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Abstract

This paper presents ancomplete proof system for the extension of first order
Interval Temporal Logic [TL, [12, 15, 4]) by a projection operator [16, 11]. Al-
ternative earlier approaches to the axiomatisation of projectidii’'inare briefly
presented and discussed. An extension of the proof system which is complete for
the extension of Duration Calculu®(C, [24]) by projection is also given.

Introduction

First Order Interval Temporal Logic (ITL) was introduced in [12, 15] as a tool for the
formal specification and verification of hardware systems. The completeness of a proof
system for/ T'L with respect to an abstractly defined class of frames was first presented
in [4]. Numerous extensions éf'L have been shown to be useful in the specification of
various kinds of software and hardware systems. Among these are the real time based
Duration Calculus DC) [24] and various extensions of it, which include iteration and
more general fixed point operators [5, 18, 8], higher-order quantifiers [18, 22, 8] and
expanding modalities [23, 19].

A binary modal operator called projection and denotedlowas first introduced
to discrete timelTL in [12]. This operator subjects its second formula operand to
evaluation at an interval of time which is obtained by keeping only some of the points
of the reference interval, including the end points. The points to be kept are those
which satisfy the first operand di. In [16, 17], another variant of projection was
introduced. It was denoted hyroj in [16] and by A [17], and differs fromII in
the way the first operand determines the time points from the reference interval to be
selected. A similar projection operator, denoted(By,.), was introduced tdC in
[11]. DC is a real-time logic and the introduction of projection made it necessary
to admit finite nonempty sets of time points as "intervals” along with the "ordinary”
closed and bounded real-time intervals, which are the possible worldé’ifrom the
view point of Kripke semantics.

All the projection operators mentioned above have been introduced to enable the
concise and flexible specification tine granularity which is essential for the conve-
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nience of choosing different levels of abstraction for the specification of hardware be-
haviour. In discrete-timéT'L, the operator$l andproj provide access from discrete-
time intervals of finer granularity to discrete-time intervals of coarser granularity, thus
providing expressiveness for the specification of systems in which the initial step of
discretisation of time has already been made. The generalisation proposed in [11]
allows the reasoning about this initial time discretisation step itself to be formalised
within the logic. Along with the convenience of reasoning about the behaviour of sin-
gle discrete-time systems at different levels of time granularity, this more general form
of projection facilitates the specification of systems which have multiple discrete-time
components with possibly independent clock rates. That is why the projection operator
from [11] significantly enhances the expressive powePadf by enabling combined
specifications of dense- and discrete-time properties of the modelled systems. Another
interesting real-time projection operator, which can be regarded as a real-time variant
of I1, has been studied in [9, 10].

In this paper we present a complete proof system for the extension of abstract time
ITL asintroduced in [4] by a projection operator that we denote\Py). The operator
we study here is a straighforward generalisation of that from [11], except that it allows
vacuousprojection, like/A. This operator leads to a system of abstract-and-discrete
time ITL. Both DC and discrete timéT'L with projection can be regarded as special
cases of this system. The variants of projection/ L, with and without vacuous
projection are interdefinable. The one with vacuous projection is technically more
convenient and therefore we develop our proof system and its completeness argument
for this variant of the projection operator.

The proof system we presentiscomplete and contains one infinitary rule, which
is related to the/T'L modal operator callederation. Iteration is known inITL and
DC and can be regarded as a special case of projection. We obtained this proof system
by extending the complete proof system for abstract tiffi® known from [4]. Our
completeness argument is an extension of the one given in that article too, and follows
closely the version of that completeness argument fowttemplete proof system for
abstract timeDC' developed in [6].

1 Preliminaries on I'TL with projection

In this paperITL,\ stands for the extension of abstract tifiEL by the projection
operator(.\\.) to be defined below. The model of time féf'L from [4] includes

a linearly ordered set of time points, and a measure function which maps bounded
intervals of time to their durations. Durations themselves are required to constitute an
appropriate kind of linearly ordered semigroup. This is what we meabbiract time

in this paper too. In fact, frames fdf’'L\\ areITL frames with the measure function
straightforwardly extended to include the durations of discrete-time intervals. In this
section we give a brief formal introduction 1G'L \ .



1.1 Languages

An ITL\\ language is essentially a first order language extended b¥/Tthespecific
binary modality(.; .) and the/TL,\ -specific binary modality.\\.). The vocabulary

of an ITL\\ language consists @onstant symbols, d, ..., function symbols, g,
...andrelation symbolsk, S, .... Function symbols and relation symbols haviy

to indicate the number of arguments their occurrences take in terms and atomic for-
mulas, respectively. Furthermore, evefyL,\ vocabulary contains countably many
individual variablest, v, .. .. Non-logical symbols are eith#exibleor rigid, depend-

ing on whether their interpretations depend on reference intervals or not, respectively,
as it becomes clear below.

Given the vocabulary of anT'L\ language, itéermst andformulasy are defined
by the following BNFs:

to=cla| ft,...,t)

pu=L|R(t,....t) o= @] (p;0) | " | (p\\¢) | Tze
Terms and formulas that are built using no modalities and flexible symbols are called
rigid. The other terms and formulas are calftkible Every ITL,\ vocabulary con-
tains the rigid constart, the flexible constant, the rigid binary function symbol
and equality=. In this paper we consider only vocabularies which contain infinitely
many0-ary flexible relation symbols, because of their special role in our proof system
for ITL\\

The two binary operators; .) and(.\\.) are known aghopandprojection respec-
tively. Althoughiteration (.)* is definable i/ T'Ly , we prefer to regard it as a separate
modality in our presentation, because of its role in our proof system. We always use
parentheses in formulas involving chop and projection. The diversity of notation in
the literature, especially concerning projection, indicates that the unambiguity that our
convention offers is important.

1.2 Frames, models and satisfaction

Definition 1 A time domainis a linearly ordered set. L&fl’, <) be a time domain.
We denote the s€fr1, 7] : 71,72 € T, 71 < 72} by I(T") and the set of the nonempty
finite subsets o by P, (T'), respectively. We denoléT’) UP g, (T') by I\ (7). The
elements o (T'), P, (T) andl,\ (T') are calledordinary intervals discrete intervals
and justintervals respectively.
A duration domairis a system of the kindD, 0(9 | +(2)) which satisfies the fol-
lowing axioms:
(D1) z+(y+2)=(x+y +=
(D2) x+4+0=uzx,
O+xz==x
(D3) z4+y=z+z=>y=z2,
r+z=y+z=>r=1y
(D4) z+y=0=z=0
(D5) Fz(xz+z=yVy+z=ux),
P(z+z=yVz+y=n1)
Given a time domainT, <) and a duration domaigD, 0,+), a functionm :



I\\(T) — D is called ameasure functionif the following properties hold for all
O',O'/ S I\\(T)
(M1) mino =mino’ Am(o) =m(c’) = maxoc = maxo’
(M2) ifouo’ € I\\(T), thenmax o = mino’ = m(o) 4+ m(c’) = m(oc Uo’)
(M3) m(o)=xz+y= 37 € ocm(mino,7]) =z foro e I(T)
(M\\) m(c)=m([mino, maxo])for o € Pg,(T)

Here, as usuaipin 0 andmax o stand for the least and the greatest time point of the
interval o, respectively, in the sense of the orderiag@nT.
A linear ordering can be defined on duration domains by putting

z <yiff z(x 4+ z =vy).

The only ITL\ -specific axiom about measure functions heré/s,. It postulates

that removing all but finitely many internal points from an interval does not affect its
duration. This choice of extending to discrete intervals differs from the one in [16]
where all intervals are discrete and the duration of an interval is defined by means of
the number of its points. In the sequel we denote unioniss’ of intervalso, o’ such
thatmin o’ = max o and eithewr, o’ € I(T') or 0,0’ € Pg,(T) by o;0’. We tacitly
assumenin o’ = max o wherever we use; ¢’. For example, in this notatioh/2 can

be abbreviated tov(c) + m(c’) = m(o;0’)

Definition 2 An ITLy\ frameis a tuple of the form((T, <), (D,0,+),m) where
(T, <) is a time domain{D, 0, +) is a duration domain anch : I\ (7)) — D is a
measure function.

The real-time based framEr = ((R, <gr), (R4,0Rr, +R), \o. maxo — min o)
whereR ;. stands for the set of the non-negative reals is undoubtedly the most interest-
ing ITL\\ frame. SinceP 5, (R) consists of the finite sets of reals, the frafg em-
beds the practically significant modeltohed state sequencesere states are labelled
with real-valued time stamps. Correspondence between the validiCbformulas
on timed state sequences and their validity in real time has been studied in [2]. Another
interestingI T'Ly\ frame isFz = ((Z, <z), (N, 0N, +n), Ao. max o — min o). Since
bounded intervals of integers are finite, we hivg,(Z) = I(Z).

Definition 3 Given an/TL,\ languagdl. and an/T'L\\ frame F" with its components
named as above, a functidron the vocabulary oL is aninterpretation ofLL into F,
if it satisfies the following conditions:
o I(c) € D,I(f): D™ — D,andI(R) : D™ — {0,1} for rigid constant symbols,
andn-ary rigid function symbolg and relation symbol&
o I(C) : I\\(T) — D, I(f) : I\\(T) x D" — D, andI(R) : I\\(T) x D" — {0, 1}
for the corresponding kinds of flexible symbols;
I(x) € D for individual variables;
I(=)is=,1(0) =0, I(+) =+, andI(¥) = m.
Given anITLy\ languageL, an ITL\, model forL is a pair of the form(F, I')
whereF is anITL\ frame and! is an interpretation oL into /.



Given a frameF’, we denote its components KYr, <r), (Dp,0r,+r) andmp,
respectively. The same applies to models. We denote the frame and the interpretation
of a modelM by F), andl),, respectively.

Definition 4 Given anITL languagel, a modelM = (F, I) for it, and an interval
o € I\ (TF), the valuel, (t) of atermt in L is defined by induction on the construction
of ¢ as follows:

I,(c) = I(c) for rigid constants:
I,(c) = I(c¢)(o) for flexible constants
Io(f(tla--~7tn)) = I(f)(lo(t1)7'~-alo<tn)) for I'Igld n'aryf
L(f(t1,....tn)) = I(f)(o,I(t1),...,15(t,)) forflexiblen-ary f

Given an interpretatiod of an ITL\\ languagel into a framefF’, a symbols from L
and an object: of the type ofI(s) in F', we denote the interpretation which assigns
to s and is equal td for all the other symbols from the vocabularyloby 7¢.

Definition 5 We define the relatiod/, o = ¢ whereM = (F,I) is anITL\, model
for some languagé, o € I\ (TFr) andy is a formula inL by induction on the con-
struction ofy as follows:

M,o = L

M,o = R(t1,...,tn) iff I(R)(I5(t1),...,I,(tn)) = 1, for rigid n-ary R

M,o = R(t1,...,t,) iff  I(R)(o,1,(t1),...,1,(t,)) = 1, for flexiblen-ary R

Moo= iff eitherM,oc =vorM,o ¢
M,o = (p;9) iff M,o1E@andM,oq =
for someoy, 02 € I\ (TF) such thaty; 00 = o
M,o | ¢* iff eithermino = maxo
or there existam > 0 andoy, ...,0, € I\\(TF)
suchthaty;...;o, =candM,o; Ep,i=1,...,n
M, o = (P\\p) iff eithermino = maxo andM, o = ¢,
or there existam > 0 andoy, . ..,0, € I\\(TF)
suchthavy;...;0, =0, M,0; E¢¥,i=1,...,n,
andM, {minoi, maxoy,...,maxo,} = ¢
M,o = Jzp iff (F,I%),0 = ¢forsomeaq € Dp

Note that the clause about the satisfaction of formulas of the kind¢) always
refers to satisfaction ap at a discrete interval, while in other clauses intervals on the
right side are of the same kind as that on the left side.

