Some results on $4^{m} 2^{n}$ designs with clear twofactor interaction components

ZHAO ShengLi ${ }^{1,2}$, ZHANG RunChu ${ }^{2 \dagger}$ \& LIU MinQian ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China;
2 Department of Statistics, School of Mathematical Sciences and Key Laboratory of Pure Mathematics and Combinatorics, Nankai University, Tianjin 300071, China
(email: zhrch@nankai.edu.cn)

Abstract

Clear effects criterion is one of the important rules for selecting optimal fractional factorial designs, and it has become an active research issue in recent years. Tang et al. derived upper and lower bounds on the maximum number of clear two-factor interactions (2fi's) in $2^{n-(n-k)}$ fractional factorial designs of resolutions III and IV by constructing a $2^{n-(n-k)}$ design for given k, which are only restricted for the symmetrical case. This paper proposes and studies the clear effects problem for the asymmetrical case. It improves the construction method of Tang et al. for $2^{n-(n-k)}$ designs with resolution III and derives the upper and lower bounds on the maximum number of clear twofactor interaction components (2fic's) in $4^{m} 2^{n}$ designs with resolutions III and IV. The lower bounds are achieved by constructing specific designs. Comparisons show that the number of clear 2fic's in the resulting design attains its maximum number in many cases, which reveals that the construction methods are satisfactory when they are used to construct $4^{m} 2^{n}$ designs under the clear effects criterion.

Keywords: clear, mixed levels, resolution, two-factor interaction component
MSC(2000): 62 K 15

1 Introduction

Orthogonal arrays with mixed levels have been much widely used in experimental design. When the arrays have $m 4$-level factors and n 2-level factors, they are said to be $4^{m} 2^{n}$ designs. A $4^{m} 2^{n}$ design can be constructed by the method of replacement, which was first formally introduced in [1]. This class of designs is useful in practice because in factorial investigations, especially those involving physical experiments, the number of factorial levels seldom exceeds four. [2] improved the construction method in [1] by introducing the method of grouping. [3] extended the grouping scheme in [2] to cover more general $s^{m}\left(s^{r_{1}}\right)^{n_{1}} \cdots\left(s^{r_{t}}\right)^{n_{t}}$ designs for any prime power s and some integers r_{i} and n_{i}.

In this paper, we consider $4^{m} 2^{n}$ designs with $N=2^{k}$ runs and suppose that such designs are constructed by the method of grouping. Let A_{1}, \ldots, A_{m} and b_{1}, \ldots, b_{n} denote the 4 -level factors and 2-level factors of a $4^{m} 2^{n}$ design, respectively. Suppose a $4^{m} 2^{n}$ design is obtained

[^0]by replacing three 2 -level factors $\left\{a_{i 1}, a_{i 2}, a_{i 3}\right\}$ with a 4 -level factor A_{i}, where $a_{i 1} a_{i 2} a_{i 3}=$ $I, i=1, \ldots, m$ and I is the column with all entries zero. Such a design is determined by $B=\left\{a_{11}, a_{12}, a_{13}, \ldots, a_{m 1}, a_{m 2}, a_{m 3}, b_{1}, \ldots, b_{n}\right\}$, where $a_{i 1} a_{i 2} a_{i 3}=I, i=1, \ldots, m$, in the following sections. We call $a_{i_{1} j_{1}}$ the main-effect component of $A_{i_{1}}$, and $a_{i_{1} j_{1}} a_{i_{2} j_{2}}$ (or $a_{i_{1} j_{1}} b_{l}$) the two-factor interaction component (2fic) of $A_{i_{1}}$ and $A_{i_{2}}$ (or $A_{i_{1}}$ and b_{l}), where $i_{1}, i_{2}=$ $1, \ldots, m, i_{1} \neq i_{2}, j_{1}, j_{2}=1,2,3, l=1, \ldots, n$. For convenience, we call both the main effects of 2-level factors and the main-effect components of 4-level factors the main-effect components. For the same reason, the two-factor interactions (2fis) of two 2-level factors, the 2fic's of two 4 -level factors, and 2fic's of a 2-level factor and a 4-level factor are all called 2fic's.
When the experimenter's knowledge is diffuse, a reasonable assumption people can make is the effect hierarchical assumption. Under such circumstances, resolution in [4] and minimum aberration in [5] are the most often used criteria for selecting good designs. Extending them to the mixed-level case, [6] gave the definitions of resolution and minimum aberration criteria for selecting good $4^{m} 2^{n}$ designs. For $m=1$, suppose that $a_{1}, a_{2}, a_{3}, b_{1}, \ldots, b_{n}$ are columns chosen from the $2^{k}-1$ columns of a saturated design with 2^{k} runs such that $a_{1} a_{2} a_{3}=I$. A $4^{1} 2^{n}$ design can be obtained by replacing $\left\{a_{1}, a_{2}, a_{3}\right\}$ with a 4 -level factor. It is easy to see that there are two types of defining contrasts for this design. The first involves only the b_{j} 's, which is called type 0 . The second involves one of the a_{i} 's and some of the b_{j} 's, which is called type 1 . For a $4^{1} 2^{n}$ design D, let $W_{i 0}(D)$ and $W_{i 1}(D)$ be the numbers of type 0 and type 1 words of length i in the defining contrasts of D, respectively. The resolution of D is defined to be the smallest i such that $W_{i j}(D)$ is positive for at least one j. For $m=2$, the resolution for $4^{2} 2^{n}$ designs is defined similarly as that of $4^{1} 2^{n}$ designs. Furthermore, [7] deliberated a method for constructing this class of asymmetric minimum aberration designs through symmetric minimum aberration ones, [8] obtained two types of minimum aberration designs with mixed levels in terms of complementary sets, and [9] improved the results in [8].

Different situations call for different designs. Clear effects criterion ${ }^{[10]}$ is another criterion for selecting good designs. A main-effect component of a factor is said to be clear if it is not aliased with any main-effect component of the other factors or any 2fic. A main effect is said to be clear if all its components are clear. A 2 fic is said to be clear if it is not aliased with any main-effect component or any other 2fic. A two-factor interaction (2fi) is said to be clear if all its components are clear. As usual, we assume that interaction components involving three or more factors are negligible. A design of resolution V or higher permits the estimation of all the main effects and 2 fi 's. In what follows, we look at the case where the experimenter cannot afford a design of resolution V or higher. A resolution IV design with the maximum number of clear 2fic's allows the joint estimation of the whole main effects and the clear 2fic's as many as possible in the presence of other 2 fic's. It is a desirable design when we are interested in estimating 2fic's besides the main effects. For a resolution III design, we can assume the magnitude of the main-effect components is much larger than that of the 2fic's. Although the presence of 2fic's which are not clear can bias the estimates of the main-effect components, this bias will not be substantial. Thus, in this paper, we are interested in estimating as many 2 fic's as possible. A $4^{m} 2^{n}$ design with the maximum number of clear 2fic's will be called a MaxC2cR design if it has resolution R.

Recent results on the clear effects criterion include [11] and [12]-[23]. In particular, [11] derived upper and lower bounds on the maximum number of clear 2fi's in $2^{n-(n-k)}$ fractional factorial designs of resolutions III and IV by constructing a $2^{n-(n-k)}$ design for given k. [17] investigated the structure of $4^{m} 2^{n}$ designs with resolution III or IV from a different angle if one's goal is to check the existence of clear 2 fic's in the design. It showed that a $4^{m} 2^{n}$ design has a clear 2fic if and only if $n \leqslant 2^{k-1}-3 m$ for $m=1,2$. For a resolution IV $4^{m} 2^{n}$ design to have a clear 2 fic, it is proved that the necessary and sufficient condition is $n \leqslant 2^{k-2}+2-3 m$ for $m=1,2$. When $2^{k-2}+2-3 m<n \leqslant 2^{k}-1-3 m$ for $m=1,2$, resolution IV design does not exist. This paper tries to modify the method in [11] to improve the lower bound on the maximum number of clear 2 fi 's in $2^{n-(n-k)}$ designs of resolution III and derive the upper and lower bounds on the maximum number of clear 2fic's in $4^{m} 2^{n}$ designs of resolutions III and IV for $m=1,2$.

The paper is organized as follows. Section 2 presents the construction method for $2^{n-(n-k)}$ designs containing as many clear 2fi's as possible. Sections 3 and 4 obtain the lower and upper bounds on the maximum numbers of clear 2fic's in $4^{m} 2^{n}$ designs for $m=1,2$. And Section 5 examines the performance of these bounds for $k=5$.

2 Bounds on the maximum number of clear two-factor interactions for $2^{n-(n-k)}$ designs with resolution III

This section sketches out a construction method for resolution III $2^{n-(n-k)}$ designs containing as many clear 2 fi 's as possible when $k \geqslant 5$.

Let $\alpha(k, n)$ be the maximum number of clear 2fi's in a $2^{n-(n-k)}$ design with resolution III. Let $n_{j}=2^{j}+2^{k-j}-2, j=1, \ldots, J$, where $J=\lfloor k / 2\rfloor$ and $\lfloor z\rfloor$ denotes the largest integer not exceeding z. Clearly, we have $n_{1}>\cdots>n_{J}$. If $n>n_{1}$, there does not exist any design containing clear 2fi (see [12]). One needs only to examine values of n in the range of $M(k)<n \leqslant n_{1}$, where $M(k)$ is the maximum value of n for a $2^{n-(n-k)}$ design to have resolution at least V.

Suppose that $n=n_{j}$ for some $j=1, \ldots, J$. Let a_{1}, \ldots, a_{k} be the k independent columns and H_{k} be the saturated design generated by a_{1}, \ldots, a_{k}. Define D_{j} as

$$
\begin{equation*}
D_{j}=H_{j} \cup H_{k-j}, \tag{1}
\end{equation*}
$$

where $H_{j}=H_{j}\left(a_{1}, \ldots, a_{j}\right)$ is a subset of H_{k}, generated by $a_{1}, \ldots, a_{j}, H_{k-j}=H_{k-j}\left(a_{j+1}, \ldots, a_{k}\right)$ is the subset of H_{k}, generated by a_{j+1}, \ldots, a_{k}. Note that H_{j} and H_{k-j} contain $2^{j}-1$ and $2^{k-j}-1$ columns, respectively. Then design D_{j} contains $n_{j}=2^{j}+2^{k-j}-2$ columns. For any $a \in H_{j}$ and $b \in H_{k-j}, a b$ is clear. In addition, there is no clear 2 fi within H_{j} or H_{k-j}. This implies that the number of clear 2 fi 's in D_{j} is $\left(2^{j}-1\right)\left(2^{k-j}-1\right)$.

When $n=n_{j}+1$ for some $j=2, \ldots, J$, let $D^{\prime}=D_{j} \cup\left\{a_{1} a_{j+1}\right\}$. Then D^{\prime} has $n=n_{j}+1$ columns. Note that any 2 fi which is not clear in D_{j} is still not clear in D^{\prime}, we need only to calculate the number l_{1} of 2 fi's which are clear in D_{j} but not in D^{\prime} any more and the number l_{2} of 2fi's which are clear in D^{\prime} but not in D_{j} originally. From the discussion in the last paragraph, $a_{1} a_{j+1}$ is clear in D_{j} and there are $\left(2^{j}-1\right)\left(2^{k-j}-1\right)$ clear 2fi's in D_{j}. Let d denote the column $a_{1} a_{j+1}$ in D^{\prime}. For any $p \in H_{j}$ and $q \in H_{k-j}$, if $p q$ is not clear in D^{\prime}, then $p=a_{1}, q=a_{j+1}$ or there must exist $c \in D_{j}$ such that $c p q=d$. There are two cases:
(i) $p \in H_{j} \backslash\left\{a_{1}\right\}, q=a_{j+1}, c=a_{1} p \in H_{j}$ and $c p q=d$;
(ii) $p=a_{1}, q \in H_{k-j} \backslash\left\{a_{j+1}\right\}, c=a_{j+1} q \in H_{k-j}$ and $c p q=d$.

