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Abstract

This paper presents anω-complete proof system for the extension of first order
Interval Temporal Logic (ITL, [12, 15, 4]) by a projection operator [16, 11]. Al-
ternative earlier approaches to the axiomatisation of projection inITL are briefly
presented and discussed. An extension of the proof system which is complete for
the extension of Duration Calculus (DC , [24]) by projection is also given.

Introduction

First Order Interval Temporal Logic (ITL) was introduced in [12, 15] as a tool for the
formal specification and verification of hardware systems. The completeness of a proof
system forITL with respect to an abstractly defined class of frames was first presented
in [4]. Numerous extensions ofITL have been shown to be useful in the specification of
various kinds of software and hardware systems. Among these are the real time based
Duration Calculus (DC) [24] and various extensions of it, which include iteration and
more general fixed point operators [5, 18, 8], higher-order quantifiers [18, 22, 8] and
expanding modalities [23, 19].

A binary modal operator called projection and denoted byΠ was first introduced
to discrete timeITL in [12]. This operator subjects its second formula operand to
evaluation at an interval of time which is obtained by keeping only some of the points
of the reference interval, including the end points. The points to be kept are those
which satisfy the first operand ofΠ. In [16, 17], another variant of projection was
introduced. It was denoted byproj in [16] and by4 [17], and differs fromΠ in
the way the first operand determines the time points from the reference interval to be
selected. A similar projection operator, denoted by(.\\.), was introduced toDC in
[11]. DC is a real-time logic and the introduction of projection made it necessary
to admit finite nonempty sets of time points as ”intervals” along with the ”ordinary”
closed and bounded real-time intervals, which are the possible worlds inDC from the
view point of Kripke semantics.

All the projection operators mentioned above have been introduced to enable the
concise and flexible specification oftime granularity, which is essential for the conve-
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nience of choosing different levels of abstraction for the specification of hardware be-
haviour. In discrete-timeITL, the operatorsΠ andproj provide access from discrete-
time intervals of finer granularity to discrete-time intervals of coarser granularity, thus
providing expressiveness for the specification of systems in which the initial step of
discretisation of time has already been made. The generalisation proposed in [11]
allows the reasoning about this initial time discretisation step itself to be formalised
within the logic. Along with the convenience of reasoning about the behaviour of sin-
gle discrete-time systems at different levels of time granularity, this more general form
of projection facilitates the specification of systems which have multiple discrete-time
components with possibly independent clock rates. That is why the projection operator
from [11] significantly enhances the expressive power ofDC by enabling combined
specifications of dense- and discrete-time properties of the modelled systems. Another
interesting real-time projection operator, which can be regarded as a real-time variant
of Π, has been studied in [9, 10].

In this paper we present a complete proof system for the extension of abstract time
ITL as introduced in [4] by a projection operator that we denote by(.\\.). The operator
we study here is a straighforward generalisation of that from [11], except that it allows
vacuousprojection, like4. This operator leads to a system of abstract-and-discrete
time ITL. BothDC and discrete timeITL with projection can be regarded as special
cases of this system. The variants of projection inITL with and without vacuous
projection are interdefinable. The one with vacuous projection is technically more
convenient and therefore we develop our proof system and its completeness argument
for this variant of the projection operator.

The proof system we present isω-complete and contains one infinitary rule, which
is related to theITL modal operator callediteration. Iteration is known inITL and
DC and can be regarded as a special case of projection. We obtained this proof system
by extending the complete proof system for abstract timeITL known from [4]. Our
completeness argument is an extension of the one given in that article too, and follows
closely the version of that completeness argument for theω-complete proof system for
abstract timeDC developed in [6].

1 Preliminaries on ITL with projection

In this paperITL\\ stands for the extension of abstract timeITL by the projection
operator(.\\.) to be defined below. The model of time forITL from [4] includes
a linearly ordered set of time points, and a measure function which maps bounded
intervals of time to their durations. Durations themselves are required to constitute an
appropriate kind of linearly ordered semigroup. This is what we mean byabstract time
in this paper too. In fact, frames forITL\\ areITL frames with the measure function
straightforwardly extended to include the durations of discrete-time intervals. In this
section we give a brief formal introduction toITL\\.
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1.1 Languages

An ITL\\ language is essentially a first order language extended by theITL-specific
binary modality(.; .) and theITL\\-specific binary modality(.\\.). The vocabulary
of an ITL\\ language consists ofconstant symbolsc, d, . . . , function symbolsf , g,
. . . andrelation symbolsR, S, . . . . Function symbols and relation symbols havearity
to indicate the number of arguments their occurrences take in terms and atomic for-
mulas, respectively. Furthermore, everyITL\\ vocabulary contains countably many
individual variablesx, y, . . . . Non-logical symbols are eitherflexibleor rigid, depend-
ing on whether their interpretations depend on reference intervals or not, respectively,
as it becomes clear below.

Given the vocabulary of anITL\\ language, itstermst andformulasϕ are defined
by the following BNFs:

t ::= c | x | f(t, . . . , t)
ϕ ::= ⊥ | R(t, . . . , t) | ϕ ⇒ ϕ | (ϕ; ϕ) | ϕ∗ | (ϕ\\ϕ) | ∃xϕ

Terms and formulas that are built using no modalities and flexible symbols are called
rigid. The other terms and formulas are calledflexible. EveryITL\\ vocabulary con-
tains the rigid constant0, the flexible constant̀, the rigid binary function symbol+
and equality=. In this paper we consider only vocabularies which contain infinitely
many0-ary flexible relation symbols, because of their special role in our proof system
for ITL\\.

The two binary operators(.; .) and(.\\.) are known aschopandprojection, respec-
tively. Althoughiteration(.)∗ is definable inITL\\, we prefer to regard it as a separate
modality in our presentation, because of its role in our proof system. We always use
parentheses in formulas involving chop and projection. The diversity of notation in
the literature, especially concerning projection, indicates that the unambiguity that our
convention offers is important.

1.2 Frames, models and satisfaction

Definition 1 A time domainis a linearly ordered set. Let〈T,≤〉 be a time domain.
We denote the set{[τ1, τ2] : τ1, τ2 ∈ T, τ1 ≤ τ2} by I(T ) and the set of the nonempty
finite subsets ofT byPfin(T ), respectively. We denoteI(T )∪Pfin(T ) by I\\(T ). The
elements ofI(T ), Pfin(T ) andI\\(T ) are calledordinary intervals, discrete intervals
and justintervals, respectively.

A duration domainis a system of the kind〈D, 0(0), +(2)〉 which satisfies the fol-
lowing axioms:

(D1) x + (y + z) = (x + y) + z
(D2) x + 0 = x,

0 + x = x
(D3) x + y = x + z ⇒ y = z,

x + z = y + z ⇒ x = y
(D4) x + y = 0 ⇒ x = 0
(D5) ∃z(x + z = y ∨ y + z = x),

∃z(z + x = y ∨ z + y = x)
Given a time domain〈T,≤〉 and a duration domain〈D, 0,+〉, a functionm :
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I\\(T ) → D is called ameasure function, if the following properties hold for all
σ, σ′ ∈ I\\(T ):

(M1) min σ = min σ′ ∧m(σ) = m(σ′) ⇒ max σ = maxσ′

(M2) if σ ∪ σ′ ∈ I\\(T ), thenmaxσ = min σ′ ⇒ m(σ) + m(σ′) = m(σ ∪ σ′)
(M3) m(σ) = x + y ⇒ ∃τ ∈ σ m([min σ, τ ]) = x for σ ∈ I(T )
(M\\) m(σ) = m([min σ,max σ]) for σ ∈ Pfin(T )

Here, as usual,min σ andmaxσ stand for the least and the greatest time point of the
intervalσ, respectively, in the sense of the ordering≤ onT .

A linear ordering can be defined on duration domains by putting

x ≤ y iff ∃z(x + z = y).

The only ITL\\-specific axiom about measure functions here isM\\. It postulates
that removing all but finitely many internal points from an interval does not affect its
duration. This choice of extendingm to discrete intervals differs from the one in [16]
where all intervals are discrete and the duration of an interval is defined by means of
the number of its points. In the sequel we denote unionsσ ∪ σ′ of intervalsσ, σ′ such
thatmin σ′ = max σ and eitherσ, σ′ ∈ I(T ) or σ, σ′ ∈ Pfin(T ) by σ; σ′. We tacitly
assumemin σ′ = max σ wherever we useσ; σ′. For example, in this notationM2 can
be abbreviated tom(σ) + m(σ′) = m(σ; σ′)

Definition 2 An ITL\\ frame is a tuple of the form〈〈T,≤〉, 〈D, 0,+〉, m〉 where
〈T,≤〉 is a time domain,〈D, 0,+〉 is a duration domain andm : I\\(T ) → D is a
measure function.

The real-time based frameFR = 〈〈R,≤R〉, 〈R+, 0R, +R〉, λσ.max σ − min σ〉
whereR+ stands for the set of the non-negative reals is undoubtedly the most interest-
ing ITL\\ frame. SincePfin(R) consists of the finite sets of reals, the frameFR em-
beds the practically significant model oftimed state sequenceswhere states are labelled
with real-valued time stamps. Correspondence between the validity ofDC formulas
on timed state sequences and their validity in real time has been studied in [2]. Another
interestingITL\\ frame isFZ = 〈〈Z,≤Z〉, 〈N, 0N,+N〉, λσ. maxσ −min σ〉. Since
bounded intervals of integers are finite, we havePfin(Z) = I(Z).

Definition 3 Given anITL\\ languageL and anITL\\ frameF with its components
named as above, a functionI on the vocabulary ofL is aninterpretation ofL into F ,
if it satisfies the following conditions:
◦ I(c) ∈ D, I(f) : Dn → D, andI(R) : Dn → {0, 1} for rigid constant symbolsc,

andn-ary rigid function symbolsf and relation symbolsR
◦ I(c) : I\\(T ) → D, I(f) : I\\(T ) ×Dn → D, andI(R) : I\\(T ) ×Dn → {0, 1}

for the corresponding kinds of flexible symbols;
◦ I(x) ∈ D for individual variablesx;
◦ I(=) is =, I(0) = 0, I(+) = +, andI(`) = m.

Given anITL\\ languageL, an ITL\\ model forL is a pair of the form〈F, I〉
whereF is anITL\\ frame andI is an interpretation ofL into I.
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Given a frameF , we denote its components by〈TF ,≤F 〉, 〈DF , 0F , +F 〉 andmF ,
respectively. The same applies to models. We denote the frame and the interpretation
of a modelM by FM andIM , respectively.

Definition 4 Given anITL\\ languageL, a modelM = 〈F, I〉 for it, and an interval
σ ∈ I\\(TF ), the valueIσ(t) of a termt in L is defined by induction on the construction
of t as follows:
Iσ(c) = I(c) for rigid constantsc
Iσ(c) = I(c)(σ) for flexible constantsc
Iσ(f(t1, . . . , tn)) = I(f)(Iσ(t1), . . . , Iσ(tn)) for rigid n-aryf
Iσ(f(t1, . . . , tn)) = I(f)(σ, Iσ(t1), . . . , Iσ(tn)) for flexiblen-aryf

Given an interpretationI of anITL\\ languageL into a frameF , a symbols from L
and an objecta of the type ofI(s) in F , we denote the interpretation which assignsa
to s and is equal toI for all the other symbols from the vocabulary ofL by Ia

s .

Definition 5 We define the relationM,σ |= ϕ whereM = 〈F, I〉 is anITL\\ model
for some languageL, σ ∈ I\\(TF ) andϕ is a formula inL by induction on the con-
struction ofϕ as follows:
M,σ 6|= ⊥
M,σ |= R(t1, . . . , tn) iff I(R)(Iσ(t1), . . . , Iσ(tn)) = 1, for rigid n-aryR
M,σ |= R(t1, . . . , tn) iff I(R)(σ, Iσ(t1), . . . , Iσ(tn)) = 1, for flexiblen-aryR
M,σ |= ϕ ⇒ ψ iff either M, σ |= ψ or M,σ 6|= ϕ
M,σ |= (ϕ; ψ) iff M, σ1 |= ϕ andM,σ2 |= ψ

for someσ1, σ2 ∈ I\\(TF ) such thatσ1;σ2 = σ
M, σ |= ϕ∗ iff either min σ = maxσ

or there exist ann > 0 andσ1, . . . , σn ∈ I\\(TF )
such thatσ1; . . . ; σn = σ andM, σi |= ϕ, i = 1, . . . , n

M, σ |= (ψ\\ϕ) iff either min σ = maxσ andM,σ |= ϕ,
or there exist ann > 0 andσ1, . . . , σn ∈ I\\(TF )
such thatσ1; . . . ; σn = σ, M, σi |= ψ, i = 1, . . . , n,
andM, {min σ1, max σ1, . . . , max σn} |= ϕ

M,σ |= ∃xϕ iff 〈F, Ia
x〉, σ |= ϕ for somea ∈ DF

Note that the clause about the satisfaction of formulas of the kind(ψ\\ϕ) always
refers to satisfaction ofϕ at a discrete interval, while in other clauses intervals on the
right side are of the same kind as that on the left side.

1.3 Abbreviations

First order logic abbreviations and infix notation are used inITL\\ in the ordinary way.
These include the constant>, the connectives¬, ∧, ∨ and⇔ and quantifier∀. We use
t1 ≤ t2 to abbreviate the formula∃x(t1 + x = t2) which defines the standard linear
ordering on durations. The following abbreviations are specific to the modal operators
(.; .), (.\\.) and(.)∗:

3ϕ ­ (>; ϕ;>), 2ϕ ­ ¬3¬ϕ
ϕ0 ­ ` = 0, ϕk+1 ­ (ϕk; ϕ) for k < ω
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ϕ+ ­ (ϕ∗; ϕ)
(ϕ1\\ϕ2\\ . . . \\ϕn) ­ (ϕ1\\ . . . \\(ϕn−1\\ϕn) . . .)
(ϕ1;ϕ2; . . . ; ϕn) ­ (ϕ1; . . . ; (ϕn−1; ϕn) . . .)

Note that we use3 and2 to abbreviate formulas in the way that has been adopted in the
literature onDC, which is different from their use as discrete-timeITL abbreviations.
Iteration can be defined using(.\\.) by the equivalenceϕ∗ ⇔ (ϕ\\>). However, we
prefer to regard it as an independent operator.

The possibility forM, σ |= (ϕ\\ψ) to hold due tomin σ = maxσ andM, σ |= ψ
is calledvacuousprojection. This possibility is ruled out in the version of the operator
in [11]. The projection ofϕ andψ there is equivalent to(ϕ\\ψ) ∧ ϕ+.