1.3 Abbreviations

First order logic abbreviations and infix notation are usefih, \ in the ordinary way.
These include the constant the connectives, A, vV and< and quantifie/. We use
t; < to to abbreviate the formulaz(t; + = = t2) which defines the standard linear
ordering on durations. The following abbreviations are specific to the modal operators
(), (A\\.) and(.)*:

Cp = (T;p;T), Hp = ~Omp

WO =0=0,0"" = (pFp) fork <w



ot = (p%50)

(e1\\e2\\ - \\en) = (01\\ - \\(@no1\\gn) - )

(139023 390n) = (P15 -5 (Pr-15n) - )
Note that we us€ andO to abbreviate formulas in the way that has been adopted in the
literature onDC', which is different from their use as discrete-tihiEL abbreviations.
Iteration can be defined usir{d\\.) by the equivalence* < (p\\T). However, we
prefer to regard it as an independent operator.

The possibility forM, o = (¢\\¢) to hold due tanin o = max o andM, o = ¢
is calledvacuousprojection. This possibility is ruled out in the version of the operator
in [11]. The projection ofp ands there is equivalent top\\v)) A pT.

1.4 A proof system for/TL

ITL (without projection) can be defined by restricting the above definitiods%9
wherever,\ (T') is involved and disregarding the clauses which refer to discrete inter-
vals or the operators\\.) and(.)*. Here follows the proof system fdf'L which was
proved complete in [4].

(ALy)  (@30) A=) = (9 A—x; )

(AL)  (p9) A(esx) = (P39 A=x) (MP) prﬂ

(A2) (s ¥)ix) & (93 (¥5x)) @

(R)  (pi0) = @l pisrigid (@) Yoy

(Ry)  (p9) = if ¢isrigid (V) L

(Bi) (Fzp; ) = Jx(p; ) if zis not free im) ! = (=3 1)

(B,)  (p;3z) = Ju(p; ) if zisnotfreeing  (N,) .

(LL)  (£=w;9) = (£ = 7;-) "),
(L1,) (gl =1) = ~(~p;l=1x) (Monoy)  ————F——
(L2) (U=xl=y)el=x+y (%X(gzz(/)w’X)
(L3)) o= (L=0;p) (Mono,)  ——————x
(L3,) o= (p:0=0) (G v) = (6¥)

This system also includes first order logic axioms, equality axioms and the axioms
D1-D5 about duration domains. Substitutififiz]¢ of individual variabler by term¢
in formula is allowed in axiom instances only fis rigid or z does not occur in the
scope of modal operators in This system is sound with respect to the semantics of
ITL\\ too, except for the axioni2, which fails in the case of discrete intervals.

2 A proof system for I'TL,

In order to present our proof system f6r'L,\, we need to introduce some special
abbreviations. Given two formulgsandq, we define a formula?. The new formula
is meant to be equivalent {@\ \¢), provided that) has the property defined below in
the considered7'L,, models and intervals.

Definition 6 Let M be a model for soméT'L,, languagel. and be a formula inL.
Leto € I\\(Tw). Theny hasthe unique partition property at the intervalin the
model M if either minoc = maxo and M, o [~ 1, or there exist a finite set of time



pointsty < 71 < ... < Tp,—1 < T, iN o such thatry = mino, 7, = maxo and the
only subintervalg’ of o which satisfyM, o’ =y arec N [r—1, 7], i =1,...,n.

A formula ) which has the unique partition property at some intesvad a modelM

can be used to unambiguously specify the discrete "sub”intg§ryat, . .., 7,—1, 7 }

of anonzero length interval, wherery, ..., 7,, are the time points ia which occur in

the definition of the unique partition property above. In casga0-length interval, its
only subinterval isr itself, both discrete and ordinary. The discrete interval which can
be specified this way is of the kind that appears in the definitiaW of = (¢)\\) for
arbitraryp. That is why a) with the unique partition property can be used astaess

for the satisfaction of formulas of the kifg\ \¢), provided thatM, o = O(v) = x).

The unique partition property can be characterised by an axiom as follows:

Lemma 7 Let M be a model for soméT'L\, languageL, o € I\ (7)) andy be a
formula inL. Themy has the unique partition property atin M iff
Mo =" A= A((Y5 £ # 0)VE=0); ") A (T3 95 =" ) A=(—ep*3 95 T)

Proof: If ¢ has the unique partition property @t then a direct check shows that the
above formula holds fop ato.
For the opposite implication, consider the casi@ ¢ = max o first. In this case

M,o =59 A (Vi 0 #0) VLE=0);97)
is equivalent to
M,o =~ A (£ #0)VLE=0))

and this implies\/, o |~ ¢, becausé, o = ¢ = 0.
In casemin o # max o, M, o |= ¢* implies that there is a subinterval of o such
thatM, o’ = 1. Now

M,o = (T =) A= (—p™;9; T)

implies thatM, o N [min o, mino’] = ¥* and M, o N [max o’,max o] = ¢*. This
means that there is a finite set of time poimgs< 7 < ... < 7,1 < T, iNo
such thatmino = 79, maxo = 7,, M,o0 N [r—1,7] FE ¥ fori = 1,...,n and

o' =oNr_1,7] forsomei € {1,...,n}. For the sake of contradiction, assume that
there exists another finite set of time poimfs< 7 < ... < 7/,_; < T iN o Such
thatmino = 7, maxo =7, M,o N [1/_y,7]] =¥ fori=1,...,m. Then there is

a least such that; # 7/. Clearly,0 < ¢ < min(m,n). Then

M,o N ([1i—1,max(7;,7;)] E YA ((; € #0)VL=0).
This implies that
M,o = @59 A (Y0 #0) VE=0);97%),

which is a contradiction-



The formulay® we mention in the beginning of this section is defined by induction
on the construction op as follows:

1¥ = 1

(R(t1, ... tn)¥ = R(ty,...,tn) AY* forrigid R(t1,...,tn)

(R(t1,...,tn)¥ = (A =0AR(t1,...,tn))V for flexible
(C#O0NW\\R(Er, .- ) AY*) R(ty, ... t)

(p1 = @2)¥ = (o = ) Ay

(1015 02)¥ = (" ApliY* A )

(¥*)¥ = (W Ae¥)

(e1\\2)” = (#1\\p2)

E = Ju(p¥)

Following our notational conventions, we regards formulas of the f@im= ¢,)¥ as
instances of R(t1,t2))? here.

To denote the formula which occurs in Lemma 7 concisely, we use the abbreviations

OV = (Y% 95 9%)

0% = =0Y—p

O = ADY(Y = (C£ 0N L #0)) A=(T5 95 =0%) A=(=9*54;T)
It can easily be shown by induction on the constructionpdhat, if M, o = E*, then

M,o |=0%((¥\\p) & ¢?).
We use formulas like? andy” extensively to present our axioms and rulesfor., |
concisely. For technical reasons, we also introduce abbreviations for some kinds of
formulas with nested occurrences ©f\.). Lety, ..., ©n, Ri, ..., Ry, andt; j,
i=1,...,n,j=1,2,belTL\ formulas,0-ary (flexible) relation symbols and terms,
respectively. We introduce the sequence of formulas

Proj(Qrs tha1,15 tht1,2, B 1, Phg1y -+ P15 tn,15tn2, Ry on) k= 0,...,n.
The kth member of this sequence takds — k) + 1 arguments. These aig;, ...,
©n, With t; 1,¢; 2, R;, inserted betweep;_; andy;, i = £+ 1,...,n. We define the
formulasproj(. . .) by the clauses:

proj(n) = ¢n

p"oj(SOszl, tk,h tk,27 le Phs -+ Pn—1, tn,la tn,27 Rn7 Spn) =

) (f - tk,l; Rk*/\D(Rk = Spkfl)/\proj((pkv e Pn—1, tn,h tn,27 R'ru Qpn)Rk;é -
g2
4(n — k) + 1-ary proj(. . .) is meant to correspond to— k projections, each preceded
by the selection of a subinterval, in the way corresponds to a single projection. The
0-ary relation symbols?,, ..., R, here determine the particular subinterval partitions
involved in satisfying the considered projections. The tetyns: = 1,...,n, deter-
mine the subintervals involved in the considered subinterval selections. We introduce
concise notation for the formulas which express thesé: projections and subinterval
selections by straightforward use of the operatgy.) as follows:

(W\\20) = (£ = t15 (¥\\), £ = t2), for arbitraryp, v, t; andt

(Pr-1\\eE 2o\ AN 200) = (et \e2 (0 \\ 2 A\ 200,)
It can be shown that, iR,,. .. R, do not occur inpy, ..., ¢,, then

t tn‘
(‘PO\\&:?‘Pl s n-1\\y i‘Pn)

n,



is equivalent to

3]%1 v HRnPVOJ'(SOO, t1,17t1,2a Rla P1y--y 99n—17tn,1atn72aRna <pn);

where the quantifier prefiXR; ... 3R, is interpreted in the ordinary way. However,
such quantification is not allowed ifif'L\\. To axiomatise this equivalence without
involving such quantification explicitly is the main idea behind the proof system for
ITL\\ that we present in this paper.

In order to present our proof system we also need a clagg'bf, formulas that
we callplain chop formulasThese are formulas of the kind

l=c1AR;...;¢0=c, ANR)
whereR stands for a (flexible)-ary relation symbol and,, ... ,c,, are rigid constants.
For the case of being1 the above formula is jugt= ¢; A R.

The last abbreviation we introduce here is

0=l #0;¢+#0)
Clearly, M, o |= ¢, iff o is either0-length or discrete with no internal points, that is, iff
o = {mino, maxo}. HenceM, o |= 6* iff o € Pg,(Tar). For an example of the use
of 6 we make below, lep be (¢ = c; AR;...;¢ = ¢, AR). ThenM,o |= [0/R]p
iff o is a discrete interval which can be represented in the ferm..; o, where
M, o; = ¢ = ¢;, and none of the intervals,, ..., o, has internal points.

2.1 The system

The proof system we propose féfi'’L\, consists of the axioms and rules from the
proof system forl T'L with the exception of the axiomh2, and axioms and rules about
iteration, discrete intervals arfd\ \.):

Iteration

(11) = 0V(¢*§<P2€=> ©*
(12) <W(X:»<P»X2)$¢
(x159%x2) = ¥
Discrete Intervals

(L2o) Ol=zxz+y={l=x;L=y)) VI

(L22) (U=xb=y)=>Ll=x+y

(DI1) 0" = (p < (6\\p))

(DI2) [T/R]e = (T\\[0/R]p), if ¢is a plain chop formula an& occurs in it
Projection



(PR)  (o\\¥) & ¢* A for rigid formulasy

(PO) o' A=z (p\\L=2)

(P1) ¢ ADY(@=x)AeY = (X\\¢)

(P?) pI’OJ(QOOa tl,l7 t1,23 R17 P11, t2,1, tg’g, RQ, .. ,tn717 tn72’ Rn7 (Pn) =0

B (Po\\e 2o\ - A\ o) = 0
(P3) "= ((0\\p) & oY)
(P9 (@\@\\W) & (L\\e)\\x) (PI7from [17], (\\-1) from [11])

¥
PN) ——M——
I -
Instances of?2 are allowed only if thé@-ary flexible relation symbol&;,i = 1,...,n,
are distinct and do not occur ipy, ..., ¢, andd. In the rest of the paper we mostly

apply a special case @f2, which is obtained by putting = 1 and choosing both; ;
andt; » to be0. This instance of’2 is equivalent to the rule:
E* A D(R1 = QO()) AN prl =0
(P2o)
_ , (¢o\\p1) = 0 _ , _
This rule is probably the most appropriate to illustrate the meaning2ofLet an
intervalo in a modelM satisfygofi1 = 0 for any R,, provided thatR; has the unique
partition property ab in M and the partitionry < ... < 7, of o which satisfies
M,oN[ri_1, 7] E R1,i=1,...,nissuchthat/,oc N [r;_1, 7] E w0, i =1,...,n
as well. ThenM, o = (¢o\\¢1) = 0. The side condition o, not to occur inpy,
1 andé corresponds to the requirement for the premiss of the rule to hold foRany
with the properties described in the rule. The role of this side condition becomes still
clearer, if we note thafpo\\¢1) is equivalent to
HRl(E* A D(Rl = (po) AN (pf,‘l)
This makes our rule resemble a left introduction ruled&;. Similarly, the intended
meaning ofP1 can be written as
ATV (= x) Ap? = FR(R AD(R= x) Aph)
and provides a way to introduce positive occurrencés\af). However, as we already
mentioned, the quantifier preftR is not allowed in our language. The instances of
P2 forn > 1 are convenient for technical reasons to become clear later.
The axiomL2_ says that ordinary intervals can be “chopped” at any time point
within their boundaries. AxionDI1 is based on the fact thatdefines a partition
of the reference interval which involves all of its time points, in case this interval is
discrete. Hence, the interval obtained by taking the chopping points involved in this
partition is the reference interval itself and therefore satisfies the same formulas.
says that, given an arbitrary finite set of points in the reference interval, the discrete
interval which consists of these points, together with the boundaries of the reference
interval, can be accessed by meang 9f.) from the reference interval. The validity of
P/ follows from M\ . The meanings of the other axioms and rules are straightforward.
We call a formulap an ITL\\ theoremiff it can be obtained from instances of
axioms of the proof system fdfT'L\\ by means of the rules of this system. We use the
expression*r]TL\\ ¢ to denote thap is anITL,\ theorem.

