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The purpose of this note is to prove the following

Theorem 1. Let G be a graph with at least three vertices. If, for some
s, G is s-connected and contains no independent set of more than s
vertices, then G has a Hamiltonian circuit.

This theorem is sharp as the complete bipartite graph K(s, s+1) is
s-connected, contains no independent set of more than s+1 vertices
and has no Hamiltonian circuit. Similarly, the Petersen graph is 3-con-
nected, contains no independent set of more than four vertices and
has no Hamiltonian circuit.

Proof. Let G satisfy the hypothesis of Theorem 1. Clearly, G contains

a circuit; let C be the longest one. If G has no Hamiltonian circuit,
there is a vertex x with x ¢ C. Since G is s-connected, there are s paths
starting at x and terminating in C which are pairwise disjoint apart from
x and share with C just their terminal vertices x, x,, ..., X, (see [1],
Theorem 1). Foreachi=1, 2, ..., 5, let y; be the successor of x; in a
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fixed cyclic ordering of €. No v, is adjacent to x - otherwise we would
replace the edge x;; in C by the path going from Xx; to »; outside C

(via x) and obtain a longer circuit. However, ¢ contains no independent
set of s+1 vertices and so there is an edge v;;. Delete the edges x»,
Xy from € and add the edge v;» i together with the path going from

x; to x; outside C. In this way we obtain a circuit longer than €, which
is 4 contradiction.

For s relatively large with respect to the number of vertices of (7,
our Theorem 1 follows from a stronger statement due to Nash-Williams
and Bondy ([ 2], Lemma 4):

Let G be a graph with n vertices, n = 3, Let G contain no vertex of
degree smaller than k where it isan integer such that k = %{!H‘TI. Then
G either fras a Hamiltonian cireuit, or is separable, or has kot indepen-
dent vertices,

As an easy consequence of Theorem | we obtain

Theorem 2. Ler G be an s-connected graph with no independent set of
§+2 vertices. Then G has a Hamiltonian path.

Proof. Indeed, if (¢ satisfies the hypothesis of Theorem 2, then G+x

(the graph obtained from & by adding a new vertex x and joining it to
all the vertices of (7) satisfies the hypothesis of Theorem | with s+1 in
place of 5. Therefore G+x has a Hamiltonian circuit and & has a Hamil-
tonian path. The complete bipartite graph K(s, 5+2) shows that Theorem
2 is sharp,

The technique used in the proof of Theorem 1 yields also

Theorem 3. Ler G e an s-conmected graph containing no independent
set of s vertices. Then G is Hamiltonian-connected (i.e. every pair of
vertices is joined by a Hamiltonian path).

Proof. Let there be a counterexample . Then G contains three vertices
x, ¥, z such that x & P for a longest path P joining ¥ to z, Again, we find
s paths from x to P, their terminal vertices being x;, ..., x,. We may as-
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sume x; + 2 for i < 5 and denote the successor (in the direction [tom

¥ to z) of each x; (7 < &) by v, Since (7 has no s independent vertices,
there is an edge xy; or ¥, In both cases we find a path joining v to

2 and longer than P which is a contradiction. The graph K(s, ¥) shows
that Theorem 3 is sharp.
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