1.4 A proof system forITL

ITL (without projection) can be defined by restricting the above definitions toI(T )
whereverI\\(T ) is involved and disregarding the clauses which refer to discrete inter-
vals or the operators(.\\.) and(.)∗. Here follows the proof system forITL which was
proved complete in [4].
(A1l) (ϕ; ψ) ∧ ¬(χ; ψ) ⇒ (ϕ ∧ ¬χ;ψ)
(A1r) (ϕ; ψ) ∧ ¬(ϕ; χ) ⇒ (ϕ;ψ ∧ ¬χ)
(A2) ((ϕ;ψ); χ) ⇔ (ϕ; (ψ; χ))
(Rl) (ϕ; ψ) ⇒ ϕ if ϕ is rigid
(Rr) (ϕ; ψ) ⇒ ψ if ψ is rigid
(Bl) (∃xϕ; ψ) ⇒ ∃x(ϕ; ψ) if x is not free inψ
(Br) (ϕ; ∃xψ) ⇒ ∃x(ϕ; ψ) if x is not free inϕ
(L1l) (` = x; ϕ) ⇒ ¬(` = x;¬ϕ)
(L1r) (ϕ; ` = x) ⇒ ¬(¬ϕ; ` = x)
(L2) (` = x; ` = y) ⇔ ` = x + y
(L3l) ϕ ⇒ (` = 0;ϕ)
(L3r) ϕ ⇒ (ϕ; ` = 0)

(MP)
ϕ ϕ ⇒ ψ

ψ

(G)
ϕ

∀xϕ

(Nl)
ϕ

¬(¬ϕ;ψ)
(Nr)

ϕ

¬(ψ;¬ϕ)

(Monol)
ϕ ⇒ ψ

(ϕ;χ) ⇒ (ψ; χ)

(Monor)
ϕ ⇒ ψ

(χ; ϕ) ⇒ (χ;ψ)

This system also includes first order logic axioms, equality axioms and the axioms
D1-D5 about duration domains. Substitution[t/x]ϕ of individual variablex by termt
in formulaϕ is allowed in axiom instances only ift is rigid or x does not occur in the
scope of modal operators inϕ. This system is sound with respect to the semantics of
ITL\\ too, except for the axiomL2, which fails in the case of discrete intervals.

2 A proof system for ITL\\
In order to present our proof system forITL\\, we need to introduce some special
abbreviations. Given two formulasϕ andψ, we define a formulaϕψ. The new formula
is meant to be equivalent to(ψ\\ϕ), provided thatψ has the property defined below in
the consideredITL\\ models and intervals.

Definition 6 Let M be a model for someITL\\ languageL andψ be a formula inL.
Let σ ∈ I\\(TM ). Thenψ hasthe unique partition property at the intervalσ in the
modelM if either min σ = max σ andM, σ 6|= ψ, or there exist a finite set of time
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pointsτ0 < τ1 < . . . < τn−1 < τn in σ such thatτ0 = min σ, τn = max σ and the
only subintervalsσ′ of σ which satisfyM, σ′ |= ψ areσ ∩ [τi−1, τi], i = 1, . . . , n.

A formulaψ which has the unique partition property at some intervalσ in a modelM
can be used to unambiguously specify the discrete ”sub”interval{τ0, τ1, . . . , τn−1, τn}
of a nonzero length intervalσ, whereτ0, . . . ,τn, are the time points inσ which occur in
the definition of the unique partition property above. In caseσ is a0-length interval, its
only subinterval isσ itself, both discrete and ordinary. The discrete interval which can
be specified this way is of the kind that appears in the definition ofM, σ |= (ψ\\ϕ) for
arbitraryϕ. That is why aψ with the unique partition property can be used as awitness
for the satisfaction of formulas of the kind(χ\\ϕ), provided thatM, σ |= 2(ψ ⇒ χ).
The unique partition property can be characterised by an axiom as follows:

Lemma 7 Let M be a model for someITL\\ languageL, σ ∈ I\\(TM ) andψ be a
formula inL. Thenψ has the unique partition property atσ in M iff

M, σ |= ψ∗∧¬(ψ∗;ψ∧ ((ψ; ` 6= 0)∨ ` = 0); ψ∗)∧¬(>; ψ;¬ψ∗)∧¬(¬ψ∗; ψ;>)
.

Proof: If ψ has the unique partition property atσ, then a direct check shows that the
above formula holds forψ atσ.

For the opposite implication, consider the casemin σ = max σ first. In this case

M, σ |= ¬(ψ∗; ψ ∧ ((ψ; ` 6= 0) ∨ ` = 0); ψ∗)

is equivalent to

M, σ |= ¬(ψ ∧ ((ψ; ` 6= 0) ∨ ` = 0))

and this impliesM,σ 6|= ψ, becauseM, σ |= ` = 0.
In casemin σ 6= max σ, M, σ |= ψ∗ implies that there is a subintervalσ′ of σ such

thatM, σ′ |= ψ. Now

M, σ |= ¬(>;ψ;¬ψ∗) ∧ ¬(¬ψ∗;ψ;>)

implies thatM,σ ∩ [minσ,min σ′] |= ψ∗ andM, σ ∩ [maxσ′,max σ] |= ψ∗. This
means that there is a finite set of time pointsτ0 < τ1 < . . . < τn−1 < τn in σ
such thatmin σ = τ0, max σ = τn, M,σ ∩ [τi−1, τi] |= ψ for i = 1, . . . , n and
σ′ = σ ∩ [τi−1, τi] for somei ∈ {1, . . . , n}. For the sake of contradiction, assume that
there exists another finite set of time pointsτ ′0 < τ1 < . . . < τ ′m−1 < τm in σ such
thatmin σ = τ ′0, max σ = τ ′m, M, σ ∩ [τ ′i−1, τ

′
i ] |= ψ for i = 1, . . . ,m. Then there is

a leasti such thatτi 6= τ ′i . Clearly,0 < i ≤ min(m,n). Then

M, σ ∩ [τi−1, max(τi, τ
′
i)] |= ψ ∧ ((ψ; ` 6= 0) ∨ ` = 0).

This implies that

M, σ |= (ψ∗; ψ ∧ ((ψ; ` 6= 0) ∨ ` = 0); ψ∗),

which is a contradiction.a
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The formulaϕψ we mention in the beginning of this section is defined by induction
on the construction ofϕ as follows:
⊥ψ ­ ⊥
(R(t1, . . . , tn))ψ ­ R(t1, . . . , tn) ∧ ψ∗ for rigid R(t1, . . . , tn)
(R(t1, . . . , tn))ψ ­ (` = 0 ∧R(t1, . . . , tn))∨ for flexible

(` 6= 0 ∧ (ψ\\R(t1, . . . , tn)) ∧ ψ∗) R(t1, . . . , tn)
(ϕ1 ⇒ ϕ2)ψ ­ (ϕψ

1 ⇒ ϕψ
2 ) ∧ ψ∗

(ϕ1; ϕ2)ψ ­ (ψ∗ ∧ ϕψ
1 ;ψ∗ ∧ ϕψ

2 )
(ϕ∗)ψ ­ (ψ∗ ∧ ϕψ)∗

(ϕ1\\ϕ2)ψ ­ (ϕψ
1 \\ϕ2)

(∃xϕ)ψ ­ ∃x(ϕψ)
Following our notational conventions, we regards formulas of the form(t1 = t2)ψ as
instances of(R(t1, t2))ψ here.

To denote the formula which occurs in Lemma 7 concisely, we use the abbreviations
3ψϕ ­ (ψ∗; ϕ; ψ∗)
2ψϕ ­ ¬3ψ¬ϕ
ψ
∗ ­ ψ∗ ∧2ψ(ψ ⇒ (` 6= 0 ∧ ¬(ψ; ` 6= 0))) ∧ ¬(>; ψ;¬ψ∗) ∧ ¬(¬ψ∗; ψ;>)

It can easily be shown by induction on the construction onϕ that, if M, σ |= ψ
∗
, then

M, σ |= 2ψ((ψ\\ϕ) ⇔ ϕψ) .
We use formulas likeϕψ andψ

∗
extensively to present our axioms and rules forITL\\

concisely. For technical reasons, we also introduce abbreviations for some kinds of
formulas with nested occurrences of(.\\.). Let ϕ0, . . . , ϕn, R1, . . . , Rn, andti,j ,
i = 1, . . . , n, j = 1, 2, beITL\\ formulas,0-ary (flexible) relation symbols and terms,
respectively. We introduce the sequence of formulas

proj(ϕk, tk+1,1, tk+1,2, Rk+1, ϕk+1, . . . , ϕn−1, tn,1, tn,2, Rn, ϕn), k = 0, . . . , n.
Thekth member of this sequence takes4(n − k) + 1 arguments. These areϕk, . . . ,
ϕn, with ti,1, ti,2, Ri, inserted betweenϕi−1 andϕi, i = k + 1, . . . , n. We define the
formulasproj(. . .) by the clauses:

proj(ϕn) ­ ϕn

proj(ϕk−1, tk,1, tk,2, Rk, ϕk, . . . , ϕn−1, tn,1, tn,2, Rn, ϕn) ­
(` = tk,1;Rk

∗∧2(Rk ⇒ ϕk−1)∧proj(ϕk, . . . , ϕn−1, tn,1, tn,2, Rn, ϕn)Rk ; ` =
tk,2)
4(n− k) + 1-aryproj(. . .) is meant to correspond ton− k projections, each preceded
by the selection of a subinterval, in the wayϕψ corresponds to a single projection. The
0-ary relation symbolsR1, . . . ,Rn here determine the particular subinterval partitions
involved in satisfying the considered projections. The termsti,j , i = 1, . . . , n, deter-
mine the subintervals involved in the considered subinterval selections. We introduce
concise notation for the formulas which express thesen−k projections and subinterval
selections by straightforward use of the operator(.\\.) as follows:

(ψ\\t2
t1

ϕ) ­ (` = t1; (ψ\\ϕ), ` = t2), for arbitraryϕ, ψ, t1 andt2

(ϕk−1\\tk,2
tk,1

ϕk\\tk+1,2
tk+1,1

. . . \\tn,2
tn,1

ϕn) ­ (ϕk−1\\tk,2
tk,1

(ϕk\\tk+1,2
tk+1,1

. . . \\tn,2
tn,1

ϕn))
It can be shown that, ifR1,. . . ,Rn do not occur inϕ0, . . . ,ϕn, then

(ϕ0\\t1,2
t1,1

ϕ1 . . . ϕn−1\\tn,2
tn,1

ϕn)
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is equivalent to

∃R1 . . . ∃Rnproj(ϕ0, t1,1, t1,2, R1, ϕ1, . . . , ϕn−1, tn,1, tn,2, Rn, ϕn),

where the quantifier prefix∃R1 . . . ∃Rn is interpreted in the ordinary way. However,
such quantification is not allowed inITL\\. To axiomatise this equivalence without
involving such quantification explicitly is the main idea behind the proof system for
ITL\\ that we present in this paper.

In order to present our proof system we also need a class ofITL\\ formulas that
we callplain chop formulas. These are formulas of the kind

(` = c1 ∧R; . . . ; ` = cn ∧R)
whereR stands for a (flexible)0-ary relation symbol andc1, . . . ,cn, are rigid constants.
For the case ofn being1 the above formula is just̀= c1 ∧R.

The last abbreviation we introduce here is
δ ­ ¬(` 6= 0; ` 6= 0)

Clearly,M, σ |= δ, iff σ is either0-length or discrete with no internal points, that is, iff
σ = {min σ,max σ}. HenceM,σ |= δ∗ iff σ ∈ Pfin(TM ). For an example of the use
of δ we make below, letϕ be (` = c1 ∧ R; . . . ; ` = cn ∧ R). ThenM, σ |= [δ/R]ϕ
iff σ is a discrete interval which can be represented in the formσ1; . . . ;σn where
M, σi |= ` = ci, and none of the intervalsσ1, . . . ,σn has internal points.

2.1 The system

The proof system we propose forITL\\ consists of the axioms and rules from the
proof system forITL with the exception of the axiomL2, and axioms and rules about
iteration, discrete intervals and(.\\.):

Iteration

(I1) ` = 0 ∨ (ϕ∗; ϕ) ⇒ ϕ∗

(I2)
∀k < ω (χ1; ϕk; χ2) ⇒ ψ

(χ1; ϕ∗; χ2) ⇒ ψ

Discrete Intervals

(L2⇐) 2(` = x + y ⇒ (` = x; ` = y)) ∨ δ∗

(L2⇒) (` = x; ` = y) ⇒ ` = x + y
(DI1) δ∗ ⇒ (ϕ ⇔ (δ\\ϕ))
(DI2) [>/R]ϕ ⇒ (>\\[δ/R]ϕ), if ϕ is a plain chop formula andR occurs in it

Projection
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(PR) (ϕ\\ψ) ⇔ ϕ∗ ∧ ψ for rigid formulasψ
(P`) ϕ∗ ∧ ` = x ⇔ (ϕ\\` = x)
(P1) ψ

∗ ∧2ψ(ψ ⇒ χ) ∧ ϕψ ⇒ (χ\\ϕ)

(P2)
proj(ϕ0, t1,1, t1,2, R1, ϕ1, t2,1, t2,2, R2, . . . , tn,1, tn,2, Rn, ϕn) ⇒ θ

(ϕ0\\t1,2
t1,1

ϕ1\\t2,2
t2,1

. . . \\tn,2
tn,1

ϕn) ⇒ θ

(P3) ψ
∗ ⇒ ((ψ\\ϕ) ⇔ ϕψ)

(P4) (ϕ\\(ψ\\χ)) ⇔ ((ϕ\\ψ)\\χ) (PJ7 from [17], (\\-1) from [11])

(PN)
ϕ

ψ∗ ⇒ (ψ\\ϕ)
Instances ofP2 are allowed only if the0-ary flexible relation symbolsRi, i = 1, . . . , n,
are distinct and do not occur inϕ1, . . . , ϕn andθ. In the rest of the paper we mostly
apply a special case ofP2, which is obtained by puttingn = 1 and choosing botht1,1

andt1,2 to be0. This instance ofP2 is equivalent to the rule:

(P20)
R1

∗ ∧2(R1 ⇒ ϕ0) ∧ ϕR1
1 ⇒ θ

(ϕ0\\ϕ1) ⇒ θ
, if R1 does not occur inϕ0, ϕ1 andθ.

This rule is probably the most appropriate to illustrate the meaning ofP2. Let an
intervalσ in a modelM satisfyϕR1

1 ⇒ θ for anyR1, provided thatR1 has the unique
partition property atσ in M and the partitionτ0 < . . . < τn of σ which satisfies
M, σ ∩ [τi−1, τi] |= R1, i = 1, . . . , n is such thatM,σ ∩ [τi−1, τi] |= ϕ0, i = 1, . . . , n
as well. ThenM, σ |= (ϕ0\\ϕ1) ⇒ θ. The side condition onR1 not to occur inϕ0,
ϕ1 andθ corresponds to the requirement for the premiss of the rule to hold for anyR1

with the properties described in the rule. The role of this side condition becomes still
clearer, if we note that(ϕ0\\ϕ1) is equivalent to

∃R1(R1
∗ ∧2(R1 ⇒ ϕ0) ∧ ϕR1

1 ).
This makes our rule resemble a left introduction rule for∃R1. Similarly, the intended
meaning ofP1 can be written as

ψ
∗ ∧2ψ(ψ ⇒ χ) ∧ ϕψ ⇒ ∃R(R

∗ ∧2(R ⇒ χ) ∧ ϕR)
and provides a way to introduce positive occurrences of(.\\.). However, as we already
mentioned, the quantifier prefix∃R is not allowed in our language. The instances of
P2 for n > 1 are convenient for technical reasons to become clear later.