, If Ry does not occur ipg, p1 andd.
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3 Completeness of the proof system

In this section we present a Henkin-style completeness argument for our proof system.
We closely follow the argument abodf’L from [4]. In what follows we assume that

the extension of thdTL proof system byl1 and I2 only is w-complete for/TL*,

the extension of T'L by iteration only. (Although iteration is generally regarded as a
basic operator i TL, the result in [4] does not cover it.) Completeness arguments for
systems with an infinitary rule of this kind for logics with Kleene star are known in the
literature (cf. e.g. [20].) We do not include this proof in this paper, in order to avoid

a lengthy, yet routine presentation, and concentrate on the aspects of the proof system
which are specific to the new operafoy)\.). For the same reason, we mark fragments

of ITL\\ deductions below byTL* and skip the details, in case Hd'L\-specific
axioms or rules besidesl and /2, are involved in them. Similarly, we mark purely
first order predicate logic fragments of deduction/®y'.

The completeness argument is divided in two major parts. In the first part we estab-
lish the properties of T'L\\ theories which are needed for their use in the construction
of a model to show the satisfiability of an arbitrary given consistent séf'af, for-
mulas. The second part is the construction of this model itself. In both of these major
parts we use théT'L,\ theorems which are listed and derived below:

Theorem 8
(T1)  Frre ~(P\\L1)
(T2) Frre, (\\Tzvp) = Fx(p\\V) if © & FV(p) (FOLJ1 from [17],

(\\-6) from [11])
(T3) kit £=0= ((p\\¥) & ¢)
(T4)  Frro,, @ A (@\\Y1 = ¥2) A (0\\Y1) = (©\\h2)
(T5)  Frrr, Blp1 = v2) = ((p1\\¥) = (v2\\?)) ((\\-7) from [11])

Proof: In the ITL\ deductions for the above theorems we assumefthiata 0-ary
flexible relation symbol which does not occurgny, @;, ¥;, i = 1,2.

T1:
1 R ADR(R= o)A LR = 1 PC,the definition of L?
2 (p\\1)= L 1, P2,
T2:
1 (Jav)f & Jz(vh) ITL, the definition of(Jxw)
2 R AORR= o) AR = (0\\©) P1
3 R ADR(R= @) AJz(f) = Fa(p\\y) 2,PC
4 R ADRR= ) AGey)? = 3z(p\\¢) 1,3,PC
5 OR=¢)=08R= ) ITL
6 R AD(R= ¢)A(Fz)® = Ja(p\\¢) 4,5PC
7 (p\\Jzy) = Jz(e\\¥) 6, P2
T3:
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1 /=0=6" ITL*
2 (=0=0(p=90) ITL
3 6= ((0\\0) &) b1l
4 1=0=(0\¥) & ) 1,3,PC
5 O(e=19)= ((p\\¥) = (\\¢)) T5
6 (=0= ((p\\¥) = 1) 2,4,5,PC
7 P AD%(p = p) AYPP = (p\\Y) Pl
8 (=0=>7" ITL*
9 O%(p= ) ITL*
10 (=0AY =¥ plain induction
on the construction af
11 =0= (= (o\\)) 7-10,PC
12 (=0= ((¢\\¥) =) 6,11,PC
T4:
1 2" = ((¢\\Y1 = ¥2) & (Y1 = 12)%) P3
2 7= ((p\\th) & ¥Y) P3
3 TF=0%¢= ) ITLY
4 (Y1 = 0)? = (YW =93 the definition of
(1 = ¥2)?
5 @ A(e\\¢1 = o) A (W\\t1) = O%(p = @) A5 1-4,PC
6 T AO% (0= 9) AT = (p\\Y2) P1
7 D A (P\\Y1 = 2) A (p\\P1) = (0\\¢2) 5,6,PC
T5:
1 R ADR= o) AR = (p2\\) P1
2 O(R= 1) AO(p1 = p2) = O(R = ¢2) ITL
3 R AOR= o) AV = ((p2\\¢) vV -D(p1 = ¢2))  1,2,PC
4 (p1\\¢) = ((p2\\¥) V ~D(p1 = ¢2)) 3, P2
j 5 O(p1 = w2) = ((p1\\¥) = (¥2\\¥)) 4, PC

3.1 ITL\ theories

Throughout this sectiol. denotes anT'L\\ language. We identifi. with the set of

its terms and its formulas. Thus,c L stands fort is a term inL andy € L stands
for ¢ is a formula inL. Similarly, ' C L stands forT" is a set of formulas if..

We assume that the vocabularylofcontains no more than countably many symbols
of every kind. Given a sef’ of rigid constants and flexibl@-ary relation symbols,
the ITL\\ language obtained by adding the symbols frGrto the vocabulary ol is
denoted byL.(C).

To introduce the notion of anT'Ly\ theory inL, we need to define closedness of
sets of formulag™ C L under the rules of our proof system féf'L,\. Closedness
underMP andI2 only can be defined straightforwardly: a $etC L is closed under
these rules, if whenevdr contains all the premisses of an instance of a rlileJso
contains the conclusion of the instance of the rule. The definition becomes a little
more complicated if°2 gets involved, because this rule has a side condition. Roughly

12



speaking, a derivation by an instance

proj(wo, t1,1,t1,2, Ri,¢1,t2.1,t2.2, Ra, ...t 1, tn2, Rn,on) = 0
7 7 T
(‘PO\\tii‘Pl\\t;f A\ en) =0

n,1

of P2 from a set of formulag® can be unsound, unless the restriction not to contain
occurrences oRRy, ..., R, is imposed not only on the formulas), .. ., ¢, andd, but

on the formulas fronT" too. This is so, because such a derivation is equivalent to an
application of the rule

proj(go, t1,1,t1,2, Ri,¢1,t21,t2.2, Ra, ..., b1, tn2, Rn,yon) = (AT = 0)
(@ﬂ\ﬁf%\\iif A\ en) = (AT = 0)

n,1

Yet such a rule cannot be formulated/ffiZ,\ , becausé' may be infinite. Closedness
under first order logic quantifier-related rules requires some special care too.

To define closedness under these rules soundly, we introduce a relation of deriv-
ability as follows:

Definition 9 We definel’ -y, ¢ as the smallest relation between sets of formiilas
languaged. and formulaspy which satisfies the following conditions:
o If (RS L andI—ITL\\ ©, thenI kg, ©.

If p € 'andl’ C L, thenI k-, ¢.

If I' b, ¥ = @ andl F, ¢ for some formula) € L, thenI -, .

If T Fr (X159 x2) = ¢ forall k < w, thenT Fy, (x1; 0% x2) = 1.

If I' Fr(ey [¢/x]e = < for some rigid constant which is not in the vocabulary of

L, nor occurs inp, ¥, thenI' by, 3xp = .

o If T Frqr,,..R.y) Proj(wo,ti,t12, Ri,@1,t21,t02, - tn1,tn2, Ry on) = 0
for some distincb-ary relation symboldz,, . .., R,, which are not inL,, nor occur in
05+ Py 0, thenl b (9o \\ 21 \\22 -\ 2 pn) = 6.

Note that the relatiok introduced here is distinct fromITL\\ , which is used to denote
theoremhood ifTLy\. Clearly,;rz,, ¢ is equivalenttd -1, ¢ andy € L for some
ITL\\ languagdL. Besides, ifl.” C L” andI' kv ¢, then obviousiy* Fy» .

Now let us characterise by an inductive definition, in order to be able to reason
about it by means of transfinite induction.

O O O o

Definition 10 LetT' ¢ ¢ be arelation between sets BfL\\ formulasl’, ITL\ lan-
guaged., ordinalse and ITLy\ formulase. Let this relation be defined by induction
onq as follows:

') ¢iff o € L, T C Land eithei-;r,, ¢ orp € T. Fora # 0, T Ff iff at
least one of the following holds:

13



o I Fﬁl ¥ = pandl Ffz 1 for somef, B2 < o and some) € L.

o The formulay is 3x¢ = x andT’ Fﬁ({c}) [c/z]Y = x for somel < « and some
rigid constant: which is not in the vocabulary di, nor occurs inp.

o The formulagis (po\\;** ... \\;"*¢,) = 6 and

t11 n,1
r Fi({Rl,...,Rn}) proj(cpo, t1,17t1,27 Rl» s atn,la tn,Za Rn7 (Pn) =0

for somes < « and some distindi-ary flexible relation symbol$,, ..., R, which
are not in the vocabulary df and do not occur irp.
o The formulay is (x1;%*; x2) = 6 and for everyk < w there exists & < « such

thatl' F2% (y1;¢%; x2) = 0.

Induction Principle. T' Fr, ¢ is equivalenttada € Ord I' Ff .

Proof: ObviouslyJa € Ord I'' ¢ ¢ defines a relation which satisfies the closedness
conditions ort-. Suppose that the relation defined this way is not the smallest one that
satisfies these closedness conditions for the sake of contradiction. Chogdimdpe

the least ordinal such that there exist a langukga set of formulag” and a formula

» which satisfyI" -7 ¢ andI t/, ¢ immediately brings a contradictior.

Lemma 11 Ty, ¢ impliesp € L andI” C L.

Proof: Induction ona € Ord for « satisfyingl F¢ . -

Given a sef” C L, we denote the sty € L : T Fr, ¢} by Cng,(T"). Cny(T)
consists of the logical consequenced’ah L which can be derived using our axioms
and rules. Give' and a formulap, we denote the s€t) : T' Fr, o = ¢} by T' 41, ¢.

Lemma 12 T +y, ¢ = Cni(T'U {¢}).