Then there are $l_{1}=\left(2^{j}-2\right)+\left(2^{k-j}-2\right)+1=2^{j}+2^{k-j}-32$ fi's which are clear in D_{j} but not in D^{\prime}. Note that $d p$ is not clear in D^{\prime} for any $p \in D_{j}$, hence $l_{2}=0$. Therefore D^{\prime} has $\left(2^{j}-1\right)\left(2^{k-j}-1\right)-l_{1}+l_{2}=2^{k}-2^{j+1}-2^{k-j+1}+4$ clear 2fi's.

Now consider the case $n_{j}>n>n_{j+1}+1$ for some $j=1, \ldots, J$, where n_{J+1} is defined as $n_{J+1}=2\left(2^{J}-1\right)+1$. When k is even, $n_{J}<n_{J+1}$, and the case $n_{J}>n>n_{J+1}+1$ in fact does not exist and can be ignored. The case $n_{J}>n>n_{J+1}+1$ is only non-trivial for odd k. Let $D=H_{j} \cup H_{k-j}^{*}$, where H_{j} is the same as that in D_{j} defined by (1) and H_{k-j}^{*} is obtained from H_{k-j} in D_{j} by deleting any $n_{j}-n$ columns from H_{k-j}. Note that for any $a \in H_{j}$ and $b \in H_{k-j}^{*}, a b$ is clear in D. In addition, there is no clear 2 fi within H_{j} or H_{k-j}^{*}. Hence the number of clear 2 fi 's in D is simply $\left(2^{j}-1\right)\left(n-2^{j}+1\right)$.

When k is odd and $n=n_{J+1}+1=2^{J+1}$, let

$$
\begin{equation*}
D_{J+1}=\left\{a_{1}\right\} \cup H_{J}^{\prime} \cup H_{k-J-1}^{\prime} \tag{2}
\end{equation*}
$$

where $H_{J}^{\prime}=H_{J}\left(a_{2}, \ldots, a_{J+1}\right)$ and $H_{k-J-1}^{\prime}=H_{k-J-1}\left(a_{J+2}, \ldots, a_{k}\right)$ are subsets of H_{k} generated by a_{2}, \ldots, a_{J+1} and a_{J+2}, \ldots, a_{k}, respectively. Since for any $p \in H_{J}^{\prime}, q \in H_{k-J-1}^{\prime}$, $a_{1} p, a_{1} q, p q$ are all clear in D_{J+1}, the number of clear 2fi's in D_{J+1} is $\left(2^{J}-1\right)+\left(2^{k-J-1}-\right.$ $1)+\left(2^{J}-1\right)\left(2^{k-J-1}-1\right)=2^{2 J}-1$. Let $D_{J+1}^{\prime}=D_{J+1} \cup\left\{a_{1} a_{2}\right\}$, then D_{J+1}^{\prime} has $n=2^{J+1}$ columns. Note that for any $p \in H_{J}^{\prime} \backslash\left\{a_{2}\right\}, a_{1} p=\left(a_{1} a_{2}\right)\left(a_{2} p\right)$ and $a_{2} p \in D_{J+1}^{\prime}$, so $a_{1} p$ is not clear in D_{J+1}^{\prime}. And for any $q \in H_{k-J-1}^{\prime},\left(a_{1} a_{2}\right) q$ is clear in D_{J+1}^{\prime}. Since $a_{1} a_{2}$ is not clear in D_{J+1}^{\prime}, there are $2^{2 J}-1-\left(2^{J}-1\right)+\left(2^{k-J-1}-1\right)=2^{2 J}-1$ clear 2 fi's in D_{J+1}^{\prime}.

When k is odd and $n \leqslant n_{J+1}$, let $D^{\prime}=\left\{a_{1}\right\} \cup H_{J}^{*} \cup H_{k-J-1}^{*}$, where H_{J}^{*} is a subset of H_{J}^{\prime} with $\lfloor n / 2\rfloor$ columns and H_{k-J-1}^{*} is a subset of H_{k-J-1}^{\prime} with $n-\lfloor n / 2\rfloor-1$ columns, and $H_{J}^{\prime}, H_{k-J-1}^{\prime}$ are the same as those in (2). Since for any $p \in H_{J}^{*}, q \in H_{k-J-1}^{*}, a_{1} p, a_{1} q, p q$ are all clear in D^{\prime}, the total number of clear 2 fi's is at least $\lfloor n / 2\rfloor+(n-\lfloor n / 2\rfloor-1)+\lfloor n / 2\rfloor(n-\lfloor n / 2\rfloor-1)=$ $n-1+\lfloor n / 2\rfloor(n-\lfloor n / 2\rfloor-1)$.

When k is even and $n \leqslant n_{J}$, let $D=\tilde{H}_{J} \cup \tilde{H}_{k-J}$, where \tilde{H}_{J} and \tilde{H}_{k-J} are subsets of H_{J} and H_{k-J} defined by (1) for $j=J$, respectively, and there are $\lfloor n / 2\rfloor$ columns in \tilde{H}_{J} and $n-\lfloor n / 2\rfloor$ columns in \tilde{H}_{k-J}. Since for any $p \in \tilde{H}_{J}, q \in \tilde{H}_{k-J}, p q$ is clear in D, the number of clear 2 fi 's in D is at least $\lfloor n / 2\rfloor(n-\lfloor n / 2\rfloor)$.

We summarize the above results in the following
Theorem 1. Suppose $k \geqslant 5$, then a lower bound $\alpha_{l}(k, n)$ on the maximum number of clear $2 f$'s of a $2^{n-(n-k)}$ design is given by

$$
\alpha_{l}(k, n)= \begin{cases}\left(2^{j}-1\right)\left(n-2^{j}+1\right), & \text { if } n_{j} \geqslant n>n_{j+1}+1, \text { for } j=1, \ldots, J, \\ 2^{k}-2^{j+1}-2^{k-j+1}+4, & \text { if } n=n_{j}+1, \text { for } j=2, \ldots, J, \\ 2^{2 J}-1, & \text { if } n=n_{J+1}+1, \text { for odd } k, \\ n-1+e_{1}\left(n-e_{1}-1\right), & \text { if } n \leqslant n_{J+1}, \text { for odd } k, \\ e_{1}\left(n-e_{1}\right), & \text { if } n \leqslant n_{J}, \text { for even } k,\end{cases}
$$

where $J=\lfloor k / 2\rfloor, n_{j}=2^{j}+2^{k-j}-2$ for $j=1, \ldots, J, n_{J+1}=2\left(2^{J}-1\right)+1, e_{1}=\lfloor n / 2\rfloor$.
The following remark is useful for constructing $4^{m} 2^{n}$ designs in the subsequent sections.

Remark 1. When $k \geqslant 5$, we can always construct a $2^{n-(n-k)}$ design D for any $M(k)<$ $n \leqslant n_{1}$ such that there are six factors $\left\{c_{1}, c_{2}, c_{3}\right\}$ and $\left\{c_{4}, c_{5}, c_{6}\right\}$ in D satisfying $\left\{c_{1}, c_{2}, c_{3}\right\} \cap$ $\left\{c_{4}, c_{5}, c_{6}\right\}=\emptyset$ and $c_{1} c_{2} c_{3}=c_{4} c_{5} c_{6}=I$. When $n_{1} \geqslant n>n_{2}+1$, the columns $\left\{a_{2}, a_{3}, a_{2} a_{3}\right\}$ and $\left\{a_{4}, a_{5}, a_{4} a_{5}\right\}$ satisfy the condition from the construction of D_{j} in (1) for $j=1$. When $n_{j}+1 \geqslant n>n_{j+1}+1, j=2, \ldots, J$, the columns $\left\{a_{1}, a_{2}, a_{1} a_{2}\right\}$ and $\left\{a_{j+1}, a_{j+2}, a_{j+1} a_{j+2}\right\}$ satisfy the condition from the construction of D_{j} in (1). When $n=n_{J+1}+1$ and k is odd, $\left\{a_{2}, a_{3}, a_{2} a_{3}\right\}$ and $\left\{a_{J+2}, a_{J+3}, a_{J+2} a_{J+3}\right\}$ satisfy the condition from the construction of D_{J+1} in (2). For $n \leqslant n_{J+1}$ and odd k, H_{J}^{*} and H_{k-J-1}^{*} can be selected such that there are a subset $\left\{c_{1}, c_{2}, c_{3}\right\}$ of H_{J}^{*} satisfying $c_{1} c_{2} c_{3}=I$ and a subset $\left\{c_{4}, c_{5}, c_{6}\right\}$ of H_{k-J-1}^{*} satisfying $c_{4} c_{5} c_{6}=I$. When $n=n_{J}+1$ and k is even, $\left\{a_{1}, a_{2}, a_{1} a_{2}\right\}$ and $\left\{a_{J+1}, a_{J+2}, a_{J+1} a_{J+2}\right\}$ satisfy the condition from the construction of D_{J} in (1) for $j=J$. For $n \leqslant n_{J}$ and even k, \tilde{H}_{J} and \tilde{H}_{k-J} can be selected such that there are a subset $\left\{c_{1}, c_{2}, c_{3}\right\}$ of \tilde{H}_{J} satisfying $c_{1} c_{2} c_{3}=I$ and a subset $\left\{c_{4}, c_{5}, c_{6}\right\}$ of \tilde{H}_{k-J} satisfying $c_{4} c_{5} c_{6}=I$.

3 Bounds on the maximum number of clear 2fic's for $4^{1} 2^{n}$ designs

In this section, construction methods for $4^{1} 2^{n}$ designs with resolutions III and IV are provided. The results in Section 5 indicate that the construction method performs well for $4^{1} 2^{n}$ designs with resolution III, but this does not hold for $4^{1} 2^{n}$ designs with resolution IV. Let $k \geqslant 5$ and $\alpha(k, n, R)$ be the maximum number of clear 2fic's in $4^{1} 2^{n}$ designs with $N=2^{k}$ runs and resolution R.

3.1 Bounds on the maximum number of clear 2 fic's for $4^{1} 2^{n}$ designs with resolution III

This subsection is devoted to establishing upper and lower bounds on $\alpha(k, n$, III $)$. The fact that the $n+3$ main-effect components and $\alpha(k, n$, III) clear 2fic's are not mutually aliased with each other implies that $n+3+\alpha(k, n$, III $) \leqslant 2^{k}-1$. Therefore $\alpha(k, n$, III $) \leqslant 2^{k}-n-4$, and an upper bound on $\alpha(k, n$, III $)$ is thus established.
Theorem 2. The maximum number $\alpha(k, n, R)$ of clear 2 fic's in a $4^{1} 2^{n}$ design with $R=\mathrm{III}$ is bounded above by $\alpha_{u}(k, n, \mathrm{III})=2^{k}-n-4$.

We now describe the method for constructing resolution III $4^{1} 2^{n}$ designs with clear 2fic's. Let $n_{j}=2^{j}+2^{k-j}-5, j=1, \ldots, J$, where $J=\lfloor k / 2\rfloor$. Clearly, we have $n_{1}>\cdots>n_{J}$. If $n>n_{1}$, there does not exist any $4^{1} 2^{n}$ design containing clear 2fic's (see [17]). We need only to examine values of n in the range of $M^{\prime}(k)<n \leqslant n_{1}$, where $M^{\prime}(k)$ denotes the maximum value of n for a $4^{1} 2^{n}$ design to have resolution at least V.

