is used when a message does not encounter any fault. One of 
the integral stages of designing Network-on-Chips (NoCs) is 
the development of an efficient communication system in order 
to provide low latency networks. We have proposed a new 
fault-tolerant routing algorithm based on f-cube3 as a solution 
to reduce the delay of network packets which uses less number 
of VCs in comparison with f-cube3. Moreover, in this method 
we have improved the use of VCs per each physical link by 
reducing required channels to two. Furthermore, simulations 
of both f-cube3 and our algorithm based on same conditions 
have been presented. 

Keywords-Network-on-Chip, virtual channel, deterministic 
routing, wormhole switching, delay, fault-tolerant 

I.  INTRODUCTION 
Interconnection networks have become a popular means 

for interconnecting components of parallel computers. In 
these networks, nodes are connected to only a few nodes, its 
neighbors, according to the topology of the network and 
communicate with each other by passing messages. The 2-
dimensional (2-D) mesh network is currently one of the most 
popular topologies for interconnection systems. Low-
dimensional mesh networks, due to their low node degree, 
are more popular than the high dimensional mesh networks. 

A possible approach for getting over the limiting factor in 
future system-on-a-chip designs is to use an on-chip 
interconnection network instead of a global wiring [8]. On-
chip networks relate closely to interconnection networks for 
parallel computers, in which each processor is an individual 
chip [18]. The tile-based network-on-chip architecture is 
known as a suitable solution for overcoming communication 
problems in future VLSI circuits [8] [11] [13]. Such chips 
are composed of many tiles regularly positioned in a grid 
where each tile can be, for example, an embedded memory, 
or processor, connected to its adjacent tiles through routers 
[8][14]. Each tile has two segments to operate in 
communication and computation modes separately [10]. 

This enables us to use packets for transferring 
information between tiles without requiring dedicated 
wirings. A NoC is a regular/irregular set of routers that are 
connected to each other on a point to point link in order to 
provide a communication backbone to the cores of a SoC. 
The most common template for NoC is a 2-D mesh where 
each resource or set of resources is connected with a router 
[1]. In brief, NoCs present the scalable performance needed 
by systems which grow with each new generation [3]. They 
allow the wiring energy consumption to be reduced by 
avoiding the use of long global wires. Furthermore, NoCs are 
reusable templates and aid to reduce design productivity gap. 
Finally, bus architecture will not meet all the requirements of 
future SoCs, as NoCs assure to do. In on-chip networks, 
information of routing is distributed, and the determination 
of the network status is distributed among the nodes which 
exchange information with each other. This type of 
algorithm is used in the large-scale networks. 

The wormhole switching technique proposed by Dally 
and Seitz [6] has been widely used in the interconnections 
such as [12]. In this technique, a packet is divided into a 
sequence of fixed-size units of data, called flits, and 
transmitted from source to destination in asynchronous 
pipelined manner. If a communication channel transmits the 
header flit of a message, it must transmit all the remaining 
flits of the same message. As the header flit containing 
routing and control information moves forward along a 
specific route; the sequential flits follow it in a pipelined 
fashion [5]. When the header flit is blocked due to lack of 
output channels, all of the flits wait at their current nodes for 
available channels. 

Routing algorithms can be generally classified as 
adaptive routing and deterministic routing. In the former 
models, there are many paths between the source and the 
destination. The adaptive nature of this type of routing 
algorithms makes them very attractive [15]. In the latter, 
however, the path between the source and the destination of 
a packet is determined by the source, and it benefits from its 
simplicity in router design. Since adaptive algorithms are 
complex for NoCs, a flexible deterministic algorithm is a 
suitable one due to simple router implementation [7] [8]. 

Routing is the process of transmitting data from one node 
to another in a given system. To avoid deadlocks among 
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messages, multiple virtual channels (VC) are simulated on 
each physical channel [4]. Each unidirectional virtual 
channel is realized by an independently managed pair of 
message buffers [9]. The tradeoff design of NoCs can be 
achieved by varying the following parameters: topology, 
width of physical links, buffer allocation, switching 
techniques and routing algorithms [2]. Subsequently, in this 
paper we introduce a fault-tolerant routing algorithm based 
on Sui-Wang’s [19] deterministic algorithms. 