Proof: The inclusionl’ 4+, ¢ C Cny,(I' U {¢}) follows trivially from the closedness
of - underMP. To show thaf” U {¢} 1, ¢ impliesT 1, ¢ = 1, we use induction
ona € Ord for o satisfyingl’ U {¢} ¢ . We prove that it U {¢} ¢ v, then there
exists an ordinat’ such thaf® Fg' » = 1 by induction ona. We give details on the
case ofiy being of the form(x1;¢*; x2) = 6 andI’ U {¢} F§ ¢ being true because
of the existence of somé, < « such thal" U {¢} I—f’“ (x1;%%:x2) = 0, k < w,
here. In this case the induction hypothesis implies that for evvetyw there exists an

ordinal 3;, such thaf’ I—i’; © = ((x1;9%"*; x2) = 0). Using that
Frrny, (= (595 x2) = 0)) = (159" x2) = (9 = 0))

and the definition of-(-), we infer thatl’ l—ﬁ“l (x1;¥%; x2) = (p = 60). Leta’
be an ordinal that is greater thamp{3;, + 1 : ¥ < w}. Thenl' I—ﬁ/ (x1;¢*;x2) =
(¢ = 0) by the definition of~(-). Just like above, this implies that -y ' ¢ =
((x1;%*; x2) = 0). The cases df U {y} ¢ ¢ holding for some other of the possible
reasons according to the definition are dealt with in similar walys.
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Definition 13 A setT’ C L is calledtheory inL, if I' = Cny(T'). A theoryT is called
consistentif L ¢ I'. A setl’ C L is calledconsistent irL if some consistent theory
in L contains it. A theory irlL is calledmaximal inL if it is consistent and it is not
a proper subset of any consistent theonLinA theoryI' is calledcomplete inL, if
eitherp € T or - € T for everyy € L.

The conditionsL € Cny,/(I") andL € Cny~(I') are equivalent for any two languages
L’ andL” which containl’. That is why consistency can be regarded as a property
of sets of formulad” regardless of the languadeinvolved in the definition of this
property. Using Lemma 12, one can easily show that a theory is complete iff it is
maximal in its language.

The following adaptation of the notion éfenkin theory which is specific to our
proof system fod T'Ly\, plays a key role in further constructions.

Definition 14 A theoryT" in L(C) is called aHenkin theory with witnesses @, if
o Jzp e T'implies|c/x]¢ € T for somec € C.
o Given a natural number > 1 andy;, € L(C), i = 0,...,n, t;1,t;2 € L(C),
i=1,...,n,suchthalpo\\;:? ... \\;"?p,) €T, there existr, ..., R, € C such

thatproj(<p0, t1,17 t1,27 R17 D) tn,la tn,2a R7L7 41071,) el.

For the rest of this section we assume tHatonsists of countably many rigid constants
and countably many flexiblg-ary relation symbols, none of which is in the vocabulary
of L.

Theorem 15 (Lindenbaum lemma) LetI'y C L be consistent. Then there exists a
maximal Henkin theory' C L(C') with witnesses i’ such that’y C T

Proof: This proof follows a general pattern known from numerous modal logics.
Let the set of all the formulas from(C) be{p : k < w}. We define the sequence
of consistent setf;, ¢ L(C) so thatT', \ Ty is finite for everyk < w. This entails
that formulas froni";, have occurrences of only finitely many elementg€dior every
k. Given a set of formulags C L(C), we useL(A) to denote the/T'L\\ language
obtained by extending the vocabularyIofwith the symbols fromC' which occur in
the formulas fromA. The definition ofl', k¥ < w, is as follows:
I'y is as given in the theorem. Assume tligthas been defined for sonke< w.
If Ty U {®r} is not consistent, theh;; = I';. Otherwise we consider the following
cases:
1. ¢y, is 3z for somey € L(C). Then we choose a rigid constangé C' which does
not occur in formulas fronk',, nor inyy, and pul'y1 = Ty U{¢x, [¢/z]1}. Assume
thatT';; is inconsistent for the sake of contradiction. This implies

Tk FLwufeny) o6 = L

by Lemma 12, which contradicts the consistency' pfJ { ¢ }. Hencel'y 1 is consis-
tent.

2. g is (x1;¢*; x2) for someyxy, x2,v¢ € L(C). Then there exists an < w such
thatT', U {pk, (x1;¢™; x2)} is consistent too. Assuming the contrary would bring a
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contradiction with the given consistencylof. We choose an with the above property
and putl’; 1, =TrU {@5, (x1; 9" x2) }
3. @i is (Yo\\;y7 - \\;79y) for somey; € L(C), i = 0,...,n, andt;1,t; 2 €
L(C), i = 1,...,n, such thaty, is not of the form(¢ = ¢'; (¥'\\¢"); £ = t").
The restriction on the form af,, here is to ensure that, does not satisfy the stated
condition for more than one. Let

X = @A\ AN, 5 =0, n = L X =
Then gy can be also recorded &o\\,!” ... \\;??x;) for j = 1,...,n. Let R/,
j=1,...,n,4 = 1,...,7, be distinctd-ary flexibie relation symbols from” which
do not occur irL(T';, U {¢x}). Let

Fi-{-l = Fk U {ka} U {proj(w07tl,1at1,27Rj1.a s atj,htj,QaRgan) ] = 17 v ap}

forp=1,...,n, T, =T, U{px} andl;4, bel}, ;. We must prove thaf,; is
consistent. We prove th&,_ | is consistent by induction om I')_; is consistent by

assumption. Assume thaf  , is consistent anﬂﬁi is inconsistent for somg < n

for the sake of contradiction. Then Lemma 12 entails that

. 1 1
proj(to, t1,1,t1,2, R 7"'7tp+1,17tp+1,27RZi1»Xp+1) =1
i P P
is amember ofny, ry (gt | greiy) (Uhyy), wheneely Py ) ok = Lby

the clause about closedness un#érin the definition of-, because?? ™", ... ,Rﬁﬁ
do not occur inL(T"} ). This entails that™}_ , is inconsistent too, which is a contra-
diction.

4. None of the above cases holds. Thgn; = T'y, U {¢x}.

A standard argument shows tHat= | J T’y is a maximal Henkin theory ifu(C) with
k<w
witnesses irC'. Clearlyl’ D T'y. -

Lemma 16 LetT be a complete theory ik(C) and (x1; ¢*; x2) € I'. Then there
exists ak < w such that(x1; ¢*; x2) € T.

Proof: Assume thafy; ¢*;x2) ¢ I for all k < w for the sake of contradiction. Then
(x1;9% x2) = L € T'forall k < w, becausd is complete. Hencex; ¢*; x2) =
1 €T by I2, becausé is a theory. This is a contradiction.

Given sets of formula$, I';, 'y C L(C) and a formulap € L(C), we denote the

set{(¢;¢) : p €T, € To} by T'y; To.

Lemma 17 LetI'y, T's andT be complete theories ih(C). Letl = ¢; € T'; for some
¢ € C,i=1,2,andl';;T'y C I'. Thenp € T', ¢ € I'y andy € 'y are equivalent
for rigid ¢ € L(C). Similarly, ¥* A ¢ € T'is equivalent to(¢)\\¢) € T for rigid
p e L(C).

Proof: The first part follows from axiom&; andR,.. The second follows from axiom
PR. A

The following lemma presents sondé'L,\ theorems which are essentially theo-
rems inITL*.
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Lemma 18 .
(T6) FITL\\ Ry AR NO(R= Ro) = 0O(R< Ry)

(T7) Frro, Ro A (RO\\R") = (Ro\\R)"

Proof: Let M be a model for anTL* language which contain® and Ry. Then
Lemma 7 entails thad/, o = O(R < Ry) for all intervalso € I\ (Th/) such that
M,o = Ry ,R',0(R = Ry). Hence the formuld’6 is valid in ITL*. ITLy, is a
conservative extension dff'’L* and we assume that the extension of the proof system
of ITL by I1 and 2 is complete forfTL*. Hence the formuld’6 is a theorem in
ITL\\. The formulaT'7 is equivalent tak,” A (R)™ = (Ro\\R) by P3, which is
valid in ITL*. HenceT'7 is anITLy, theorem too

Lemma 19 LetT be a set of formulas il,, I' # (), andT" kg, . Letey, co be two
rigid constants in the vocabulary &. Then{({ = c¢1;¢;¢ = ¢3) 1 € T} by, (0 =
1y il = ca).

Proof: Let A denote{(¢ = ¢1;v;¢ = ¢2) : ¢ € T'}. We do the proof by induction on
a € Ord for « satisfyingI' - . According to the definition of ¢ ¢, at least one
of the following cases holds:
1. ¢ is ITL\\ theorem andp € L. Lety € I'. Theny = ¢ is anITLy\ theorem
andy = ¢ € L. Hence(! = c1;9;¢ = c2) = (£ = c1;0;0 = co) is anITLy\
theorem inL too by Mono; and Mono,. Now A ty, (¢ = ¢1;¢; ¢ = ¢2) follows from
AFL (0 =cp¢;0 =co)andA Fr, (0 = ;50,0 = ¢2) = (0 = c1;90;0 = c2) by
MP.
2.peT. Then(f = c1; ;0 = o) € A, whenceA g, (£ = c1; 954 = ¢3).
3. There exisp};, f2 < a andy € L such thaf® Fgl ¥ = @ andl’ FfQ 1. This case
is dealt with using that

Abp (U=ci;¥ = ;L =cy)andA g, (L =cy; 9058 = ¢a)
by the induction hypothesis, and

Frrny, (E=ciil=co) = (E=ciip = gl =c2) = (L=ci;00 = c2)) .
4. ¢is dxyy = 6 wherey,§ € L andT’ Fﬁ({c}) [¢/x]y = 0 for somes < a,
wherec is a rigid constant which is not in the vocabularylaf Then, by the induction
hypothesis,

AFpiey (U= ci;c/xlp = 0;0 = co).
This entails that

AFrey le/z](€ = ci3pil = c2) = (£ = c1;0; L = c2).
Hence

Abp Jz(l=cr;l =ca) = (L=c1;0;0 = c2)
which implies

Abp (L=cp;3a;l =co) = (U =c1;0;0 = c3)
by B; andB,., and finally

AbL (0=c;3x = 60,0 = co)
5.5 (0o\\11? -\ 2pn) = O Wherego, ..., o, t11, b2, sty tna € L,
and

r l_i({Rl,...,Rn}) proj(o, t11,t1,2, Ry tn1, o2, Ba, ©on) =0
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for somefs < « and someRy, ..., R, that are distincb-ary relation symbols out of
the vocabulary oL.. Then, by the induction hypothesis,
A LRy, R} (L= c13proj(wo, t1,1,t1,2, Ry ooy o1yt Ry 0n) = 054 =
CQ).
This entails that
A FL{Ry,....R.}) Proj(po,c1 +t1a,tio + o, Ray ooy tn 1, o2, Ry on) =
(l=c1;0;0 =
CQ)
by the definition ofproj. Hence
Abr (po\\22 7 A\ n) = (U= 1305 = ca),
which is equivalent to
At (=i (po\\i? - \i"2n) = 0;£ = ca).
6. ¢ is (x1;%*; x2) = 6 where, 0 € L, and for everyk < w there exists @, < «
such that
T (s vkixe) = 0.
Then
Abyg (0= ci;(x1;9% x2) = 0;0 = ca)
whence, byA2, Mono; and Mono,
A (0= cisxa); 9% (x2i 0 = c2)) = (L= 1505 = ¢2)
for all £ < w by the induction hypothesis. Hence
AFp (E=ci;x1);0" 5 (xasl = c2)) = (U =c1;0;, L = c2) .
by I2. This is equivalent to
Aby (0=ci;(x1;¢%x2) = 0,4 = c2)
by A2, Mono; and Mono, again. This concludes the proof.
Given a set of formulaF and a formulap, (o\\I') stands fof{ (p\\®) : ¢ € T'}.

Lemma 20 LetT" be a set of formulas il, andT’ F, ¢. Let R be a0-ary flexible
relation symbol ifL.. Then(R\\I') U {R"} 1 (R\\¢).

