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Abstract Clear effects criterion is one of the important rules for selecting optimal fractional factorial

designs, and it has become an active research issue in recent years. Tang et al. derived upper and

lower bounds on the maximum number of clear two-factor interactions (2fi’s) in 2n−(n−k) fractional

factorial designs of resolutions III and IV by constructing a 2n−(n−k) design for given k, which are

only restricted for the symmetrical case. This paper proposes and studies the clear effects problem

for the asymmetrical case. It improves the construction method of Tang et al. for 2n−(n−k) designs

with resolution III and derives the upper and lower bounds on the maximum number of clear two-

factor interaction components (2fic’s) in 4m2n designs with resolutions III and IV. The lower bounds

are achieved by constructing specific designs. Comparisons show that the number of clear 2fic’s in

the resulting design attains its maximum number in many cases, which reveals that the construction

methods are satisfactory when they are used to construct 4m2n designs under the clear effects criterion.
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1 Introduction

Orthogonal arrays with mixed levels have been much widely used in experimental design. When
the arrays have m 4-level factors and n 2-level factors, they are said to be 4m2n designs. A 4m2n

design can be constructed by the method of replacement, which was first formally introduced
in [1]. This class of designs is useful in practice because in factorial investigations, especially
those involving physical experiments, the number of factorial levels seldom exceeds four. [2]
improved the construction method in [1] by introducing the method of grouping. [3] extended
the grouping scheme in [2] to cover more general sm(sr1)n1 · · · (srt)nt designs for any prime
power s and some integers ri and ni.

In this paper, we consider 4m2n designs with N = 2k runs and suppose that such designs
are constructed by the method of grouping. Let A1, . . . , Am and b1, . . . , bn denote the 4-level
factors and 2-level factors of a 4m2n design, respectively. Suppose a 4m2n design is obtained
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by replacing three 2-level factors {ai1, ai2, ai3} with a 4-level factor Ai, where ai1ai2ai3 =
I, i = 1, . . . , m and I is the column with all entries zero. Such a design is determined by
B = {a11, a12, a13, . . . , am1, am2, am3, b1, . . . , bn}, where ai1ai2ai3 = I, i = 1, . . . , m, in the
following sections. We call ai1j1 the main-effect component of Ai1 , and ai1j1ai2j2 (or ai1j1bl)
the two-factor interaction component (2fic) of Ai1 and Ai2 (or Ai1 and bl), where i1, i2 =
1, . . . , m, i1 �= i2, j1, j2 = 1, 2, 3, l = 1, . . . , n. For convenience, we call both the main effects of
2-level factors and the main-effect components of 4-level factors the main-effect components.
For the same reason, the two-factor interactions (2fi’s) of two 2-level factors, the 2fic’s of two
4-level factors, and 2fic’s of a 2-level factor and a 4-level factor are all called 2fic’s.

When the experimenter’s knowledge is diffuse, a reasonable assumption people can make is
the effect hierarchical assumption. Under such circumstances, resolution in [4] and minimum
aberration in [5] are the most often used criteria for selecting good designs. Extending them to
the mixed-level case, [6] gave the definitions of resolution and minimum aberration criteria for
selecting good 4m2n designs. For m = 1, suppose that a1, a2, a3, b1, . . . , bn are columns chosen
from the 2k−1 columns of a saturated design with 2k runs such that a1a2a3 = I. A 412n design
can be obtained by replacing {a1, a2, a3} with a 4-level factor. It is easy to see that there are
two types of defining contrasts for this design. The first involves only the bj’s, which is called
type 0. The second involves one of the ai’s and some of the bj ’s, which is called type 1. For a
412n design D, let Wi0(D) and Wi1(D) be the numbers of type 0 and type 1 words of length i

in the defining contrasts of D, respectively. The resolution of D is defined to be the smallest
i such that Wij(D) is positive for at least one j. For m = 2, the resolution for 422n designs is
defined similarly as that of 412n designs. Furthermore, [7] deliberated a method for constructing
this class of asymmetric minimum aberration designs through symmetric minimum aberration
ones, [8] obtained two types of minimum aberration designs with mixed levels in terms of
complementary sets, and [9] improved the results in [8].

Different situations call for different designs. Clear effects criterion[10] is another criterion
for selecting good designs. A main-effect component of a factor is said to be clear if it is not
aliased with any main-effect component of the other factors or any 2fic. A main effect is said
to be clear if all its components are clear. A 2fic is said to be clear if it is not aliased with
any main-effect component or any other 2fic. A two-factor interaction (2fi) is said to be clear
if all its components are clear. As usual, we assume that interaction components involving
three or more factors are negligible. A design of resolution V or higher permits the estimation
of all the main effects and 2fi’s. In what follows, we look at the case where the experimenter
cannot afford a design of resolution V or higher. A resolution IV design with the maximum
number of clear 2fic’s allows the joint estimation of the whole main effects and the clear 2fic’s as
many as possible in the presence of other 2fic’s. It is a desirable design when we are interested
in estimating 2fic’s besides the main effects. For a resolution III design, we can assume the
magnitude of the main-effect components is much larger than that of the 2fic’s. Although the
presence of 2fic’s which are not clear can bias the estimates of the main-effect components, this
bias will not be substantial. Thus, in this paper, we are interested in estimating as many 2fic’s
as possible. A 4m2n design with the maximum number of clear 2fic’s will be called a MaxC2cR
design if it has resolution R.
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Recent results on the clear effects criterion include [11] and [12]–[23]. In particular, [11]
derived upper and lower bounds on the maximum number of clear 2fi’s in 2n−(n−k) fractional
factorial designs of resolutions III and IV by constructing a 2n−(n−k) design for given k. [17]
investigated the structure of 4m2n designs with resolution III or IV from a different angle if
one’s goal is to check the existence of clear 2fic’s in the design. It showed that a 4m2n design
has a clear 2fic if and only if n � 2k−1 − 3m for m = 1, 2. For a resolution IV 4m2n design to
have a clear 2fic, it is proved that the necessary and sufficient condition is n � 2k−2 + 2 − 3m

for m = 1, 2. When 2k−2 + 2 − 3m < n � 2k − 1 − 3m for m = 1, 2, resolution IV design does
not exist. This paper tries to modify the method in [11] to improve the lower bound on the
maximum number of clear 2fi’s in 2n−(n−k) designs of resolution III and derive the upper and
lower bounds on the maximum number of clear 2fic’s in 4m2n designs of resolutions III and IV
for m = 1, 2.

The paper is organized as follows. Section 2 presents the construction method for 2n−(n−k)

designs containing as many clear 2fi’s as possible. Sections 3 and 4 obtain the lower and upper
bounds on the maximum numbers of clear 2fic’s in 4m2n designs for m = 1, 2. And Section 5
examines the performance of these bounds for k = 5.

2 Bounds on the maximum number of clear two-factor interactions for 2n−(n−k)

designs with resolution III

This section sketches out a construction method for resolution III 2n−(n−k) designs containing
as many clear 2fi’s as possible when k � 5.

Let α(k, n) be the maximum number of clear 2fi’s in a 2n−(n−k) design with resolution III.
Let nj = 2j + 2k−j − 2, j = 1, . . . , J , where J = �k/2� and �z� denotes the largest integer
not exceeding z. Clearly, we have n1 > · · · > nJ . If n > n1, there does not exist any
design containing clear 2fi (see [12]). One needs only to examine values of n in the range of
M(k) < n � n1, where M(k) is the maximum value of n for a 2n−(n−k) design to have resolution
at least V.