The fault model is a block fault model, called f-ring and 
f-chain. In the block fault model, each connected set of faults 
has a convex shape (for example, rectangular in 2-D meshes) 
[4]. Our approach in this paper is to demonstrate techniques 
which enhance known f-cube3 fault-tolerant routing 
algorithm to provide communication under faults by better 
latencies. To illustrate this, we apply our technique to the 
deterministic e-cube for meshes with rectangular faults. 

We suppose that if a message has not reached its 
destination and is blocked due to busy channels, then it will 
continue to hold the channels it has already obtained and not 
yet released. Consequently, deadlocks can occur because of 
cyclic dependencies on channels. To avoid deadlocks, 
multiple virtual channels are simulated on each physical 
channel and they are allocated to messages systematically 
[6]. When faults occur, the dependencies are even more 
common, and more virtual channels may need to be used or 
the use of channels may have to be restricted further. Using 
extra buffers, multiple virtual channels can be simulated on a 
physical channel in a demand time-multiplexed manner to 
overcome the problem. We specify the number of virtual 
channels on per physical channel basis and denote the ith 
virtual channel on a physical channel with ci. 

This paper presents a fault-tolerant routing algorithm for 
2-D mesh Network-on-Chips base that enhances a previously 
proposed technique. The primary distinction between the 
previous method and the method presented in this paper is in 
the use of virtual channels in the network. The algorithm 
considers both node and link faults. Simulation results show 
that delay of communication by f-cube3 algorithm is worse 
than the improved one, if-cube2 in the network. We simulate 
two algorithms for 3.5, 7, and 10.5% of all links faulty with 
uniform and hot spot traffic and different packet lengths. 
Results for all situations show that our algorithm has lower 
latency and can work in higher message injection rates, with 
higher saturation point. 

The rest of the paper is organized as follows. In section II 
discusses some deterministic-based routing algorithms are 
discussed. In section III explains the new if-cube2 fault-
tolerant routing algorithm is explained followed by Section 
IV in which discusses our experimental result are discussed. 
Finally, Section V summarizes and concludes the work. 

II. DETERMINISTIC ROUTING ALGORITHMS 
Routing is the act of moving information from a source 

to a destination following the shortest possible path. Packet 
based communication has been brought to NoCs from the 
Internet. Currently, most of the proposals for routing in 
NoCs are based upon deterministic routing mechanisms – 
XY routing algorithm [8]. The remaining of this section 

discusses such algorithms that use deterministic routing even 
in the presence of nodes/links failure. 

A. Routing Architecture 
All routers have five ports, where one is used for its 

processor/core and the other four ports are used for 
communication channel between other switches. Each input 
port has a controller for handshaking and an input buffer. As 
a consequence of insensitivity to distance, pipelined flow of 
messages, and small buffer requirements, we have used 
wormhole technique for the switching [4]. After receiving 
the packet header, first the routing unit determines which 
output should be used for routing this packet according to its 
destination and then the arbiter requests for a grant to inject 
the packet to a proper output using the crossbar switch. For 
example we can see a 3 x 3 2-D mesh NoC in figure 1 with 
four pair links for neighbor links and one pair link for core 
link. 

 

 
Figure 1.  An Example of Regular 3 x 3 2-D Mesh Network-on-Chip 

B. Deterministic-Based Fault-Tolerant Routing 
Algorithms 
Some fault-tolerant algorithms use adaptive routing and 

some of them use deterministic routing. In deterministic ones 
a message route through network by XY-routing until the 
message encounters fault. At this point, several papers 
propose numerous methods for routing the blocked message 
to reach the destination. One of these algorithms was 
proposed by Boppana and Chalasani [4] that used 
deterministic e-cube and implemented by four virtual 
channels. Another deterministic-based algorithm introduced 
by Sui and Wang [19] that improved the Boppana and 
Chalasani’s algorithm by using one less virtual channel. We 
modify this algorithm by using one less virtual channel by 
reducing VCs to two, twice. The mechanism which we use in 
the paper is described in the next section. 

III. THE IF-CUBE2: A MODIFIED FAULT-TOLERANT 
ROUTING ALGORITHM 

This section shows how we enhance an existing 
technique for fault-tolerant wormhole routing in Network-
on-Chips with a mesh-based topology. The routing algorithm 
considered in this paper is a deterministic e-cube routing as 
long as no faults occur. When a faulty node or link is 
encountered and a given flit cannot be routed along its 
normal e-cube route, it changes direction as given by a set of 
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rules and is re-routed along a fault chain or fault ring around 
the faulty nodes/links. These rules give by Sui and Wang in 
[19]. The main idea describes in the rest of this section. 