Proof: Transfinite induction o € Ord such thafl’ - ¢, like in the proof of Lemma
19. LetA denote( R\\I') U {R"}. We consider the following cases:
1. pisaniITLy\ theorem ang € L. ThenR* = (R\\y) is anITL\\ theorem inL
too, by the rulePN. SinceR™ € A, A Fr, (R\\@) by MP fromA F, R* = (R\\y).
2. ¢ €T, then(R\\¢) € A, whenceA -y, (R\\¢).
3. There exisp;, 52 < a andy € L such thafl” F2' ¢ = ¢ andT 2 +. Then, by
the induction hypothesis,
At (R\\ = ) andA F, (R\\¢).
Now, using7'4 of Theorem 8 and? € A, we can infer that
Aty (R\\p) .
4. pis3zyp = 6 andT I—ﬁ({c}) [¢/x]y = 6 for somefs < «, wherec is a rigid
constant which is not in the vocabularybf Then, by the induction hypothesis,
Abpey (B\\[e/a]y) = 0).
This entails that
Abrey ([e/a]) = 6"
by P3 and the definition of.)%. Then
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Abrgey le/z](") = 67
by the definition of(.)%. Hence
A Fp z(p?) = 0F andA Fy, (Fzy = 0)F
by the definition of(.)" again, whence, using~ € A and P3, we obtain
Abr (R\\Jzy = 0)
. tq tn.:
5.¢is (po\\;? - \\¢" %) = 6 and
r Ff,({Rl _____ R,}) proj(‘POa tl,l? t1,27 Rl? s 7t'n.,17 tn,Qa RTL7 QDTL) =0
for somes < « and some distindt-ary relation symbolg?,, ..., R, which are not in
the vocabulary oL. Let P stand forproj(¢o,t1,1,t1,2, R1, .- -, tn,1,tn,2, R, on) N
the rest of this proof for the sake of brevity. Then, by the induction hypothesis,
A FL(R,.,R.}) (R\\P = 0).
Like in the previous cases, this entails that
A l_L({Rl,.H,Rn}) PR = 9R
by P3 and the definition of.)”*. Let Ry be a0-ary flexible relation symbol not in the
vocabulary ofL({R;, ..., R,}). Then
l_ITL\\ E* = (?0* N D(RO = R) = D(R ~ RO))
by 76 of Lemma 18. Sinc&'5 of Theorem 8 implies that
Frrr, O(R 4 Ro) = (R\\P) & (Ro\\P)) ,
and P3 implies that o
Frrny, B = ((R\\P) < PE) andtrrr, Ro = ((Ro\\P) & phoy |
we have .
A FL({RO,Rl,..‘,Rn}) Ry A D(RO = R) = (PR & PRO)
This entails that o
A FL({RO,Rl,...,Rn}) Ry A D(RO = R) A PFo = gE,
Yet o
l_ITL\\ (R() A \:‘(RO = R) N PRO) =
proj(R, 0,0, Ro, @0, t1,1,t1,2, Riy -y tn 1, tn2, Rny 9n)
by the definition ofproj, L3; andL3,.. Hence
A Fr (R\\gpo\\p1? - \iPon) = 6.
by P2. This entails that
t tn,
AL (B\\(po\\;} 7 -+ \\ioin) = 0)
by P3, L3; and L3, again.
6. pis (x1;¢™*;x2) = 6 and for evernyk < w there exists @, < « such that
T HE (s vk xe) = 6.
Then
A br (R\\(x1;9"%; x2) = 0)
by the induction hypothesis, whence
Atr ((xa;v% x2) = 0)F
by P3 for all k < w. Now note that(x1; ¥*; x2) = 6)% stands for
(O AR (R A RS XEARY) = 07) AR”.
Hence
Abn (xff AR (R A RYE XE AR) = 08
for all £ < w, which implies that
AR (XFEARS (R AR xEARY) = 08) AR .
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by I2. Yet the above formula is exactli(x1;%*; x2) = 0)F. This, together with
R" € A andP3, implies

Aty (R\\(x1;¢%; x2) = 6) .
This concludes the proofi

Lemma 21 Let T’ be a complete Henkin theory ih(C) with witnesses irC. Let
c1,c2 € Cbesuchthal = {¢ € L(C) : (¢ = c1;¢;{ = c3) € T'} is nonempty. Then
A is a complete Henkin theory B(C') with witnesses iiC.

Proof: Let A ¢y ¢. Then Lemma 19 entails th&t v,y (¢ = c1;0;4 = c2).
Hencey € A. This shows that\ = Cny,¢)(A).

Lety € L(C). Theneithel! = c1;0;¢ = c3) € T, 0r=(€ = ¢1; ;£ = ¢2) €T,
becausé" is complete. Ifi¢ = ¢1; ;¢ = ¢3) € T', thenp € A by the definition ofA.
If =(£ =c1;0;¢ =c3) € T, then(¢ = ¢1;~p; £ = ¢3) € T by several applications of
Aly, Al,., Mono; and Mono... In this case-p € A. Hence A is a complete theory in
L(C).

Letdzp € A, thatis,({ = c¢1;Fxp; € =) € T. Thendz (¢ = 15904 = c2) €T
by B,., B; and Mono;. Sincel is a Henkin theory with witnesses {, there exists a
¢ € C such thafe/x](¢ = c1; ;¢ = c2) € T'. This implies, thafc/x]¢ € A.

Let (0o\\ ...\ p,) € A, thatis, (£ = c13(po\\[7 ... \\i" 7)€ =
c2) € T. Then(go\\'27 .. . \\;"?¢,) € T by A2, L2_,, Mono, and Mono,.
Sincel is a Henkin theory with witnesses @, there existR, ..., R,, € C such that
proj(wo,c1 +t11,t1,2 + c2, Ra, ..o, tn 1, tn2, Ry, pn) € T'. Since

—proj(¢o, t1,1,t1,2, R1, -y tn 1, tn2, Rnyon) € A
entails
—proj(go,c1 +ti1,t1,2 + 2, Riy oo tn1,tn2, Bo, n) €T,

which is a contradiction by means @f1; and A1,., and A is a complete theory in
L(C), we haveproj(wo,t1,1,t1,2, R1, ..., tn1,tn2, Rn, ¢n) € A. This concludes the
proof thatA is a Henkin theory with witnesses (. -

Corollary 22 LetI';,T's C L(C). LetT be a complete Henkin theory In(C') with
witnesses itt. Letl';;T's C T'andey, co € C besuchthat = ¢; € T';,i = 1,2. Then
there exist two complete Henkin theori€sD T';, i = 1,2, in L(C') with witnesses in
C, such thaf}; T, C T.

Proof: Choose
I ={peLC): (p;£=c) eT}andl’, = {p e L(C): ({ =c1;¢) €T}
#

Lemma 23 LetI" be a complete Henkin theory B(C) with witnesses irC. Let
R € C be such thai?” € I and A be {¢ : (R\\¢) € I'}. ThenA is a complete
Henkin theory inL(C') with witnesses i
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Proof: Like in the proof of Lemma 21, we can show that= Cny,)(4), yet using
Lemma 20 instead of Lemma 19.

Letp € L(C). Then eithe(R\\¢) € T, or =(R\\p) € I', becausé&' is complete.
If (R\\¢) € I, thenp € A. If =(R\\¢) € I, then(R\\—¢) € I, becaus&k " € I,
R" = ((R\\-¢) < (=¢)B) € I as an instance aP3, and(—)* is equivalent to
R* A =™ by the definition of(.)*. Hence A is a complete theory ik(C).

Consistency ofA follows fromT'1 of Theorem 8. LeBzp € A, thatis,(R\\Jzy) €
. Then3z(R\\p) € I, becaus&k” = ((R\\Jzyp) < (Jzp)?) € T as a conse-
quence ofP3, and(Jz¢) is equivalent tadzo? by the definition of(.) . Sincel is
a Henkin theory with witnesses @, there exists @ € C such thafc/z](R\\¢) € T.
This implies, thafc/x]¢ € A.

Let (R\\(0\\;"* .- \\{"*¢n)) € T Then

(R\\opo\\2 .. \\i7 7 0n) €

by A2, L3;, L3,., Mono, and Mono;. Sincel is a Henkin theory with witnesses @,
there existRy, ..., R, € C such that

(£ =0; Ro A O(Ro = R) Aproj(¢o, t11,t1,2, Riy .-y tn 1 tn2, Roypn) 050 =0) €

Let P stand forproj(yo, t1.1,t1,2, R1, ..., tn1,tn,2, Rn, @,) for the rest of the proof
for the sake of brevity. Now/ = 0; Ry /\ O(Ry = R) A PFo;¢ = 0) € T implies
Ry ,0(Ro = R), PR € T by L3; and L3,. We need to prove thdtR\\P) < I.
FromR, e I' and the consequend®,” = ((Ro\\P) < Pfo) of P3, we obtain
(Ro\\P) € T. FromO(Ry = R), (Ro\\P) € I" we obtain(R\\P) € T" by T'5 of
Theorem 8. Henc# € A. This concludes the proof thadt is a Henkin theory with
witnesses irC. 4

3.2 The canonicallT’L,, model

In this section we carry out the actual construction of a canonical modélrtby, to
conclude our completeness argument. Given'ah,\ languageL, we start from a
given complete Henkin theoryy in an extensiorLi(C) of L with witnesses in some
setC' of countably many rigid constants and countably margry flexible relation
symbols, none of which is in the vocabulary@©@f Every consistent set df formulas
can be extended to such a theory by Theorem 15.

3.2.1 The canonical frame

Lete; = eo iff ¢1 = ¢o € T forrigid constantg:;, c; € C. Clearly,= is an equivalence
relation. Giverc € C, we denotgl¢’ € C : ¢ = '} by [].

Our first step is to define the duration domain, 0, +) of the canonical frame. Let
Dbe{lc]:ce C},0={ce C:c=0 €T}, and let the binary operation be
defined onD by the equalityc1] + [co] = {c: c=c¢1 + ¢ € T}

Proposition 24 The above definition of is correct and(D, 0, +) is a duration do-
main.
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Proof: Standard argument in first order predicate logic Henkin style completeness
proofs. Cf. e.g. [21]4

Our next step is to define the time domdif, <). We represent time points as
pairs ([¢'], [¢']) such that’ + ¢’ = ¢ € T'. Time points can be represented more
economically as classdg’] such thate < ¢ € T too, because the existence of a
¢’ € C such thatt’ + ¢/ = ¢ € T can be derived using th&t is a Henkin theory.
Yet having bothl¢'] and[c¢”'] explicitly occurring in our representation makes it more
convenient to describe the rest of our construction and carry out the relevant proofs.
We defineT" as the se{([¢],[c"]) : ¢/,¢" € C.£ = ¢ + " € T'}. We define the
relation< on T by the equivalencé(c}], [c¢]]) < ([cb], [c5]) < Tx(c) + 2 =ch) € T.

Proposition 25 The above definition of is correct and(T', <) is a time domain.

Proof: Direct check.

Note that! = ¢; + ¢2 € T need not imply(¢ = ¢;1;¢ = ¢3) € T, becausé’ itself
may happen to be the theory of a discrete interval.

Given the time domaifT’, <), an element of(7") can be straightforwardly denoted
by [{[c1], [¢1]), ([c5], [¢5])]. However, we prefer the more concise foffd, ], [¢5]) for
[([c1], [€]])s ([4], [5])], because the classég] and [¢;] are unambiguously deter-
mined by the conditioné= ¢} +¢{,¢ = ¢4, +c4 € I'. Hence, ifdx(c+z+d = ¢) € T,
the pair([c], [d]) can be used to denote the ordinary intefy@l, [¢']), ([d'], [d])], where
d,d € Caresuchthat+c¢ =/¢d +d=¢¢eT.Incasec+d = ¢ €T, the
pair {[c], [d]) denotes both the-length interval([c], [d]), {[c], [d])] and the unique time
point in this interval. The intended meaning will always be clear from the context.

Similarly, we concisely denote discrete interv@lg” ], [¢/]), . - -, ([c], [¢2]) } where
([ci], [ef]) < leiqals lefal),i=1,...,n—1,by([do], ..., [dn]), where the constants
d; € C,i=1,...,n are determined by the conditions

dy=cel, g+di=ci €l i=1,...,n—1,d, =¢), €T.