Note that a $4^{1} 2^{n}$ design with 2^{k} runs can be constructed from a $2^{(n+3)-(n+3-k)}$ design. When $M^{\prime}(k)<n \leqslant n_{1}$, we can construct a $2^{(n+3)-(n+3-k)}$ design such that there are three factors $\left\{c_{1}, c_{2}, c_{3}\right\}$ satisfying $c_{1} c_{2} c_{3}=I$ as discussed in Remark 1. Then replacing $\left\{c_{1}, c_{2}, c_{3}\right\}$ with a 4 -level factor, we obtain a $4^{1} 2^{n}$ design with 2^{k} runs, which has the same number of clear 2 fic's as the $2^{(n+3)-(n+3-k)}$ design has. And from Theorem 2, the number of clear 2fic's attains the upper bound when $n=n_{j}$. The results are summarized in the following

Theorem 3. Suppose $k \geqslant 5$, then the design constructed above for $n=n_{j}$ with $j=1, \ldots, J$ has the maximum number of clear $2 f i c$'s, and more generally, a lower bound $\alpha_{l}(k, n, \mathrm{III})$ on the
maximum number of clear 2fic's of a $4^{1} 2^{n}$ design is given by

$$
\alpha_{l}(k, n, \text { III })= \begin{cases}\left(2^{j}-1\right)\left(n-2^{j}+4\right), & \text { if } n_{j} \geqslant n>n_{j+1}+1, \text { for } j=1, \ldots, J, \\ 2^{k}-2^{j+1}-2^{k-j+1}+4, & \text { if } n=n_{j}+1, \text { for } j=2, \ldots, J, \\ 2^{2 J}-1, & \text { if } n=n_{J+1}+1, \text { for odd } k, \\ n+2+e_{2}\left(n+2-e_{2}\right), & \text { if } n \leqslant n_{J+1}, \text { for odd } k, \\ e_{2}\left(n+3-e_{2}\right), & \text { if } n \leqslant n_{J}, \text { for even } k,\end{cases}
$$

where $J=\lfloor k / 2\rfloor, n_{j}=2^{j}+2^{k-j}-5$ for $j=1, \ldots, J, n_{J+1}=2\left(2^{J}-1\right)-2$, $e_{2}=\lfloor(n+3) / 2\rfloor$.

3.2 Bounds on the maximum number of clear 2 fic's for $4^{1} 2^{n}$ designs with resolution IV

The upper and lower bounds on $\alpha(k, n$, IV $)$ are established in this subsection. To build the upper bound, an approach similar to one used in [20] for obtaining an upper bound on the maximum number of clear 2fis for blocked 2-level fractional factorial designs is utilized here. First let us see some notations from [13, 24]. Let E be a $4^{m} 2^{n}$ design determined by $B=$ $\left\{a_{11}, a_{12}, a_{13}, \ldots, a_{m 1}, a_{m 2}, a_{m 3}, b_{1}, \ldots, b_{n}\right\}$, where $a_{i 1} a_{i 2} a_{i 3}=I, i=1, \ldots, m$. And let $m_{j}(E)$ be the number of 2 fic's in the j-th alias set not containing main-effect components, where $j=1, \ldots, f_{m}, f_{m}=2^{k}-1-n-3 m$. Also let $I(E)$ denote the number of 2 fic's of E, and $N_{i}=\#\left\{1 \leqslant j \leqslant f_{m}: m_{j}(E)=i\right\}$ for $i \geqslant 0$ be the number of alias sets that contain i 2fic's. Let $C(E)$ and $U(E)$ denote the numbers of clear 2fic's and unclear 2fic's of E, respectively. Then $C(E)=N_{1}, I(E)=(n+3 m)(n+3 m-1) / 2-3 m$ and $U(E)=I(E)-C(E)=$ $(n+3 m)(n+3 m-1) / 2-3 m-C(E)$.

Note that any two 2 fic's in the same alias set do not share a common letter. Thus $m_{j}(E) \leqslant r$ and $N_{i}=0$ for $i>r$, where $r=\lfloor(n+3 m) / 2\rfloor$. If $N_{i}>0$, there exists an alias set with $i 2$ fic's. These 2 fic's contain $2 i$ letters, and any two of which form an unclear 2fic, thus $U(E) \geqslant i(2 i-1)$. Note that there is at most one of $a_{j 1}, a_{j 2}$ and $a_{j 3}$ for any $j=1, \ldots, m$ among these $2 i$ letters, so $N_{r-m+1}=\cdots=N_{r}=0$. Then we have the following Lemma 1 .
Lemma 1. If $N_{i}>0$ for some i, where $2 \leqslant i \leqslant r-m$, then $U(E) \geqslant i(2 i-1)$.
Lemma 2. (i) If $N_{i}=0$ for $i=j+1, \ldots, r$, where $2<j<r$, then $C(E) \leqslant\left\{(j-1) f_{m}+\right.$ $\left.N_{j}-I(E)\right\} /(j-2)$.
(ii) If $N_{i}=0$ for $i=j, \ldots, r$, where $2<j \leqslant r$, then $C(E) \leqslant\left\{(j-1) f_{m}-I(E)\right\} /(j-2)$.

The proof of Lemma 2 is similar to that of Lemma 4.6 in [13], we omit it here.
For $m=1$, it follows that $N_{r}=0$, then from Lemma 2 (ii), we can obtain

$$
C(E) \leqslant \begin{cases}C_{1 o}=\left\{(n+1) f_{1}-n^{2}-5 n\right\} /(n-1), & \text { if } n>1 \text { is odd } \tag{3}\\ C_{1 e}=\left\{n f_{1}-n^{2}-5 n\right\} /(n-2), & \text { if } n>2 \text { is even }\end{cases}
$$

Next, let us consider the two cases (i) $N_{r}=0, N_{r-1}>0$, and (ii) $N_{r}=0, N_{r-1}=0$ for $m=1$. For Case (i), from Lemma 1, we have

$$
C(E) \leqslant \begin{cases}C_{2 o}=2 n, & \text { if } n \text { is odd } \tag{4}\\ C_{2 e}=3 n, & \text { if } n \text { is even }\end{cases}
$$

On the other hand for Case (ii), from Lemma 2 (ii), we have

$$
C(E) \leqslant \begin{cases}C_{3 o}=\left\{(n-1) f_{1}-n^{2}-5 n\right\} /(n-3), & \text { if } n>3 \text { is odd } \tag{5}\\ C_{3 e}=\left\{(n-2) f_{1}-n^{2}-5 n\right\} /(n-4), & \text { if } n>4 \text { is even }\end{cases}
$$

Then based on (3), (4) and (5), we obtain
Theorem 4. If $n>4$, the maximum number $\alpha(k, n, R)$ of clear 2 fic's in a $4^{1} 2^{n}$ design with $R=$ IV is bounded above by

$$
\alpha_{u}(k, n, \mathrm{IV})= \begin{cases}\min \left\{\left\lfloor C_{1 o}\right\rfloor, \max \left\{C_{2 o},\left\lfloor C_{3 o}\right\rfloor\right\}\right\}, & \text { if } n \text { is odd } \\ \min \left\{\left\lfloor C_{1 e}\right\rfloor, \max \left\{C_{2 e},\left\lfloor C_{3 e}\right\rfloor\right\}\right\}, & \text { if } n \text { is even }\end{cases}
$$

A lower bound $\alpha_{l}(k, n$, IV $)$ on $\alpha(k, n$, IV $)$ is derived through constructing $4^{1} 2^{n}$ designs with resolution IV. Theorem 5 summarizes the results and the detailed construction is given in Appendix for simplicity.

Theorem 5. Suppose $k \geqslant 5$, then a lower bound $\alpha_{l}(k, n$, IV) on the maximum number of clear 2fic's of a $4^{1} 2^{n}$ design is given by

$$
\alpha_{l}(k, n, \mathrm{IV})= \begin{cases}2 n, & \text { if } n_{2} \geqslant n>n_{3}, \\ 2^{k}-3 \times 2^{k-j}-3 \times 2^{j}+10, & \text { if } n=n_{j}, \text { for } j=3, \ldots, J, \\ 2^{k}-3 \times 2^{k-j}-3 \times 2^{j}+11, & \text { if } n=n_{j}-1, \text { for } j=3, \ldots, J, \\ 2^{k}-3 \times 2^{k-j}-2^{j+1}+5, & \text { if } n=n_{j}-2, \text { for } j=3, \ldots, J, \\ \left(2^{j}-3\right)\left(n-2^{j}+5\right)+n-1, & \text { if } n_{j}-3 \geqslant n>n_{j+1}, \text { for } j=3, \ldots, J, \\ 2^{2 J}-2^{J+1}-4, & \text { if } n=n_{J+1}, \text { for odd } k, \\ e_{3}\left(n+2-e_{3}\right)+n-1, & \text { if } n<n_{J+1},\end{cases}
$$

where $J=\lfloor k / 2\rfloor, n_{j}=2^{j}+2^{k-j}-5$ for $j=2, \ldots, J, n_{J+1}=2\left(2^{J}-2\right)-2, e_{3}=\lfloor(n+2) / 2\rfloor$.
Remark 2. When k is even, $n_{J+1}+1=n_{J}$, and the case $n=n_{J}-2$ is included in both items $n=n_{J}-2$ and $n<n_{J+1}$ in Theorem 5 , thus we can select

$$
\alpha_{l}\left(k, n_{J}-2, \mathrm{IV}\right)=\max \left\{2^{k}-3 \times 2^{k-J}-2^{J+1}+5, e_{3}\left(n_{J}-e_{3}\right)+n_{J}-3\right\}
$$

where $e_{3}=\lfloor(n+2) / 2\rfloor$.

4 Bounds on the maximum number of clear 2fic's for $4^{2} 2^{n}$ designs

This section provides the construction methods for $4^{2} 2^{n}$ designs with resolutions III and IV. The results in Section 5 indicate that the construction methods perform well for both cases of resolutions III and IV. Suppose $k \geqslant 5$ and let $\beta(k, n, R)$ denote the maximum number of clear 2 fic's in $4^{2} 2^{n}$ designs with $N=2^{k}$ runs and resolution R.

4.1 Bounds on the maximum number of clear 2fic's for $4^{2} 2^{n}$ designs with resolution III

The upper and lower bounds on $\beta(k, n$, III $)$ are established in this subsection. The fact that the $n+6$ main-effect components and $\beta(k, n$, III $)$ clear 2fic's are not mutually aliased with each
other implies that $n+6+\beta(k, n$, III $) \leqslant 2^{k}-1$. Therefore $\beta(k, n$, III $) \leqslant 2^{k}-n-7$. Thus an upper bound on $\beta(k, n$, III) is established. This result is summarized in Theorem 6.
Theorem 6. The maximum number $\beta(k, n, R)$ of clear 2 fic's in a $4^{2} 2^{n}$ design with $R=\mathrm{III}$ is bounded above by $\beta_{u}(k, n, \mathrm{III})=2^{k}-n-7$.

Let $n_{j}=2^{j}+2^{k-j}-8, j=1, \ldots, J$, where $J=\lfloor k / 2\rfloor$. Clearly, we have $n_{1}>\cdots>n_{J}$. If $n>n_{1}$, there does not exist any $4^{2} 2^{n}$ design containing clear 2fic's (see [17]). We need only to examine values of n in the range of $M^{\prime \prime}(k)<n \leqslant n_{1}$, where $M^{\prime \prime}(k)$ denotes the maximum value of n for a $4^{2} 2^{n}$ design to have resolution at least V .