Suppose that n = nj for some j = 1, . . . , J . Let a1, . . . , ak be the k independent columns
and Hk be the saturated design generated by a1, . . . , ak. Define Dj as

Dj = Hj ∪ Hk−j , (1)

where Hj =Hj(a1, . . . , aj) is a subset of Hk, generated by a1, . . . , aj, Hk−j =Hk−j(aj+1, . . . , ak)
is the subset of Hk, generated by aj+1, . . . , ak. Note that Hj and Hk−j contain 2j−1 and 2k−j−1
columns, respectively. Then design Dj contains nj = 2j + 2k−j − 2 columns. For any a ∈ Hj

and b ∈ Hk−j , ab is clear. In addition, there is no clear 2fi within Hj or Hk−j . This implies
that the number of clear 2fi’s in Dj is (2j − 1)(2k−j − 1).

When n = nj + 1 for some j = 2, . . . , J , let D′ = Dj ∪ {a1aj+1}. Then D′ has n = nj + 1
columns. Note that any 2fi which is not clear in Dj is still not clear in D′, we need only to
calculate the number l1 of 2fi’s which are clear in Dj but not in D′ any more and the number l2

of 2fi’s which are clear in D′ but not in Dj originally. From the discussion in the last paragraph,
a1aj+1 is clear in Dj and there are (2j −1)(2k−j −1) clear 2fi’s in Dj . Let d denote the column
a1aj+1 in D′. For any p ∈ Hj and q ∈ Hk−j , if pq is not clear in D′, then p = a1, q = aj+1 or
there must exist c ∈ Dj such that cpq = d. There are two cases:

(i) p ∈ Hj\{a1}, q = aj+1, c = a1p ∈ Hj and cpq = d;
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(ii) p = a1, q ∈ Hk−j\{aj+1}, c = aj+1q ∈ Hk−j and cpq = d.

Then there are l1 = (2j − 2) + (2k−j − 2) + 1 = 2j + 2k−j − 3 2fi’s which are clear in Dj but
not in D′. Note that dp is not clear in D′ for any p ∈ Dj , hence l2 = 0. Therefore D′ has
(2j − 1)(2k−j − 1) − l1 + l2 = 2k − 2j+1 − 2k−j+1 + 4 clear 2fi’s.

Now consider the case nj > n > nj+1 + 1 for some j = 1, . . . , J , where nJ+1 is defined as
nJ+1 = 2(2J − 1) + 1. When k is even, nJ < nJ+1, and the case nJ > n > nJ+1 + 1 in fact
does not exist and can be ignored. The case nJ > n > nJ+1 + 1 is only non-trivial for odd k.
Let D = Hj ∪ H∗

k−j , where Hj is the same as that in Dj defined by (1) and H∗
k−j is obtained

from Hk−j in Dj by deleting any nj − n columns from Hk−j . Note that for any a ∈ Hj and
b ∈ H∗

k−j , ab is clear in D. In addition, there is no clear 2fi within Hj or H∗
k−j . Hence the

number of clear 2fi’s in D is simply (2j − 1)(n − 2j + 1).
When k is odd and n = nJ+1 + 1 = 2J+1, let

DJ+1 = {a1} ∪ H ′
J ∪ H ′

k−J−1, (2)

where H ′
J = HJ (a2, . . . , aJ+1) and H ′

k−J−1 = Hk−J−1(aJ+2, . . . , ak) are subsets of Hk gen-
erated by a2, . . . , aJ+1 and aJ+2, . . . , ak, respectively. Since for any p ∈ H ′

J , q ∈ H ′
k−J−1,

a1p, a1q, pq are all clear in DJ+1, the number of clear 2fi’s in DJ+1 is (2J − 1) + (2k−J−1 −
1) + (2J − 1)(2k−J−1 − 1) = 22J − 1. Let D′

J+1 = DJ+1 ∪ {a1a2}, then D′
J+1 has n = 2J+1

columns. Note that for any p ∈ H ′
J\{a2}, a1p = (a1a2)(a2p) and a2p ∈ D′

J+1, so a1p is not
clear in D′

J+1. And for any q ∈ H ′
k−J−1, (a1a2)q is clear in D′

J+1. Since a1a2 is not clear in
D′

J+1, there are 22J − 1 − (2J − 1) + (2k−J−1 − 1) = 22J − 1 clear 2fi’s in D′
J+1.

When k is odd and n � nJ+1, let D′ = {a1}∪H∗
J ∪H∗

k−J−1, where H∗
J is a subset of H ′

J with
�n/2� columns and H∗

k−J−1 is a subset of H ′
k−J−1 with n−�n/2�−1 columns, and H ′

J , H ′
k−J−1

are the same as those in (2). Since for any p ∈ H∗
J , q ∈ H∗

k−J−1, a1p, a1q, pq are all clear in D′,
the total number of clear 2fi’s is at least �n/2� + (n − �n/2� − 1) + �n/2�(n − �n/2� − 1) =
n − 1 + �n/2�(n− �n/2� − 1).

When k is even and n � nJ , let D = H̃J ∪ H̃k−J , where H̃J and H̃k−J are subsets of HJ and
Hk−J defined by (1) for j = J , respectively, and there are �n/2� columns in H̃J and n− �n/2�
columns in H̃k−J . Since for any p ∈ H̃J , q ∈ H̃k−J , pq is clear in D, the number of clear 2fi’s
in D is at least �n/2�(n− �n/2�).

We summarize the above results in the following

Theorem 1. Suppose k � 5, then a lower bound αl(k, n) on the maximum number of clear
2fi’s of a 2n−(n−k) design is given by

αl(k, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2j − 1)(n − 2j + 1), if nj � n > nj+1 + 1, for j = 1, . . . , J,

2k − 2j+1 − 2k−j+1 + 4, if n = nj + 1, for j = 2, . . . , J,

22J − 1, if n = nJ+1 + 1, for odd k,

n − 1 + e1(n − e1 − 1), if n � nJ+1, for odd k,

e1(n − e1), if n � nJ , for even k,

where J = �k/2�, nj = 2j + 2k−j − 2 for j = 1, . . . , J , nJ+1 = 2(2J − 1) + 1, e1 = �n/2�.
The following remark is useful for constructing 4m2n designs in the subsequent sections.
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Remark 1. When k � 5, we can always construct a 2n−(n−k) design D for any M(k) <

n � n1 such that there are six factors {c1, c2, c3} and {c4, c5, c6} in D satisfying {c1, c2, c3} ∩
{c4, c5, c6} = ∅ and c1c2c3 = c4c5c6 = I. When n1 � n > n2 + 1, the columns {a2, a3, a2a3}
and {a4, a5, a4a5} satisfy the condition from the construction of Dj in (1) for j = 1. When
nj + 1 � n > nj+1 + 1, j = 2, . . . , J , the columns {a1, a2, a1a2} and {aj+1, aj+2, aj+1aj+2}
satisfy the condition from the construction of Dj in (1). When n = nJ+1 + 1 and k is odd,
{a2, a3, a2a3} and {aJ+2, aJ+3, aJ+2aJ+3} satisfy the condition from the construction of DJ+1

in (2). For n � nJ+1 and odd k, H∗
J and H∗

k−J−1 can be selected such that there are a subset
{c1, c2, c3} of H∗

J satisfying c1c2c3 = I and a subset {c4, c5, c6} of H∗
k−J−1 satisfying c4c5c6 = I.

When n = nJ +1 and k is even, {a1, a2, a1a2} and {aJ+1, aJ+2, aJ+1aJ+2} satisfy the condition
from the construction of DJ in (1) for j = J . For n � nJ and even k, H̃J and H̃k−J can
be selected such that there are a subset {c1, c2, c3} of H̃J satisfying c1c2c3 = I and a subset
{c4, c5, c6} of H̃k−J satisfying c4c5c6 = I.

3 Bounds on the maximum number of clear 2fic’s for 412n designs

In this section, construction methods for 412n designs with resolutions III and IV are provided.
The results in Section 5 indicate that the construction method performs well for 412n designs
with resolution III, but this does not hold for 412n designs with resolution IV. Let k � 5
and α(k, n, R) be the maximum number of clear 2fic’s in 412n designs with N = 2k runs and
resolution R.