A. f-cube3: Primitive Algorithm 
The algorithm presented by Sui and Wang [19], f-cube3, 

uses one less VC than the algorithm is discussed in [4]. Since 
each node in this algorithm needs fewer buffers, the area 
used by buffers of a chip would be reduced. Such an 
algorithm is able to pass faulty ring and faulty chain even 
with overlapped faulty regions [19]. Each message is 
injected into the network as a row message and its direction 
is set to null. Messages are routed along their deterministic   
e-cube hop if they are blocked by faults. When faults are 
encountered, depending on the message type and the relative 
position of the destination nodes to the source nodes, the 
direction of messages are set to clockwise or counter-
clockwise by use of Set-Direction(M) procedure as shown in 
[19]. Messages are routed on faulty rings or faulty chains 
according to the specified directions. The direction of a 
message which is passed the faulty region would be set to 
null again. When an end point of fault chain is reached, 
messages take a u-turn and their directions are reversed. 

B. if-cube2: Modification to Routing Algorithm 
First, we show how to enhance the well-known f-cube3 

routing algorithm. The e-cube routes a message in a row 
until the message reaches a node that is in the same column 
as its destination, and then routes it in the column. For fault-
free meshes, the e-cube provides deadlock-free shortest path 
routing without requiring multiple virtual channels to be 
simulated. At each point during the routing of a message, the 
e-cube specifies the next hop to be taken by the message. 
The message is said to be blocked by a fault, if its e-cube hop 
is on a faulty link. The proposed modification uses only two 
virtual channels, c1 and c2 on each physical channel and 
tolerates multiple block faults with overlapped f-rings. An 
entire column/row fault disconnects meshes and is not 
considered. An example of f-ring (F2) and f-chain (F1 and 
F3) showed in figure 2 and showed by bold lines. 

To route messages around f-rings or f-chains, messages 
are classified into one of the following types: EW (East-to-
West), WE (West-to-East), NS (North-to-South), or SN 
(South-to-North). A message is labeled as either an EW or 
WE message when it is generated, depending on its direction 
of travel along the row. Once a message completes its row 
hops, it becomes a NS or a SN message depending on its 
direction of travel along the column. Thus, EW and WE 
messages can become NS or SN messages; however, NS and 
SN messages cannot change their types. EW and WE 
messages are collectively known as row messages and NS 
and SN as column messages [19]. As new algorithm is 
similar to previous one, f-cube3, additional information and 
usage of virtual channels on f-regions can be found at [19]. 

The technique presented in this paper has one primary 
advantage over the one presented in the previous work. 
According to [19], as long as no fault occurs, a flit always 
uses a fixed virtual channel (channel 0). When faults are 
encountered and a flit is re-routed, it uses two other possible 

virtual channels depending on a pre-defined set of rules that 
explained in [19]. However, in the current paper, a flit is 
allowed to use all virtual channels instead of just one fixed 
virtual channel. Using this modification, simulations are 
performed to evaluate the performance of the enhanced 
algorithms in comparison to the algorithms proposed in prior 
work. Simulation results indicate an improvement in the 
average message delay and average message wait times 
(both at the source and en-route) for different fault rates, 
different traffics, and different message lengths. 
Furthermore, the enhanced approach can handle higher 
message injection rates (i.e., it has a higher saturation rate). 
This modification allows us to use only two virtual channels 
instead of three because when a message routes on a faulty 
condition, it uses predefined virtual channels mentioned in 
[19], and while routed in non-faulty hops, it uses that two 
virtual channels. We show an example in the rest of this 
section. Since this algorithm is based on [19], deadlock/live-
lock freeness features of this fault-tolerant routing algorithm 
are proven in prior work [19]. 

C. Example 
We now consider the example of routing message M 

from (3, 7) to (7, 3) in figure 2. The path taken by M is also 
shown in figure 2. M is routed as an EW message from (3, 7) 
to (3, 6). At (3, 6), its next e-cube hop is faulty and its 
direction is set to clockwise. At (4, 6), its direction is reset to 
null and M is routed along its e-cube hop to (4, 3). At (4, 3), 
M becomes an NS message and travels from (4, 3) to (5, 3). 
At node (5, 3), due to the fact that its next e-cube hop is 
faulty, M travels in the counter-clockwise direction to (5, 0). 
At (5, 0), M takes a u-turn and its direction is reversed to 
clockwise, since an end node is encountered. M travels along 
the f-chain of F2 in the clockwise direction from (5, 0) to (6, 
3). Direction of M is reset to null again at (6, 3) and M is 
routed along its e-cube hop to destination node (7, 3). 