Note that a $4^{2} 2^{n}$ design with 2^{k} runs can be constructed from a $2^{(n+6)-(n+6-k)}$ design. Then similarly to the case of $4^{1} 2^{n}$ design, when $M^{\prime \prime}(k)<n \leqslant n_{1}$, we can construct a $2^{(n+6)-(n+6-k)}$ design such that there are six columns $\left\{c_{1}, c_{2}, c_{3}\right\}$ and $\left\{c_{4}, c_{5}, c_{6}\right\}$ satisfying $\left\{c_{1}, c_{2}, c_{3}\right\} \cap\left\{c_{4}, c_{5}, c_{6}\right\}=\emptyset$ and $c_{1} c_{2} c_{3}=c_{4} c_{5} c_{6}=I$ as discussed in Remark 1. Then replacing $\left\{c_{1}, c_{2}, c_{3}\right\}$ and $\left\{c_{4}, c_{5}, c_{6}\right\}$ with two 4 -level columns, respectively, we obtain a $4^{2} 2^{n}$ design with 2^{k} runs, which has the same number of clear 2fic's as the $2^{(n+6)-(n+6-k)}$ design has. And from Theorem 6, the number of clear 2fic's attains the upper bound when $n=n_{j}$. The results are summarized in the following
Theorem 7. Suppose $k \geqslant 5$, the design constructed above for $n=n_{j}$ with $j=1, \ldots, J$ has the maximum number of clear 2fic's, and more generally, a lower bound $\beta_{l}(k, n$, III $)$ on the maximum number of clear 2fic's of a $4^{2} 2^{n}$ design is given by

$$
\beta_{l}(k, n, \mathrm{III})= \begin{cases}\left(2^{j}-1\right)\left(n-2^{j}+7\right), & \text { if } n_{j} \geqslant n>n_{j+1}+1, \text { for } j=1, \ldots, J, \\ 2^{k}-2^{j+1}-2^{k-j+1}+4, & \text { if } n=n_{j}+1, \text { for } j=2, \ldots, J \\ 2^{2 J}-1, & \text { if } n=n_{J+1}+1, \text { for odd } k, \\ n+5+e_{4}\left(n+5-e_{4}\right), & \text { if } n \leqslant n_{J+1}, \text { for odd } k, \\ e_{4}\left(n+6-e_{4}\right), & \text { if } n \leqslant n_{J}, \text { for even } k,\end{cases}
$$

where $J=\lfloor k / 2\rfloor, n_{j}=2^{j}+2^{k-j}-8$ for $j=1, \ldots, J, n_{J+1}=2\left(2^{J}-1\right)-5, e_{4}=\lfloor(n+6) / 2\rfloor$.

4.2 Bounds on the maximum number of clear 2fic's for $4^{2} 2^{n}$ designs with resolution IV

In this subsection, the upper and lower bounds on $\alpha(k, n$, IV $)$ are established.
For $m=2$, it follows from the discussions in Subsection 3.2 that $N_{r-1}=N_{r}=0$, then from Lemma 2 (ii), we can obtain

$$
C(E) \leqslant \begin{cases}C_{1 o}^{\prime}=\left\{(n+1) f_{2}-(n+2)(n+9)\right\} /(n-1), & \text { if } n>1 \text { is odd } \tag{6}\\ C_{1 e}^{\prime}=\left\{(n+2) f_{2}-(n+2)(n+9)\right\} / n, & \text { if } n \text { is even }\end{cases}
$$

Next, let us consider the two cases (i) $N_{r-1}=N_{r}=0, N_{r-2}>0$, and (ii) $N_{r-1}=N_{r}=0$, $N_{r-2}=0$ for $m=2$. For Case (i), from Lemma 1, we have

$$
C(E) \leqslant \begin{cases}C_{2 o}^{\prime}=5 n+9, & \text { if } n \text { is odd } \tag{7}\\ C_{2 e}^{\prime}=4 n+8, & \text { if } n \text { is even }\end{cases}
$$

On the other hand for Case (ii), from Lemma 2 (ii), we have

$$
C(E) \leqslant \begin{cases}C_{3 o}^{\prime}=\left\{(n-1) f_{2}-(n+2)(n+9)\right\} /(n-3), & \text { if } n>3 \text { is odd } \tag{8}\\ C_{3 e}^{\prime}=\left\{n f_{2}-(n+2)(n+9)\right\} /(n-2), & \text { if } n>2 \text { is even }\end{cases}
$$

Then based on (6), (7) and (8), the following theorem can be obtained.
Theorem 8. If $n>3$, the maximum number $\beta(k, n, R)$ of clear 2 fic's in a $4^{2} 2^{n}$ design with $R=\mathrm{IV}$ is bounded above by

$$
\beta_{u}(k, n, \mathrm{IV})= \begin{cases}\min \left\{\left\lfloor C_{1 o}^{\prime}\right\rfloor, \max \left\{C_{2 o}^{\prime},\left\lfloor C_{3 o}^{\prime}\right\rfloor\right\}\right\}, & \text { if } n \text { is odd } \\ \min \left\{\left\lfloor C_{1 e}^{\prime}\right\rfloor, \max \left\{C_{2 e}^{\prime},\left\lfloor C_{3 e}^{\prime}\right\rfloor\right\}\right\}, & \text { if } n \text { is even }\end{cases}
$$

Remark 3. When $k=5, m=2, n=2$ or $3, r=4, N_{3}=N_{4}=0$, clearly we have $N_{2}>0$, hence $\beta_{u}(5,2, \mathrm{IV})=\min \left\{\left\lfloor C_{1 e}^{\prime}\right\rfloor, C_{2 e}^{\prime}\right\}=16$ and $\beta_{u}(5,3, \mathrm{IV})=\min \left\{\left\lfloor C_{1 o}^{\prime}\right\rfloor, C_{2 o}^{\prime}\right\}=14$.

By constructing $4^{2} 2^{n}$ designs with resolution IV, a lower bound $\beta_{l}(k, n$, IV $)$ on $\beta(k, n$, IV $)$ is obtained, which is shown in Theorem 9. For simplicity, the detailed construction is given in Appendix.
Theorem 9. Suppose $k \geqslant 5$, then a lower bound $\beta_{l}(k, n$, IV) on the maximum number of clear 2fic's of a $4^{2} 2^{n}$ design is given by

$$
\beta_{l}(k, n, \mathrm{IV})= \begin{cases}4\left(n_{2}-n\right)+6, & \text { if } n_{2} \geqslant n>n_{3}, \\ 2^{k}-\left(2^{j}-8\right)\left(n_{j}-n\right)-4 n_{j}-13, & \text { if } n_{j} \geqslant n>n_{j+1}, \text { for } j=3, \ldots, J, \\ e_{5}\left(n-e_{5}-4\right)+2^{J+2}+2 n+1, & \text { if } 2^{J}-4<n \leqslant n_{J+1}, \text { for odd } k, \\ e_{5}\left(n-e_{5}+4\right)+2^{J+3}-6 n-33, & \text { if } 2^{J}-4<n \leqslant n_{J+1}, \text { for even } k, \\ e_{5}\left(n+4-e_{5}\right)+2 n+3, & \text { if } n \leqslant 2^{J}-4,\end{cases}
$$

where $J=\lfloor k / 2\rfloor, n_{j}=2^{j}+2^{k-j}-8$ for $j=2, \ldots, J, n_{J+1}=2\left(2^{J}-2\right)-5, e_{5}=\lfloor(n+4) / 2\rfloor$.

5 Performance of the construction methods

This section examines the performance of the lower and upper bounds on the maximum number of clear 2fic's obtained in Sections 3 and 4 for $k=5$. All the MaxC2cR $4^{m} 2^{n}$ designs with 2^{k} runs in the following tables are constructed from $2^{(3 m+n)-(3 m+n-k)}$ designs which are obtained through computer searches. Here the details are omitted for simplicity.

For $k=5$, let $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} denote the five independent columns $(10000)^{\prime},(01000)^{\prime}$, $(00100)^{\prime},(00010)^{\prime}$ and $(00001)^{\prime}$, respectively. Then any product of $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} also corresponds to a binary sequence, for example $a_{1} a_{3} a_{5}$ corresponds to (10101)'. After converting these binary sequences into base-ten system in Table 1, a $2^{m-(m-k)}$ design D^{\prime} can be obtained by selecting a subset of m columns of $C=\{1, \ldots, 31\}$, consisting of k independent columns and $m-k$ additional columns. Then we can get a $4^{1} 2^{n}$ design D by replacing three columns, say $\left\{b_{1}, b_{2}, b_{3}\right\}$ of D^{\prime} satisfying $b_{1} b_{2} b_{3}=I$, with a 4 -level column. $4^{2} 2^{n}$ designs can also be obtained similarly.

For simplicity, we omit the independent columns in the following tables. The 4-level column of each design in Table 2 is obtained from $\{1,2,3\}$ in Table 1. And the two 4 -level columns of each design in Table 3 are obtained from $\{1,2,3\}$ and $\{8,16,24\}$ in Table 1, respectively.

Table 1 Design matrices for 16- and 32-run designs

| $\mathbf{1}$ | $\mathbf{2}$ | 3 | $\mathbf{4}$ | 5 | 6 | 7 | $\mathbf{8}$ | 9 | 10 | 11 | 12 | 13 | 14 | 15 | $\mathbf{1 6}$ | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :---: |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 2 MaxC2cR $4^{1} 2^{n}$ designs with 32 runs

We can easily get that $M^{\prime}(5)=4$. When $n \leqslant 13$ there exist $4^{1} 2^{n}$ designs containing clear 2fic's, and when $4<n \leqslant 7$ there exist $4^{1} 2^{n}$ designs with resolution IV containing clear 2fic's (see [17]). Table 2 tabulates MaxC2cR $4^{1} 2^{n}$ designs with resolutions III and IV and gives the values of $\alpha(k, n, R)$ along with $\alpha_{l}(k, n, R)$ and $\alpha_{u}(k, n, R)$ for $k=5$, where $\alpha(k, n, R)$ is defined in Section $3, \alpha_{l}(k, n, R)$ and $\alpha_{u}(k, n, R)$ are the lower and upper bounds on $\alpha(k, n, R)$, respectively. From Table 2 , we can find that the lower bound $\alpha_{l}(k, n$, III) behaves better than the upper bound $\alpha_{u}(k, n$, III $)$. The lower bound $\alpha_{l}(k, n$, III $)$ equals $\alpha(k, n$, III $)$ in many cases but the upper bound $\alpha_{u}(k, n$, III $)$ equals $\alpha(k, n$, III $)$ only in a few cases. Table 2 also shows that the lower bound $\alpha_{l}(k, n$, IV $)$ and the upper bound $\alpha_{u}(k, n$, IV $)$ behave well only in a few cases.
Also, we can get $M^{\prime \prime}(5)=1$. When $n \leqslant 10$ there exist $4^{2} 2^{n}$ designs containing clear 2 fic's and when $1<n \leqslant 4$ there exist $4^{2} 2^{n}$ designs with resolution IV containing clear 2fic's (see [17]). Table 3 tabulates the MaxC2cR $4^{2} 2^{n}$ designs with resolutions III and IV and gives the values of $\beta(k, n, R)$ along with $\beta_{l}(k, n, R)$ and $\beta_{u}(k, n, R)$ for $k=5$, where $\beta(k, n, R)$ is defined in Section $4, \beta_{l}(k, n, R)$ and $\beta_{u}(k, n, R)$ are the lower and upper bounds on $\beta(k, n, R)$, respectively. From Table 3 we can find that the lower bound $\beta_{l}(k, n$, III $)$ equals $\beta(k, n$, III $)$ for all the cases but

Table 3 MaxC2cR $4^{2} 2^{n}$ designs with 32 runs

R	n	Additional columns									$\beta_{l}(5, n, R)$	$\beta(5, n, R)$	$\beta_{u}(5, n, R)$
III	2	12									15	15	23
	3	12	20								18	18	22
	4	12	20	28							21	21	21
	5	10	12	22	30						12	12	20
		6	12	20	30						12	12	20
		6	12	20	28						12	12	20
	6	9	10	17	18	26					11	11	19
		9	10	11	18	26					11	11	19
		9	10	18	19	25					11	11	19
	7	9	10	18	19		27				12	12	18
		9	10	17	18	25	26				12	12	18
	8	9	10	11	17	18	25	26			13	13	17
	9	9	10	11	17	18	19	25	26		14	14	16
	10	9	10	11	17	18	19	25	26	27	15	15	15
	2	14									14	16	16
IV	3	14	21								10	12	14
	4	14	21	31							6	6	12

the upper bound $\beta_{u}(k, n$, III $)$ does not do so. Table 3 also shows that both the lower bound $\beta_{l}(k, n$, IV $)$ and the upper bound $\beta_{u}(k, n$, IV $)$ behave well.