3.1 Bounds on the maximum number of clear 2fic’s for 412n designs with

resolution III

This subsection is devoted to establishing upper and lower bounds on α(k, n, III). The fact that
the n+3 main-effect components and α(k, n, III) clear 2fic’s are not mutually aliased with each
other implies that n + 3 + α(k, n, III) � 2k − 1. Therefore α(k, n, III) � 2k − n − 4, and an
upper bound on α(k, n, III) is thus established.

Theorem 2. The maximum number α(k, n, R) of clear 2fic’s in a 412n design with R = III

is bounded above by αu(k, n, III) = 2k − n − 4.

We now describe the method for constructing resolution III 412n designs with clear 2fic’s.
Let nj = 2j + 2k−j − 5, j = 1, . . . , J , where J = �k/2�. Clearly, we have n1 > · · · > nJ . If
n > n1, there does not exist any 412n design containing clear 2fic’s (see [17]). We need only to
examine values of n in the range of M ′(k) < n � n1, where M ′(k) denotes the maximum value
of n for a 412n design to have resolution at least V.

Note that a 412n design with 2k runs can be constructed from a 2(n+3)−(n+3−k) design. When
M ′(k) < n � n1, we can construct a 2(n+3)−(n+3−k) design such that there are three factors
{c1, c2, c3} satisfying c1c2c3 = I as discussed in Remark 1. Then replacing {c1, c2, c3} with a
4-level factor, we obtain a 412n design with 2k runs, which has the same number of clear 2fic’s
as the 2(n+3)−(n+3−k) design has. And from Theorem 2, the number of clear 2fic’s attains the
upper bound when n = nj . The results are summarized in the following

Theorem 3. Suppose k � 5, then the design constructed above for n = nj with j = 1, . . . , J

has the maximum number of clear 2fic’s, and more generally, a lower bound αl(k, n, III) on the
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maximum number of clear 2fic’s of a 412n design is given by

αl(k, n, III) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2j − 1)(n − 2j + 4), if nj � n > nj+1 + 1, for j = 1, . . . , J,

2k − 2j+1 − 2k−j+1 + 4, if n = nj + 1, for j = 2, . . . , J,

22J − 1, if n = nJ+1 + 1, for odd k,

n + 2 + e2 (n + 2 − e2) , if n � nJ+1, for odd k,

e2 (n + 3 − e2) , if n � nJ , for even k,

where J = �k/2�, nj = 2j + 2k−j − 5 for j = 1, . . . , J , nJ+1 = 2(2J − 1)− 2, e2 = �(n + 3)/2�.
3.2 Bounds on the maximum number of clear 2fic’s for 412n designs with
resolution IV
The upper and lower bounds on α(k, n, IV) are established in this subsection. To build the
upper bound, an approach similar to one used in [20] for obtaining an upper bound on the
maximum number of clear 2fi’s for blocked 2-level fractional factorial designs is utilized here.
First let us see some notations from [13, 24]. Let E be a 4m2n design determined by B =
{a11, a12, a13, . . . , am1, am2, am3, b1, . . . , bn}, where ai1ai2ai3 = I, i = 1, . . . , m. And let mj(E)
be the number of 2fic’s in the j-th alias set not containing main-effect components, where
j = 1, . . . , fm, fm = 2k − 1 − n − 3m. Also let I(E) denote the number of 2fic’s of E, and
Ni = #{1 � j � fm : mj(E) = i} for i � 0 be the number of alias sets that contain i 2fic’s.
Let C(E) and U(E) denote the numbers of clear 2fic’s and unclear 2fic’s of E, respectively.
Then C(E) = N1, I(E) = (n + 3m)(n + 3m − 1)/2 − 3m and U(E) = I(E) − C(E) =
(n + 3m)(n + 3m − 1)/2 − 3m − C(E).

Note that any two 2fic’s in the same alias set do not share a common letter. Thus mj(E) � r

and Ni = 0 for i > r, where r = �(n + 3m)/2�. If Ni > 0, there exists an alias set with i 2fic’s.
These 2fic’s contain 2i letters, and any two of which form an unclear 2fic, thus U(E) � i(2i−1).
Note that there is at most one of aj1, aj2 and aj3 for any j = 1, . . . , m among these 2i letters,
so Nr−m+1 = · · · = Nr = 0. Then we have the following Lemma 1.

Lemma 1. If Ni > 0 for some i, where 2 � i � r − m, then U(E) � i(2i − 1).

Lemma 2. (i) If Ni = 0 for i = j + 1, . . . , r, where 2 < j < r, then C(E) � {(j − 1)fm +
Nj − I(E)}/(j − 2).

(ii) If Ni = 0 for i = j, . . . , r, where 2 < j � r, then C(E) � {(j − 1)fm − I(E)}/(j − 2).

The proof of Lemma 2 is similar to that of Lemma 4.6 in [13], we omit it here.
For m = 1, it follows that Nr = 0, then from Lemma 2 (ii), we can obtain

C(E) �

⎧
⎨

⎩

C1o = {(n + 1)f1 − n2 − 5n}/(n− 1), if n > 1 is odd,

C1e = {nf1 − n2 − 5n}/(n− 2), if n > 2 is even.
(3)

Next, let us consider the two cases (i) Nr = 0, Nr−1 > 0, and (ii) Nr = 0, Nr−1 = 0 for m = 1.
For Case (i), from Lemma 1, we have

C(E) �

⎧
⎨

⎩

C2o = 2n, if n is odd,

C2e = 3n, if n is even.
(4)
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On the other hand for Case (ii), from Lemma 2 (ii), we have

C(E) �

⎧
⎨

⎩

C3o = {(n − 1)f1 − n2 − 5n}/(n− 3), if n > 3 is odd,

C3e = {(n − 2)f1 − n2 − 5n}/(n− 4), if n > 4 is even.
(5)

Then based on (3), (4) and (5), we obtain

Theorem 4. If n > 4, the maximum number α(k, n, R) of clear 2fic’s in a 412n design with
R = IV is bounded above by

αu(k, n, IV) =

⎧
⎨

⎩

min{�C1o�, max{C2o, �C3o�}}, if n is odd ,

min{�C1e�, max{C2e, �C3e�}}, if n is even.

A lower bound αl(k, n, IV) on α(k, n, IV) is derived through constructing 412n designs with
resolution IV. Theorem 5 summarizes the results and the detailed construction is given in
Appendix for simplicity.

Theorem 5. Suppose k � 5, then a lower bound αl(k, n, IV) on the maximum number of
clear 2fic’s of a 412n design is given by

αl(k, n, IV) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n, if n2 � n > n3,

2k − 3 × 2k−j − 3 × 2j + 10, if n = nj , for j = 3, . . . , J,

2k − 3 × 2k−j − 3 × 2j + 11, if n = nj − 1, for j = 3, . . . , J,

2k − 3 × 2k−j − 2j+1 + 5, if n = nj − 2, for j = 3, . . . , J,

(2j − 3)(n − 2j + 5) + n − 1, if nj − 3 � n > nj+1, for j = 3, . . . , J,

22J − 2J+1 − 4, if n = nJ+1, for odd k,

e3 (n + 2 − e3) + n − 1, if n < nJ+1,

where J = �k/2�, nj = 2j + 2k−j − 5 for j = 2, . . . , J , nJ+1 = 2(2J − 2)− 2, e3 = �(n + 2)/2�.
Remark 2. When k is even, nJ+1 + 1 = nJ , and the case n = nJ − 2 is included in both
items n = nJ − 2 and n < nJ+1 in Theorem 5, thus we can select

αl(k, nJ − 2, IV) = max
{
2k − 3 × 2k−J − 2J+1 + 5, e3 (nJ − e3) + nJ − 3

}
,

where e3 = �(n + 2)/2�.
4 Bounds on the maximum number of clear 2fic’s for 422n designs

This section provides the construction methods for 422n designs with resolutions III and IV.
The results in Section 5 indicate that the construction methods perform well for both cases of
resolutions III and IV. Suppose k � 5 and let β(k, n, R) denote the maximum number of clear
2fic’s in 422n designs with N = 2k runs and resolution R.