The axiomL2⇐ says that ordinary intervals can be “chopped” at any time point
within their boundaries. AxiomDI1 is based on the fact thatδ defines a partition
of the reference interval which involves all of its time points, in case this interval is
discrete. Hence, the interval obtained by taking the chopping points involved in this
partition is the reference interval itself and therefore satisfies the same formulas.DI2
says that, given an arbitrary finite set of points in the reference interval, the discrete
interval which consists of these points, together with the boundaries of the reference
interval, can be accessed by means of(.\\.) from the reference interval. The validity of
P` follows fromM\\. The meanings of the other axioms and rules are straightforward.

We call a formulaϕ an ITL\\ theoremiff it can be obtained from instances of
axioms of the proof system forITL\\ by means of the rules of this system. We use the
expressioǹ ITL\\ ϕ to denote thatϕ is anITL\\ theorem.

10



3 Completeness of the proof system

In this section we present a Henkin-style completeness argument for our proof system.
We closely follow the argument aboutITL from [4]. In what follows we assume that
the extension of theITL proof system byI1 and I2 only is ω-complete forITL∗,
the extension ofITL by iteration only. (Although iteration is generally regarded as a
basic operator inITL, the result in [4] does not cover it.) Completeness arguments for
systems with an infinitary rule of this kind for logics with Kleene star are known in the
literature (cf. e.g. [20].) We do not include this proof in this paper, in order to avoid
a lengthy, yet routine presentation, and concentrate on the aspects of the proof system
which are specific to the new operator(.\\.). For the same reason, we mark fragments
of ITL\\ deductions below byITL∗ and skip the details, in case noITL\\-specific
axioms or rules besidesI1 andI2, are involved in them. Similarly, we mark purely
first order predicate logic fragments of deduction byPC.

The completeness argument is divided in two major parts. In the first part we estab-
lish the properties ofITL\\ theories which are needed for their use in the construction
of a model to show the satisfiability of an arbitrary given consistent set ofITL\\ for-
mulas. The second part is the construction of this model itself. In both of these major
parts we use theITL\\ theorems which are listed and derived below:

Theorem 8
(T1) `ITL\\ ¬(ϕ\\⊥)
(T2) `ITL\\ (ϕ\\∃xψ) ⇒ ∃x(ϕ\\ψ) if x 6∈ FV (ϕ) (FOLJ1 from [17],

(\\-6) from [11])
(T3) `ITL\\ ` = 0 ⇒ ((ϕ\\ψ) ⇔ ψ)
(T4) `ITL\\ ϕ∗ ∧ (ϕ\\ψ1 ⇒ ψ2) ∧ (ϕ\\ψ1) ⇒ (ϕ\\ψ2)
(T5) `ITL\\ 2(ϕ1 ⇒ ϕ2) ⇒ ((ϕ1\\ψ) ⇒ (ϕ2\\ψ)) ((\\-7) from [11])

Proof: In the ITL\\ deductions for the above theorems we assume thatR is a0-ary
flexible relation symbol which does not occur inϕ, ψ, ϕi, ψi, i = 1, 2.
T1:

1 R
∗ ∧2R(R ⇒ ϕ) ∧ ⊥R ⇒ ⊥ PC, the definition of⊥R

2 (ϕ\\⊥) ⇒ ⊥ 1, P20

T2:
1 (∃xψ)R ⇔ ∃x(ψR) ITL, the definition of(∃xψ)R

2 R
∗ ∧2R(R ⇒ ϕ) ∧ ψR ⇒ (ϕ\\ψ) P1

3 R
∗ ∧2R(R ⇒ ϕ) ∧ ∃x(ψR) ⇒ ∃x(ϕ\\ψ) 2, PC

4 R
∗ ∧2R(R ⇒ ϕ) ∧ (∃xψ)R ⇒ ∃x(ϕ\\ψ) 1, 3,PC

5 2(R ⇒ ϕ) ⇒ 2R(R ⇒ ϕ) ITL∗

6 R
∗ ∧2(R ⇒ ϕ) ∧ (∃xψ)R ⇒ ∃x(ϕ\\ψ) 4, 5,PC

7 (ϕ\\∃xψ) ⇒ ∃x(ϕ\\ψ) 6, P20

T3:

11



1 ` = 0 ⇒ δ∗ ITL∗

2 ` = 0 ⇒ 2(ϕ ⇒ δ) ITL∗

3 δ∗ ⇒ ((δ\\ψ) ⇔ ψ) DI1
4 ` = 0 ⇒ ((δ\\ψ) ⇔ ψ) 1, 3,PC
5 2(ϕ ⇒ δ) ⇒ ((ϕ\\ψ) ⇒ (δ\\ψ)) T5
6 ` = 0 ⇒ ((ϕ\\ψ) ⇒ ψ) 2, 4, 5,PC
7 ϕ∗ ∧2ϕ(ϕ ⇒ ϕ) ∧ ψϕ ⇒ (ϕ\\ψ) P1
8 ` = 0 ⇒ ϕ∗ ITL∗

9 2ϕ(ϕ ⇒ ϕ) ITL∗

10 ` = 0 ∧ ψ ⇒ ψϕ plain induction
on the construction ofψ

11 ` = 0 ⇒ (ψ ⇒ (ϕ\\ψ)) 7-10,PC
12 ` = 0 ⇒ ((ϕ\\ψ) ⇔ ψ) 6, 11,PC

T4:
1 ϕ∗ ⇒ ((ϕ\\ψ1 ⇒ ψ2) ⇔ (ψ1 ⇒ ψ2)ϕ) P3
2 ϕ∗ ⇒ ((ϕ\\ψ1) ⇔ ψϕ

1 ) P3
3 ϕ∗ ⇒ 2ϕ(ϕ ⇒ ϕ) ITL∗

4 (ψ1 ⇒ ψ2)ϕ ⇒ (ψϕ
1 ⇒ ψϕ

2 ) the definition of
(ψ1 ⇒ ψ2)ϕ

5 ϕ∗ ∧ (ϕ\\ψ1 ⇒ ψ2) ∧ (ϕ\\ψ1) ⇒ 2ϕ(ϕ ⇒ ϕ) ∧ ψϕ
2 1-4,PC

6 ϕ∗ ∧2ϕ(ϕ ⇒ ϕ) ∧ ψϕ
2 ⇒ (ϕ\\ψ2) P1

7 ϕ∗ ∧ (ϕ\\ψ1 ⇒ ψ2) ∧ (ϕ\\ψ1) ⇒ (ϕ\\ψ2) 5, 6,PC

T5:
1 R

∗ ∧2(R ⇒ ϕ2) ∧ ψR ⇒ (ϕ2\\ψ) P1
2 2(R ⇒ ϕ1) ∧2(ϕ1 ⇒ ϕ2) ⇒ 2(R ⇒ ϕ2) ITL
3 R

∗ ∧2(R ⇒ ϕ1) ∧ ψR ⇒ ((ϕ2\\ψ) ∨ ¬2(ϕ1 ⇒ ϕ2)) 1,2,PC
4 (ϕ1\\ψ) ⇒ ((ϕ2\\ψ) ∨ ¬2(ϕ1 ⇒ ϕ2)) 3, P20

5 2(ϕ1 ⇒ ϕ2) ⇒ ((ϕ1\\ψ) ⇒ (ϕ2\\ψ)) 4, PC
a

3.1 ITL\\ theories

Throughout this sectionL denotes anITL\\ language. We identifyL with the set of
its terms and its formulas. Thus,t ∈ L stands fort is a term inL andϕ ∈ L stands
for ϕ is a formula inL. Similarly, Γ ⊆ L stands forΓ is a set of formulas inL.
We assume that the vocabulary ofL contains no more than countably many symbols
of every kind. Given a setC of rigid constants and flexible0-ary relation symbols,
theITL\\ language obtained by adding the symbols fromC to the vocabulary ofL is
denoted byL(C).

To introduce the notion of anITL\\ theory inL, we need to define closedness of
sets of formulasΓ ⊆ L under the rules of our proof system forITL\\. Closedness
underMP andI2 only can be defined straightforwardly: a setΓ ⊆ L is closed under
these rules, if wheneverΓ contains all the premisses of an instance of a rule,Γ also
contains the conclusion of the instance of the rule. The definition becomes a little
more complicated ifP2 gets involved, because this rule has a side condition. Roughly
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speaking, a derivation by an instance

proj(ϕ0, t1,1, t1,2, R1, ϕ1, t2,1, t2,2, R2, . . . , tn,1, tn,2, Rn, ϕn) ⇒ θ

(ϕ0\\t1,2
t1,1

ϕ1\\t2,2
t2,1

. . . \\tn,2
tn,1

ϕn) ⇒ θ

of P2 from a set of formulasΓ can be unsound, unless the restriction not to contain
occurrences ofR1, . . . ,Rn is imposed not only on the formulasϕ0, . . . ,ϕn andθ, but
on the formulas fromΓ too. This is so, because such a derivation is equivalent to an
application of the rule

proj(ϕ0, t1,1, t1,2, R1, ϕ1, t2,1, t2,2, R2, . . . , tn,1, tn,2, Rn, ϕn) ⇒ (
∧

Γ ⇒ θ)
(ϕ0\\t1,2

t1,1
ϕ1\\t2,2

t2,1
. . . \\tn,2

tn,1
ϕn) ⇒ (

∧
Γ ⇒ θ)

Yet such a rule cannot be formulated inITL\\, becauseΓ may be infinite. Closedness
under first order logic quantifier-related rules requires some special care too.

To define closedness under these rules soundly, we introduce a relation of deriv-
ability as follows:

Definition 9 We defineΓ `L ϕ as the smallest relation between sets of formulasΓ,
languagesL and formulasϕ which satisfies the following conditions:
◦ If ϕ ∈ L and`ITL\\ ϕ, thenΓ `L ϕ.
◦ If ϕ ∈ Γ andΓ ⊆ L, thenΓ `L ϕ.
◦ If Γ `L ψ ⇒ ϕ andΓ `L ψ for some formulaψ ∈ L, thenΓ `L ϕ.
◦ If Γ `L (χ1; ϕk; χ2) ⇒ ψ for all k < ω, thenΓ `L (χ1;ϕ∗;χ2) ⇒ ψ.
◦ If Γ `L({c}) [c/x]ϕ ⇒ ψ for some rigid constantc which is not in the vocabulary of

L, nor occurs inϕ,ψ, thenΓ `L ∃xϕ ⇒ ψ.
◦ If Γ `L({R1,...,Rn}) proj(ϕ0, t1,1, t1,2, R1, ϕ1, t2,1, t2,2, . . . , tn,1, tn,2, Rn, ϕn) ⇒ θ

for some distinct0-ary relation symbolsR1, . . . , Rn which are not inL, nor occur in
ϕ0, . . . , ϕn, θ, thenΓ `L (ϕ0\\t1,2

t1,1
ϕ1\\t2,2

t2,1
. . . \\tn,2

tn,1
ϕn) ⇒ θ.

Note that the relatioǹ introduced here is distinct from̀ITL\\ , which is used to denote
theoremhood inITL\\. Clearly,`ITL\\ ϕ is equivalent to∅ `L ϕ andϕ ∈ L for some
ITL\\ languageL. Besides, ifL′ ⊆ L′′ andΓ `L′ ϕ, then obviouslyΓ `L′′ ϕ.

Now let us characterisè by an inductive definition, in order to be able to reason
about it by means of transfinite induction.

Definition 10 Let Γ `α
L ϕ be a relation between sets ofITL\\ formulasΓ, ITL\\ lan-

guagesL, ordinalsα andITL\\ formulasϕ. Let this relation be defined by induction
onα as follows:

Γ `0
L ϕ iff ϕ ∈ L, Γ ⊆ L and either̀ ITL\\ ϕ or ϕ ∈ Γ. Forα 6= 0, Γ `α

L ϕ iff at
least one of the following holds:
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◦ Γ `β1
L ψ ⇒ ϕ andΓ `β2

L ψ for someβ1, β2 < α and someψ ∈ L.
◦ The formulaϕ is ∃xψ ⇒ χ andΓ `β

L({c}) [c/x]ψ ⇒ χ for someβ < α and some
rigid constantc which is not in the vocabulary ofL, nor occurs inϕ.

◦ The formulaϕ is (ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn) ⇒ θ and

Γ `β
L({R1,...,Rn}) proj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) ⇒ θ

for someβ < α and some distinct0-ary flexible relation symbolsR1, . . . , Rn which
are not in the vocabulary ofL and do not occur inϕ.

◦ The formulaϕ is (χ1; ψ∗; χ2) ⇒ θ and for everyk < ω there exists aβk < α such
thatΓ `βk

L (χ1; ψk;χ2) ⇒ θ.

Induction Principle. Γ `L ϕ is equivalent to∃α ∈ Ord Γ `α
L ϕ.

Proof: Obviously∃α ∈ Ord Γ `α
L ϕ defines a relation which satisfies the closedness

conditions oǹ . Suppose that the relation defined this way is not the smallest one that
satisfies these closedness conditions for the sake of contradiction. Choosingα0 to be
the least ordinal such that there exist a languageL, a set of formulasΓ and a formula
ϕ which satisfyΓ `α0

L ϕ andΓ 6`L ϕ immediately brings a contradiction.a

Lemma 11 Γ `L ϕ impliesϕ ∈ L andΓ ⊆ L.

Proof: Induction onα ∈ Ord for α satisfyingΓ `α
L ϕ. a

Given a setΓ ⊆ L, we denote the set{ϕ ∈ L : Γ `L ϕ} by CnL(Γ). CnL(Γ)
consists of the logical consequences ofΓ in L which can be derived using our axioms
and rules. GivenΓ and a formulaϕ, we denote the set{ψ : Γ `L ϕ ⇒ ψ} by Γ +L ϕ.