Those comparisons reveal that our construction methods are satisfactory for constructing $4^{m} 2^{n}$ designs with resolution III, and are okey for constructing $4^{m} 2^{n}$ designs with resolution IV under the consideration of maximizing the number of clear 2fic's in the designs.

6 Summary and concluding remarks

In this paper, we first sketch out a construction method for $2^{n-(n-k)}$ designs containing as many clear 2fis as possible, and then derive the upper and lower bounds on the maximum number of clear 2fic's in $4^{m} 2^{n}$ designs with resolutions III and IV. The lower bounds are achieved by constructing $4^{m} 2^{n}$ designs with 2^{k} runs for given k. Finally, we examine the performance of the bounds obtained above for $k=5$. The construction methods are satisfactory when they are used to construct $4^{m} 2^{n}$ designs with resolution III. The number of clear 2fic's in the constructed design attains the maximum number in many cases. And such designs can be easily obtained following the construction methods.

The maximum estimation capacity (see [24, 25]) is another optimality criterion for evaluating factorial designs. It aims at selecting a design that retains full information on the main effects and as much information as possible on the 2 fi's in the sense of entertaining the maximum possible model diversity, under the assumption of absence of interactions involving three or more factors. The aim of clear effects criterion is to find a design containing as many clear main effects and 2fi's as possible that can be estimated without being aliased in a single model. For the former, the estimability of effects requires all the 2 fi 's not in the model to be absent, while for the latter, the estimability of effects does not require this. This is also the advantage of the clear effects criterion over the others. These two criteria can behave quite differently
because of this major difference.
Although the clear effects criterion has the advantage above, there are situations under which no design containing any clear 2 fi exists. For example, a $2^{n-(n-k)}$ design has no clear 2 fi when $n>2^{k-1}$ (see [12]). The clear effects criterion does not apply to these situations. It can be considered as a disadvantage of the clear effects criterion.

When there exists a design with clear 2fic's and the experimenter hopes to estimate the 2 fic's of some factors, he or she can arrange the important factors on those main effect columns corresponding to the clear 2fic's. Thus he or she can estimate the clear 2fic's without assuming the absence of the other 2fic's not in the model in doing the data analysis.

As explained in [6], different types of 2fic's have not the same importance, so they should be treated differently. Obtaining the related bounds for different types of 2 fic's will be welcome. And the results here can be further extended to the case of general $\left(s^{r}\right)^{m} s^{n}$ designs, where s is a prime or prime power. But how to obtain the bounds and how to extend the results are the open problems and need to be further investigated.

Acknowledgements The authors thank the referees for their valuable comments which lead to an improvement of this paper.

References

1 Addelman S. Orthogonal main-effect plans for asymmetrical experiments. Technometrics, 4: 21-46 (1962)
2 Wu C F J. Construction of $2^{m} 4^{n}$ designs via a grouping scheme. Ann Statist, 17: 1880-1885 (1989)
3 Wu C F J, Zhang R C, Wang R. Construction of asymmetrical orthogonal arrays of the type $O A\left(s^{k}\right.$, $\left.\left(s^{r_{1}}\right)^{n_{1}} \cdots\left(s^{r_{t}}\right)^{n_{t}}\right)$. Statist Sinica, 2: 203-219 (1992)
Box G E P, Hunter J S. The 2^{k-p} fractional factorial designs. Technometrics, 3: 311-351, 449-458 (1961)
5 Fries A, Hunter W G. Minimum aberration 2^{k-p} designs. Technometrics, 22: 601-608 (1980)
6 Wu C F J, Zhang R C. Minimum aberration designs with two-level and four-level factors. Biometrika, 80: 203-209 (1993)
7 Zhang R C, Shao Q. Minimum aberration $\left(s^{2}\right) s^{n-k}$ designs. Statist Sinica, 11: 213-223 (2001)
8 Mukerjee R, Wu C F J. Minimum aberration designs for mixed factorials in term of complementary sets. Statist Sinica, 11: 225-239 (2001)
9 Ai M Y, Zhang R C. Characterization of minimum aberration mixed factorials in terms of consulting designs. Statist Papers, 46(2): 157-171 (2005)
10 Wu C F J, Chen Y. A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics, 34: 162-175 (1992)
11 Tang B, Ma F, Ingram D, Wang H. Bounds on the maximum number of clear two-factor interactions for 2^{m-p} designs of resolution III and IV. Canad J Statist, 30: 127-136 (2002)
12 Chen H, Hedayat A S. 2^{n-m} designs with resolution III or IV containing clear two-factor interactions. J Statist Plann Inference, 75: 147-158 (1998)
13 Wu H, Wu C F J. Clear two-factor interactions and minimum aberration. Ann Statist, 30: 1496-1511 (2002)

14 Ai M Y, Zhang R C. s^{n-m} designs containing clear main effects or clear two-factor interactions. Statist Probab Lett, 69: 151-160 (2004)
15 Ke W, Tang B, Wu H. Compromise plans with clear two-factor interactions. Statist Sinica, 15: 709-715 (2005)

16 Yang G J, Liu M Q, Zhang R C. Weak minimum aberration and maximum number of clear two-factor interactions in $2_{\text {IV }}^{m-p}$ designs. Sci China Ser A-Math, 48(11): 1479-1487 (2005)
17 Zhao S L, Zhang R C. $2^{m} 4^{n}$ designs with resolution III or IV containing clear two-factor interaction components. Statist Papers, 49: 441-454 (2008)
18 Li P F, Chen B J, Liu M Q, Zhang R C. A note on minimum aberration and clear criteria. Statist Probab

Lett, 76: 1007-1011 (2006)
19 Yang G J, Liu M Q. A note on the lower bounds on maximum number of clear two-factor interactions for $2_{\text {III }}^{m-p}$ and $2_{\text {IV }}^{m-p}$ designs. Comm Statist Theory Methods, 35: 849-860 (2006)
20 Chen B J, Li P F, Liu M Q, Zhang R C. Some results on blocked regular 2-level fractional factorial designs with clear effects. J Statist Plann Inference, 136(12): 4436-4449 (2006)
21 Yang J F, Li P F, Liu M Q, Zhang R C. $2^{\left(n_{1}+n_{2}\right)-\left(k_{1}+k_{2}\right)}$ fractional factorial split-plot designs containing clear effects. J Statist Plann Inference, 136(12): 4450-4458 (2006)
22 Zi X M, Liu M Q, Zhang R C. Asymmetrical designs containing clear effects. Metrika, 65(1): 123-131 (2007)

23 Zi X M, Zhang R C, Liu M Q. Bounds on the maximum numbers of clear two-factor interactions for $2^{\left(n_{1}+n_{2}\right)-\left(k_{1}+k_{2}\right)}$ fractional factorial split-plot designs. Sci China Ser A-Math, 49(12): 1816-1829 (2006)
24 Cheng C S, Steinberg D M, Sun D X. Minimum aberration and model robustness for two-level factorial designs. J Roy Statist Soc Ser B, 61: 85-93 (1999)
25 Cheng C S, Mukerjee R. Regular fractional factorial designs with minimum aberration and maximum estimation capacity. Ann Statist, 26: 2289-2300 (1998)

Appendix. Proofs of two theorems

A general construction method used in the proof of Theorem 5 is introduced firstly. First, we construct a $2^{(n+2)-(n+2-k)}$ design D^{\prime} of resolution IV with as many clear 2 fi's as possible. Then by choosing a suitable two-factor interaction column, say d_{1} which is clear in D^{\prime} and adding it into D^{\prime}, a $2^{(n+3)-(n+3-k)}$ design $D^{\prime \prime}$ of resolution III with only one length three word is obtained. Thus a $4^{1} 2^{n}$ design D of resolution IV can be obtained by replacing the three columns which form one length three word with a 4-level factor. Note that the number of clear 2fic's in D equals the number of clear 2fi's in $D^{\prime \prime}$, we need only to calculate the number of clear 2 fi 's in $D^{\prime \prime}$. Clearly, the number of clear 2 fi 's in $D^{\prime \prime}$ is $z_{0}-z_{1}+z_{2}$, where z_{0} is the number of clear 2 fi 's in D^{\prime}, z_{1} is the number of 2 fi 's which are clear in D^{\prime} but not in $D^{\prime \prime}$ anymore, and z_{2} is the number of 2 fi 's which are clear in $D^{\prime \prime}$ but not in D^{\prime} originally. Note that a 2 fi which is clear in $D^{\prime \prime}$ but not in D^{\prime} originally must contain d_{1} which is added into D^{\prime}.
Proof of Theorem 5. Suppose that $n=2^{k-2}-1$. Let $a_{1}, a_{2}, b_{1}, \ldots, b_{k-2}$ be the k independent columns. Let

$$
\begin{align*}
& O_{b}=\left\{b_{i_{1}} \cdots b_{i_{p}} \mid \text { where } p \geqslant 1 \text { is odd and } 1 \leqslant i_{1}<\cdots<i_{p} \leqslant k-2\right\} \tag{9}\\
& E_{b}=\left\{b_{i_{1}} \cdots b_{i_{p}} \mid \text { where } p \geqslant 2 \text { is even and } 1 \leqslant i_{1}<\cdots<i_{p} \leqslant k-2\right\} \tag{10}
\end{align*}
$$

It is obvious that $\left|O_{b}\right|=2^{k-3}$ and $\left|E_{b}\right|=2^{k-3}-1$, where for example $\left|O_{b}\right|$ denotes the number of elements in O_{b}. Let

$$
\begin{equation*}
a_{1} a_{2} E_{b}=\left\{a_{1} a_{2} c \mid c \in E_{b}\right\} \tag{11}
\end{equation*}
$$

Obviously, we have $\left|a_{1} a_{2} E_{b}\right|=2^{k-3}-1$. Consider the following design:

$$
\begin{equation*}
D_{2}^{\prime}=S \cup C, \text { where } S=\left\{a_{1}, a_{2}\right\} \text { and } C=O_{b} \cup\left(a_{1} a_{2} E_{b}\right) \tag{12}
\end{equation*}
$$

From the discussion of [11], $a_{1} a_{2}$ is clear in D_{2}^{\prime}, and D_{2}^{\prime} is of resolution IV with $\left|D_{2}^{\prime}\right|=2^{k-2}+1$ columns, and for any $a \in S$ and $c \in C, a c$ is clear in D_{2}^{\prime}. Let d_{12} denote the interaction column $a_{1} a_{2}$. Now we can obtain a design $D_{2}^{\prime \prime}$ by adding the column d_{12} to D_{2}^{\prime}. Since $a_{1} a_{2}$ is clear in design D_{2}^{\prime}, the new design $D_{2}^{\prime \prime}$ is a design with only one word $a_{1} a_{2} d_{12}$ of length three. Let

$$
\begin{equation*}
D_{2}=\left\{A_{1}\right\} \cup C \tag{13}
\end{equation*}
$$

where A_{1} is a 4 -level factor obtained from $\left\{a_{1}, a_{2}, d_{12}\right\}$. Then D_{2} has one 4 -level factor and $n=2^{k-2}-1$ 2-level factors. Clearly, for any $c \in C, a_{1} c$ and $a_{2} c$ are clear and $c d_{12}$ is not clear in D_{2}. And for any $c_{1}, c_{2} \in C, c_{1} c_{2}$ is not clear in D_{2}, too. Therefore, the number of clear 2 fic's in design D_{2} is $\beta_{1 l}(k, n)=2 n$.