 

 
Figure 2.  Example of routing message from (3,7) to (7,3). F2 is an 

instance of f-chain, and F1 and F3 are cases of f-ring. 

Steps 1, 3, 4 and 5 of the path use virtual channels hc1
- or 

hc2
- because we can use both two virtual channels in 
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modified method, step 2 uses vc1
- , steps 6, 14, and 16 use 

vc1
- or vc2

- according to previous notes, steps 7, 8, 9, and 15 
use hca

1 , and steps 10, 11, 12, and 13 use hcb
2. In steps 2, 7, 

8, 9, 10, 11, 12, 13, and 15 only one virtual channel was used 
as explained in [19] and showed by square-dot arrows. Steps 
1, 3, 4, 5, 6, 14, and 16 all two virtual channels can be used 
and demonstrated by solid arrows. 

IV. RESULTS AND DISCUSSIONS 
In this section, we describe how we perform the 

simulation and acquire results from simulator. Furthermore, 
we show the improvements of the primitive algorithm by our 
modification. 
A. Simulation Methodology 

In order to model the interconnection network, an object-
oriented simulator was developed base on [17]. The 
simulator is structured so that classes, such as the routing 
algorithm or message traffic, can be changed without any 
changes to the other components. A flit-level simulator has 
been designed. We record average message latencies 
measured in the network with the time unit equal to the 
transmission time of a single flit, i.e. one clock cycle. Our 
study is performed for different fault rates: 3.5%, 7.0%, and 
10.5% of all links faulty. In our simulation studies, we 
assume message length to be equal to 32 and 48 flits and we 
use an 8 x 8 2-D mesh network. Two different traffic patterns 
are simulated: 

• Uniform – The source node sends messages to any 
other node with equal probability. 

• Hotspot – Messages are destined to a specific node 
with a certain probability and are otherwise 
uniformly distributed. 

The number of messages generated for each simulation 
result, depends on the network size and traffic distribution, 
and is between 200,000 to 1000,000 messages. The simulator 
has three phases: start-up, steady-state, and termination. The 
start-up phase is used to ensure the network is in steady-state 
before measuring message latency. For this reason we do not 
gather the statistics for the first 10% of generated messages. 
All measures are obtained from the remaining of messages 
generated in steady-state phase. Messages generated during 
the termination phase are also not included in the results. The 
termination phase continues until all the messages generated 
during steady-state phase have been delivered [17]. 

Finally, in the remaining of this section, we study the 
effect of using two VCs on the performance of deterministic 
routing in the mesh network. We perform this analysis under 
a different traffic distribution pattern. It is noted that due to 
lack of space, only parts of simulation results are presented 
in this paper. 
B. Uniform and Hotspot Traffic 

Figures 3 and 4 show the simulation results for three 
different fault cases, 3.5, 7, and 10.5 percent, with uniform 
and hotspot (p=10%) traffic. Uniform traffic is the most used 
traffic model in the performance analysis of interconnection 
networks [17]. Figure 3(a), 3(b), 3(c), 3(d), 3(e), and 3(f) 
display the effect of the improvement on the performance of 
2-D mesh network for this traffic pattern. 

Figure 3(a), and 3(b) show the average message delay 
(AMD) over the message injection rate (MIR) for all fault 
rates with 32 and 48 flit messages on 8 x 8 mesh network. 
This delay illustrates the number of cycles between the time 
in which the first flit of a message injected into the network 
and the time that last flit of that message reached to the 
destination node. As we can see, the network which uses      
f-cube3 algorithm is saturated with low MIR while the           
if-cube2 algorithm has a higher saturation point, even with 
one less virtual channel. As an example in 10.5% case of     
f-cube3 with 32 flits, the AMD for 0.007 MIR is over 290 
cycles, yet the other algorithm, if-cube2, works normally 
even for 0.0085 MIR. In fact our fault-tolerant routing 
algorithm has lower AMD for higher MIRs. 