Lemma 12 Γ +L ϕ = CnL(Γ ∪ {ϕ}).
Proof: The inclusionΓ +L ϕ ⊆ CnL(Γ ∪ {ϕ}) follows trivially from the closedness
of ` underMP . To show thatΓ ∪ {ϕ} `L ψ impliesΓ `L ϕ ⇒ ψ, we use induction
onα ∈ Ord for α satisfyingΓ∪{ϕ} `α

L ψ. We prove that ifΓ∪{ϕ} `α
L ψ, then there

exists an ordinalα′ such thatΓ `α′
L ϕ ⇒ ψ by induction onα. We give details on the

case ofψ being of the form(χ1; ψ∗; χ2) ⇒ θ andΓ ∪ {ϕ} `α
L ψ being true because

of the existence of someβk < α such thatΓ ∪ {ϕ} `βk

L (χ1; ψk; χ2) ⇒ θ, k < ω,
here. In this case the induction hypothesis implies that for everyk < ω there exists an

ordinalβ′k such thatΓ `β′k
L ϕ ⇒ ((χ1; ψk;χ2) ⇒ θ). Using that

`ITL\\ (ϕ ⇒ ((χ1; ψk;χ2) ⇒ θ)) ⇒ ((χ1; ψk; χ2) ⇒ (ϕ ⇒ θ))

and the definition of̀ (.), we infer thatΓ `β′k+1
L (χ1;ψk;χ2) ⇒ (ϕ ⇒ θ). Let α′

be an ordinal that is greater thansup{β′k + 1 : k < ω}. ThenΓ `α′
L (χ1; ψ∗; χ2) ⇒

(ϕ ⇒ θ) by the definition of̀ (.). Just like above, this implies thatΓ `α′+1
L ϕ ⇒

((χ1;ψ∗;χ2) ⇒ θ). The cases ofΓ∪{ϕ} `α
L ψ holding for some other of the possible

reasons according to the definition are dealt with in similar ways.a
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Definition 13 A setΓ ⊆ L is calledtheory inL , if Γ = CnL(Γ). A theoryΓ is called
consistent, if ⊥ 6∈ Γ. A setΓ ⊆ L is calledconsistent inL if some consistent theory
in L contains it. A theory inL is calledmaximal inL if it is consistent and it is not
a proper subset of any consistent theory inL. A theoryΓ is calledcomplete inL, if
eitherϕ ∈ Γ or¬ϕ ∈ Γ for everyϕ ∈ L.

The conditions⊥ ∈ CnL′(Γ) and⊥ ∈ CnL′′(Γ) are equivalent for any two languages
L′ andL′′ which containΓ. That is why consistency can be regarded as a property
of sets of formulasΓ regardless of the languageL involved in the definition of this
property. Using Lemma 12, one can easily show that a theory is complete iff it is
maximal in its language.

The following adaptation of the notion ofHenkin theory, which is specific to our
proof system forITL\\, plays a key role in further constructions.

Definition 14 A theoryΓ in L(C) is called aHenkin theory with witnesses inC, if
◦ ∃xϕ ∈ Γ implies[c/x]ϕ ∈ Γ for somec ∈ C.
◦ Given a natural numbern ≥ 1 and ϕi ∈ L(C), i = 0, . . . , n, ti,1, ti,2 ∈ L(C),

i = 1, . . . , n, such that(ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn) ∈ Γ, there existR1, . . . , Rn ∈ C such
thatproj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) ∈ Γ.

For the rest of this section we assume thatC consists of countably many rigid constants
and countably many flexible0-ary relation symbols, none of which is in the vocabulary
of L.

Theorem 15 (Lindenbaum lemma) Let Γ0 ⊂ L be consistent. Then there exists a
maximal Henkin theoryΓ ⊂ L(C) with witnesses inC such thatΓ0 ⊆ Γ.

Proof: This proof follows a general pattern known from numerous modal logics.
Let the set of all the formulas fromL(C) be{ϕk : k < ω}. We define the sequence

of consistent setsΓk ⊂ L(C) so thatΓk \ Γ0 is finite for everyk < ω. This entails
that formulas fromΓk have occurrences of only finitely many elements ofC for every
k. Given a set of formulas∆ ⊂ L(C), we useL(∆) to denote theITL\\ language
obtained by extending the vocabulary ofL with the symbols fromC which occur in
the formulas from∆. The definition ofΓk, k < ω, is as follows:

Γ0 is as given in the theorem. Assume thatΓk has been defined for somek < ω.
If Γk ∪ {ϕk} is not consistent, thenΓk+1 = Γk. Otherwise we consider the following
cases:
1. ϕk is ∃xψ for someψ ∈ L(C). Then we choose a rigid constantc ∈ C which does
not occur in formulas fromΓk, nor inϕk, and putΓk+1 = Γk ∪{ϕk, [c/x]ψ}. Assume
thatΓk+1 is inconsistent for the sake of contradiction. This implies

Γk `L(Γk∪{ϕk}) ϕk ⇒ ⊥
by Lemma 12, which contradicts the consistency ofΓk ∪ {ϕk}. HenceΓk+1 is consis-
tent.
2. ϕk is (χ1; ψ∗; χ2) for someχ1, χ2, ψ ∈ L(C). Then there exists ann < ω such
thatΓk ∪ {ϕk, (χ1;ψn; χ2)} is consistent too. Assuming the contrary would bring a
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contradiction with the given consistency ofΓk. We choose ann with the above property
and putΓk+1 = Γk ∪ {ϕk, (χ1; ψn; χ2)}.
3. ϕk is (ψ0\\t1,2

t1,1
. . . \\tn,2

tn,1
ψn) for someψi ∈ L(C), i = 0, . . . , n, andti,1, ti,2 ∈

L(C), i = 1, . . . , n, such thatψn is not of the form(` = t′; (ψ′\\ψ′′); ` = t′′).
The restriction on the form ofψn here is to ensure thatϕk does not satisfy the stated
condition for more than onen. Let

χj ­ (ψj\\tj+1,2
tj+1,1

. . . \\tn,2
tn,1

ψn), j = 0, . . . , n− 1, χn ­ ψn .

Thenϕk can be also recorded as(ψ0\\t1,2
t1,1

. . . \\tj,2
tj,1

χj) for j = 1, . . . , n. Let Rj
i ,

j = 1, . . . , n, i = 1, . . . , j, be distinct0-ary flexible relation symbols fromC which
do not occur inL(Γk ∪ {ϕk}). Let

Γp
k+1 = Γk ∪ {ϕk} ∪ {proj(ψ0, t1,1, t1,2, R

j
1, . . . , tj,1, tj,2, R

j
j , χj) : j = 1, . . . , p}

for p = 1, . . . , n, Γ0
k+1 = Γk ∪ {ϕk} andΓk+1 beΓn

k+1. We must prove thatΓk+1 is
consistent. We prove thatΓp

k+1 is consistent by induction onp. Γ0
k+1 is consistent by

assumption. Assume thatΓp
k+1 is consistent andΓp+1

k+1 is inconsistent for somep < n
for the sake of contradiction. Then Lemma 12 entails that

proj(ψ0, t1,1, t1,2, R
p+1
1 , . . . , tp+1,1, tp+1,2, R

p+1
p+1, χp+1) ⇒ ⊥

is a member ofCnL(Γp
k+1)({Rp+1

1 ,...,Rp+1
p+1})(Γ

p
k+1), whenceΓp

k+1 `L(Γp
k+1)

ϕk ⇒ ⊥ by

the clause about closedness underP2 in the definition of̀ , becauseRp+1
1 , . . . , Rp+1

p+1

do not occur inL(Γp
k+1). This entails thatΓp

k+1 is inconsistent too, which is a contra-
diction.
4. None of the above cases holds. ThenΓk+1 = Γk ∪ {ϕk}.
A standard argument shows thatΓ =

⋃
k<ω

Γk is a maximal Henkin theory inL(C) with

witnesses inC. ClearlyΓ ⊃ Γ0. a

Lemma 16 Let Γ be a complete theory inL(C) and (χ1;ϕ∗;χ2) ∈ Γ. Then there
exists ak < ω such that(χ1;ϕk;χ2) ∈ Γ.

Proof: Assume that(χ1;ϕk; χ2) 6∈ Γ for all k < ω for the sake of contradiction. Then
(χ1; ϕk;χ2) ⇒ ⊥ ∈ Γ for all k < ω, becauseΓ is complete. Hence,(χ1; ϕ∗; χ2) ⇒
⊥ ∈ Γ by I2, becauseΓ is a theory. This is a contradiction.a

Given sets of formulasΓ,Γ1,Γ2 ⊆ L(C) and a formulaϕ ∈ L(C), we denote the
set{(ϕ;ψ) : ϕ ∈ Γ1, ψ ∈ Γ2} by Γ1; Γ2.

Lemma 17 LetΓ1, Γ2 andΓ be complete theories inL(C). Let` = ci ∈ Γi for some
ci ∈ C, i = 1, 2, andΓ1; Γ2 ⊂ Γ. Thenϕ ∈ Γ, ϕ ∈ Γ1 andϕ ∈ Γ2 are equivalent
for rigid ϕ ∈ L(C). Similarly, ψ∗ ∧ ϕ ∈ Γ is equivalent to(ψ\\ϕ) ∈ Γ for rigid
ϕ ∈ L(C).

Proof: The first part follows from axiomsRl andRr. The second follows from axiom
PR. a

The following lemma presents someITL\\ theorems which are essentially theo-
rems inITL∗.
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Lemma 18
(T6) `ITL\\ R0

∗ ∧R
∗ ∧2(R ⇒ R0) ⇒ 2(R ⇔ R0)

(T7) `ITL\\ R0
∗ ∧ (R0\\R∗) ⇒ (R0\\R)

∗

Proof: Let M be a model for anITL∗ language which containsR andR0. Then
Lemma 7 entails thatM, σ |= 2(R ⇔ R0) for all intervalsσ ∈ I\\(TM ) such that

M, σ |= R0
∗
, R

∗
, 2(R ⇒ R0). Hence the formulaT6 is valid in ITL∗. ITL\\ is a

conservative extension ofITL∗ and we assume that the extension of the proof system
of ITL by I1 andI2 is complete forITL∗. Hence the formulaT6 is a theorem in
ITL\\. The formulaT7 is equivalent toR0

∗ ∧ (R
∗
)R0 ⇒ (R0\\R)

∗
by P3, which is

valid in ITL∗. HenceT7 is anITL\\ theorem too.a

Lemma 19 Let Γ be a set of formulas inL, Γ 6= ∅, andΓ `L ϕ. Let c1, c2 be two
rigid constants in the vocabulary ofL. Then{(` = c1;ψ; ` = c2) : ψ ∈ Γ} `L (` =
c1; ϕ; ` = c2).

Proof: Let ∆ denote{(` = c1; ψ; ` = c2) : ψ ∈ Γ}. We do the proof by induction on
α ∈ Ord for α satisfyingΓ `α

L ϕ. According to the definition ofΓ `α
L ϕ, at least one

of the following cases holds:
1. ϕ is ITL\\ theorem andϕ ∈ L. Let ψ ∈ Γ. Thenψ ⇒ ϕ is anITL\\ theorem
andψ ⇒ ϕ ∈ L. Hence(` = c1; ψ; ` = c2) ⇒ (` = c1; ϕ; ` = c2) is anITL\\
theorem inL too byMonol andMonor. Now ∆ `L (` = c1; ϕ; ` = c2) follows from
∆ `L (` = c1;ψ; ` = c2) and∆ `L (` = c1; ψ; ` = c2) ⇒ (` = c1; ϕ; ` = c2) by
MP .
2. ϕ ∈ Γ. Then(` = c1; ϕ; ` = c2) ∈ ∆, whence∆ `L (` = c1; ϕ; ` = c2).
3. There existβ1, β2 < α andψ ∈ L such thatΓ `β1

L ψ ⇒ ϕ andΓ `β2
L ψ. This case

is dealt with using that
∆ `L (` = c1; ψ ⇒ ϕ; ` = c2) and∆ `L (` = c1; ψ; ` = c2)

by the induction hypothesis, and
`ITL\\ (` = c1;ψ; ` = c2) ⇒ ((` = c1;ψ ⇒ ϕ; ` = c2) ⇒ (` = c1;ϕ; ` = c2)) .

4. ϕ is ∃xψ ⇒ θ whereψ, θ ∈ L andΓ `β
L({c}) [c/x]ψ ⇒ θ for someβ < α,

wherec is a rigid constant which is not in the vocabulary ofL. Then, by the induction
hypothesis,

∆ `L({c}) (` = c1; [c/x]ψ ⇒ θ; ` = c2).
This entails that

∆ `L({c}) [c/x](` = c1; ψ; ` = c2) ⇒ (` = c1; θ; ` = c2).
Hence

∆ `L ∃x(` = c1;ψ; ` = c2) ⇒ (` = c1; θ; ` = c2)
which implies

∆ `L (` = c1; ∃xψ; ` = c2) ⇒ (` = c1; θ; ` = c2)
by Bl andBr, and finally

∆ `L (` = c1; ∃xψ ⇒ θ; ` = c2)
5. ϕ is (ϕ0\\t1,2

t1,1
. . . \\tn,2

tn,1
ϕn) ⇒ θ whereϕ0, . . . , ϕn, t1,1, t1,2, . . . , tn,1, tn,2 ∈ L,

and
Γ `β

L({R1,...,Rn}) proj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) ⇒ θ
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for someβ < α and someR1, . . . , Rn that are distinct0-ary relation symbols out of
the vocabulary ofL. Then, by the induction hypothesis,

∆ `L({R1,...,Rn}) (` = c1; proj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) ⇒ θ; ` =
c2).
This entails that

∆ `L({R1,...,Rn}) proj(ϕ0, c1 + t1,1, t1,2 + c2, R1, . . . , tn,1, tn,2, Rn, ϕn) ⇒
(` = c1; θ; ` =

c2)
by the definition ofproj. Hence

∆ `L (ϕ0\\t1,2+c2
c1+t1,1

. . . \\tn,2
tn,1

ϕn) ⇒ (` = c1; θ; ` = c2),
which is equivalent to

∆ `L (` = c1; (ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn) ⇒ θ; ` = c2).
6. ϕ is (χ1; ψ∗; χ2) ⇒ θ whereψ, θ ∈ L, and for everyk < ω there exists aβk < α
such that

Γ `βk

L (χ1;ψk; χ2) ⇒ θ .
Then

∆ `L (` = c1; (χ1; ψk; χ2) ⇒ θ; ` = c2) ,
whence, byA2, Monol andMonor

∆ `L ((` = c1;χ1); ψk; (χ2; ` = c2)) ⇒ (` = c1; θ; ` = c2)
for all k < ω by the induction hypothesis. Hence

∆ `L ((` = c1;χ1); ψ∗; (χ2; ` = c2)) ⇒ (` = c1; θ; ` = c2) .
by I2. This is equivalent to

∆ `L (` = c1; (χ1; ψ∗; χ2) ⇒ θ; ` = c2)
by A2, Monol andMonor again. This concludes the proof.a

Given a set of formulasΓ and a formulaϕ, (ϕ\\Γ) stands for{(ϕ\\ψ) : ψ ∈ Γ}.

Lemma 20 Let Γ be a set of formulas inL, andΓ `L ϕ. Let R be a0-ary flexible
relation symbol inL. Then(R\\Γ) ∪ {R∗} `L (R\\ϕ).