The conjunction of these conditions implies thit+ ... + d,, = ¢ € T'. Every
sequencely, . . ., d,, which satisfies the latter condition represents a unique discrete
interval inT". Obviously the sequencg, ..., d, represents the same discrete interval
asthe sequenc®, ..., d,, iff dy = df,,d, = d,, € T"anddy, ..., d], can be obtained
from dy, ..., d, by deleting and/or inserting constantsuch thate = 0 € T". Of
course, we can avoid this ambiguity by allowing only sequedges ., d,, that satisfy

dy #0,...,d,—1 # 0 € T'. However such a convention would only make our proofs
look more complicated, because of the need to consider more special cases, in order
to follow it. That is why we assume that, for exampl&l], [0], [d1], [d2], [d3]) and
([do], [d1], [d2], [0], [0], [d3]) stand for the same interval, which consists of three points
iff d1 #0,dy #0 €.

Given a discrete interval denoted By, . . ., [d,]), the smallest ordinary interval
which contains it can be denoted Wi], [d,]). For 0-length intervals, which are
both ordinary and discrete, the above notatioflds], [d;]) wheredy + d; = ¢ € T,
according to both conventions.

Note thatT itself is an ordinary interval, and it can be denoted(by0). In our
notation,P s, (T') can be represented §§do],...,[d,]) : 1 < n < w,do,...,d, €
C,E:do+...+dn€1“}.
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We define the functiom : I\ (T") — D by putting
m(([co],-.-,[en])) ={ceC:l=co+c+c, €T}

Note that this equality is meaningful for both discrete and ordinary intervals. In the
latter case there is nothing in place of . For discrete intervals, one can easily find
out that

m({[co], [c1],- -, [cn-1]s[cn])) ={c€C:c=c1+ ...+ ¢cn_1 €T}
For examplem(<[do], [dl}, [dg], [dg])) = {C €cC:c=di+dy € F}
Proposition 26 The above definition of. is correct andm is a measure function on
I\ (7).
\\

Proof: Direct check, using the instances of the axidfin I".
Propositions 24, 25 and 26 entail that

F = {(T,<),(D,0,+),m)

is aniITL\ frame.

3.2.2 The reference interval

Let
oo = {{[c1]; [e2]) : ({ = c1;€ = ¢c2) €T}
Proposition 27 oo € I\ (7).

Proof: Sincerl is a complete theory, eithér=¢; + co & (¢ = ¢35 = ¢2) € T for
all ¢1,c0 € C, ord* € T'. This follows from the instances df2_ andL2_, inT" by a
purely-ITL argument.

Lets* € I'. Thené® € T for somek < w by Lemma 16. Sinc& has witnesses in
C, there existy,...,c, € Csuchthald Al =cy;5...;0 ANl =c¢) € I'. This implies
thatoy = <0, [Cl], ey [Cn], 0>

Letl = ¢ +ca & (€ = ¢1;¢ = o) € T hold for all¢1,¢ € C. Then clearly
o0 =1(0,0)=T.-

3.2.3 The canonical interpretation

Now let us construct an interpretatidrof L(C) into F' such that(F, I), oo =  for
all ¢ € T'. To do this, we first associate a complete Henkin thedey) in L(C) with
witnesses irC' with every intervabr € I\ (7') such that C oq.

Definition 28 Let ([c1], [c2]) € I(T). Then we denote the set
{lpeL(C): (t=cryip;l=c2) €T}
by p(([e1]; [e2]))-
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Definition 29 Leto € Py, (T) ando = ([co], ..., [cn]). Let (€ = co;...;0 =¢,) €
I'. Let R € C be such that

U=co; RAU=c1Ab;...;0 =co_i A0 =¢,) el
Thenp (o) denotes the sdtp : (¢ = co; (R\\p); £ =c,) € T'}.

The condition(¢ = c¢o;...;¢ = ¢,) € T in Definition 29 is not an immediate
consequence af € P, (T'), because, for examplél’, <) may be dense, and still
may be discrete, which makes possiblg oy. However, if this condition is satisfied,
then({ = co; (T\\U=c1 AG;...58 =¢cp_1 NO)); € =¢,) € T by DI2,and

U=co;RAUL=c1NG;...i0 =cn1 A&l =¢,) el

is guaranteed to hold for some € C, becausé’ is a Henkin theory with witnesses in
C. Hence, for every discrete intervalC o there exists aiR € C such thap* (o) is
defined.

It can easily be established that, if the sequetice. . , ¢/, of rigid constants irC
can be obtained from the sequenge. .., c, by inserting and/or deleting rigid con-
stantsc € C such that = 0 € T', andey = ¢, ¢, = ¢}, € T, then

RAU=c1 NG ...il=co i AO)FandR Al =c\Nb;...;0=¢ A&

are equivalent. Hence, the definition of (o) does not depend on the choice of the
sequencey, . . ., ¢, used to represent

The following proposition entails that” (o) does not depend on the choice ®f
and, since appropriate are always available i, we can defing.(c) aspf (o) for
some arbitrarily choseR with the required properties.

Proposition 30 Let R, and R, both satisfy the requirements ghfrom Definition 29
for some discrete intervat. Thenp (o) = pf2(0).

Proof: Leto = ([co], - - ., [cn]). Since removing the elementssatisfyinge;, =0 € T’
from the sequence,...,c,_1 has no effect onu*(o) for appropriateR, we can
assume that; # 0,...,c,—1 # 0 € I' without loss of generality. LeP denote
(0 =cy N6;...;0 = c,_1 A J) for the sake of brevity. The definition ¢f* implies
that

'_ITL\\ ci#O/\(ﬂzci/\é)Réﬂzci/\R/\(S, 1=1,...,n—1.

That is why the formula

n—1

N ci #0AR AP ARy AP™ = O(R, & Ry)

=1
has an equivalent one which is valid in th&L"-subset off T'L\\. This implies that
the above formula is afT'L\\ theorem. Hencel = co; Ri. A PRij¢ = cn) €T,
i =1,2, entails tha{? = ¢p; O(R; < R»);{ = ¢,) € I'. This means that

(£ = co; (Ri\\p); £ = ¢p) € T and(f = co; (Re\\p); € =¢p) €T
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are equivalent for every € L(C') by T'5 of Theorem 8 Mono; and Mono,..

The only remaining case in whigh(c) is over-defined occurs i is both an ordi-
nary and a discrete interval. This is possible Gdength intervalss, and in case the
time domain(T’, <) itself is discrete. The following proposition shows that the two
definitions ofu agree in this case too:

Proposition 31 Letcy,...,c, € C be suchthat; #0,...,¢,_1 #0 € I"and
U=co;l=c1Nb;...;0 =cp_1 N§;l=¢cp) €T
Let R € C be such that

(KZCO;E*/\(Ezcl/\(5;...;£:cn_1/\5)R;€:cn)EF.

Thenu(([eol. [enl)) = 1 ({[col, [ea], - - [en—l, [enl))-

Proof: Both u(([co], [cn])) andu®(([co], [c1], - - -, [en—1], [cn])) are complete theories
by Lemmata 21 and 23. Hence it is sufficient to prove #8t([co], ..., [c.])) C
p((leol, [enl))-

Using thaty”* stands forR* A =(¢ # 0 A R*; £ # 0 A R*), we obtain
(EZCO;E*/\(Z:cl AR;...;0=cp_1 ANR);{=¢c,) €T

from({ =co; R Al =c1AG;...:0 = cn_1 AO)B; 0 = ¢,) € T by apurelydTL*
deduction. Together withl = co;¢ = ¢1 A §;...50 = ¢cp_1 AN O3 L = ¢,,) € T,
this implies(¢ = ¢p; O(R = §);¢ = ¢,) € T by a purely{TL* deduction again.
Henced(R = §) € u({[co], [cn])). @and, given & such tha{ R\\¢) € p({[co], [cn])),
T5 of Theorem 8 implies that we hav@\\¢) € u({[co],[cn])) t0O. Since(! =
coil=c1 NGy ...;l=ch_1 N6l =cp) €T impliesd™ € u({[col, [cn])), (O\\@) €
w({[co], [en])) iImpliese € p({[co], [cn])) by DI1. This concludes the proof, because
¢ € pft({[eo)s - - -, [ea])) is equivalent tq R\\ ) € u({[co], [cn])) by the definition of
pi({[eol, - - [en]))-

We define the canonical interpretatidiof L(C') into the canonical framé by the
following (standard) clauses:

I(z) =[] ifzx=cel for individual
variablesr
I(d) =[] ifd=cel for rigid constants!
I(f)([ea]s---slen)) = [¢] if flci,...,cn)=cel for n-ary rigid
function symbolsf
I(R)([e1],-- -, [en]) =1 if R(c1,...,¢,) €T for n-ary rigid
relation symbolsR
I(d)(o) = [c] if d=ce u(o) for flexible constantd
I(f)(o,[c1],-- s len]) = 1c]  if fler,...,cn) =c € u(o) forn-ary flexible
function symbolsf
I(R)(o,[c1],--y[en]) =1 if R(c1y-..,cn) € (o) for n-ary flexible

relation symbolsR
The above definitions for flexible symbols’ interpretations apply only t@ oy.
The values off on these symbols for other € I,\ (7') are irrelevant to the properties
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of (F, I) that we need to establish. Besid&sprovides no information on how to
determine these values. That is why we leave them unspecified. The only exception is
1(¢):

I(£)(o) = m(o) forall o € I\ (T).
This definition agrees with the clause about flexible constant symbols in general, which
applies tof too.

Clearly, M = (F, I)is amodel foL.(C).

3.2.4 The truth lemma

Now let us prove thad/, o = ¢ iff ¢ € T, for all ¢ € L(C). To do this, we use the
auxiliary propositions below.

Proposition 32 Letoy, 09 C 0y. Let eitheroi, 00 € I(T) of 01,02 € Pgp(T). Let
max oy = minog. Thenu(oy); p(oz) C p(or;02).

Proof: We do the cases;, o, € I(T') ando, 02 € Py, (T') Separately.
Letoy, 02 € I(T). Then there exist], ¢/, ¢4, ¢4 € C such that

p(oi) ={p eL(C): ({ =il =cf) €T}, i =12,

andmax o7 = min oq implies thate] < ¢, ¢ < ¢/, b+ = ¢ €T It can be shown
by anITL deduction from this that

(l=Cco0 = )N =chol=0cy)= U =Ccl;p1;p0,0=cy) el

Since obviously(o1;02) = {p € L(C) : (£ = ¢};;¢ = ) € T}, this entails that
p(o1); ploz) C plor;o2).

Now letoq, 02 € Pg, (T). Letor; 02 = ([col, - . -, [cn]). Then obviously there ex-
istsak € {1,...,n— 1} such that; ando, can be represented §sy], . . ., [ck], [¢])
and([c"], [ck+1] - - -, [cn]), respectively, where/, ¢’ € C are such that

' =co+-Fcp1,d =co+--+cp el

Let R € C satisfy the requirements of Definition 29 with respect{oo, andu(oy;02) =
uf(o1;02). The above representations ®f and o, imply that R satisfies these re-
quirements with respect ®, andos too, andu(c;) = uf(s;), i = 1,2. Just like in
the previous case,

< (£ = co; (R\\@1) AR 50 = ')A

(¢ =¢"; (R\\y2) AR 0 =c ) > = (£ = co; (R\\1) /\R*§ (R\\2) /\E*;ﬁ = cp)

is a member of". Besides, the choice @k entails that(¢ = cO;E*;E =c¢,) €T
Hence, it is sufficient to show that

Frre, ((R\¢1) AR 5 (R\\g2) AR ) AR = (R\\(¢1; ¢2)).

It follows from the deduction below:
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1 (R\p) AR = ¢l AR P3,ITL",i=1,2
2 L(R\\apl) AR (R\\p2) AR) = (p1;¢02)F 1, Mono;, Mono,
3 R =(R=R?" ITL

4 (pr;0) AN (R=R)FAR = (R\\(¢1;2)) P1

5 ((B\\g)) AR (R\@2) AR') AR = (R\\(p1:¢2))  2:4,PC
This concludes the proofi
The role of the following proposition is analogous to that of Proposition 32, yet
with respect tq.\\.) instead off.; .).