4.1 Bounds on the maximum number of clear 2fic’s for 422n designs with
resolution III
The upper and lower bounds on β(k, n, III) are established in this subsection. The fact that
the n+6 main-effect components and β(k, n, III) clear 2fic’s are not mutually aliased with each



1304 ZHAO ShengLi et al.

other implies that n + 6 + β(k, n, III) � 2k − 1. Therefore β(k, n, III) � 2k − n − 7. Thus an
upper bound on β(k, n, III) is established. This result is summarized in Theorem 6.

Theorem 6. The maximum number β(k, n, R) of clear 2fic’s in a 422n design with R = III

is bounded above by βu(k, n, III) = 2k − n − 7.

Let nj = 2j + 2k−j − 8, j = 1, . . . , J , where J = �k/2�. Clearly, we have n1 > · · · > nJ . If
n > n1, there does not exist any 422n design containing clear 2fic’s (see [17]). We need only
to examine values of n in the range of M ′′(k) < n � n1, where M ′′(k) denotes the maximum
value of n for a 422n design to have resolution at least V.

Note that a 422n design with 2k runs can be constructed from a 2(n+6)−(n+6−k) design.
Then similarly to the case of 412n design, when M ′′(k) < n � n1, we can construct a
2(n+6)−(n+6−k) design such that there are six columns {c1, c2, c3} and {c4, c5, c6} satisfying
{c1, c2, c3} ∩ {c4, c5, c6} = ∅ and c1c2c3 = c4c5c6 = I as discussed in Remark 1. Then replacing
{c1, c2, c3} and {c4, c5, c6} with two 4-level columns, respectively, we obtain a 422n design with
2k runs, which has the same number of clear 2fic’s as the 2(n+6)−(n+6−k) design has. And from
Theorem 6, the number of clear 2fic’s attains the upper bound when n = nj. The results are
summarized in the following

Theorem 7. Suppose k � 5, the design constructed above for n = nj with j = 1, . . . , J

has the maximum number of clear 2fic’s, and more generally, a lower bound βl(k, n, III) on the
maximum number of clear 2fic’s of a 422n design is given by

βl(k, n, III) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2j − 1)(n − 2j + 7), if nj � n > nj+1 + 1, for j = 1, . . . , J,

2k − 2j+1 − 2k−j+1 + 4, if n = nj + 1, for j = 2, . . . , J,

22J − 1, if n = nJ+1 + 1, for odd k,

n + 5 + e4 (n + 5 − e4) , if n � nJ+1, for odd k,

e4 (n + 6 − e4) , if n � nJ , for even k,

where J = �k/2�, nj = 2j + 2k−j − 8 for j = 1, . . . , J , nJ+1 = 2(2J − 1)− 5, e4 = �(n + 6)/2�.
4.2 Bounds on the maximum number of clear 2fic’s for 422n designs with

resolution IV

In this subsection, the upper and lower bounds on α(k, n, IV) are established.

For m = 2, it follows from the discussions in Subsection 3.2 that Nr−1 = Nr = 0, then from
Lemma 2 (ii), we can obtain

C(E) �

⎧
⎨

⎩

C′
1o = {(n + 1)f2 − (n + 2)(n + 9)}/(n − 1), if n > 1 is odd,

C ′
1e = {(n + 2)f2 − (n + 2)(n + 9)}/n, if n is even.

(6)

Next, let us consider the two cases (i) Nr−1 = Nr = 0, Nr−2 > 0, and (ii) Nr−1 = Nr = 0,
Nr−2 = 0 for m = 2. For Case (i), from Lemma 1, we have

C(E) �

⎧
⎨

⎩

C′
2o = 5n + 9, if n is odd,

C′
2e = 4n + 8, if n is even.

(7)
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On the other hand for Case (ii), from Lemma 2 (ii), we have

C(E) �

⎧
⎨

⎩

C′
3o = {(n − 1)f2 − (n + 2)(n + 9)}/(n − 3), if n > 3 is odd,

C′
3e = {nf2 − (n + 2)(n + 9)}/(n− 2), if n > 2 is even.

(8)

Then based on (6), (7) and (8), the following theorem can be obtained.

Theorem 8. If n > 3, the maximum number β(k, n, R) of clear 2fic’s in a 422n design with
R = IV is bounded above by

βu(k, n, IV) =

⎧
⎨

⎩

min{�C′
1o�, max{C′

2o, �C′
3o�}}, if n is odd ,

min{�C′
1e�, max{C′

2e, �C′
3e�}}, if n is even.

Remark 3. When k = 5, m = 2, n = 2 or 3, r = 4, N3 = N4 = 0, clearly we have N2 > 0,
hence βu(5, 2, IV) = min{�C′

1e�, C′
2e} = 16 and βu(5, 3, IV) = min{�C′

1o�, C′
2o} = 14.

By constructing 422n designs with resolution IV, a lower bound βl(k, n, IV) on β(k, n, IV) is
obtained, which is shown in Theorem 9. For simplicity, the detailed construction is given in
Appendix.

Theorem 9. Suppose k � 5, then a lower bound βl(k, n, IV) on the maximum number of
clear 2fic’s of a 422n design is given by

βl(k, n, IV) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4(n2 − n) + 6, if n2 � n > n3,

2k − (2j − 8)(nj − n) − 4nj − 13, if nj � n > nj+1, for j = 3, . . . , J,

e5(n − e5 − 4) + 2J+2 + 2n + 1, if 2J − 4 < n � nJ+1, for odd k,

e5(n − e5 + 4) + 2J+3 − 6n − 33, if 2J − 4 < n � nJ+1, for even k,

e5(n + 4 − e5) + 2n + 3, if n � 2J − 4,

where J = �k/2�, nj = 2j + 2k−j − 8 for j = 2, . . . , J , nJ+1 = 2(2J − 2)− 5, e5 = �(n + 4)/2�.
5 Performance of the construction methods

This section examines the performance of the lower and upper bounds on the maximum number
of clear 2fic’s obtained in Sections 3 and 4 for k = 5. All the MaxC2cR 4m2n designs with 2k

runs in the following tables are constructed from 2(3m+n)−(3m+n−k) designs which are obtained
through computer searches. Here the details are omitted for simplicity.

For k = 5, let a1, a2, a3, a4 and a5 denote the five independent columns (10000)′, (01000)′,
(00100)′, (00010)′ and (00001)′, respectively. Then any product of a1, a2, a3, a4 and a5 also
corresponds to a binary sequence, for example a1a3a5 corresponds to (10101)′. After converting
these binary sequences into base-ten system in Table 1, a 2m−(m−k) design D′ can be obtained
by selecting a subset of m columns of C = {1, . . . , 31}, consisting of k independent columns
and m − k additional columns. Then we can get a 412n design D by replacing three columns,
say {b1, b2, b3} of D′ satisfying b1b2b3 = I, with a 4-level column. 422n designs can also be
obtained similarly.