Proof: Transfinite induction onα ∈ Ord such thatΓ `α
L ϕ, like in the proof of Lemma

19. Let∆ denote(R\\Γ) ∪ {R∗}. We consider the following cases:
1. ϕ is anITL\\ theorem andϕ ∈ L. ThenR∗ ⇒ (R\\ϕ) is anITL\\ theorem inL
too, by the rulePN . SinceR

∗ ∈ ∆, ∆ `L (R\\ϕ) byMP from∆ `L R∗ ⇒ (R\\ϕ).
2. ϕ ∈ Γ, then(R\\ϕ) ∈ ∆, whence∆ `L (R\\ϕ).
3. There existβ1, β2 < α andψ ∈ L such thatΓ `β1

L ψ ⇒ ϕ andΓ `β2
L ψ. Then, by

the induction hypothesis,
∆ `L (R\\ψ ⇒ ϕ) and∆ `L (R\\ψ) .

Now, usingT4 of Theorem 8 andR
∗ ∈ ∆, we can infer that

∆ `L (R\\ϕ) .
4. ϕ is ∃xψ ⇒ θ andΓ `β

L({c}) [c/x]ψ ⇒ θ for someβ < α, wherec is a rigid
constant which is not in the vocabulary ofL. Then, by the induction hypothesis,

∆ `L({c}) (R\\[c/x]ψ ⇒ θ).
This entails that

∆ `L({c}) ([c/x]ψ)R ⇒ θR

by P3 and the definition of(.)R. Then
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∆ `L({c}) [c/x](ψR) ⇒ θR

by the definition of(.)R. Hence
∆ `L ∃x(ψR) ⇒ θR and∆ `L (∃xψ ⇒ θ)R

by the definition of(.)R again, whence, usingR
∗ ∈ ∆ andP3, we obtain

∆ `L (R\\∃xψ ⇒ θ)
5. ϕ is (ϕ0\\t1,2

t1,1
. . . \\tn,2

tn,1
ϕn) ⇒ θ and

Γ `β
L({R1,...,Rn}) proj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) ⇒ θ

for someβ < α and some distinct0-ary relation symbolsR1, . . . , Rn which are not in
the vocabulary ofL. Let P stand forproj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) in
the rest of this proof for the sake of brevity. Then, by the induction hypothesis,

∆ `L({R1,...,Rn}) (R\\P ⇒ θ).
Like in the previous cases, this entails that

∆ `L({R1,...,Rn}) PR ⇒ θR

by P3 and the definition of(.)R. Let R0 be a0-ary flexible relation symbol not in the
vocabulary ofL({R1, . . . , Rn}). Then

`ITL\\ R
∗ ⇒ (R0

∗ ∧2(R0 ⇒ R) ⇒ 2(R ⇔ R0)).
by T6 of Lemma 18. SinceT5 of Theorem 8 implies that

`ITL\\ 2(R ⇔ R0) ⇒ ((R\\P ) ⇔ (R0\\P )) ,
andP3 implies that

`ITL\\ R
∗ ⇒ ((R\\P ) ⇔ PR) and`ITL\\ R0

∗ ⇒ ((R0\\P ) ⇔ PR0) ,
we have

∆ `L({R0,R1,...,Rn}) R0
∗ ∧2(R0 ⇒ R) ⇒ (PR ⇔ PR0)

This entails that
∆ `L({R0,R1,...,Rn}) R0

∗ ∧2(R0 ⇒ R) ∧ PR0 ⇒ θR.
Yet

`ITL\\ (R0
∗ ∧2(R0 ⇒ R) ∧ PR0) ⇔

proj(R, 0, 0, R0, ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn)
by the definition ofproj, L3l andL3r. Hence

∆ `L (R\\00ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn) ⇒ θR.
by P2. This entails that

∆ `L (R\\(ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn) ⇒ θ)
by P3, L3l andL3r again.
6. ϕ is (χ1; ψ∗; χ2) ⇒ θ and for everyk < ω there exists aβk < α such that

Γ `βk

L (χ1;ψk; χ2) ⇒ θ.
Then

∆ `L (R\\(χ1;ψk; χ2) ⇒ θ)
by the induction hypothesis, whence

∆ `L ((χ1;ψk; χ2) ⇒ θ)R

by P3 for all k < ω. Now note that((χ1; ψk;χ2) ⇒ θ)R stands for
((χR

1 ∧R∗; (ψR ∧R∗)k; χR
2 ∧R∗) ⇒ θR) ∧R∗ .

Hence
∆ `L (χR

1 ∧R∗; (ψR ∧R∗)k; χR
2 ∧R∗) ⇒ θR

for all k < ω, which implies that
∆ `L ((χR

1 ∧R∗; (ψR ∧R∗)∗; χR
2 ∧R∗) ⇒ θR) ∧R∗ .
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by I2. Yet the above formula is exactly((χ1;ψ∗;χ2) ⇒ θ)R. This, together with
R
∗ ∈ ∆ andP3, implies

∆ `L (R\\(χ1;ψ∗;χ2) ⇒ θ) .
This concludes the proof.a

Lemma 21 Let Γ be a complete Henkin theory inL(C) with witnesses inC. Let
c1, c2 ∈ C be such that∆ = {ϕ ∈ L(C) : (` = c1;ϕ; ` = c2) ∈ Γ} is nonempty. Then
∆ is a complete Henkin theory inL(C) with witnesses inC.

Proof: Let ∆ `L(C) ϕ. Then Lemma 19 entails thatΓ `L(C) (` = c1; ϕ; ` = c2).
Henceϕ ∈ ∆. This shows that∆ = CnL(C)(∆).

Let ϕ ∈ L(C). Then either(` = c1; ϕ; ` = c2) ∈ Γ, or¬(` = c1; ϕ; ` = c2) ∈ Γ,
becauseΓ is complete. If(` = c1;ϕ; ` = c2) ∈ Γ, thenϕ ∈ ∆ by the definition of∆.
If ¬(` = c1;ϕ; ` = c2) ∈ Γ, then(` = c1;¬ϕ; ` = c2) ∈ Γ by several applications of
A1l, A1r, Monol andMonor. In this case¬ϕ ∈ ∆. Hence,∆ is a complete theory in
L(C).

Let ∃xϕ ∈ ∆, that is,(` = c1; ∃xϕ; ` = c2) ∈ Γ. Then∃x(` = c1;ϕ; ` = c2) ∈ Γ
by Br, Bl andMonol. SinceΓ is a Henkin theory with witnesses inC, there exists a
c ∈ C such that[c/x](` = c1;ϕ; ` = c2) ∈ Γ. This implies, that[c/x]ϕ ∈ ∆.

Let (ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn) ∈ ∆, that is, (` = c1; (ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn); ` =

c2) ∈ Γ. Then (ϕ0\\t1,2+c2
c1+t1,1

. . . \\tn,2
tn,1

ϕn) ∈ Γ by A2, L2⇒, Monor andMonol.
SinceΓ is a Henkin theory with witnesses inC, there existR1, . . . , Rn ∈ C such that
proj(ϕ0, c1 + t1,1, t1,2 + c2, R1, . . . , tn,1, tn,2, Rn, ϕn) ∈ Γ. Since

¬proj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) ∈ ∆

entails

¬proj(ϕ0, c1 + t1,1, t1,2 + c2, R1, . . . , tn,1, tn,2, Rn, ϕn) ∈ Γ,

which is a contradiction by means ofA1l andA1r, and∆ is a complete theory in
L(C), we haveproj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) ∈ ∆. This concludes the
proof that∆ is a Henkin theory with witnesses inC. a

Corollary 22 Let Γ1, Γ2 ⊆ L(C). Let Γ be a complete Henkin theory inL(C) with
witnesses inC. LetΓ1; Γ2 ⊂ Γ andc1, c2 ∈ C be such that̀ = ci ∈ Γi, i = 1, 2. Then
there exist two complete Henkin theoriesΓ′i ⊇ Γi, i = 1, 2, in L(C) with witnesses in
C, such thatΓ′1; Γ

′
2 ⊂ Γ.

Proof: Choose

Γ′1 = {ϕ ∈ L(C) : (ϕ; ` = c2) ∈ Γ} andΓ′2 = {ϕ ∈ L(C) : (` = c1; ϕ) ∈ Γ}.
a

Lemma 23 Let Γ be a complete Henkin theory inL(C) with witnesses inC. Let
R ∈ C be such thatR

∗ ∈ Γ and ∆ be {ϕ : (R\\ϕ) ∈ Γ}. Then∆ is a complete
Henkin theory inL(C) with witnesses inC.
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Proof: Like in the proof of Lemma 21, we can show that∆ = CnL(C)(∆), yet using
Lemma 20 instead of Lemma 19.

Let ϕ ∈ L(C). Then either(R\\ϕ) ∈ Γ, or¬(R\\ϕ) ∈ Γ, becauseΓ is complete.
If (R\\ϕ) ∈ Γ, thenϕ ∈ ∆. If ¬(R\\ϕ) ∈ Γ, then(R\\¬ϕ) ∈ Γ, becauseR

∗ ∈ Γ,
R
∗ ⇒ ((R\\¬ϕ) ⇔ (¬ϕ)R) ∈ Γ as an instance ofP3, and(¬ϕ)R is equivalent to

R∗ ∧ ¬ϕR by the definition of(.)R. Hence,∆ is a complete theory inL(C).
Consistency of∆ follows fromT1 of Theorem 8. Let∃xϕ ∈ ∆, that is,(R\\∃xϕ) ∈

Γ. Then∃x(R\\ϕ) ∈ Γ, becauseR
∗ ⇒ ((R\\∃xϕ) ⇔ (∃xϕ)R) ∈ Γ as a conse-

quence ofP3, and(∃xϕ)R is equivalent to∃xϕR by the definition of(.)R. SinceΓ is
a Henkin theory with witnesses inC, there exists ac ∈ C such that[c/x](R\\ϕ) ∈ Γ.
This implies, that[c/x]ϕ ∈ ∆.

Let (R\\(ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn)) ∈ Γ. Then

(R\\00ϕ0\\t1,2
t1,1

. . . \\tn,2
tn,1

ϕn) ∈ Γ

by A2, L3l, L3r, Monor andMonol. SinceΓ is a Henkin theory with witnesses inC,
there existR0, . . . , Rn ∈ C such that

(` = 0; R0
∗ ∧2(R0 ⇒ R) ∧ proj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn)R0 ; ` = 0) ∈ Γ,

Let P stand forproj(ϕ0, t1,1, t1,2, R1, . . . , tn,1, tn,2, Rn, ϕn) for the rest of the proof
for the sake of brevity. Now(` = 0; R0

∗ ∧ 2(R0 ⇒ R) ∧ PR0 ; ` = 0) ∈ Γ implies
R0

∗
, 2(R0 ⇒ R), PR0 ∈ Γ by L3l andL3r. We need to prove that(R\\P ) ∈ Γ.

From R0
∗ ∈ Γ and the consequenceR0

∗ ⇒ ((R0\\P ) ⇔ PR0) of P3, we obtain
(R0\\P ) ∈ Γ. From2(R0 ⇒ R), (R0\\P ) ∈ Γ we obtain(R\\P ) ∈ Γ by T5 of
Theorem 8. HenceP ∈ ∆. This concludes the proof that∆ is a Henkin theory with
witnesses inC. a

3.2 The canonicalITL\\ model

In this section we carry out the actual construction of a canonical model forITL\\ to
conclude our completeness argument. Given anITL\\ languageL, we start from a
given complete Henkin theoryΓ in an extensionL(C) of L with witnesses in some
setC of countably many rigid constants and countably many0-ary flexible relation
symbols, none of which is in the vocabulary ofC. Every consistent set ofL formulas
can be extended to such a theory by Theorem 15.

3.2.1 The canonical frame

Let c1 ≡ c2 iff c1 = c2 ∈ Γ for rigid constantsc1, c2 ∈ C. Clearly,≡ is an equivalence
relation. Givenc ∈ C, we denote{c′ ∈ C : c ≡ c′} by [c].

Our first step is to define the duration domain〈D, 0, +〉 of the canonical frame. Let
D be{[c] : c ∈ C}, 0 = {c ∈ C : c = 0 ∈ Γ}, and let the binary operation+ be
defined onD by the equality[c1] + [c2] = {c : c = c1 + c2 ∈ Γ}.

Proposition 24 The above definition of+ is correct and〈D, 0, +〉 is a duration do-
main.
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Proof: Standard argument in first order predicate logic Henkin style completeness
proofs. Cf. e.g. [21].a

Our next step is to define the time domain〈T,≤〉. We represent time points as
pairs 〈[c′], [c′′]〉 such thatc′ + c′′ = ` ∈ Γ. Time points can be represented more
economically as classes[c′] such thatc′ ≤ ` ∈ Γ too, because the existence of a
c′′ ∈ C such thatc′ + c′′ = ` ∈ Γ can be derived using thatΓ is a Henkin theory.
Yet having both[c′] and[c′′] explicitly occurring in our representation makes it more
convenient to describe the rest of our construction and carry out the relevant proofs.
We defineT as the set{〈[c′], [c′′]〉 : c′, c′′ ∈ C, ` = c′ + c′′ ∈ Γ}. We define the
relation≤ onT by the equivalence〈[c′1], [c′′1 ]〉 ≤ 〈[c′2], [c′′2 ]〉 ↔ ∃x(c′1 + x = c′2) ∈ Γ.

Proposition 25 The above definition of≤ is correct and〈T,≤〉 is a time domain.

Proof: Direct check.a
Note that̀ = c1 + c2 ∈ Γ need not imply(` = c1; ` = c2) ∈ Γ, becauseΓ itself

may happen to be the theory of a discrete interval.
Given the time domain〈T,≤〉, an element ofI(T ) can be straightforwardly denoted

by [〈[c′1], [c′′1 ]〉, 〈[c′2], [c′′2 ]〉]. However, we prefer the more concise form〈[c′1], [c′′2 ]〉 for
[〈[c′1], [c′′1 ]〉, 〈[c′2], [c′′2 ]〉], because the classes[c′1] and [c′′2 ] are unambiguously deter-
mined by the conditions̀= c′1+c′′1 , ` = c′2+c′′2 ∈ Γ. Hence, if∃x(c+x+d = `) ∈ Γ,
the pair〈[c], [d]〉 can be used to denote the ordinary interval[〈[c], [c′]〉, 〈[d′], [d]〉], where
c′, d′ ∈ C are such thatc + c′ = `, d′ + d = ` ∈ Γ. In casec + d = ` ∈ Γ, the
pair〈[c], [d]〉 denotes both the0-length interval[〈[c], [d]〉, 〈[c], [d]〉] and the unique time
point in this interval. The intended meaning will always be clear from the context.

Similarly, we concisely denote discrete intervals{〈[c′1], [c′′1 ]〉, . . . , 〈[c′n], [c′′n]〉}where
〈[c′i], [c′′i ]〉 ≤ 〈[c′i+1], [c

′′
i+1]〉, i = 1, . . . , n−1, by 〈[d0], . . . , [dn]〉, where the constants

di ∈ C, i = 1, . . . , n are determined by the conditions

d0 = c′1 ∈ Γ, c′i + di = c′i+1 ∈ Γ, i = 1, . . . , n− 1, dn = c′′n ∈ Γ.