Proposition 33 Leto, o’ € I\\(T'), o' = ([co), ..., [ca]) @and o’ € o C ([co], [cn])-
Let R € C be such thalR", (¢ = ¢y A S;...;0 = cp_y A6)E € p(o). Then{y :
(B\\g) € p(o)} = p(o).

Proof: We do the cases € I(T') ando € P, (T') separately.

In cases € I(T), o = ([co], [en]), becausenin o’ = min([co], [¢n]), max o’ =
max([co], [en]) @ndo’ C o C ([co], [cn])- In this case the proposition follows immedi-
ately from the definitions ofi(¢’) andu(o).

Now leto € Py, (T'). Let P denote the formul@l = ¢; A J;...;¢ = cp—1 A D)
for the sake of brevity. Let = ([do], ..., [dn]). Thency € [do] ande,, € [dy,], and
u(o) = p¥ (o) for someR’ € C such that

(U=do; R ANl =dy NG;...;0 =dp_y A& 0 =d,,) eT.
Similarly, letu(o’) = u®" (o) for someR” e C such that
(t=dy;R"™ AP* 0 =d,)eT.

Let A denote the theory({[co], [c»])) Of the ordinary interva{[co], [¢,.]), which under-
lies o, for the sake of brevity. NowP?, R* € u(o) entails thaf R'\\PE AR") € A,
whence, using thak’" € A, we obtain(R'\\P%), (R'\\R") € A by T'4 of Theorem
8. Similarly, using that

Firn, PREAR = (R\\P)
follows from P3, whence

P, B = (R\\PF AR = (R\\P))

by PN and the definition ofR”", we obtain(R'\\(R\\P)) € A. This implies
((R\\R)\\P) € A by P4. Furthermore(R'\\R') € A implies (R’\\R)* €A
by T'7 of Lemma 18, whenc® (%' \\1) ¢ A by P3 again. Now notice that

(R\\R)  AR" A PENR) A PR s O(R'\\R) & R")

is valid in ITL" and therefore adTL,\ theorem. Henc&((R'\\R) < R") € A.
This entails thal{ R"\\(R\\¢)) € A and(R"\\¢) € A are equivalent for alp €
L(C) by T'5 of Theorem 8,P3 and P4. This concludes the proof, becauses p(o”)
is equivalent td R”\\¢) € A by the choice oR”. -
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Proposition 34 Let o € I\\(T) andT';,T'; be complete Henkin theories ia(C)
with witnesses irC andI';; Ty C p(o). Then there exists a € o such thatl'; =
p(o N [mine, 7)) andTy = p(o N [7, max o).

Proof: Leto = ([col,...,[cs]) fOor somecy,...,c, € C,if 0 € Pg,(T). Leto =
([co], [en]) otherwise. Let’,c”,dy,dy € C be suchthat = d, € T;, i = 1,2, and
¢ = cy+di,d = dy + . Then a direct check shows thatcan be chosen to be

(], ["])-

Theorem 35 (Truth lemma) Lett, p € L(C), o € I\ (T') ando C 0¢. Thenl,(t) =
[c]ifft =ce p(o),andM, o = ¢iff ¢ € u(o).

Proof: Induction on the construction of termmsand formulasp. We omit the details
about terms, because they are standard. The equivalence for atomic fogmislas
immediate consequence of the definitiorugf ). Inductive steps which correspond to
propositional connectives antiare trivial.

Let o be (¢1;p2). Theny € u(o) implies(p; AL = di;o0 AL = ds) € u(o)
for somed,,ds € C, becausehTL\\ (p1;02) = FxTy(pr AL = x50 A = y),
and p(o) is a Henkin theory with witnesses ifi. Now Corollary 22 implies that
there are two complete theories Henkin theofigsandI's with witnesses irC' such
thatyp;, ¢ = d; € T;, i = 1,2, andI'y;T2 C u(o). Hence there exista € o
andoy,02 C o such thatr; = [min7T,7] N o, 0o = [, maxT] No, I'1 = p(o1)
andT; = u(oy) by Proposition 34. This is equivalent i, 0; = ¢;, i = 1,2, by
the induction hypothesis, whendd, o |= . For the converse implication, note that
M, o = pimpliesM, o; = ¢;, 1 = 1,2, forsomeoy, o5 such that;; 02 = o, whence
i € p(oy), i = 1,2, by the induction hypothesis. This impliese u(o), because
w(o1); u(o2) C p(o) by Proposition 32.

The inductive step is similar aboyt being ¢, becausep € u(o) is equivalent
to the existence of & < w such thatp} € u(o) by Lemma 16, and/,o = ¢ is
equivalent to the existence ofa< w such thatM, o |= ¢* by the definition ofi=.

Let ¢ be (p1\\p2). We consider the casés= 0 € pu(o) and? # 0 € u(o)
separately.

Let{ =0 € u(o). Thenm(o) = 0 by the definition ofn, andy, € u(o) by T'3 of
Theorem 8, whencéll, o = v2 by the induction hypothesis. This entall§, o = ¢.
The converse implication follows froffi3 in a similarly straightforward way.

Let¢ # 0 € u(o). Sinceu(o) is a Henkin theoryp € p(o) implies that there
exists ank € C such thaiR , O(R = ¢1), oF € u(o). This entails that R\ \¢2) €
u(o) by P3. R* € u(o) implies that there is a unique < w, k # 0 such that
RF € u(o). Letey,...,cp € Chesuchthatl = c; AR;...;0 = cx AR) € u(o).
Such constants exist, becaysgr) is a Henkin theory with witnesses ifi. Hence
(6 =cy;...50 =) € p(o) too. The definition ofR’ impliesthate; #0,...,¢c,_1 #
0erl.

We can choose the constartscx41 € C so thato = ([co], [ck+1]), In cases €
I(T), ando = ([co), [c1],- - ., [¢]], [ck+1]), In cases € P, (T) for somed,, ..., ¢ €
C. Leto’ = ([eol, [ca],- - -, [ek], [ck+1])- Then(d = ¢1;...5¢ = ¢) € p(o) implies
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o 2 o’ andmino = mino’, maxo = maxo’. Let us prove thats € u(o’) by
finding anR’ € C such that, ¢’/ and R’ satisfy the conditions of Proposition 33.

DI2 and (£ = ¢15...50 = ¢) € p(o) imply that (T\\(¢ = ¢1 A J;...50 =
¢k A6)) € u(o). Then there exists aR’ € C such thatR’™", ({ = ¢; A 8;...;0 =
cx ANO)E € u(o). Since(? = ¢; A 6)E stands for

C=c; N(RY*A-((R)*ANL#0; (R ANL#0)

by the definitions of, (.)® and P/, it can be established by a purel§’Z* deduction
that

|_ITL\\ ¢ #£0= ((gzci/\(S)R/ :>€:ci/\R’)

wherei = 1,..., k. Thisimpliesthat¢ = c; AR';...;£ = cx A R') € u(c). Now,
using that

k

S — l=c1ANR;...;0=ck ANR)A
) 7

Frrry, /\CZ#O/\R AR A((ﬁcl/\R’;...;ch/\R')

i=1

) = 0R& R,

which can be established by a purdljL* deduction too, we obtaill(R < R') €
w(o), which impliesO(R’ = ¢1) € pu(o), and, furthermore(R'\\y2) € u(o) by T'5
of Theorem 8. Henceys € u(o’) by Proposition 33.

This impliesM, ¢’ |= 2 by the inductive hypothesis. Similarly, since

(l=c1 ANR';...;0=ci NR') € u(o),

the subintervals; = ([co+. . .+c¢i—1], [cix1+. . .+cxy1])No Of o satisfyM, o; |= R,
and, consequenthy/,o; = ¢, becaused(R' = o) € u(o), fori = 1,... k.
This can be demonstrated in detail by repeating the inductive step @bgtformulas
which appears in this proof. Hendé, o = (p1\\p2).

Now let us prove thal/, o |= ¢ impliesy € p(o). M,o | ¢ implies that there
existeg,...,c, € CsuchthatM,o = (p1 AL =c15...501 AL =c¢,—q) ando’ =
{[eo], - - -, [cn]) satisfiess’ C o, mino’ = min o, maxo’ = max o, andM, o’ | ps.
By the induction hypothesisye € u(o’). Since(d = ¢15...;¢ = ¢,—1) € p(o), we
have(T\\(¢ = c1 A J;...50 = cp_1 AN J)) € (o) by DI2. Hence there exists an
R € C such that

R,(l=ciAb;...;0 =cn_y ANO)T € p(o).

This, together with(p; A€ = ¢15...501 AL = ¢—1) € p(o), which follows from
M,oc = (p1 AL = c1;5...5901 AN = ¢,—1) by a repetition of the inductive step
about(.; .)-formulas which appears in this proof, entails th&#tR = ¢1) € (o)
by a purely/TL* deduction. Proposition 33 implies th@R\\y2) € p(o). Hence
(p1\\p2) € (o) follows fromO(R = ¢;) € (o) by T'5 of Theorem 8-

3.2.5 The completeness theorem

Now we are ready to prove our completeness theorem alyauf, .
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Theorem 36 (v-completeness of TL\\) LetI'y be a consistent set of formulas in the
ITL\\ languageL. Then there exists a mod#! for L and an intervalo in its time
domain such thad/, o = ¢ forall p € Ty.

Proof: Let the complete Henkin theorly considered above be an extensionlgf
This choice is possible due to Theorem 15. Thdrcan be chosen to be the canonical
model forT" built above. We havé/, oy |= I'y by Theorem 35-

4 Related work
4.1 Moszkowski-style/TL

The original projection operatah introduced in [16, 17] is a special case of the op-
erator(.\\.) studied here. The system &67'L presented in these works is based on
discrete time. That is, only the franfe; is considered. To distinguish the original
form of ITL, as introduced in Moszkowski's works [16, 17], from the abstract time
variant studied here, we callMoszkowski-styléT'L in this section.

In the majority of the works on Moszkowski-styld'L, flexible non-logical sym-
bols’ interpretations are assumed to depend on the beginning of the reference interval
only. An exception to this is the early work [12]. This assumption means that

(At) o < =(=p; T)
is valid for atomicy in Moszkowski-styleIT'L. This restriction has a crucial effect
on the complexity of the system. For example, propositidfid (only 0-ary flexible
relation symbols and no function symbols, nor constant symbols, not&Jsmot
decidable in the form adopted in this paper. Yet, under the assumptiomthiat
valid about atomic formulas, propositional discrete tifi#él. is decidable. Another
consequence ot is that= ¢ does not imply= [/ Py, whereP stands for &-ary
flexible relation symbol, in Moszkowski-stylEl'L.

Furthermore, projection is definable under the assumption Moszkowski-style
propositional/T'L: every propositional T'L formula with projection is equivalent to
one without projection (in a normal form.) This enabled the demonstration of the com-
pleteness of a proof system for Moszkowski-style propositidiidl with projection
and the establishment of its decidability by a tableau-based procedure in [1].

Moszkowski-style/T'L with projection can be embedded into abstract tifig,
with projection in the following way. Lel be a rigid constant ang be a flexible
constant in the considerdd'L,\ languagd.. Consider the following axioms abo#t
andl:

(1)0#1

(#1)l=0=#=1

(#2) H =2l AO0N) = #=2+1

(#3) 6" V# =0
The validity of these axioms in a model fhris equivalent to the semantical condition
on I(#)(o) to be equal to the number Hfolatedpoints of the reference intervalfor
all intervalso in the model. The flexible constagt was introduced in [11] by this
semantical condition. In Moszkowski-styl§'L, # is always equal té + 1. Yetin the
more general situation introduced in [11] and studied Kerannot be defined using

30



only. Using#, we can establish the following correspondence between Moszkowski-
style I'TL validity and provability in our system faf7'Ly, :

Let p be an/TL\ formula. Theny is valid in Moszkowski-styld T'L iff

({=1)"= =1V L=0\[#—-1/ly)

is provable in the extension of our proof system by the axiethabout
atomic formulas, the axioril) about the constaritand the axioms# -

#3 about.