For simplicity, we omit the independent columns in the following tables. The 4-level column
of each design in Table 2 is obtained from {1, 2, 3} in Table 1. And the two 4-level columns of
each design in Table 3 are obtained from {1, 2, 3} and {8, 16, 24} in Table 1, respectively.
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Table 1 Design matrices for 16- and 32-run designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2 MaxC2cR 412n designs with 32 runs

R n Additional columns αl(5, n, R) α(5, n, R) αu(5, n, R)

5 6 29 15 18 23

6 5 6 31 18 21 22

7 12 20 24 28 21 21 21

8 10 12 22 24 30 12 12 20

6 12 20 24 30 12 12 20

6 12 20 24 28 12 12 20

III 9 9 10 17 18 24 26 11 11 19

9 10 11 18 24 26 11 11 19

9 10 18 19 24 25 11 11 19

10 9 10 18 19 24 25 27 12 12 18

9 10 17 18 24 25 26 12 12 18

11 9 10 11 17 18 24 25 26 13 13 17

12 9 10 11 17 18 19 24 25 26 14 14 16

13 9 10 11 17 18 19 24 25 26 27 15 15 15

5 13 26 5 13 21

IV 6 14 26 28 7 12 16

7 14 22 26 28 6 14 14

We can easily get that M ′(5) = 4. When n � 13 there exist 412n designs containing clear
2fic’s, and when 4 < n � 7 there exist 412n designs with resolution IV containing clear 2fic’s
(see [17]). Table 2 tabulates MaxC2cR 412n designs with resolutions III and IV and gives
the values of α(k, n, R) along with αl(k, n, R) and αu(k, n, R) for k = 5, where α(k, n, R) is
defined in Section 3, αl(k, n, R) and αu(k, n, R) are the lower and upper bounds on α(k, n, R),
respectively. From Table 2, we can find that the lower bound αl(k, n, III) behaves better than
the upper bound αu(k, n, III). The lower bound αl(k, n, III) equals α(k, n, III) in many cases
but the upper bound αu(k, n, III) equals α(k, n, III) only in a few cases. Table 2 also shows
that the lower bound αl(k, n, IV) and the upper bound αu(k, n, IV) behave well only in a few
cases.

Also, we can get M ′′(5) = 1. When n � 10 there exist 422n designs containing clear 2fic’s
and when 1 < n � 4 there exist 422n designs with resolution IV containing clear 2fic’s (see [17]).
Table 3 tabulates the MaxC2cR 422n designs with resolutions III and IV and gives the values
of β(k, n, R) along with βl(k, n, R) and βu(k, n, R) for k = 5, where β(k, n, R) is defined in Sec-
tion 4, βl(k, n, R) and βu(k, n, R) are the lower and upper bounds on β(k, n, R), respectively.
From Table 3 we can find that the lower bound βl(k, n, III) equals β(k, n, III) for all the cases but
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Table 3 MaxC2cR 422n designs with 32 runs

R n Additional columns βl(5, n, R) β(5, n, R) βu(5, n, R)

2 12 15 15 23

3 12 20 18 18 22

4 12 20 28 21 21 21

5 10 12 22 30 12 12 20

6 12 20 30 12 12 20

6 12 20 28 12 12 20

6 9 10 17 18 26 11 11 19

III 9 10 11 18 26 11 11 19

9 10 18 19 25 11 11 19

7 9 10 18 19 25 27 12 12 18

9 10 17 18 25 26 12 12 18

8 9 10 11 17 18 25 26 13 13 17

9 9 10 11 17 18 19 25 26 14 14 16

10 9 10 11 17 18 19 25 26 27 15 15 15

2 14 14 16 16

IV 3 14 21 10 12 14

4 14 21 31 6 6 12

the upper bound βu(k, n, III) does not do so. Table 3 also shows that both the lower bound
βl(k, n, IV) and the upper bound βu(k, n, IV) behave well.

Those comparisons reveal that our construction methods are satisfactory for constructing
4m2n designs with resolution III, and are okey for constructing 4m2n designs with resolution
IV under the consideration of maximizing the number of clear 2fic’s in the designs.

6 Summary and concluding remarks

In this paper, we first sketch out a construction method for 2n−(n−k) designs containing as many
clear 2fi’s as possible, and then derive the upper and lower bounds on the maximum number
of clear 2fic’s in 4m2n designs with resolutions III and IV. The lower bounds are achieved by
constructing 4m2n designs with 2k runs for given k. Finally, we examine the performance of
the bounds obtained above for k = 5. The construction methods are satisfactory when they are
used to construct 4m2n designs with resolution III. The number of clear 2fic’s in the constructed
design attains the maximum number in many cases. And such designs can be easily obtained
following the construction methods.

The maximum estimation capacity (see [24, 25]) is another optimality criterion for evaluating
factorial designs. It aims at selecting a design that retains full information on the main effects
and as much information as possible on the 2fi’s in the sense of entertaining the maximum
possible model diversity, under the assumption of absence of interactions involving three or
more factors. The aim of clear effects criterion is to find a design containing as many clear
main effects and 2fi’s as possible that can be estimated without being aliased in a single model.
For the former, the estimability of effects requires all the 2fi’s not in the model to be absent,
while for the latter, the estimability of effects does not require this. This is also the advantage
of the clear effects criterion over the others. These two criteria can behave quite differently
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because of this major difference.
Although the clear effects criterion has the advantage above, there are situations under which

no design containing any clear 2fi exists. For example, a 2n−(n−k) design has no clear 2fi when
n > 2k−1 (see [12]). The clear effects criterion does not apply to these situations. It can be
considered as a disadvantage of the clear effects criterion.

When there exists a design with clear 2fic’s and the experimenter hopes to estimate the
2fic’s of some factors, he or she can arrange the important factors on those main effect columns
corresponding to the clear 2fic’s. Thus he or she can estimate the clear 2fic’s without assuming
the absence of the other 2fic’s not in the model in doing the data analysis.

As explained in [6], different types of 2fic’s have not the same importance, so they should be
treated differently. Obtaining the related bounds for different types of 2fic’s will be welcome.
And the results here can be further extended to the case of general (sr)msn designs, where s is
a prime or prime power. But how to obtain the bounds and how to extend the results are the
open problems and need to be further investigated.

Acknowledgements The authors thank the referees for their valuable comments which lead
to an improvement of this paper.
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Appendix. Proofs of two theorems

A general construction method used in the proof of Theorem 5 is introduced firstly. First,
we construct a 2(n+2)−(n+2−k) design D′ of resolution IV with as many clear 2fi’s as possible.
Then by choosing a suitable two-factor interaction column, say d1 which is clear in D′ and
adding it into D′, a 2(n+3)−(n+3−k) design D′′ of resolution III with only one length three word
is obtained. Thus a 412n design D of resolution IV can be obtained by replacing the three
columns which form one length three word with a 4-level factor. Note that the number of clear
2fic’s in D equals the number of clear 2fi’s in D′′, we need only to calculate the number of clear
2fi’s in D′′. Clearly, the number of clear 2fi’s in D′′ is z0 − z1 + z2, where z0 is the number of
clear 2fi’s in D′, z1 is the number of 2fi’s which are clear in D′ but not in D′′ anymore, and z2

is the number of 2fi’s which are clear in D′′ but not in D′ originally. Note that a 2fi which is
clear in D′′ but not in D′ originally must contain d1 which is added into D′.

Proof of Theorem 5. Suppose that n = 2k−2−1. Let a1, a2, b1, . . . , bk−2 be the k independent
columns. Let

Ob = {bi1 · · · bip | where p � 1 is odd and 1 � i1 < · · · < ip � k − 2}, (9)

Eb = {bi1 · · · bip | where p � 2 is even and 1 � i1 < · · · < ip � k − 2}. (10)

It is obvious that |Ob| = 2k−3 and |Eb| = 2k−3 − 1, where for example |Ob| denotes the number
of elements in Ob. Let

a1a2Eb = {a1a2c|c ∈ Eb}. (11)

Obviously, we have |a1a2Eb| = 2k−3 − 1. Consider the following design:

D′
2 = S ∪ C, where S = {a1, a2} and C = Ob ∪ (a1a2Eb). (12)

From the discussion of [11], a1a2 is clear in D′
2, and D′

2 is of resolution IV with |D′
2| = 2k−2 +1

columns, and for any a ∈ S and c ∈ C, ac is clear in D′
2. Let d12 denote the interaction column

a1a2. Now we can obtain a design D′′
2 by adding the column d12 to D′

2. Since a1a2 is clear in
design D′

2, the new design D′′
2 is a design with only one word a1a2d12 of length three. Let

D2 = {A1} ∪ C, (13)
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where A1 is a 4-level factor obtained from {a1, a2, d12}. Then D2 has one 4-level factor and
n = 2k−2 − 1 2-level factors. Clearly, for any c ∈ C, a1c and a2c are clear and cd12 is not clear
in D2. And for any c1, c2 ∈ C, c1c2 is not clear in D2, too. Therefore, the number of clear 2fic’s
in design D2 is β1l(k, n) = 2n.