The conjunction of these conditions implies thatd0 + . . . + dn = ` ∈ Γ. Every
sequenced0, . . . , dn which satisfies the latter condition represents a unique discrete
interval inT . Obviously the sequenced0, . . . , dn represents the same discrete interval
as the sequenced′0, . . . , d

′
m iff d0 = d′0, dn = d′m ∈ Γ andd′0, . . . , d

′
m can be obtained

from d0, . . . , dn by deleting and/or inserting constantsc such thatc = 0 ∈ Γ. Of
course, we can avoid this ambiguity by allowing only sequencesd0, . . . , dn that satisfy
d1 6= 0, . . . , dn−1 6= 0 ∈ Γ. However such a convention would only make our proofs
look more complicated, because of the need to consider more special cases, in order
to follow it. That is why we assume that, for example,〈[d0], [0], [d1], [d2], [d3]〉 and
〈[d0], [d1], [d2], [0], [0], [d3]〉 stand for the same interval, which consists of three points
iff d1 6= 0, d2 6= 0 ∈ Γ.

Given a discrete interval denoted by〈[d0], . . . , [dn]〉, the smallest ordinary interval
which contains it can be denoted by〈[d0], [dn]〉. For 0-length intervals, which are
both ordinary and discrete, the above notation is〈[d0], [d1]〉 whered0 + d1 = ` ∈ Γ,
according to both conventions.

Note thatT itself is an ordinary interval, and it can be denoted by〈0, 0〉. In our
notation,Pfin(T ) can be represented as{〈[d0], . . . , [dn]〉 : 1 ≤ n < ω, d0, . . . , dn ∈
C, ` = d0 + . . . + dn ∈ Γ}.
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We define the functionm : I\\(T ) → D by putting

m(〈[c0], . . . , [cn]〉) = {c ∈ C : ` = c0 + c + cn ∈ Γ}.
Note that this equality is meaningful for both discrete and ordinary intervals. In the
latter case there is nothing in place of “. . .”. For discrete intervals, one can easily find
out that

m(〈[c0], [c1], . . . , [cn−1], [cn]〉) = {c ∈ C : c = c1 + . . . + cn−1 ∈ Γ}.
For example,m(〈[d0], [d1], [d2], [d3]〉) = {c ∈ C : c = d1 + d2 ∈ Γ}.

Proposition 26 The above definition ofm is correct andm is a measure function on
I\\(T ).

Proof: Direct check, using the instances of the axiomP` in Γ. a
Propositions 24, 25 and 26 entail that

F = 〈〈T,≤〉, 〈D, 0, +〉,m〉
is anITL\\ frame.

3.2.2 The reference interval

Let

σ0 = {〈[c1], [c2]〉 : (` = c1; ` = c2) ∈ Γ}.

Proposition 27 σ0 ∈ I\\(T ).

Proof: SinceΓ is a complete theory, either` = c1 + c2 ⇔ (` = c1; ` = c2) ∈ Γ for
all c1, c2 ∈ C, or δ∗ ∈ Γ. This follows from the instances ofL2⇐ andL2⇒ in Γ by a
purely-ITL argument.

Let δ∗ ∈ Γ. Thenδk ∈ Γ for somek < ω by Lemma 16. SinceΓ has witnesses in
C, there existc1, . . . , ck ∈ C such that(δ ∧ ` = c1; . . . ; δ ∧ ` = ck) ∈ Γ. This implies
thatσ0 = 〈0, [c1], . . . , [cn], 0〉.

Let ` = c1 + c2 ⇔ (` = c1; ` = c2) ∈ Γ hold for all c1, c2 ∈ C. Then clearly
σ0 = 〈0, 0〉 = T . a

3.2.3 The canonical interpretation

Now let us construct an interpretationI of L(C) into F such that〈F, I〉, σ0 |= ϕ for
all ϕ ∈ Γ. To do this, we first associate a complete Henkin theoryµ(σ) in L(C) with
witnesses inC with every intervalσ ∈ I\\(T ) such thatσ ⊆ σ0.

Definition 28 Let 〈[c1], [c2]〉 ∈ I(T ). Then we denote the set

{ϕ ∈ L(C) : (` = c1;ϕ; ` = c2) ∈ Γ}
by µ(〈[c1], [c2]〉).
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Definition 29 Let σ ∈ Pfin(T ) andσ = 〈[c0], . . . , [cn]〉. Let (` = c0; . . . ; ` = cn) ∈
Γ. Let R ∈ C be such that

(` = c0; R
∗ ∧ (` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)R; ` = cn) ∈ Γ.

ThenµR(σ) denotes the set{ϕ : (` = c0; (R\\ϕ); ` = cn) ∈ Γ}.
The condition(` = c0; . . . ; ` = cn) ∈ Γ in Definition 29 is not an immediate

consequence ofσ ∈ Pfin(T ), because, for example,〈T,≤〉 may be dense, andσ0 still
may be discrete, which makes possibleσ 6⊆ σ0. However, if this condition is satisfied,
then(` = c0; (>\\(` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)); ` = cn) ∈ Γ by DI2, and

(` = c0; R
∗ ∧ (` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)R; ` = cn) ∈ Γ

is guaranteed to hold for someR ∈ C, becauseΓ is a Henkin theory with witnesses in
C. Hence, for every discrete intervalσ ⊆ σ0 there exists anR ∈ C such thatµR(σ) is
defined.

It can easily be established that, if the sequencec′0, . . . , c
′
m of rigid constants inC

can be obtained from the sequencec0, . . . , cn by inserting and/or deleting rigid con-
stantsc ∈ C such thatc = 0 ∈ Γ, andc0 = c′0, cn = c′m ∈ Γ, then

R
∗ ∧ (` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)R andR

∗ ∧ (` = c′1 ∧ δ; . . . ; ` = c′n−1 ∧ δ)R

are equivalent. Hence, the definition ofµR(σ) does not depend on the choice of the
sequencec0, . . . , cn used to representσ.

The following proposition entails thatµR(σ) does not depend on the choice ofR
and, since appropriateR are always available inC, we can defineµ(σ) asµR(σ) for
some arbitrarily chosenR with the required properties.

Proposition 30 Let R1 andR2 both satisfy the requirements onR from Definition 29
for some discrete intervalσ. ThenµR1(σ) = µR2(σ).

Proof: Let σ = 〈[c0], . . . , [cn]〉. Since removing the elementsci satisfyingci = 0 ∈ Γ
from the sequencec1, . . . , cn−1 has no effect onµR(σ) for appropriateR, we can
assume thatc1 6= 0, . . . , cn−1 6= 0 ∈ Γ without loss of generality. LetP denote
(` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ) for the sake of brevity. The definition ofδR implies
that

`ITL\\ ci 6= 0 ∧ (` = ci ∧ δ)R ⇒ ` = ci ∧R ∧ δ, i = 1, . . . , n− 1.

That is why the formula

n−1∧

i=1

ci 6= 0 ∧R1
∗ ∧ PR1 ∧R2

∗ ∧ PR2 ⇒ 2(R1 ⇔ R2)

has an equivalent one which is valid in theITL∗-subset ofITL\\. This implies that

the above formula is anITL\\ theorem. Hence(` = c0; Ri
∗ ∧ PRi ; ` = cn) ∈ Γ,

i = 1, 2, entails that(` = c0; 2(R1 ⇔ R2); ` = cn) ∈ Γ. This means that

(` = c0; (R1\\ϕ); ` = cn) ∈ Γ and(` = c0; (R2\\ϕ); ` = cn) ∈ Γ
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are equivalent for everyϕ ∈ L(C) by T5 of Theorem 8,Monol andMonor. a
The only remaining case in whichµ(σ) is over-defined occurs ifσ is both an ordi-

nary and a discrete interval. This is possible for0-length intervalsσ, and in case the
time domain〈T,≤〉 itself is discrete. The following proposition shows that the two
definitions ofµ agree in this case too:

Proposition 31 Let c0, . . . , cn ∈ C be such thatc1 6= 0, . . . , cn−1 6= 0 ∈ Γ and

(` = c0; ` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ; ` = cn) ∈ Γ.

LetR ∈ C be such that

(` = c0; R
∗ ∧ (` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)R; ` = cn) ∈ Γ.

Thenµ(〈[c0], [cn]〉) = µR(〈[c0], [c1], . . . , [cn−1], [cn]〉).
Proof: Bothµ(〈[c0], [cn]〉) andµR(〈[c0], [c1], . . . , [cn−1], [cn]〉) are complete theories
by Lemmata 21 and 23. Hence it is sufficient to prove thatµR(〈[c0], . . . , [cn]〉) ⊆
µ(〈[c0], [cn]〉).

Using thatδR stands forR∗ ∧ ¬(` 6= 0 ∧R∗; ` 6= 0 ∧R∗), we obtain

(` = c0; R
∗ ∧ (` = c1 ∧R; . . . ; ` = cn−1 ∧R); ` = cn) ∈ Γ

from (` = c0; R
∗ ∧ (` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)R; ` = cn) ∈ Γ by a purely-ITL∗

deduction. Together with(` = c0; ` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ; ` = cn) ∈ Γ,
this implies(` = c0; 2(R ⇒ δ); ` = cn) ∈ Γ by a purely-ITL∗ deduction again.
Hence2(R ⇒ δ) ∈ µ(〈[c0], [cn]〉), and, given aϕ such that(R\\ϕ) ∈ µ(〈[c0], [cn]〉),
T5 of Theorem 8 implies that we have(δ\\ϕ) ∈ µ(〈[c0], [cn]〉) too. Since(` =
c0; ` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ; ` = cn) ∈ Γ impliesδ∗ ∈ µ(〈[c0], [cn]〉), (δ\\ϕ) ∈
µ(〈[c0], [cn]〉) impliesϕ ∈ µ(〈[c0], [cn]〉) by DI1. This concludes the proof, because
ϕ ∈ µR(〈[c0], . . . , [cn]〉) is equivalent to(R\\ϕ) ∈ µ(〈[c0], [cn]〉) by the definition of
µR(〈[c0], . . . , [cn]〉). a

We define the canonical interpretationI of L(C) into the canonical frameF by the
following (standard) clauses:
I(x) = [c] if x = c ∈ Γ for individual

variablesx
I(d) = [c] if d = c ∈ Γ for rigid constantsd
I(f)([c1], . . . , [cn]) = [c] if f(c1, . . . , cn) = c ∈ Γ for n-ary rigid

function symbolsf
I(R)([c1], . . . , [cn]) = 1 if R(c1, . . . , cn) ∈ Γ for n-ary rigid

relation symbolsR
I(d)(σ) = [c] if d = c ∈ µ(σ) for flexible constantsd
I(f)(σ, [c1], . . . , [cn]) = [c] if f(c1, . . . , cn) = c ∈ µ(σ) for n-ary flexible

function symbolsf
I(R)(σ, [c1], . . . , [cn]) = 1 if R(c1, . . . , cn) ∈ µ(σ) for n-ary flexible

relation symbolsR
The above definitions for flexible symbols’ interpretations apply only toσ ⊆ σ0.

The values ofI on these symbols for otherσ ∈ I\\(T ) are irrelevant to the properties
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of 〈F, I〉 that we need to establish. Besides,Γ provides no information on how to
determine these values. That is why we leave them unspecified. The only exception is
I(`):

I(`)(σ) = m(σ) for all σ ∈ I\\(T ).
This definition agrees with the clause about flexible constant symbols in general, which
applies tò too.

Clearly,M = 〈F, I〉 is a model forL(C).

3.2.4 The truth lemma

Now let us prove thatM, σ0 |= ϕ iff ϕ ∈ Γ, for all ϕ ∈ L(C). To do this, we use the
auxiliary propositions below.

Proposition 32 Let σ1, σ2 ⊆ σ0. Let eitherσ1, σ2 ∈ I(T ) or σ1, σ2 ∈ Pfin(T ). Let
max σ1 = min σ2. Thenµ(σ1); µ(σ2) ⊂ µ(σ1;σ2).

Proof: We do the casesσ1, σ2 ∈ I(T ) andσ1, σ2 ∈ Pfin(T ) separately.
Let σ1, σ2 ∈ I(T ). Then there existc′1, c

′′
1 , c′2, c

′′
2 ∈ C such that

µ(σi) = {ϕ ∈ L(C) : (` = c′i; ϕ; ` = c′′i ) ∈ Γ}, i = 1, 2,

andmax σ1 = min σ2 implies thatc′1 ≤ c′2, c
′′
2 ≤ c′′1 , c′2 + c′′1 = ` ∈ Γ. It can be shown

by anITL deduction from this that

(` = c′1; ϕ1; ` = c′′1) ∧ (` = c′2; ϕ2; ` = c′′2) ⇒ (` = c′1;ϕ1;ϕ2; ` = c′′2) ∈ Γ

Since obviouslyµ(σ1; σ2) = {ϕ ∈ L(C) : (` = c′1;ϕ; ` = c′′2) ∈ Γ}, this entails that
µ(σ1); µ(σ2) ⊂ µ(σ1;σ2).

Now letσ1, σ2 ∈ Pfin(T ). Let σ1;σ2 = 〈[c0], . . . , [cn]〉. Then obviously there ex-
ists ak ∈ {1, . . . , n− 1} such thatσ1 andσ2 can be represented as〈[c0], . . . , [ck], [c′]〉
and〈[c′′], [ck+1], . . . , [cn]〉, respectively, wherec′, c′′ ∈ C are such that

c′′ = c0 + · · ·+ ck−1, c
′ = c0 + · · ·+ ck ∈ Γ.

LetR ∈ C satisfy the requirements of Definition 29 with respect toσ1; σ2 andµ(σ1;σ2) =
µR(σ1; σ2). The above representations ofσ1 andσ2 imply that R satisfies these re-
quirements with respect toσ1 andσ2 too, andµ(σi) = µR(σi), i = 1, 2. Just like in
the previous case,

(
(` = c0; (R\\ϕ1) ∧R

∗
; ` = c′)∧

(` = c′′; (R\\ϕ2) ∧R
∗
; ` = cn)

)
⇒ (` = c0; (R\\ϕ1) ∧R

∗
; (R\\ϕ2) ∧R

∗
; ` = cn)

is a member ofΓ. Besides, the choice ofR entails that(` = c0; R
∗
; ` = cn) ∈ Γ.

Hence, it is sufficient to show that

`ITL\\

(
(R\\ϕ1) ∧R

∗
; (R\\ϕ2) ∧R

∗) ∧R
∗ ⇒ (R\\(ϕ1;ϕ2)).