4.2 Translating ITL\\ into ITL with discrete propositional vari-
ables and quantification over them

An earlier result on the axiomatisation of projection/ifiL was established in [7]. In
that work ITL was extended by so-calletiscrete0-ary relation symbols to represent
discrete/TL,\ intervals and quantification over them. The system thus obtained is
calledITL".

ITLP languages contain a countable set of distinguished flexitdey relation
symbolsp, g, ..., which are calledliscrete propositional variablesThe following
restriction is imposed on the interpretations of discrete propositional variables:

Every interval may contain at most finitely many subintervals which sat-
isfy a given discrete propositional variable, and these subintervals should
be0-length ones.

This condition enables the use of discrete propositions to repréd@nt discrete
intervals in a straightforward way. In order to represent the dependency of the interpre-
tations of flexible symbols on the internal points of discrete intervAls,” also allows
flexible symbols to take one formula argument. In the translatiof{@f , into ITLP
below this argument is always the discrete propositional variable which represents the
reference interval.
The BNFs for terms and formulas 'L are extended to allow the new kind of
arguments of flexible symbols. Furthermore, the BNF for formula&lia” allows 3
to bind discrete propositional variables:
tu=c| flt,...,t) ] flp,t,... 1)
pu=L|R(t,....t) | Rp,t,....t) o= ¢ | (pr9) | (p\\¢) | Tz | Tpp
The interpretations of flexible symbols which take a formula argumenit
models have the following types:
o I(f):I(T)x2"") x D" — D, for function symbolsf
that taken term arguments;
o I(R):I(T) x 2T x D™ — {0,1}, for relation symbols?
that taken term arguments.
The interpretations of other symbols are ad#i.. Let M = (F,I) be anITL"
model. LetI(yp) stand for{c € I(Tr) : M,o = ¢}. The clauses for the inductive
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definitions of term values arng for the new kind of terms and atomic formulas are as
follows: 3

I (f(pta,.stn)) = 1(f) (0, 1(0) N 27, I5(t1), - .-, Lo (tn))

M,o = R(p,t1,...,tn) Iff I(R)(0,1(p)N29,15(t1),...,I,(ty)) =1
The intersections witR? here guarantee that only the truth values of the formula ar-
gument at subintervals of the reference intervadan influence the (truth) values of
terms and formulas where this formula argument occurs. Quantification over discrete
propositional variables is defined in the ordinary way:

(F,I),0 = 3peiff (F,J),o = ¢ for someJ which p-agrees with/.

Given anITL,\ languageL, the correspondindTL” languagel’ is defined as
follows: L’ has the same rigid symbols Bsand, of course(. For every flexible con-
stantc in L, exceptt, there is a unary flexible function symboin L’. Similarly, for
everyn-ary function (relation) symbof (R) in L there is am + 1-ary function (re-
lation) symbolf (R) in L/, which takes one formula argument amderm arguments.
Furthermore’ contains a countable s¢p, : 1 < ¢ < w} of discrete propositional
variables, none of which occurs I

LetL be anITL\\ language and.’ be its correspondingZ’L” language. Let

Cip = (e ANLF# )V (L#0;03L #0), Oip = =g
An intervalo satisfies®; ¢ iff ¢ holds at some subinterval efwhich is different from
the 0-length intervalgmin ¢, min o] and[min o, min o] that are at the beginning and
at the end of. In the translation fronl to L’ below we abbreviaté = 0 by py:

cPi = cforrigid constants:
xPi = gz forindividual variables:
(s(t1,...,tn))Pi = s(#, ..., tP%) for rigid n-ary symbolss
£pe = /
cPi = ¢(p;) for other flexible constants
(s(t1,y...,tn))P" = s(pi,th,...,tP1) for flexible n-ary symbolss
1P = 1
(p = ¥)P = P =P
(05 )P = (¢P5piYP)
O(pit1 = pi)A
(\\p)?" = Jpipr | O(Piv1: € # OA D pig1; pig1) = PPH)A

(Pit1; QP 5 pig1)
(Fzp)Pi = Jzpbi

No special clause about iteration is needed in this translation, because it is expressible
by projection:

(™)Pt = (L\\T)P".
The intended meaning qf?: is to express the truth value gfat the (discrete) interval
consisting of the time points in the ordinary reference interval which, if regarded as
0-length intervals, satisfy;. Sincep, stands fo¥ = 0, and this formula holds at every
0-length intervalp, always represents the reference interval itself. That is whyisf
projection-free, therp? is equivalent tap.

Let p;, represent some possibly discrete intervéh the above way. Then the for-
mula for (¢; )¢ states that chopping can be done at the pointsafly. The formula
for (¢)\\)P* states that there exists a discrete intesvalepresented by; ., which is
required to have the properties expressed by the conjunction in the scépe of The
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members of this conjunction state th#dtis a subset ofr, every two adjacent points of

o' define a subinterval of’ which satisfies), ands’ has the same end pointsasand
satisfiesp, respectively. The following proposition gives the precise formulation of the
intended meaning of the translation:

Proposition 37 Let F' be anITL,\ frame (which is the same as dffL.” and anITL
frame). LetM = (F,I) and M’ = (F, I’} be models folL andL’, respectively. Lef
andI’ coincide on rigid symbols frorh andL’. Let

I'(s)([mino,max o], {[r,7] : T € 0}, d1,...,dy) = I(s)(o,d1,...,dy)

whereo € I\ (Tr) anddy, .. .,d, € Dr for other flexible symbols. Lett be a term
andy be a formula fromL.
o Leto € I(Tr). Thenl,(t) = I (t*=°),and M, o = o iff M', o |= ©*=°.
o Leto € Pg,(Tr). Let{r € [mino, maxo] : I(p1)([7,7]) =1} = 0.
Thenl,(t) = I/ ("), and M, o |= ¢ iff M’, [min o, max o] |= @P'.

Proof: Induction on the construction efandy. -
This proposition entails that a formula is valid at the ordinary intervals of all
ITL\\ models for the language of iff =Y is valid in ITL” andy is valid at all the

discrete intervals of TL\\ models iffVp, ((p1; T;p1) = ¢P*) is valid in ITLP.

The proof system fof TL” is obtained by adding the following axioms and rules
to the proof system fofT'L:

Extensionality axioms about flexible symbols with formula arguments

(D:) D(¢<:>w)AI1:y1A/\xn:ynif(<p7xlaamn):f(wvylaayn)
(D<:>) D(<P<:>¢)/\=T1 :yl/\/\xn:yné(R((f%l’l,;xn)@R(wayh?yn))

Axioms and rules about discrete propositional variables

(Do) p=(=0

(So) FpO-p (GP) [qv/;i];p
Egl\/)) grgﬂfrz;ag\v/yq()(@ =yp; T) = y=u1) (?) Vk < w [(Diﬁp)k/PkO
(3°)  la/ple = Tpe [T/Ple

This proof system is--complete forfTL” [7].

There is a straightforward connection between fi&” discrete propositional
variablesp and the0-ary flexible relation symbolg: involved in our direct axioma-
tisation of ITL\\. Namely, ifp is interpreted as a discrete propositional variable, then
(p; T;p) = (p; £ # 0 A O;—p; p) is valid in the corresponding model.

Although the way valid/T'L\\ formulas can be “proven” using the above transla-
tion and the proof system fdf'’L” is indirect, this approach has some advantages over
the direct axiomatisation. Given thaT'L semantics has been enriched with discrete
intervals, projection is only one of the many discrete interval-related modal operators
which may happen to have meaning in applications. It is clear that other related opera-
tors can be handled by extending the above translation with clauses which encode their
definitions.
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In particular, note that7'Z\\ does not provide the possibility to access the under-
lying ordinary interval from a discrete reference interval. An operpl¢o enable this
can be defined as follows:

M, o |= [¢] iff M,[mino, maxo] = ¢
That is,[¢] holds at some, possibly discrete, intervalyifiolds at the ordinary interval
which has the same endpoints as the given one. For example,

(P\[¥]) & ¢ A [¢] and[g] = o v 6*
are valid formulas, according to the proposed definitioh]of

The clause about the new operator in our translation is

[elPe = o,

i.e., from the (possibly discrete) interval, which is representeg;byreturn” to the
underlying ordinary interval, which is representedigy= ¢ = 0.

5 Projectionin DC

The Duration CalculusifC) [24] is probably the most interesting extension @t.. Its
language extends that 61'L by allowingstate expressionshich are boolean formulas
built using a distinguished set of non-logical symbols caditede variablesState vari-
ables and, consequently, state expressions, are interpref@didsvalued functions of
time. These functions are required to be piecewise constant. This restriction is known
asfinite variability of state inDC. State expressions participate inDC formulas by
forming duration terms| S. Given anITL modelM = (F, I), we denote the value of
the function represented by state expressiat timer by I,.(S). Given an intervab
in the time domain of' and a partitiorvy, . .., o, 0f o such that/.(S) is constant in
every interval of the kindmin o;, max o;), the valuel,,([ S) of the term[ S ato is
defined by the equality

LU= % e,

i=1,...,n Inino, (S)=1

wherem(c) stands for the measure, or tharation of o, as in Definition 1. Clearly,

this definition does not depend on the choiceqf. . ., o, provided that = o4;. .. ; 0,
andI.(S) is constant ofhmin o;, maxo;),i = 1,...,n.
The following abbreviations are frequently usedid:
0 = PA-P, for some arbitrarily chosen state varialbte
1 = -0

(ST = [S=0AL#0

DC has been primarily studied with respect to its real-time frdfpe A relatively
complete proof system fabC' with respect to this frame was presented in [13]. A
comprehensive introduction t0C' is given in [14]. Anw-complete proof system for
DC on the class of allTL frames can be found in [6].

There is no established way of interpreting duration term/ @t \ discrete inter-
vals. One reasonable way is to refer to the value of the duration term at the underlying
ordinary interval, by putting, ([ S) = Ijmino,maxo](/ S). This complies with the
possibility to defing in DC by putting? = [(P Vv —P). The following axiom can be
used to characterise this property:
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(P o' A[S=ze(\[S=1)
Furthermore, since iteration is available in our proof system, finite variability of state
can be straightforwardly characterised by the axiom

(FV)([S=¢V [(=S)=0*Vs*
The subformula* of this axiom accounts for the possibility of a discrete interval not
to contain all the time points where the interpretatiortathanges its value.

The extension of the proof system féf'L\ by the axiomsP [, FV and DC0-
DC'7 below isw-complete forDC' with projection, as introduced here.

(

(DC1) [0=0

(DC2) [1]vi=

(DC3) ([S=uwz[SINnt=y)= [S=x+y

(DC4) ([S=u:[-S))= [S=2z

(DC5) ’781-‘ N [SQ-‘ = [Sl A SQ—|

(DC6) [S1] < [S2]if E S1 < Ss in propositional calculus.
(DC7) [S]=0O([S]VvL=0)

A proof can be obtained easily by following the example abidt,\ given here
and thew-completeness argument abdu€' in [6].

Conclusion

We have presented ancomplete proof system for the extension of first ordéi.

by projection and carried out the completeness argument about this system in the well-
known framework provided by Henkin constructions. We have also briefly presented an
alternative approach to the axiomatisation @¥.,\ , which employs a truth-preserving
translation of/TL\\ formulas into formulas of a (simpler) completely axiomatised
extension of/TL. This approach gives an indirect solution to the axiomatisation of
ITL, but provides a convenient way to handle other discrete interval related operators
along with projection. Our approach te-axiomatisation applies t&)C, which the

best known and most widely applied extensiod 6f..
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