Now suppose that n = 2j + 2k−j − 5, where 3 � j � �k/2�. Let a1, . . . , aj, b1, . . . , bk−j

be k independent columns. Define Oa, Ea, Ob, Eb, a1a2Eb and b1b2Ea the same way as in (9),
(10) and (11). For example, Oa = {ai1 · · · aip | where p � 1 is odd and 1 � i1 < · · · < ip � j}.
Consider design D′

j given by

D′
j = P ∪ Q, where P = Oa ∪ (b1b2Ea\{a1a2b1b2}) and Q = Ob ∪ (a1a2Eb). (14)

Clearly, |P | = 2j − 2, |Q| = 2k−j − 1. Following the discussion of [11], we have |D′
j| = (2j −

2) + (2k−j − 1) = n + 2, D′
j has resolution IV, pq is clear for any p ∈ P and q ∈ Q\{a1a2b1b2},

and D′
j have (2j − 2)(2k−j − 2) clear 2fi’s. By adding a1b1 to D′

j , we can obtain a design
D′′

j = D′
j ∪ {a1b1} with resolution III. Let d1 denote the column a1b1 in this and the following

paragraphs. Since a1b1 is clear in D′
j, a1b1d1 is the only word of length three in D′′

j . Now
we need only to calculate the number of 2fi’s which are clear in D′

j but not in D′′
j anymore

and the number of 2fi’s which are clear in D′′
j but not in D′

j originally. For any p ∈ P and
q ∈ Q\{a1a2b1b2}, pq is clear in D′

j, if pq is not clear in D′′
j , then p = a1, q = b1 or there exists

a factor c ∈ P ∪ Q such that cpq = d1. There are two cases:
(i) p ∈ P\{a1}, q = b2, c = a1b1b2p and cpq = d1;
(ii) p = a2, q ∈ Q\{b1, a1a2b1b2}, c = a1a2b1q and cpq = d1.

Note that p = a2, q = b2, c = a1a2b1b2 are included in both cases (i) and (ii), and a1b1 is
not clear in D′′

j , thus the number of 2fi’s which are clear in D′
j but not in D′′

j anymore is
(2j − 3) + (2k−j − 3) − 1 + 1 = 2j + 2k−j − 6. Note that d1p is not clear in D′′

j for any
p ∈ P ∪ Q, the number of 2fi’s which are clear in D′′

j is (2j − 2)(2k−j − 2) − (2j + 2k−j − 6) =
2k − 3 × 2k−j − 3 × 2j + 10. Let

Dj = {A1} ∪ D′′
j \{a1, b1}, (15)

where {A1} is the 4-level factor obtained from {a1, b1, d1}. The resulting 412n design Dj has
resolution IV and 2k − 3 × 2k−j − 3 × 2j + 10 clear 2fic’s.

Let nj = 2j +2k−j−5 for j = 2, . . . , J, where J = �k/2�. For n2 > n > n3, let D = {A1}∪C∗,
where C∗ is a subset of C obtained by deleting any n2−n elements from C given in (13). For any
c ∈ C∗, a1c and a2c are still clear in D, hence D has at least 2n clear 2fic’s. For n = nj −1 with
j = 3, . . . , J , the design D is constructed by deleting the column a1a2b1b2 in Dj given in (15).
Then p �= a2 in case (i) and q �= b2 in case (ii) above. Note that p = a2 in case (i) and q = b2 in
case (ii) are the same in fact, there are 2k − 3 × 2k−j − 3 × 2j + 11 clear 2fic’s in the resulting
design. For n = nj − 2 with j = 3, . . . , J , the design D is constructed by deleting the columns
a1a2b1b2 and b2 in Dj given in (15). Then case (i) cannot occur anymore and q �= b2 in case
(ii). Note that a1b1 is not clear in the design D and the 2fic d1p is clear for any p ∈ P\{a1, a2}.
There are (2j −2)(2k−j−3)−(2k−j−4)−1+(2j−4) = 2k−3×2k−j−2j+1+5 clear 2fic’s in the
resulting design. For nj+1 < n � nj−3 with j = 3, . . . , J , where nJ+1 = 2(2J−2)−2, the design
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D is constructed by deleting the column a1a2b1b2, a2, b2 and any additional nj −n− 3 columns
from Q\{b1}. Then both the cases (i) and (ii) cannot occur anymore. The 2fic d1p is clear for
any p ∈ (P ∪Q)\{a1, b1}. There are (2j −3)(n+2−2j +3)−1+n = (2j −3)(n−2j +5)+n−1
clear 2fic’s in the resulting design.

Note that the case nJ − 3 � n > nJ+1 is non-trivial only for odd k. When k is odd
and n = nJ+1, let D′

J+1 = P ∗ ∪ Q∗, where P ∗ = P\{a2}, Q∗ ⊂ Q\{b2, a1a2b1b2} such that
b1 ∈ Q∗, |Q∗| = 2J − 1, and P, Q are the same as those given in (14) for j = J . Note that pq

is clear in D′
J+1 for any p ∈ P ∗ and q ∈ Q∗, there are (2J − 3)(2J − 1) clear 2fi’s in D′

J+1.
By adding a1b1 to D′

J+1 we can get a design D′′
J+1 with n + 3 columns. For any p ∈ P ∗ and

q ∈ Q∗ if pq is not clear in D′′
J+1, then p = a1, q = b1. Note that d1p is clear in D′′

J+1 for any
p ∈ (P ∗ ∪ Q∗)\{a1, b1}, there are (2J − 3)(2J − 1) − 1 + (2J+1 − 6) = 22J − 2J+1 − 4 clear
2fi’s in D′′

J+1. Replacing {a1, b1, d1} with a 4-level factor we get a 412n design D. And D has
22J − 2J+1 − 4 clear 2fic’s.

When n < nJ+1, let D′ = P ∗ ∪ Q∗, where P ∗ is a subset of P\{a2} with �(n + 2)/2�
columns and Q∗ is a subset of Q\{b2, a1a2b1b2} with (n + 2) − �(n + 2)/2� columns such that
a1 ∈ P ∗, b1 ∈ Q∗, and P, Q are given in (14) for j = J . Note that for any p ∈ P ∗, q ∈ Q∗, pq is
clear in D′. Then by adding a1b1 to D′ and replacing {a1, b1, d1} with a 4-level factor we get
a 412n design D. For any p ∈ P ∗, q ∈ Q∗, pq, d1p, d1q are all clear in D except for p = a1 and
q = b1. Thus D is a design with at least �(n + 2)/2�((n + 2)− �(n + 2)/2�)− 1 + n clear 2fic’s.

A construction method which is similar to that described in the proof of Theorem 5 is
used in Theorem 9. First, a 2(n+4)−(n+4−k) design E′ of resolution IV is constructed. Then
by choosing two suitable two-factor interaction columns, say d1, d2 which are clear in E′ and
adding them into E′, a 2(n+6)−(n+6−k) design E′′ of resolution III with only two length three
words is obtained. Thus a 422n design E of resolution IV can be obtained by replacing the six
columns which form the two length three words with two 4-level factors. Then the number of
clear 2fic’s in E equals the number of clear 2fi’s in E′′. And the number of clear 2fi’s in E′′ is
calculated just like that in D′′ in Theorem 5.