Now suppose that $n=2^{j}+2^{k-j}-5$, where $3 \leqslant j \leqslant\lfloor k / 2\rfloor$. Let $a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{k-j}$ be k independent columns. Define $O_{a}, E_{a}, O_{b}, E_{b}, a_{1} a_{2} E_{b}$ and $b_{1} b_{2} E_{a}$ the same way as in (9), (10) and (11). For example, $O_{a}=\left\{a_{i_{1}} \cdots a_{i_{p}} \mid\right.$ where $p \geqslant 1$ is odd and $\left.1 \leqslant i_{1}<\cdots<i_{p} \leqslant j\right\}$. Consider design D_{j}^{\prime} given by

$$
\begin{equation*}
D_{j}^{\prime}=P \cup Q, \text { where } P=O_{a} \cup\left(b_{1} b_{2} E_{a} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}\right) \text { and } Q=O_{b} \cup\left(a_{1} a_{2} E_{b}\right) \tag{14}
\end{equation*}
$$

Clearly, $|P|=2^{j}-2,|Q|=2^{k-j}-1$. Following the discussion of [11], we have $\left|D_{j}^{\prime}\right|=\left(2^{j}-\right.$ $2)+\left(2^{k-j}-1\right)=n+2, D_{j}^{\prime}$ has resolution IV, $p q$ is clear for any $p \in P$ and $q \in Q \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$, and D_{j}^{\prime} have $\left(2^{j}-2\right)\left(2^{k-j}-2\right)$ clear 2 fi 's. By adding $a_{1} b_{1}$ to D_{j}^{\prime}, we can obtain a design $D_{j}^{\prime \prime}=D_{j}^{\prime} \cup\left\{a_{1} b_{1}\right\}$ with resolution III. Let d_{1} denote the column $a_{1} b_{1}$ in this and the following paragraphs. Since $a_{1} b_{1}$ is clear in $D_{j}^{\prime}, a_{1} b_{1} d_{1}$ is the only word of length three in $D_{j}^{\prime \prime}$. Now we need only to calculate the number of 2 fi 's which are clear in D_{j}^{\prime} but not in $D_{j}^{\prime \prime}$ anymore and the number of 2 fis which are clear in $D_{j}^{\prime \prime}$ but not in D_{j}^{\prime} originally. For any $p \in P$ and $q \in Q \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}, p q$ is clear in D_{j}^{\prime}, if $p q$ is not clear in $D_{j}^{\prime \prime}$, then $p=a_{1}, q=b_{1}$ or there exists a factor $c \in P \cup Q$ such that $c p q=d_{1}$. There are two cases:
(i) $p \in P \backslash\left\{a_{1}\right\}, q=b_{2}, c=a_{1} b_{1} b_{2} p$ and $c p q=d_{1}$;
(ii) $p=a_{2}, q \in Q \backslash\left\{b_{1}, a_{1} a_{2} b_{1} b_{2}\right\}, c=a_{1} a_{2} b_{1} q$ and $c p q=d_{1}$.

Note that $p=a_{2}, q=b_{2}, c=a_{1} a_{2} b_{1} b_{2}$ are included in both cases (i) and (ii), and $a_{1} b_{1}$ is not clear in $D_{j}^{\prime \prime}$, thus the number of 2 fi's which are clear in D_{j}^{\prime} but not in $D_{j}^{\prime \prime}$ anymore is $\left(2^{j}-3\right)+\left(2^{k-j}-3\right)-1+1=2^{j}+2^{k-j}-6$. Note that $d_{1} p$ is not clear in $D_{j}^{\prime \prime}$ for any $p \in P \cup Q$, the number of 2 fi 's which are clear in $D_{j}^{\prime \prime}$ is $\left(2^{j}-2\right)\left(2^{k-j}-2\right)-\left(2^{j}+2^{k-j}-6\right)=$ $2^{k}-3 \times 2^{k-j}-3 \times 2^{j}+10$. Let

$$
\begin{equation*}
D_{j}=\left\{A_{1}\right\} \cup D_{j}^{\prime \prime} \backslash\left\{a_{1}, b_{1}\right\} \tag{15}
\end{equation*}
$$

where $\left\{A_{1}\right\}$ is the 4 -level factor obtained from $\left\{a_{1}, b_{1}, d_{1}\right\}$. The resulting $4^{1} 2^{n}$ design D_{j} has resolution IV and $2^{k}-3 \times 2^{k-j}-3 \times 2^{j}+10$ clear 2 fic's.

Let $n_{j}=2^{j}+2^{k-j}-5$ for $j=2, \ldots, J$, where $J=\lfloor k / 2\rfloor$. For $n_{2}>n>n_{3}$, let $D=\left\{A_{1}\right\} \cup C^{*}$, where C^{*} is a subset of C obtained by deleting any $n_{2}-n$ elements from C given in (13). For any $c \in C^{*}, a_{1} c$ and $a_{2} c$ are still clear in D, hence D has at least $2 n$ clear 2 fic's. For $n=n_{j}-1$ with $j=3, \ldots, J$, the design D is constructed by deleting the column $a_{1} a_{2} b_{1} b_{2}$ in D_{j} given in (15). Then $p \neq a_{2}$ in case (i) and $q \neq b_{2}$ in case (ii) above. Note that $p=a_{2}$ in case (i) and $q=b_{2}$ in case (ii) are the same in fact, there are $2^{k}-3 \times 2^{k-j}-3 \times 2^{j}+11$ clear 2 fic's in the resulting design. For $n=n_{j}-2$ with $j=3, \ldots, J$, the design D is constructed by deleting the columns $a_{1} a_{2} b_{1} b_{2}$ and b_{2} in D_{j} given in (15). Then case (i) cannot occur anymore and $q \neq b_{2}$ in case (ii). Note that $a_{1} b_{1}$ is not clear in the design D and the 2 fic $d_{1} p$ is clear for any $p \in P \backslash\left\{a_{1}, a_{2}\right\}$. There are $\left(2^{j}-2\right)\left(2^{k-j}-3\right)-\left(2^{k-j}-4\right)-1+\left(2^{j}-4\right)=2^{k}-3 \times 2^{k-j}-2^{j+1}+5$ clear 2 fic's in the resulting design. For $n_{j+1}<n \leqslant n_{j}-3$ with $j=3, \ldots, J$, where $n_{J+1}=2\left(2^{J}-2\right)-2$, the design
D is constructed by deleting the column $a_{1} a_{2} b_{1} b_{2}, a_{2}, b_{2}$ and any additional $n_{j}-n-3$ columns from $Q \backslash\left\{b_{1}\right\}$. Then both the cases (i) and (ii) cannot occur anymore. The 2fic $d_{1} p$ is clear for any $p \in(P \cup Q) \backslash\left\{a_{1}, b_{1}\right\}$. There are $\left(2^{j}-3\right)\left(n+2-2^{j}+3\right)-1+n=\left(2^{j}-3\right)\left(n-2^{j}+5\right)+n-1$ clear 2fic's in the resulting design.

Note that the case $n_{J}-3 \geqslant n>n_{J+1}$ is non-trivial only for odd k. When k is odd and $n=n_{J+1}$, let $D_{J+1}^{\prime}=P^{*} \cup Q^{*}$, where $P^{*}=P \backslash\left\{a_{2}\right\}, Q^{*} \subset Q \backslash\left\{b_{2}, a_{1} a_{2} b_{1} b_{2}\right\}$ such that $b_{1} \in Q^{*},\left|Q^{*}\right|=2^{J}-1$, and P, Q are the same as those given in (14) for $j=J$. Note that $p q$ is clear in D_{J+1}^{\prime} for any $p \in P^{*}$ and $q \in Q^{*}$, there are $\left(2^{J}-3\right)\left(2^{J}-1\right)$ clear 2 fi 's in D_{J+1}^{\prime}. By adding $a_{1} b_{1}$ to D_{J+1}^{\prime} we can get a design $D_{J+1}^{\prime \prime}$ with $n+3$ columns. For any $p \in P^{*}$ and $q \in Q^{*}$ if $p q$ is not clear in $D_{J+1}^{\prime \prime}$, then $p=a_{1}, q=b_{1}$. Note that $d_{1} p$ is clear in $D_{J+1}^{\prime \prime}$ for any $p \in\left(P^{*} \cup Q^{*}\right) \backslash\left\{a_{1}, b_{1}\right\}$, there are $\left(2^{J}-3\right)\left(2^{J}-1\right)-1+\left(2^{J+1}-6\right)=2^{2 J}-2^{J+1}-4$ clear 2fi's in $D_{J+1}^{\prime \prime}$. Replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ with a 4 -level factor we get a $4^{1} 2^{n}$ design D. And D has $2^{2 J}-2^{J+1}-4$ clear 2fic's.

When $n<n_{J+1}$, let $D^{\prime}=P^{*} \cup Q^{*}$, where P^{*} is a subset of $P \backslash\left\{a_{2}\right\}$ with $\lfloor(n+2) / 2\rfloor$ columns and Q^{*} is a subset of $Q \backslash\left\{b_{2}, a_{1} a_{2} b_{1} b_{2}\right\}$ with $(n+2)-\lfloor(n+2) / 2\rfloor$ columns such that $a_{1} \in P^{*}, b_{1} \in Q^{*}$, and P, Q are given in (14) for $j=J$. Note that for any $p \in P^{*}, q \in Q^{*}, p q$ is clear in D^{\prime}. Then by adding $a_{1} b_{1}$ to D^{\prime} and replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ with a 4 -level factor we get a $4^{1} 2^{n}$ design D. For any $p \in P^{*}, q \in Q^{*}, p q, d_{1} p, d_{1} q$ are all clear in D except for $p=a_{1}$ and $q=b_{1}$. Thus D is a design with at least $\lfloor(n+2) / 2\rfloor((n+2)-\lfloor(n+2) / 2\rfloor)-1+n$ clear 2fic's.

A construction method which is similar to that described in the proof of Theorem 5 is used in Theorem 9. First, a $2^{(n+4)-(n+4-k)}$ design E^{\prime} of resolution IV is constructed. Then by choosing two suitable two-factor interaction columns, say d_{1}, d_{2} which are clear in E^{\prime} and adding them into E^{\prime}, a $2^{(n+6)-(n+6-k)}$ design $E^{\prime \prime}$ of resolution III with only two length three words is obtained. Thus a $4^{2} 2^{n}$ design E of resolution IV can be obtained by replacing the six columns which form the two length three words with two 4 -level factors. Then the number of clear 2fic's in E equals the number of clear 2fi's in $E^{\prime \prime}$. And the number of clear 2fi's in $E^{\prime \prime}$ is calculated just like that in $D^{\prime \prime}$ in Theorem 5.
Proof of Theorem 9. Suppose that $n=2^{k-2}-4$. Let

$$
E_{2}^{\prime}=D_{2}^{\prime} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}, \quad E_{2}^{\prime \prime}=E_{2}^{\prime} \cup\left\{a_{1} b_{1}\right\} \cup\left\{a_{2} b_{2}\right\}
$$

where $D_{2}^{\prime}=S \cup C, S=\left\{a_{1}, a_{2}\right\}$ and $C=O_{b} \cup\left(a_{1} a_{2} E_{b}\right)$ are given in (12), and $\left|O_{b}\right|=$ $2^{k-3},\left|a_{1} a_{2} E_{b}\right|=2^{k-3}-1$. Then $E_{2}^{\prime \prime}$ has $n+6$ columns. For any $p \in S$ and $q \in C \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$, $p q$ is clear in E_{2}^{\prime}. Note that $a_{1} a_{2}$ is clear in $E_{2}^{\prime}, E_{2}^{\prime}$ has $2\left(2^{k-2}-2\right)+1$ clear 2fi's. Let d_{1} and d_{2} denote $a_{1} b_{1}$ and $a_{2} b_{2}$ in this and the following paragraphs, respectively. Since $a_{1} b_{1}$ and $a_{2} b_{2}$ are clear in design $E_{2}^{\prime}, E_{2}^{\prime \prime}$ is a design with only two words $a_{1} b_{1} d_{1}$ and $a_{2} b_{2} d_{2}$ of length three. Clearly, for any $p \in C \backslash\left\{b_{1}, b_{2}, a_{1} a_{2} b_{1} b_{2}\right\}$, there exists $c=a_{1} a_{2} b_{2} p \in C \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ such that $a_{1} c p=d_{2}$. A similar argument is valid for a_{2} and d_{1}. Therefore, for any $p \in C \backslash\left\{b_{1}, b_{2}, a_{1} a_{2} b_{1} b_{2}\right\}$ the 2 fi 's $a_{i} p, d_{i} p$ are not clear in $E_{2}^{\prime \prime}$ for $i=1,2$. Note that $a_{1} b_{1}, a_{2} b_{2}, a_{1} d_{1}, a_{1} d_{2}, a_{2} d_{1}, a_{2} d_{2}, b_{1} d_{1}, b_{2} d_{2}$ are not clear and $d_{1} d_{2}, b_{1} d_{2}, b_{2} d_{1}$ are clear in $E_{2}^{\prime \prime}$, the design $E_{2}^{\prime \prime}$ has $2\left(2^{k-2}-2\right)+1-2\left(2^{k-2}-\right.$ 4) $-2+3=6$ clear 2 fi's. Thus we can obtain a $4^{2} 2^{n}$ design E_{2} by replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ and $\left\{a_{2}, b_{2}, d_{2}\right\}$ with two 4 -level factors in $E_{2}^{\prime \prime}$. And the number of clear 2fic's of E_{2} is 6 .