The next parameter we have examined is the average 
message waiting in source node (AMWS) which illustrates 
average number of cycles that a message waited to inject into 
the network because no buffer is available. As it is shown in 
figure 3(a), and 3(c), a large portion of delays which 
messages are encountered by, is the delay of waiting for an 
empty buffer in source nodes. For instance, comparing figure 
3(c) and 3(e) it is clear that over 128 cycles of 297 cycles of 
AMD in 0.007 MIR are caused by waiting in source nodes. 
This condition is repeated for the other fault cases shown in 
figures with different message lengths. 

The average message waiting in middle nodes (AMWM) 
is the last parameter simulated for comparing the power of   
if-cube2 algorithm and f-cube3 algorithm to work in a faulty 
condition. As figures 3(e) and 3(f) illustrate, the f-cube3 
algorithm cannot route messages neither does if-cube2 
algorithm because of delays in middle nodes. These results 
show that by using the new approach on routing, we could 
achieve higher performance with less virtual channels. 

In order to generate hotspot traffic we used a model 
proposed in [16] [17]. According to this model each node 
first generates a random number. If it is less than a 
predefined threshold, the message is sent to the hotspot node. 
Otherwise, it is sent to other nodes of the network with a 
uniform distribution. 

As the mesh interconnection network is not a symmetric 
network, we have considered two types of simulation for 
hotspot traffic in this network. In one group of simulations, a 
corner node is selected as the hotspot node and in the other 
group; a node in the middle of the network is chosen as the 
hotspot node, and finally averaged. Hotspot rate is also 
considered in our study, namely 10%. 

As mentioned above, the hotspot traffic is a form of 
uniform traffic, so most of the results attained for uniform 
traffic also hold for low hotspot traffic rates. Fig. 4(a), 4(b), 
4(c), 4(d), 4(e), and 4(f) illustrate the effect of the hotspot 
traffic on the performance of 2-D mesh, for the case with a 
hotspot node with 10% hotspot rate. Simulation results 
reveal that in the presence of hotspot traffic in high traffic 
rates, the network immediately saturates. 

All of the abovementioned observations hold for this 
traffic pattern showed in figure 4. By comparing the results 
of mesh networks, it can be concluded that the effect that 
changing the message lengths and different traffics have on 
performance in low traffic loads is great for mesh networks. 
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(a)                                                                           (b) 

   
(c)                                                                                                   (d) 

   
(e)                                                                                                   (f) 

Figure 3.  The Average Message Delay (AMD), a) 32 flits message, b) 48 flits message, Average Message Waiting in Source Node (AMWS), c) 32 flits 
message, d) 48 flits message, and Average Message Waiting in the Middle Nodes (AMWM) e) 32 flits message, f) 48 flits message; as a function of 

Message Injection Rate (MIR) in 2-D mesh with uniform traffic.

V. CONCLUSION 
Designing a deadlock-free routing algorithm that can 

tolerate unlimited number of faults with two virtual channels 
is not an easy job. Faulty blocks are expanded, by disabling 
good nodes, to be rectangular faults in existing literature to 
facilitate the designing of deadlock-free routing algorithms 
for 2-D mesh networks. The simulation results show that up 
to 60% improvement of network latencies, which are needed 
to work with rectangular faults, can be recovered if the 
number of original faulty links is less than 10% of the total 
network links. 

In this paper, for the purpose of reducing the number of 
virtual channels, we proposed a method to shrink, by using 
two virtual channels, these block faults. 

We also showed that in various traffics and different 
message lengths these block faults can be handled. The 
deterministic algorithm is enhanced from the non-adaptive 
counterpart by utilizing the virtual channels that are not used 
in the non-faulty conditions. The method we used for 
enhancing the if-cube2 algorithm is simple, easy and its 
principle is similar to the previous algorithm, f-cube3. There 
is no restriction on the number of faults tolerated and only 

two virtual channels per physical channel are needed in the 
proposed algorithm. 
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(a)                                                                           (b) 
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(e)                                                                                                   (f) 

Figure 4.  The Average Message Delay (AMD), a) 32 flits message, b) 48 flits message, Average Message Waiting in Source Node (AMWS), c) 32 flits 
message, d) 48 flits message, and Average Message Waiting in the Middle Nodes (AMWM) e) 32 flits message, f) 48 flits message; as a function of 

Message Injection Rate (MIR) in 2-D mesh in presence of hotspot traffic with p=10%. 
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