Proof of Theorem 9. Suppose that n = 2k−2 − 4. Let

E′
2 = D′

2\{a1a2b1b2}, E′′
2 = E′

2 ∪ {a1b1} ∪ {a2b2},

where D′
2 = S ∪ C, S = {a1, a2} and C = Ob ∪ (a1a2Eb) are given in (12), and |Ob| =

2k−3, |a1a2Eb| = 2k−3 − 1. Then E′′
2 has n + 6 columns. For any p ∈ S and q ∈ C\{a1a2b1b2},

pq is clear in E′
2. Note that a1a2 is clear in E′

2, E′
2 has 2(2k−2−2)+1 clear 2fi’s. Let d1 and d2

denote a1b1 and a2b2 in this and the following paragraphs, respectively. Since a1b1 and a2b2 are
clear in design E′

2, E′′
2 is a design with only two words a1b1d1 and a2b2d2 of length three. Clearly,

for any p ∈ C\{b1, b2, a1a2b1b2}, there exists c = a1a2b2p ∈ C\{a1a2b1b2} such that a1cp = d2.
A similar argument is valid for a2 and d1. Therefore, for any p ∈ C\{b1, b2, a1a2b1b2} the 2fi’s
aip, dip are not clear in E′′

2 for i = 1, 2. Note that a1b1, a2b2, a1d1, a1d2, a2d1, a2d2, b1d1, b2d2

are not clear and d1d2, b1d2, b2d1 are clear in E′′
2 , the design E′′

2 has 2(2k−2 − 2)+1− 2(2k−2−
4) − 2 + 3 = 6 clear 2fi’s. Thus we can obtain a 422n design E2 by replacing {a1, b1, d1} and
{a2, b2, d2} with two 4-level factors in E′′

2 . And the number of clear 2fic’s of E2 is 6.
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Now suppose that n = 2j + 2k−j − 8 for some j = 3, . . . , J, where J = �k/2�. Let the k

independent columns be a1, . . . , aj , b1, . . . , bk−j . And let

E′
j = D′

j\{a1a2b1b2}, E′′
j = E′

j ∪ {a1b1} ∪ {a2b2},

where D′
j = P ∪Q is given in (14) and |P | = 2j −2, |Q| = 2k−j −1. Thus E′′

j has n+6 columns.
For any p ∈ P and q ∈ Q\{a1a2b1b2}, pq is clear in E′

j , hence E′
j has (2j − 2)(2k−j − 2) clear

2fi’s. Since a1b1 and a2b2 are clear in E′
j , E′′

j is a design with only two words a1b1d1 and a2b2d2

of length three. Now we need to find out the number of 2fi’s which are clear in E′
j but not in E′′

j

anymore and the number of 2fi’s which are clear in E′′
j but not in E′

j originally. For any p ∈ P

and q ∈ Q\{a1a2b1b2}, if pq is clear in E′
j but not in E′′

j , then p = a1, q = b1 or p = a2, q = b2,
or there exists a factor c ∈ E′

j such that cpq = di, i = 1 or 2. There are four cases:
(i) p ∈ P\{a1, a2}, q = b1, c = a2b1b2p ∈ P and cpq = d2;
(ii) p ∈ P\{a1, a2}, q = b2, c = a1b1b2p ∈ P and cpq = d1;
(iii) p = a1, q ∈ Q\{b1, b2, a1a2b1b2}, c = a1a2b2q ∈ Q\{a1a2b1b2} and cpq = d2;
(iv) p = a2, q ∈ Q\{b1, b2, a1a2b1b2}, c = a1a2b1q ∈ Q\{a1a2b1b2} and cpq = d1.

From cases (i) and (ii) we can find that for any p ∈ P\{a1, a2}, bip and dip are not clear in E′′
j for

i = 1, 2. And cases (iii) and (iv) show that for any q ∈ Q\{b1, b2, a1a2b1b2}, aiq and diq are not
clear in E′′

j for i = 1, 2. Note that al1dl2 and bl1dl2 are not clear in E′′
j for l1, l2 = 1, 2, and d1d2

is clear, thus the number of clear 2fi’s in E′′
j is (2j −2)(2k−j −2)−2(2j −4+2k−j −4)−2+1 =

2k − 2j+2 − 2k−j+2 + 19. We can obtain a 422n design Ej with resolution IV by replacing
{a1, b1, d1} and {a2, b2, d2} in E′′

j with two 4-level factors and Ej has 2k − 2j+2 − 2k−j+2 + 19
clear 2fic’s.

Let nj = 2j + 2k−j − 8, j = 2, . . . , J . For n2 > n > n3, let

E′ = S ∪ Ob ∪ (a1a2E
∗
b ), E′′ = E′ ∪ {a1b1} ∪ {a2b2},

where a1a2E
∗
b denotes a subset of a1a2Eb\{a1a2b1b2} obtained by deleting n2 − n columns

from it, S = {a1, a2} and Ob, a1a2Eb are the same as those given in (9) and (11), |a1a2E
∗
b | =

2k−3−2−(n2−n) and E′′ has n+6 columns. For any p ∈ S, q ∈ Ob∪(a1a2E
∗
b ), pq is clear in E′.

Note that a1a2 is also clear in E′, the design E′ has 2(2k−2−2−n2 +n)+1 clear 2fi’s. Clearly,
for any p ∈ a1a2E

∗
b , there exists q = a1a2b2p ∈ Ob such that a1pq = d2. Thus a1p, a1q, a1d2, d2p

and d2q are not clear in E′′. Note that for any q ∈ Ob\{b2} satisfying a1a2b2q /∈ a1a2E
∗
b , d2q is

clear in E′′. A similar argument is valid for a2 and d1. Note that a1b1, a2b2 are not clear and d1d2

is clear in E′′, design E′′ has 2(2k−2−2−n2+n)+1−2−4(2k−3−2−n2+n)+2(n2−n+1)+1 =
4(n2 − n) + 6 clear 2fi’s. Thus we can obtain a 422n design E with resolution IV by replacing
{a1, b1, d1} and {a2, b2, d2} in E′′ with two 4-level factors. And E has 4(n2 −n)+6 clear 2fic’s.

When nj > n > nj+1 for some j = 3, . . . , J, where nJ+1 = 2(2J − 2) − 5, let

E′ = P ∪ Q∗, E′′ = E′ ∪ {a1b1} ∪ {a2b2},

where P = Oa ∪ (b1b2Ea)\{a1a2b1b2}, Q∗ = Ob ∪ (a1a2E
∗
b ), a1a2E

∗
b denotes a subset of

a1a2Eb\{a1a2b1b2} obtained by deleting nj − n columns from it, and Oa, Ob, b1b2Ea, a1a2Eb

are the same as those in (14). Clearly, |Oa| = 2j−1, |Ob| = 2k−j−1, |b1b2Ea| = 2j−1 − 1,
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|a1a2E
∗
b | = 2k−j−1 − 2 − (nj − n) and E′′ has n + 6 columns. For any p ∈ P and q ∈ Q∗, pq is

clear in E′. Thus E′ has (2j − 2)(2k−j − 2−nj +n) clear 2fi’s. Since a1b1 and a2b2 are clear in
E′, E′′ is a design with only two words a1b1d1 and a2b2d2 of length three. For any p ∈ P and
q ∈ Q∗, if pq is not clear in E′′, then p = a1, q = b1 or p = a2, q = b2, or there exists a factor
c ∈ E′ such that cpq = di, i = 1 or 2. There are four cases:

(i) p ∈ P\{a1, a2}, q = b1, c = a2b1b2p ∈ P and cpq = d2;
(ii) p ∈ P\{a1, a2}, q = b2, c = a1b1b2p ∈ P and cpq = d1;
(iii) p = a1, q ∈ Q∗\{b1, b2}, c = a1a2b2q ∈ Q∗\{b1, b2} and cpq = d2;
(iv) p = a2, q ∈ Q∗\{b1, b2}, c = a1a2b1q ∈ Q∗\{b1, b2} and cpq = d1.