It follows from the deduction below:
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1 (R\\ϕi) ∧R
∗ ⇒ ϕR

i ∧R∗ P3, ITL∗, i = 1, 2
2 ((R\\ϕ1) ∧R

∗
; (R\\ϕ2) ∧R

∗
) ⇒ (ϕ1; ϕ2)R 1, Monol, Monor

3 R
∗ ⇒ (R ⇒ R)R ITL

4 (ϕ1;ϕ2)R ∧ (R ⇒ R)R ∧R
∗ ⇒ (R\\(ϕ1; ϕ2)) P1

5
(
(R\\ϕ1) ∧R

∗
; (R\\ϕ2) ∧R

∗) ∧R
∗ ⇒ (R\\(ϕ1; ϕ2)) 2-4,PC

This concludes the proof.a
The role of the following proposition is analogous to that of Proposition 32, yet

with respect to(.\\.) instead of(.; .).

Proposition 33 Let σ, σ′ ∈ I\\(T ), σ′ = 〈[c0], . . . , [cn]〉 andσ′ ⊆ σ ⊆ 〈[c0], [cn]〉.
Let R ∈ C be such thatR

∗
, (` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)R ∈ µ(σ). Then{ϕ :

(R\\ϕ) ∈ µ(σ)} = µ(σ).

Proof: We do the casesσ ∈ I(T ) andσ ∈ Pfin(T ) separately.
In caseσ ∈ I(T ), σ = 〈[c0], [cn]〉, becausemin σ′ = min〈[c0], [cn]〉, maxσ′ =

max〈[c0], [cn]〉 andσ′ ⊆ σ ⊆ 〈[c0], [cn]〉. In this case the proposition follows immedi-
ately from the definitions ofµR(σ′) andµ(σ).

Now let σ ∈ Pfin(T ). Let P denote the formula(` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)
for the sake of brevity. Letσ = 〈[d0], . . . , [dm]〉. Thenc0 ∈ [d0] andcn ∈ [dm], and
µ(σ) = µR′(σ) for someR′ ∈ C such that

(` = d0;R′
∗ ∧ (` = d1 ∧ δ; . . . ; ` = dm−1 ∧ δ)R′ ; ` = dm) ∈ Γ.

Similarly, letµ(σ′) = µR′′(σ′) for someR′′ ∈ C such that

(` = d0;R′′
∗ ∧ PR′′ ; ` = dm) ∈ Γ.

Let∆ denote the theoryµ(〈[c0], [cn]〉) of the ordinary interval〈[c0], [cn]〉, which under-
liesσ, for the sake of brevity. NowPR, R

∗ ∈ µ(σ) entails that(R′\\PR ∧ R
∗
) ∈ ∆,

whence, using thatR′
∗ ∈ ∆, we obtain(R′\\PR), (R′\\R∗) ∈ ∆ by T4 of Theorem

8. Similarly, using that

`ITL\\ PR ∧R
∗ ⇒ (R\\P )

follows fromP3, whence

`ITL\\ R′
∗ ⇒ (R′\\PR ∧R

∗ ⇒ (R\\P ))

by PN and the definition ofR′
∗
, we obtain(R′\\(R\\P )) ∈ ∆. This implies

((R′\\R)\\P ) ∈ ∆ by P4. Furthermore,(R′\\R∗) ∈ ∆ implies (R′\\R)
∗ ∈ ∆

by T7 of Lemma 18, whenceP (R′\\R) ∈ ∆ by P3 again. Now notice that

(R′\\R)
∗ ∧R′′

∗ ∧ P (R′\\R) ∧ PR′′ ⇒ 2((R′\\R) ⇔ R′′)

is valid in ITL∗ and therefore anITL\\ theorem. Hence2((R′\\R) ⇔ R′′) ∈ ∆.
This entails that(R′\\(R\\ϕ)) ∈ ∆ and(R′′\\ϕ) ∈ ∆ are equivalent for allϕ ∈
L(C) by T5 of Theorem 8,P3 andP4. This concludes the proof, becauseϕ ∈ µ(σ′)
is equivalent to(R′′\\ϕ) ∈ ∆ by the choice ofR′′. a
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Proposition 34 Let σ ∈ I\\(T ) and Γ1,Γ2 be complete Henkin theories inL(C)
with witnesses inC and Γ1; Γ2 ⊂ µ(σ). Then there exists aτ ∈ σ such thatΓ1 =
µ(σ ∩ [min σ, τ ]) andΓ2 = µ(σ ∩ [τ, max σ]).

Proof: Let σ = 〈[c0], . . . , [cn]〉 for somec0, . . . , cn ∈ C, if σ ∈ Pfin(T ). Let σ =
〈[c0], [cn]〉 otherwise. Letc′, c′′, d1, d2 ∈ C be such that̀ = di ∈ Γi, i = 1, 2, and
c′ = c0 + d1, c

′ = d2 + c′′. Then a direct check shows thatτ can be chosen to be
〈[c′], [c′′]〉. a

Theorem 35 (Truth lemma) Lett, ϕ ∈ L(C), σ ∈ I\\(T ) andσ ⊆ σ0. ThenIσ(t) =
[c] iff t = c ∈ µ(σ), andM,σ |= ϕ iff ϕ ∈ µ(σ).

Proof: Induction on the construction of termst and formulasϕ. We omit the details
about terms, because they are standard. The equivalence for atomic formulasϕ is an
immediate consequence of the definition ofµ(σ). Inductive steps which correspond to
propositional connectives and∃ are trivial.

Let ϕ be (ϕ1;ϕ2). Thenϕ ∈ µ(σ) implies (ϕ1 ∧ ` = d1; ϕ2 ∧ ` = d2) ∈ µ(σ)
for somed1, d2 ∈ C, becausè ITL\\ (ϕ1; ϕ2) ⇒ ∃x∃y(ϕ1 ∧ ` = x; ϕ2 ∧ ` = y),
and µ(σ) is a Henkin theory with witnesses inC. Now Corollary 22 implies that
there are two complete theories Henkin theoriesΓ1 andΓ2 with witnesses inC such
that ϕi, ` = di ∈ Γi, i = 1, 2, andΓ1; Γ2 ⊂ µ(σ). Hence there exist aτ ∈ σ
andσ1, σ2 ⊆ σ such thatσ1 = [min T, τ ] ∩ σ, σ2 = [τ, max T ] ∩ σ, Γ1 = µ(σ1)
andΓ2 = µ(σ2) by Proposition 34. This is equivalent toM, σi |= ϕi, i = 1, 2, by
the induction hypothesis, whenceM,σ |= ϕ. For the converse implication, note that
M, σ |= ϕ impliesM, σi |= ϕi, i = 1, 2, for someσ1, σ2 such thatσ1;σ2 = σ, whence
ϕi ∈ µ(σi), i = 1, 2, by the induction hypothesis. This impliesϕ ∈ µ(σ), because
µ(σ1); µ(σ2) ⊂ µ(σ) by Proposition 32.

The inductive step is similar aboutϕ beingϕ∗1, becauseϕ ∈ µ(σ) is equivalent
to the existence of ak < ω such thatϕk

1 ∈ µ(σ) by Lemma 16, andM,σ |= ϕ is
equivalent to the existence of ak < ω such thatM,σ |= ϕk by the definition of|=.

Let ϕ be (ϕ1\\ϕ2). We consider the cases` = 0 ∈ µ(σ) and ` 6= 0 ∈ µ(σ)
separately.

Let ` = 0 ∈ µ(σ). Thenm(σ) = 0 by the definition ofm, andϕ2 ∈ µ(σ) by T3 of
Theorem 8, whence,M, σ |= ϕ2 by the induction hypothesis. This entailsM,σ |= ϕ.
The converse implication follows fromT3 in a similarly straightforward way.

Let ` 6= 0 ∈ µ(σ). Sinceµ(σ) is a Henkin theory,ϕ ∈ µ(σ) implies that there
exists anR ∈ C such thatR

∗
,2(R ⇒ ϕ1), ϕR

2 ∈ µ(σ). This entails that(R\\ϕ2) ∈
µ(σ) by P3. R

∗ ∈ µ(σ) implies that there is a uniquek < ω, k 6= 0 such that
Rk ∈ µ(σ). Let c1, . . . , ck ∈ C be such that(` = c1 ∧ R; . . . ; ` = ck ∧ R) ∈ µ(σ).
Such constants exist, becauseµ(σ) is a Henkin theory with witnesses inC. Hence
(` = c1; . . . ; ` = ck) ∈ µ(σ) too. The definition ofR

∗
implies thatc1 6= 0, . . . , ck−1 6=

0 ∈ Γ.
We can choose the constantsc0, ck+1 ∈ C so thatσ = 〈[c0], [ck+1]〉, in caseσ ∈

I(T ), andσ = 〈[c0], [c′1], . . . , [c
′
l], [ck+1]〉, in caseσ ∈ Pfin(T ) for somec′1, . . . , c

′
l ∈

C. Let σ′ = 〈[c0], [c1], . . . , [ck], [ck+1]〉. Then(` = c1; . . . ; ` = ck) ∈ µ(σ) implies
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σ ⊇ σ′ andmin σ = min σ′, max σ = max σ′. Let us prove thatϕ2 ∈ µ(σ′) by
finding anR′ ∈ C such thatσ, σ′ andR′ satisfy the conditions of Proposition 33.

DI2 and (` = c1; . . . ; ` = ck) ∈ µ(σ) imply that (>\\(` = c1 ∧ δ; . . . ; ` =
ck ∧ δ)) ∈ µ(σ). Then there exists anR′ ∈ C such thatR′

∗
, (` = c1 ∧ δ; . . . ; ` =

ck ∧ δ)R′ ∈ µ(σ). Since(` = ci ∧ δ)R′ stands for

` = ci ∧ (R′)∗ ∧ ¬((R′)∗ ∧ ` 6= 0; (R′)∗ ∧ ` 6= 0)

by the definitions ofδ, (.)R′ andP`, it can be established by a purelyITL∗ deduction
that

`ITL\\ ci 6= 0 ⇒ ((` = ci ∧ δ)R′ ⇒ ` = ci ∧R′)

wherei = 1, . . . , k. This implies that(` = c1 ∧ R′; . . . ; ` = ck ∧ R′) ∈ µ(σ). Now,
using that

`ITL\\

k∧

i=1

ci 6= 0 ∧R
∗ ∧R′

∗ ∧
(

(` = c1 ∧R; . . . ; ` = ck ∧R)∧
(` = c1 ∧R′; . . . ; ` = ck ∧R′)

)
⇒ 2(R ⇔ R′),

which can be established by a purelyITL∗ deduction too, we obtain2(R ⇔ R′) ∈
µ(σ), which implies2(R′ ⇒ ϕ1) ∈ µ(σ), and, furthermore,(R′\\ϕ2) ∈ µ(σ) by T5
of Theorem 8. Hence,ϕ2 ∈ µ(σ′) by Proposition 33.

This impliesM, σ′ |= ϕ2 by the inductive hypothesis. Similarly, since

(` = c1 ∧R′; . . . ; ` = ck ∧R′) ∈ µ(σ),

the subintervalsσi = 〈[c0+. . .+ci−1], [ci+1+. . .+ck+1]〉∩σ of σ satisfyM,σi |= R′,
and, consequently,M, σi |= ϕ1, because2(R′ ⇒ ϕ1) ∈ µ(σ), for i = 1, . . . , k.
This can be demonstrated in detail by repeating the inductive step about(.; .)-formulas
which appears in this proof. HenceM,σ |= (ϕ1\\ϕ2).

Now let us prove thatM,σ |= ϕ impliesϕ ∈ µ(σ). M, σ |= ϕ implies that there
existc0, . . . , cn ∈ C such thatM, σ |= (ϕ1 ∧ ` = c1; . . . ;ϕ1 ∧ ` = cn−1) andσ′ =
〈[c0], . . . , [cn]〉 satisfiesσ′ ⊆ σ, min σ′ = min σ, max σ′ = max σ, andM, σ′ |= ϕ2.
By the induction hypothesis,ϕ2 ∈ µ(σ′). Since(` = c1; . . . ; ` = cn−1) ∈ µ(σ), we
have(>\\(` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)) ∈ µ(σ) by DI2. Hence there exists an
R ∈ C such that

R
∗
, (` = c1 ∧ δ; . . . ; ` = cn−1 ∧ δ)R ∈ µ(σ).

This, together with(ϕ1 ∧ ` = c1; . . . ; ϕ1 ∧ ` = cn−1) ∈ µ(σ), which follows from
M, σ |= (ϕ1 ∧ ` = c1; . . . ; ϕ1 ∧ ` = cn−1) by a repetition of the inductive step
about(.; .)-formulas which appears in this proof, entails that2(R ⇒ ϕ1) ∈ µ(σ)
by a purely-ITL∗ deduction. Proposition 33 implies that(R\\ϕ2) ∈ µ(σ). Hence
(ϕ1\\ϕ2) ∈ µ(σ) follows from2(R ⇒ ϕ1) ∈ µ(σ) by T5 of Theorem 8.a

3.2.5 The completeness theorem

Now we are ready to prove our completeness theorem aboutITL\\.
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Theorem 36 (ω-completeness ofITL\\) LetΓ0 be a consistent set of formulas in the
ITL\\ languageL. Then there exists a modelM for L and an intervalσ in its time
domain such thatM, σ |= ϕ for all ϕ ∈ Γ0.

Proof: Let the complete Henkin theoryΓ considered above be an extension ofΓ0.
This choice is possible due to Theorem 15. ThenM can be chosen to be the canonical
model forΓ built above. We haveM, σ0 |= Γ0 by Theorem 35.a

4 Related work

4.1 Moszkowski-styleITL

The original projection operator4 introduced in [16, 17] is a special case of the op-
erator(.\\.) studied here. The system ofITL presented in these works is based on
discrete time. That is, only the frameFZ is considered. To distinguish the original
form of ITL, as introduced in Moszkowski’s works [16, 17], from the abstract time
variant studied here, we call itMoszkowski-styleITL in this section.

In the majority of the works on Moszkowski-styleITL, flexible non-logical sym-
bols’ interpretations are assumed to depend on the beginning of the reference interval
only. An exception to this is the early work [12]. This assumption means that

(At) ϕ ⇔ ¬(¬ϕ;>)
is valid for atomicϕ in Moszkowski-styleITL. This restriction has a crucial effect
on the complexity of the system. For example, propositionalITL (only 0-ary flexible
relation symbols and no function symbols, nor constant symbols, not even`) is not
decidable in the form adopted in this paper. Yet, under the assumption thatAt is
valid about atomic formulas, propositional discrete timeITL is decidable. Another
consequence ofAt is that|= ϕ does not imply|= [ψ/P ]ϕ, whereP stands for a0-ary
flexible relation symbol, in Moszkowski-styleITL.

Furthermore, projection is definable under the assumptionAt in Moszkowski-style
propositionalITL: every propositionalITL formula with projection is equivalent to
one without projection (in a normal form.) This enabled the demonstration of the com-
pleteness of a proof system for Moszkowski-style propositionalITL with projection
and the establishment of its decidability by a tableau-based procedure in [1].