Now suppose that $n=2^{j}+2^{k-j}-8$ for some $j=3, \ldots, J$, where $J=\lfloor k / 2\rfloor$. Let the k independent columns be $a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{k-j}$. And let

$$
E_{j}^{\prime}=D_{j}^{\prime} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}, \quad E_{j}^{\prime \prime}=E_{j}^{\prime} \cup\left\{a_{1} b_{1}\right\} \cup\left\{a_{2} b_{2}\right\}
$$

where $D_{j}^{\prime}=P \cup Q$ is given in (14) and $|P|=2^{j}-2,|Q|=2^{k-j}-1$. Thus $E_{j}^{\prime \prime}$ has $n+6$ columns. For any $p \in P$ and $q \in Q \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}, p q$ is clear in E_{j}^{\prime}, hence E_{j}^{\prime} has $\left(2^{j}-2\right)\left(2^{k-j}-2\right)$ clear 2fi's. Since $a_{1} b_{1}$ and $a_{2} b_{2}$ are clear in $E_{j}^{\prime}, E_{j}^{\prime \prime}$ is a design with only two words $a_{1} b_{1} d_{1}$ and $a_{2} b_{2} d_{2}$ of length three. Now we need to find out the number of 2 fi 's which are clear in E_{j}^{\prime} but not in $E_{j}^{\prime \prime}$ anymore and the number of 2 f 's which are clear in $E_{j}^{\prime \prime}$ but not in E_{j}^{\prime} originally. For any $p \in P$ and $q \in Q \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$, if $p q$ is clear in E_{j}^{\prime} but not in $E_{j}^{\prime \prime}$, then $p=a_{1}, q=b_{1}$ or $p=a_{2}, q=b_{2}$, or there exists a factor $c \in E_{j}^{\prime}$ such that $c p q=d_{i}, i=1$ or 2 . There are four cases:
(i) $p \in P \backslash\left\{a_{1}, a_{2}\right\}, q=b_{1}, c=a_{2} b_{1} b_{2} p \in P$ and $c p q=d_{2}$;
(ii) $p \in P \backslash\left\{a_{1}, a_{2}\right\}, q=b_{2}, c=a_{1} b_{1} b_{2} p \in P$ and $c p q=d_{1}$;
(iii) $p=a_{1}, q \in Q \backslash\left\{b_{1}, b_{2}, a_{1} a_{2} b_{1} b_{2}\right\}, c=a_{1} a_{2} b_{2} q \in Q \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ and $c p q=d_{2}$;
(iv) $p=a_{2}, q \in Q \backslash\left\{b_{1}, b_{2}, a_{1} a_{2} b_{1} b_{2}\right\}, c=a_{1} a_{2} b_{1} q \in Q \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ and $c p q=d_{1}$.

From cases (i) and (ii) we can find that for any $p \in P \backslash\left\{a_{1}, a_{2}\right\}, b_{i} p$ and $d_{i} p$ are not clear in $E_{j}^{\prime \prime}$ for $i=1,2$. And cases (iii) and (iv) show that for any $q \in Q \backslash\left\{b_{1}, b_{2}, a_{1} a_{2} b_{1} b_{2}\right\}, a_{i} q$ and $d_{i} q$ are not clear in $E_{j}^{\prime \prime}$ for $i=1,2$. Note that $a_{l_{1}} d_{l_{2}}$ and $b_{l_{1}} d_{l_{2}}$ are not clear in $E_{j}^{\prime \prime}$ for $l_{1}, l_{2}=1,2$, and $d_{1} d_{2}$ is clear, thus the number of clear 2 fi 's in $E_{j}^{\prime \prime}$ is $\left(2^{j}-2\right)\left(2^{k-j}-2\right)-2\left(2^{j}-4+2^{k-j}-4\right)-2+1=$ $2^{k}-2^{j+2}-2^{k-j+2}+19$. We can obtain a $4^{2} 2^{n}$ design E_{j} with resolution IV by replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ and $\left\{a_{2}, b_{2}, d_{2}\right\}$ in $E_{j}^{\prime \prime}$ with two 4-level factors and E_{j} has $2^{k}-2^{j+2}-2^{k-j+2}+19$ clear 2fic's.

Let $n_{j}=2^{j}+2^{k-j}-8, j=2, \ldots, J$. For $n_{2}>n>n_{3}$, let

$$
E^{\prime}=S \cup O_{b} \cup\left(a_{1} a_{2} E_{b}^{*}\right), \quad E^{\prime \prime}=E^{\prime} \cup\left\{a_{1} b_{1}\right\} \cup\left\{a_{2} b_{2}\right\}
$$

where $a_{1} a_{2} E_{b}^{*}$ denotes a subset of $a_{1} a_{2} E_{b} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ obtained by deleting $n_{2}-n$ columns from it, $S=\left\{a_{1}, a_{2}\right\}$ and $O_{b}, a_{1} a_{2} E_{b}$ are the same as those given in (9) and (11), $\left|a_{1} a_{2} E_{b}^{*}\right|=$ $2^{k-3}-2-\left(n_{2}-n\right)$ and $E^{\prime \prime}$ has $n+6$ columns. For any $p \in S, q \in O_{b} \cup\left(a_{1} a_{2} E_{b}^{*}\right), p q$ is clear in E^{\prime}. Note that $a_{1} a_{2}$ is also clear in E^{\prime}, the design E^{\prime} has $2\left(2^{k-2}-2-n_{2}+n\right)+1$ clear 2 fi 's. Clearly, for any $p \in a_{1} a_{2} E_{b}^{*}$, there exists $q=a_{1} a_{2} b_{2} p \in O_{b}$ such that $a_{1} p q=d_{2}$. Thus $a_{1} p, a_{1} q, a_{1} d_{2}, d_{2} p$ and $d_{2} q$ are not clear in $E^{\prime \prime}$. Note that for any $q \in O_{b} \backslash\left\{b_{2}\right\}$ satisfying $a_{1} a_{2} b_{2} q \notin a_{1} a_{2} E_{b}^{*}, d_{2} q$ is clear in $E^{\prime \prime}$. A similar argument is valid for a_{2} and d_{1}. Note that $a_{1} b_{1}, a_{2} b_{2}$ are not clear and $d_{1} d_{2}$ is clear in $E^{\prime \prime}$, design $E^{\prime \prime}$ has $2\left(2^{k-2}-2-n_{2}+n\right)+1-2-4\left(2^{k-3}-2-n_{2}+n\right)+2\left(n_{2}-n+1\right)+1=$ $4\left(n_{2}-n\right)+6$ clear 2 fi's. Thus we can obtain a $4^{2} 2^{n}$ design E with resolution IV by replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ and $\left\{a_{2}, b_{2}, d_{2}\right\}$ in $E^{\prime \prime}$ with two 4 -level factors. And E has $4\left(n_{2}-n\right)+6$ clear 2fic's.

When $n_{j}>n>n_{j+1}$ for some $j=3, \ldots, J$, where $n_{J+1}=2\left(2^{J}-2\right)-5$, let

$$
E^{\prime}=P \cup Q^{*}, \quad E^{\prime \prime}=E^{\prime} \cup\left\{a_{1} b_{1}\right\} \cup\left\{a_{2} b_{2}\right\}
$$

where $P=O_{a} \cup\left(b_{1} b_{2} E_{a}\right) \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}, Q^{*}=O_{b} \cup\left(a_{1} a_{2} E_{b}^{*}\right), a_{1} a_{2} E_{b}^{*}$ denotes a subset of $a_{1} a_{2} E_{b} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ obtained by deleting $n_{j}-n$ columns from it, and $O_{a}, O_{b}, b_{1} b_{2} E_{a}, a_{1} a_{2} E_{b}$ are the same as those in (14). Clearly, $\left|O_{a}\right|=2^{j-1},\left|O_{b}\right|=2^{k-j-1},\left|b_{1} b_{2} E_{a}\right|=2^{j-1}-1$,
$\left|a_{1} a_{2} E_{b}^{*}\right|=2^{k-j-1}-2-\left(n_{j}-n\right)$ and $E^{\prime \prime}$ has $n+6$ columns. For any $p \in P$ and $q \in Q^{*}, p q$ is clear in E^{\prime}. Thus E^{\prime} has $\left(2^{j}-2\right)\left(2^{k-j}-2-n_{j}+n\right)$ clear 2fi's. Since $a_{1} b_{1}$ and $a_{2} b_{2}$ are clear in $E^{\prime}, E^{\prime \prime}$ is a design with only two words $a_{1} b_{1} d_{1}$ and $a_{2} b_{2} d_{2}$ of length three. For any $p \in P$ and $q \in Q^{*}$, if $p q$ is not clear in $E^{\prime \prime}$, then $p=a_{1}, q=b_{1}$ or $p=a_{2}, q=b_{2}$, or there exists a factor $c \in E^{\prime}$ such that $c p q=d_{i}, i=1$ or 2 . There are four cases:
(i) $p \in P \backslash\left\{a_{1}, a_{2}\right\}, q=b_{1}, c=a_{2} b_{1} b_{2} p \in P$ and $c p q=d_{2}$;
(ii) $p \in P \backslash\left\{a_{1}, a_{2}\right\}, q=b_{2}, c=a_{1} b_{1} b_{2} p \in P$ and $c p q=d_{1}$;
(iii) $p=a_{1}, q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}, c=a_{1} a_{2} b_{2} q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}$ and $c p q=d_{2}$;
(iv) $p=a_{2}, q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}, c=a_{1} a_{2} b_{1} q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}$ and $c p q=d_{1}$.