Case (i) shows that for any p ∈ P\{a1, a2}, b1p and d2p are not clear in E′′. And case (iii)
shows that for any q ∈ a1a2E

∗
b and c = a1a2b2q ∈ Ob, a1q, a1c, d2q and cd2 are not clear in E′′.

For any c ∈ Ob\{b1, b2} satisfying a1a2b2c /∈ a1a2E
∗
b , cd2 is clear in E′′. A similar argument

is valid for cases (ii) and (iv). Note that al1dl2 , and bl1dl2 are not clear for l1, l2 = 1, 2 and
d1d2 is clear in E′′, the number of clear 2fi’s in E′′ is (2j − 2)(2k−j − 2− nj + n)− 2(2j − 4)−
4(2k−j−1 − 2− nj + n)− 2 + 2(nj − n) + 1 = 2k − (2j − 8)(nj − n)− 2j+2 − 2k−j+2 + 19. Thus
we can obtain a 422n design E of resolution IV by replacing {a1, b1, d1} and {a2, b2, d2} in E′′

with two 4-level factors and E has 2k − (2j − 8)(nj − n) − 2j+2 − 2k−j+2 + 19 clear 2fic’s.
For 2J − 4 < n � nJ+1 and odd k, let e5 = �(n + 4)/2� and E′ = P ∗ ∪ O∗

b , where P ∗ =
Oa ∪ (b1b2E

∗
a), b1b2E

∗
a is a subset of b1b2Ea\{a1a2b1b2} with e5−2J−1 elements, O∗

b is a subset
of Ob with (n + 4) − e5 elements such that b1, b2 ∈ O∗

b , Oa, Ob, b1b2Ea are defined in (14) for
j = J . Adding a1b1 and a2b2 to E′, we get a 2(n+6)−(n+6−k) design E′′. Since a1b1 and a2b2

are clear in E′, E′′ has only two words a1b1d1 and a2b2d2 of length three. For any p ∈ P ∗ and
q ∈ O∗

b , pq is clear in E′. Hence E′ has e5((n + 4)− e5) clear 2fi’s. For any p ∈ P ∗ and q ∈ O∗
b ,

if pq is not clear in E′′, then p = a1, q = b1 or p = a2, q = b2, or there exists a factor c ∈ E′

such that cpq = di, i = 1 or 2. There are two cases:
(i) p ∈ P ∗\{a1, a2}, q = b1, c = a2b1b2p ∈ P ∗\{a1, a2} and cpq = d2;
(ii) p ∈ P ∗\{a1, a2}, q = b2, c = a1b1b2p ∈ P ∗\{a1, a2} and cpq = d1.

Let us consider case (i) firstly. For any p ∈ b1b2E
∗
a and c = a2b1b2p ∈ Oa, b1p, b1c, d2p and

cd2 are not clear in E′′. And for any q ∈ Oa\{a2} satisfying a2b1b2q /∈ b1b2E
∗
a , d2q is clear

in E′′. A similar argument is valid for b2 and d1 in case (ii). For any p ∈ O∗
b\{b1, b2}, dip

is clear in E′′ for i = 1, 2. Since d1d2 is clear in E′′, the number of clear 2fi’s in E′′ is
e5((n+4)−e5)−4(e5−2J−1)−2+2(2J−1−e5)+2(n+2−e5)+1 = e5(n−e5)+2J+2−4e5+2n+1.
Then we can obtain a 422n design E of resolution IV by replacing {a1, b1, d1} and {a2, b2, d2}
with two 4-level factors in E′′ and E has e5(n − e5) + 2J+2 − 4e5 + 2n + 1 clear 2fic’s.

For 2J − 4 < n � nJ+1(= nJ − 1) and even k, let E′ = P ∗ ∪ Q∗, where P ∗ = Oa ∪
(b1b2E

∗
a), Q∗ = Ob ∪ (a1a2E

∗
b ), b1b2E

∗
a is a subset of b1b2Ea\{a1a2b1b2} with e5 − 2J−1 el-

ements, a1a2E
∗
b is a subset of a1a2Eb\{a1a2b1b2} with (n + 4) − e5 − 2J−1 columns, and

Oa, Ob, b1b2Ea, a1a2Eb are defined in (14) for j = J . Adding a1b1 and a2b2 to E′, we get
a 2(n+6)−(n+6−k) design E′′. Since a1b1 and a2b2 are clear in E′, E′′ has only two words a1b1d1

and a2b2d2 of length three. For any p ∈ Oa ∪ (b1b2E
∗
a) and q ∈ Ob ∪ (a1a2E

∗
b ), pq is clear in E′.

Hence E′ has e5((n + 4) − e5) clear 2fi’s. For any p ∈ Oa ∪ (b1b2E
∗
a) and q ∈ Ob ∪ (a1a2E

∗
b ), if
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pq is not clear in E′′, then p = a1, q = b1 or p = a2, q = b2, or there exists a factor c ∈ E′ such
that cpq = di, i = 1 or 2. There are four cases:

(i) p ∈ P ∗\{a1, a2}, q = b1, c = a2b1b2p ∈ P ∗\{a1, a2} and cpq = d2;
(ii) p ∈ P ∗\{a1, a2}, q = b2, c = a1b1b2p ∈ P ∗\{a1, a2} and cpq = d1;
(iii) p = a1, q ∈ Q∗\{b1, b2}, c = a1a2b2q ∈ Q∗\{b1, b2} and cpq = d2;
(iv) p = a2, q ∈ Q∗\{b1, b2}, c = a1a2b1q ∈ Q∗\{b1, b2} and cpq = d1.

Consider case (i) firstly. For any p ∈ b1b2E
∗
a , c = a2b1b2p ∈ Oa, b1c, b1p, cd2 and d2p are not

clear in E′′. For any q ∈ Oa\{a1, a2} satisfying a2b1b2q /∈ b1b2E
∗
a , qd2 is clear in E′′. A similar

argument is valid for the pairs (b2, d1), (a1, d2) and (a2, d1) in the other three cases. Since d1d2

is clear in E′′, the number of clear 2fi’s in E′′ is e5((n + 4)− e5)− 4(e5 − 2J−1 + (n + 4)− e5 −
2J−1)− 2 +2(2J − 2− e5)+ 2(2J + e5 −n− 6)+1 = e5(n− e5) +4e5 + 2J+3 − 6n− 33. We can
thus obtain a 422n design E with resolution IV by replacing {a1, b1, d1} and {a2, b2, d2} with
two 4-level factors in E′′ and E has e5(n − e5) + 4e5 + 2J+3 − 6n − 33 clear 2fic’s.

For n � 2J − 4, let E′ = O∗
a ∪ O∗

b , where O∗
a is a subset of Oa with e5 elements and O∗

b is a
subset of Ob with (n + 4)− e5 elements such that a1, a2 ∈ O∗

a, b1, b2 ∈ O∗
b . For any p ∈ O∗

a and
q ∈ O∗

b , pq is clear in E′. Hence E′ has e5((n + 4) − e5) clear 2fi’s. Adding a1b1 and a2b2 to
E′, we get a 2(n+6)−(n+6−k) design E′′. Since a1b1 and a2b2 are clear in E′, the design E′′ has
only two words a1b1d1 and a2b2d2 of length three. For any p ∈ E′\{a1, b1}, d1p is clear in E′′.
A similar argument is valid for d2. Since a1b1 and a2b2 are not clear and d1d2 is clear in E′′,
the number of clear 2fi’s in E′′ is e5((n + 4)− e5)− 2 + 2(n + 2) + 1 = e5(n + 4− e5) + 2n + 3.
We can thus obtain a 422n design E with resolution IV by replacing {a1, b1, d1} and {a2, b2, d2}
with two 4-level factors in E′′ and E has e5(n + 4 − e5) + 2n + 3 clear 2fic’s.
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