Moszkowski-styleITL with projection can be embedded into abstract timeITL
with projection in the following way. Let1 be a rigid constant and# be a flexible
constant in the consideredITL\\ languageL. Consider the following axioms about#
and1:

(1) 0 6= 1
(#1) ` = 0 ⇒ # = 1
(#2) (# = x; ` 6= 0 ∧ δ) ⇒ # = x + 1
(#3) δ∗ ∨# = 0

The validity of these axioms in a model forL is equivalent to the semantical condition
on I(#)(σ) to be equal to the number ofisolatedpoints of the reference intervalσ for
all intervalsσ in the model. The flexible constant# was introduced in [11] by this
semantical condition. In Moszkowski-styleITL, # is always equal tò + 1. Yet in the
more general situation introduced in [11] and studied here# cannot be defined using̀
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only. Using#, we can establish the following correspondence between Moszkowski-
styleITL validity and provability in our system forITL\\:

Let ϕ be anITL\\ formula. Thenϕ is valid in Moszkowski-styleITL iff

(` = 1)∗ ⇒ (` = 1 ∨ ` = 0\\[#− 1/`]ϕ)

is provable in the extension of our proof system by the axiomsAt about
atomic formulas, the axiom(1) about the constant1 and the axioms#1-
#3 about#.

4.2 Translating ITL\\ into ITL with discrete propositional vari-
ables and quantification over them

An earlier result on the axiomatisation of projection inITL was established in [7]. In
that workITL was extended by so-calleddiscrete0-ary relation symbols to represent
discreteITL\\ intervals and quantification over them. The system thus obtained is
calledITLD.

ITLD languages contain a countable set of distinguished flexible0-ary relation
symbolsp, q, . . . , which are calleddiscrete propositional variables. The following
restriction is imposed on the interpretations of discrete propositional variables:

Every interval may contain at most finitely many subintervals which sat-
isfy a given discrete propositional variable, and these subintervals should
be0-length ones.

This condition enables the use of discrete propositions to representITL\\ discrete
intervals in a straightforward way. In order to represent the dependency of the interpre-
tations of flexible symbols on the internal points of discrete intervals,ITLD also allows
flexible symbols to take one formula argument. In the translation ofITL\\ into ITLD

below this argument is always the discrete propositional variable which represents the
reference interval.

The BNFs for terms and formulas inITLD are extended to allow the new kind of
arguments of flexible symbols. Furthermore, the BNF for formulas inITLD allows∃
to bind discrete propositional variables:

t ::= c | f(t, . . . , t) | f(ϕ, t, . . . , t)
ϕ ::= ⊥ | R(t, . . . , t) | R(ϕ, t, . . . , t) | ϕ ⇒ ϕ | (ϕ; ϕ) | (ϕ\\ϕ) | ∃xϕ | ∃pϕ
The interpretations of flexible symbols which take a formula argument inITLD

models have the following types:
◦ I(f) : I(T )× 2I(T ) ×Dn → D, for function symbolsf

that taken term arguments;
◦ I(R) : I(T )× 2I(T ) ×Dn → {0, 1}, for relation symbolsR

that taken term arguments.
The interpretations of other symbols are as inITL. Let M = 〈F, I〉 be anITLD

model. LetĨ(ϕ) stand for{σ ∈ I(TF ) : M, σ |= ϕ}. The clauses for the inductive
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definitions of term values and|= for the new kind of terms and atomic formulas are as
follows:

Iσ(f(ϕ, t1, . . . , tn)) = I(f)(σ, Ĩ(ϕ) ∩ 2σ, Iσ(t1), . . . , Iσ(tn))
M, σ |= R(ϕ, t1, . . . , tn) iff I(R)(σ, Ĩ(ϕ) ∩ 2σ, Iσ(t1), . . . , Iσ(tn)) = 1

The intersections with2σ here guarantee that only the truth values of the formula ar-
gument at subintervals of the reference intervalσ can influence the (truth) values of
terms and formulas where this formula argument occurs. Quantification over discrete
propositional variables is defined in the ordinary way:

〈F, I〉, σ |= ∃pϕ iff 〈F, J〉, σ |= ϕ for someJ whichp-agrees withI.
Given anITL\\ languageL, the correspondingITLD languageL′ is defined as

follows: L′ has the same rigid symbols asL and, of course,̀. For every flexible con-
stantc in L, except̀ , there is a unary flexible function symbolc in L′. Similarly, for
everyn-ary function (relation) symbolf (R) in L there is ann + 1-ary function (re-
lation) symbolf (R) in L′, which takes one formula argument andn term arguments.
Furthermore,L′ contains a countable set{pi : 1 ≤ i < ω} of discrete propositional
variables, none of which occurs inL.

Let L be anITL\\ language andL′ be its correspondingITLD language. Let
3iϕ ­ 3(ϕ ∧ ` 6= 0) ∨ (` 6= 0; ϕ; ` 6= 0), 2iϕ ­ ¬3i¬ϕ

An intervalσ satisfies3iϕ iff ϕ holds at some subinterval ofσ which is different from
the0-length intervals[min σ,min σ] and[min σ,min σ] that are at the beginning and
at the end ofσ. In the translation fromL to L′ below we abbreviatè = 0 by p0:

cpi ­ c for rigid constantsc
xpi ­ x for individual variablesx
(s(t1, . . . , tn))pi ­ s(tpi

1 , . . . , tpi
n ) for rigid n-ary symbolss

`pi ­ `
cpi ­ c(pi) for other flexible constantsc
(s(t1, . . . , tn))pi ­ s(pi, t

pi

1 , . . . , tpi
n ) for flexiblen-ary symbolss

⊥pi ­ ⊥
(ϕ ⇒ ψ)pi ­ ϕpi ⇒ ψpi

(ϕ;ψ)pi ­ (ϕpi ; pi; ψpi)

(ψ\\ϕ)pi ­ ∃pi+1




2(pi+1 ⇒ pi)∧
2((pi+1; ` 6= 0 ∧2i¬pi+1; pi+1) ⇒ ψpi)∧
(pi+1; ϕpi+1 ; pi+1)




(∃xϕ)pi ­ ∃xϕpi

No special clause about iteration is needed in this translation, because it is expressible
by projection:

(ϕ∗)pi ­ (ϕ\\>)pi .
The intended meaning ofϕpi is to express the truth value ofϕ at the (discrete) interval
consisting of the time points in the ordinary reference interval which, if regarded as
0-length intervals, satisfypi. Sincep0 stands for̀ = 0, and this formula holds at every
0-length interval,p0 always represents the reference interval itself. That is why ifϕ is
projection-free, thenϕp0 is equivalent toϕ.

Let pi represent some possibly discrete intervalσ in the above way. Then the for-
mula for(ϕ; ψ)pi states that chopping can be done at the points ofσ only. The formula
for (ψ\\ϕ)pi states that there exists a discrete intervalσ′ represented bypi+1 which is
required to have the properties expressed by the conjunction in the scope of∃pi+1. The
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members of this conjunction state thatσ′ is a subset ofσ, every two adjacent points of
σ′ define a subinterval ofσ′ which satisfiesψ, andσ′ has the same end points asσ and
satisfiesϕ, respectively. The following proposition gives the precise formulation of the
intended meaning of the translation:

Proposition 37 LetF be anITL\\ frame (which is the same as anITLD and anITL
frame). LetM = 〈F, I〉 andM ′ = 〈F, I ′〉 be models forL andL′, respectively. LetI
andI ′ coincide on rigid symbols fromL andL′. Let

I ′(s)([minσ,max σ], {[τ, τ ] : τ ∈ σ}, d1, . . . , dn) = I(s)(σ, d1, . . . , dn)

whereσ ∈ I\\(TF ) andd1, . . . , dn ∈ DF for other flexible symbolss. Let t be a term
andϕ be a formula fromL.
◦ Letσ ∈ I(TF ). ThenIσ(t) = I ′σ(t`=0), andM, σ |= ϕ iff M ′, σ |= ϕ`=0.
◦ Letσ ∈ Pfin(TF ). Let{τ ∈ [minσ,max σ] : I(p1)([τ, τ ]) = 1} = σ.

ThenIσ(t) = I ′σ(tp1), andM, σ |= ϕ iff M ′, [minσ, maxσ] |= ϕp1 .

Proof: Induction on the construction oft andϕ. a
This proposition entails that a formulaϕ is valid at the ordinary intervals of all

ITL\\ models for the language ofϕ iff ϕ`=0 is valid in ITLD andϕ is valid at all the
discrete intervals ofITL\\ models iff∀p1((p1;>; p1) ⇒ ϕp1) is valid in ITLD.

The proof system forITLD is obtained by adding the following axioms and rules
to the proof system forITL:

Extensionality axioms about flexible symbols with formula arguments

(D=) 2(ϕ ⇔ ψ) ∧ x1 = y1 ∧ . . . ∧ xn = yn ⇒ f(ϕ, x1, . . . , xn) = f(ψ, y1, . . . , yn)
(D⇔) 2(ϕ ⇔ ψ) ∧ x1 = y1 ∧ . . . ∧ xn = yn ⇒ (R(ϕ, x1, . . . , xn) ⇔ R(ψ, y1, . . . , yn))

Axioms and rules about discrete propositional variables

(D0) p ⇒ ` = 0
(S0) ∃p2¬p
(S1) x ≤ ` ⇒ ∃p∀y((` = y; p;>) ⇒ y = x)
(S∨) ∃r2(r ⇔ p ∨ q)
(∃D) [q/p]ϕ ⇒ ∃pϕ

(GD)
[q/p]ϕ
∀pϕ

(ωD)
∀k < ω [(2i¬p)k/P ]ϕ

[>/P ]ϕ

This proof system isω-complete forITLD [7].
There is a straightforward connection between theITLD discrete propositional

variablesp and the0-ary flexible relation symbolsR involved in our direct axioma-
tisation ofITL\\. Namely, ifp is interpreted as a discrete propositional variable, then

(p;>; p) ⇒ (p; ` 6= 0 ∧2i¬p; p)
∗

is valid in the corresponding model.
Although the way validITL\\ formulas can be “proven” using the above transla-

tion and the proof system forITLD is indirect, this approach has some advantages over
the direct axiomatisation. Given thatITL semantics has been enriched with discrete
intervals, projection is only one of the many discrete interval-related modal operators
which may happen to have meaning in applications. It is clear that other related opera-
tors can be handled by extending the above translation with clauses which encode their
definitions.
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In particular, note thatITL\\ does not provide the possibility to access the under-
lying ordinary interval from a discrete reference interval. An operator[.] to enable this
can be defined as follows:

M, σ |= [ϕ] iff M, [min σ,max σ] |= ϕ
That is,[ϕ] holds at some, possibly discrete, interval, ifϕ holds at the ordinary interval
which has the same endpoints as the given one. For example,

(ϕ\\[ψ]) ⇔ ϕ∗ ∧ [ψ] and[ϕ] ⇒ ϕ ∨ δ∗

are valid formulas, according to the proposed definition of[.].
The clause about the new operator in our translation is
[ϕ]pi ­ ϕp0 ,

i.e., from the (possibly discrete) interval, which is represented bypi, “return” to the
underlying ordinary interval, which is represented byp0 ­ ` = 0.

5 Projection in DC

The Duration Calculus (DC ) [24] is probably the most interesting extension ofITL. Its
language extends that ofITL by allowingstate expressionswhich are boolean formulas
built using a distinguished set of non-logical symbols calledstate variables. State vari-
ables and, consequently, state expressions, are interpreted as{0, 1}-valued functions of
time. These functions are required to be piecewise constant. This restriction is known
asfinite variability of state inDC. State expressionsS participate inDC formulas by
formingduration terms

∫
S. Given anITL modelM = 〈F, I〉, we denote the value of

the function represented by state expressionS at timeτ by Iτ (S). Given an intervalσ
in the time domain ofF and a partitionσ1, . . . , σn of σ such thatIτ (S) is constant in
every interval of the kind[minσi, maxσi), the valueIσ(

∫
S) of the term

∫
S at σ is

defined by the equality

Iσ(
∫

S) =
∑

i=1,...,n Imin σi
(S)=1

m(σi),

wherem(σ) stands for the measure, or thedurationof σ, as in Definition 1. Clearly,
this definition does not depend on the choice ofσ1, . . . , σn, provided thatσ = σ1; . . . ; σn,
andIτ (S) is constant on[min σi, maxσi), i = 1, . . . , n.

The following abbreviations are frequently used inDC:
0 ­ P ∧ ¬P , for some arbitrarily chosen state variableP
1 ­ ¬0
dSe ­

∫
S = ` ∧ ` 6= 0

DC has been primarily studied with respect to its real-time frameFR. A relatively
complete proof system forDC with respect to this frame was presented in [13]. A
comprehensive introduction toDC is given in [14]. Anω-complete proof system for
DC on the class of allITL frames can be found in [6].

There is no established way of interpreting duration terms atITL\\ discrete inter-
vals. One reasonable way is to refer to the value of the duration term at the underlying
ordinary interval, by puttingIσ(

∫
S) = I[min σ,max σ](

∫
S). This complies with the

possibility to definè in DC by putting` ­
∫

(P ∨¬P ). The following axiom can be
used to characterise this property:
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(P
∫

) ϕ∗ ∧ ∫
S = x ⇔ (ϕ\\ ∫

S = x)
Furthermore, since iteration is available in our proof system, finite variability of state
can be straightforwardly characterised by the axiom

(FV ) (
∫

S = ` ∨ ∫
(¬S) = `)∗ ∨ δ∗

The subformulaδ∗ of this axiom accounts for the possibility of a discrete interval not
to contain all the time points where the interpretation ofS changes its value.

The extension of the proof system forITL\\ by the axiomsP
∫

, FV andDC0-
DC7 below isω-complete forDC with projection, as introduced here.

(DC0) ` = 0 ⇒ ∫
S = 0

(DC1)
∫

0 = 0
(DC2) d1e ∨ ` = 0
(DC3) (

∫
S = x; dSe ∧ ` = y) ⇒ ∫

S = x + y
(DC4) (

∫
S = x; d¬Se) ⇒ ∫

S = x
(DC5) dS1e ∧ dS2e ⇔ dS1 ∧ S2e
(DC6) dS1e ⇔ dS2e if |= S1 ⇔ S2 in propositional calculus.
(DC7) dSe ⇒ 2(dSe ∨ ` = 0)

A proof can be obtained easily by following the example aboutITL\\ given here
and theω-completeness argument aboutDC in [6].

Conclusion

We have presented anω-complete proof system for the extension of first orderITL
by projection and carried out the completeness argument about this system in the well-
known framework provided by Henkin constructions. We have also briefly presented an
alternative approach to the axiomatisation ofITL\\, which employs a truth-preserving
translation ofITL\\ formulas into formulas of a (simpler) completely axiomatised
extension ofITL. This approach gives an indirect solution to the axiomatisation of
ITL, but provides a convenient way to handle other discrete interval related operators
along with projection. Our approach toω-axiomatisation applies toDC, which the
best known and most widely applied extension ofITL.
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