Case (i) shows that for any $p \in P \backslash\left\{a_{1}, a_{2}\right\}, b_{1} p$ and $d_{2} p$ are not clear in $E^{\prime \prime}$. And case (iii) shows that for any $q \in a_{1} a_{2} E_{b}^{*}$ and $c=a_{1} a_{2} b_{2} q \in O_{b}, a_{1} q, a_{1} c, d_{2} q$ and $c d_{2}$ are not clear in $E^{\prime \prime}$. For any $c \in O_{b} \backslash\left\{b_{1}, b_{2}\right\}$ satisfying $a_{1} a_{2} b_{2} c \notin a_{1} a_{2} E_{b}^{*}, c d_{2}$ is clear in $E^{\prime \prime}$. A similar argument is valid for cases (ii) and (iv). Note that $a_{l_{1}} d_{l_{2}}$, and $b_{l_{1}} d_{l_{2}}$ are not clear for $l_{1}, l_{2}=1,2$ and $d_{1} d_{2}$ is clear in $E^{\prime \prime}$, the number of clear 2fi's in $E^{\prime \prime}$ is $\left(2^{j}-2\right)\left(2^{k-j}-2-n_{j}+n\right)-2\left(2^{j}-4\right)-$ $4\left(2^{k-j-1}-2-n_{j}+n\right)-2+2\left(n_{j}-n\right)+1=2^{k}-\left(2^{j}-8\right)\left(n_{j}-n\right)-2^{j+2}-2^{k-j+2}+19$. Thus we can obtain a $4^{2} 2^{n}$ design E of resolution IV by replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ and $\left\{a_{2}, b_{2}, d_{2}\right\}$ in $E^{\prime \prime}$ with two 4 -level factors and E has $2^{k}-\left(2^{j}-8\right)\left(n_{j}-n\right)-2^{j+2}-2^{k-j+2}+19$ clear 2 fic's.

For $2^{J}-4<n \leqslant n_{J+1}$ and odd k, let $e_{5}=\lfloor(n+4) / 2\rfloor$ and $E^{\prime}=P^{*} \cup O_{b}^{*}$, where $P^{*}=$ $O_{a} \cup\left(b_{1} b_{2} E_{a}^{*}\right), b_{1} b_{2} E_{a}^{*}$ is a subset of $b_{1} b_{2} E_{a} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ with $e_{5}-2^{J-1}$ elements, O_{b}^{*} is a subset of O_{b} with $(n+4)-e_{5}$ elements such that $b_{1}, b_{2} \in O_{b}^{*}, O_{a}, O_{b}, b_{1} b_{2} E_{a}$ are defined in (14) for $j=J$. Adding $a_{1} b_{1}$ and $a_{2} b_{2}$ to E^{\prime}, we get a $2^{(n+6)-(n+6-k)}$ design $E^{\prime \prime}$. Since $a_{1} b_{1}$ and $a_{2} b_{2}$ are clear in $E^{\prime}, E^{\prime \prime}$ has only two words $a_{1} b_{1} d_{1}$ and $a_{2} b_{2} d_{2}$ of length three. For any $p \in P^{*}$ and $q \in O_{b}^{*}, p q$ is clear in E^{\prime}. Hence E^{\prime} has $e_{5}\left((n+4)-e_{5}\right)$ clear 2 fi's. For any $p \in P^{*}$ and $q \in O_{b}^{*}$, if $p q$ is not clear in $E^{\prime \prime}$, then $p=a_{1}, q=b_{1}$ or $p=a_{2}, q=b_{2}$, or there exists a factor $c \in E^{\prime}$ such that $c p q=d_{i}, i=1$ or 2 . There are two cases:
(i) $p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}, q=b_{1}, c=a_{2} b_{1} b_{2} p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}$ and $c p q=d_{2}$;
(ii) $p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}, q=b_{2}, c=a_{1} b_{1} b_{2} p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}$ and $c p q=d_{1}$.

Let us consider case (i) firstly. For any $p \in b_{1} b_{2} E_{a}^{*}$ and $c=a_{2} b_{1} b_{2} p \in O_{a}, b_{1} p, b_{1} c, d_{2} p$ and $c d_{2}$ are not clear in $E^{\prime \prime}$. And for any $q \in O_{a} \backslash\left\{a_{2}\right\}$ satisfying $a_{2} b_{1} b_{2} q \notin b_{1} b_{2} E_{a}^{*}, d_{2} q$ is clear in $E^{\prime \prime}$. A similar argument is valid for b_{2} and d_{1} in case (ii). For any $p \in O_{b}^{*} \backslash\left\{b_{1}, b_{2}\right\}, d_{i} p$ is clear in $E^{\prime \prime}$ for $i=1,2$. Since $d_{1} d_{2}$ is clear in $E^{\prime \prime}$, the number of clear 2 fi 's in $E^{\prime \prime}$ is $e_{5}\left((n+4)-e_{5}\right)-4\left(e_{5}-2^{J-1}\right)-2+2\left(2^{J}-1-e_{5}\right)+2\left(n+2-e_{5}\right)+1=e_{5}\left(n-e_{5}\right)+2^{J+2}-4 e_{5}+2 n+1$. Then we can obtain a $4^{2} 2^{n}$ design E of resolution IV by replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ and $\left\{a_{2}, b_{2}, d_{2}\right\}$ with two 4-level factors in $E^{\prime \prime}$ and E has $e_{5}\left(n-e_{5}\right)+2^{J+2}-4 e_{5}+2 n+1$ clear 2fic's.

For $2^{J}-4<n \leqslant n_{J+1}\left(=n_{J}-1\right)$ and even k, let $E^{\prime}=P^{*} \cup Q^{*}$, where $P^{*}=O_{a} \cup$ $\left(b_{1} b_{2} E_{a}^{*}\right), Q^{*}=O_{b} \cup\left(a_{1} a_{2} E_{b}^{*}\right), b_{1} b_{2} E_{a}^{*}$ is a subset of $b_{1} b_{2} E_{a} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ with $e_{5}-2^{J-1}$ elements, $a_{1} a_{2} E_{b}^{*}$ is a subset of $a_{1} a_{2} E_{b} \backslash\left\{a_{1} a_{2} b_{1} b_{2}\right\}$ with $(n+4)-e_{5}-2^{J-1}$ columns, and $O_{a}, O_{b}, b_{1} b_{2} E_{a}, a_{1} a_{2} E_{b}$ are defined in (14) for $j=J$. Adding $a_{1} b_{1}$ and $a_{2} b_{2}$ to E^{\prime}, we get a $2^{(n+6)-(n+6-k)}$ design $E^{\prime \prime}$. Since $a_{1} b_{1}$ and $a_{2} b_{2}$ are clear in $E^{\prime}, E^{\prime \prime}$ has only two words $a_{1} b_{1} d_{1}$ and $a_{2} b_{2} d_{2}$ of length three. For any $p \in O_{a} \cup\left(b_{1} b_{2} E_{a}^{*}\right)$ and $q \in O_{b} \cup\left(a_{1} a_{2} E_{b}^{*}\right)$, $p q$ is clear in E^{\prime}. Hence E^{\prime} has $e_{5}\left((n+4)-e_{5}\right)$ clear 2fi's. For any $p \in O_{a} \cup\left(b_{1} b_{2} E_{a}^{*}\right)$ and $q \in O_{b} \cup\left(a_{1} a_{2} E_{b}^{*}\right)$, if
$p q$ is not clear in $E^{\prime \prime}$, then $p=a_{1}, q=b_{1}$ or $p=a_{2}, q=b_{2}$, or there exists a factor $c \in E^{\prime}$ such that $c p q=d_{i}, i=1$ or 2 . There are four cases:
(i) $p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}, q=b_{1}, c=a_{2} b_{1} b_{2} p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}$ and $c p q=d_{2}$;
(ii) $p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}, q=b_{2}, c=a_{1} b_{1} b_{2} p \in P^{*} \backslash\left\{a_{1}, a_{2}\right\}$ and $c p q=d_{1}$;
(iii) $p=a_{1}, q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}, c=a_{1} a_{2} b_{2} q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}$ and $c p q=d_{2}$;
(iv) $p=a_{2}, q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}, c=a_{1} a_{2} b_{1} q \in Q^{*} \backslash\left\{b_{1}, b_{2}\right\}$ and $c p q=d_{1}$.

Consider case (i) firstly. For any $p \in b_{1} b_{2} E_{a}^{*}, c=a_{2} b_{1} b_{2} p \in O_{a}, b_{1} c, b_{1} p, c d_{2}$ and $d_{2} p$ are not clear in $E^{\prime \prime}$. For any $q \in O_{a} \backslash\left\{a_{1}, a_{2}\right\}$ satisfying $a_{2} b_{1} b_{2} q \notin b_{1} b_{2} E_{a}^{*}, q d_{2}$ is clear in $E^{\prime \prime}$. A similar argument is valid for the pairs $\left(b_{2}, d_{1}\right),\left(a_{1}, d_{2}\right)$ and $\left(a_{2}, d_{1}\right)$ in the other three cases. Since $d_{1} d_{2}$ is clear in $E^{\prime \prime}$, the number of clear 2fi's in $E^{\prime \prime}$ is $e_{5}\left((n+4)-e_{5}\right)-4\left(e_{5}-2^{J-1}+(n+4)-e_{5}-\right.$ $\left.2^{J-1}\right)-2+2\left(2^{J}-2-e_{5}\right)+2\left(2^{J}+e_{5}-n-6\right)+1=e_{5}\left(n-e_{5}\right)+4 e_{5}+2^{J+3}-6 n-33$. We can thus obtain a $4^{2} 2^{n}$ design E with resolution IV by replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ and $\left\{a_{2}, b_{2}, d_{2}\right\}$ with two 4-level factors in $E^{\prime \prime}$ and E has $e_{5}\left(n-e_{5}\right)+4 e_{5}+2^{J+3}-6 n-33$ clear 2fic's.

For $n \leqslant 2^{J}-4$, let $E^{\prime}=O_{a}^{*} \cup O_{b}^{*}$, where O_{a}^{*} is a subset of O_{a} with e_{5} elements and O_{b}^{*} is a subset of O_{b} with $(n+4)-e_{5}$ elements such that $a_{1}, a_{2} \in O_{a}^{*}, b_{1}, b_{2} \in O_{b}^{*}$. For any $p \in O_{a}^{*}$ and $q \in O_{b}^{*}, p q$ is clear in E^{\prime}. Hence E^{\prime} has $e_{5}\left((n+4)-e_{5}\right)$ clear 2fi's. Adding $a_{1} b_{1}$ and $a_{2} b_{2}$ to E^{\prime}, we get a $2^{(n+6)-(n+6-k)}$ design $E^{\prime \prime}$. Since $a_{1} b_{1}$ and $a_{2} b_{2}$ are clear in E^{\prime}, the design $E^{\prime \prime}$ has only two words $a_{1} b_{1} d_{1}$ and $a_{2} b_{2} d_{2}$ of length three. For any $p \in E^{\prime} \backslash\left\{a_{1}, b_{1}\right\}, d_{1} p$ is clear in $E^{\prime \prime}$. A similar argument is valid for d_{2}. Since $a_{1} b_{1}$ and $a_{2} b_{2}$ are not clear and $d_{1} d_{2}$ is clear in $E^{\prime \prime}$, the number of clear 2fi's in $E^{\prime \prime}$ is $e_{5}\left((n+4)-e_{5}\right)-2+2(n+2)+1=e_{5}\left(n+4-e_{5}\right)+2 n+3$. We can thus obtain a $4^{2} 2^{n}$ design E with resolution IV by replacing $\left\{a_{1}, b_{1}, d_{1}\right\}$ and $\left\{a_{2}, b_{2}, d_{2}\right\}$ with two 4-level factors in $E^{\prime \prime}$ and E has $e_{5}\left(n+4-e_{5}\right)+2 n+3$ clear 2fic's.

[^0]: Received November 20, 2006; accepted November 28, 2007
 DOI: 10.1007/s11425-008-0084-1
 \dagger Corresponding author
 This work was supported by the National Natural Science Foundation of China (Grant Nos. 10571093, 10671099 and 10771123), the Research Foundation for Doctor Programme (Grant No. 20050055038) and the Natural Science Foundation of Shandong Province of China (Grant No. Q2007A05). Zhang's research was also supported by the Visiting Scholar Program at Chern Institute of Mathematics.

