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Abstract— Poor-quality images mostly result in spurious or 
missing features, which further degrade the overall 
performance of the recognition systems. This work augments 
the fingerprint quality with respect to one of the level 3 micro 
features, i.e., sweat pores. The paper proposes sweat pores-
based an effective fingerprint quality estimation scheme, which 
is a multi-factor quality assessment model comprises five 
quality measures estimating their respective quality scores. 
The scores are then fused into a single quality score by a fusion 
engine based on the ‘Weighted Sum rule’. The proposed 
scheme is experimented with publicly available fingerprint 
datasets, which were scanned with Cross Match Verifier 300 
scanner at 500 dpi (pores are quite visible in these samples, as 
of now, no 1000ppi datasets are publicly available). The 
experimental results show that this arrangement could 
correctly estimate and assign grades (good/acceptable/poor) to 
nearly 93.33% images in the dataset. This paper also presents a 
novel technique for identifying the strong pores for high 
reproducibility. The corresponding result is shown for the 
same set of images and is found as 91.93%. This method is also 
being tried with higher resolution images. 

Keywords–sweat pores, level 3 features, quadrant analysis, 
centroid, strong pores, quality assessment scheme,  fusion. 

I.  INTRODUCTION 
Although the performance of fingerprint recognition 

systems has greatly improved, it is still influenced by many 
factors. Among these, fingerprint image quality which is a 
measure of the characteristics of ridge-valley texture, has 
had the greatest impact on matching performance. Poor-
quality images mostly result in spurious or missing features, 
which further degrade the overall performance of the 
recognition systems [1]. 

For many application systems, it is much preferred to 
replace low-quality images with their next better quality 
images for higher system performance. Knowing the 
fingerprint quality in advance proves useful towards 
improving the performance of fingerprint recognition 
systems. 

There have been many researches to develop appropriate 
measures to estimate the fingerprint image quality at Level 1 
(macro) and Level 2 features, but not much on level 3 micro 
features. Level 3 features (sweat pores, ridge contours, 
edgeoscopic features) are proved to carry significant 

discriminatory information [12][13]. So, this work primarily 
focuses on quality assessment of fingerprints from Level 3 
micro features (sweat pores) view-point, which can then be 
combined with their Level 1 and Level 2 schemes for a 
robust quality estimation. This novel scheme proposes five 
quality indices, where they work in tandem to assess and 
classify the fingerprint images into one of three classes: 
Good quality (2), Acceptable quality (1) and Poor quality 
(0). 

Rest of the paper comprises four sections. In section 2, 
the proposed system is explained in detail along with their 
quality measures, novel technique for identifying strong 
pores for better reproducibility and matching accuracy. The 
section concludes with the fusion technique to derive a single 
final quality index to declare the current sample as 
good/acceptable/poor. In Section 3, we discuss the 
experimental results. Conclusion is drawn in section 4. 

II. PROPOSED FINGERPRINT QUALITY ESTIMATION 
SYSTEM 

The underlying philosophy is system’s multidimensional 
approach of analyzing and estimating quality indices based 
on sweat pores available on the fingerprint images. The 
various methods in this arrangement inspect the subject 
from different angles, while complementing each other and 
minimizing their individual weaknesses, thus reinforcing the 
system’s strength.  

The process starts with the effective area and region of 
interest (ROI) determination at macro level. If the estimated 
score remains below the specified threshold, the process 
ends and the image is declared ‘Poor’ (due to insufficient 
foreground area), or else, control is allowed to enter the 
micro level for quality analysis with respect to sweat pores. 
This level houses a set of four algorithms with pre-assigned 
(manually) weights as per their individual performances 
against the datasets scanned with Cross Match Verifier 300 
scanner at 500 dpi [11] (pores are quite visible in these 
samples, as of now, no 1000ppi datasets are publicly 
available), where they work on level 3 micro features (sweat 
pores). At the end, all the elemental quality scores are fused 
together (as per the weights assigned to each sub-system as 
per their performances) using the fusion engine, refer to Fig. 
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14, which is then thresholded and the final decision is taken 
by the system as either ‘Good’, ‘Acceptable’ or ‘Poor’. 

 
In a fingerprint Image, the sweat pores exist on the ridges. 

Before describing the pore extraction method, it is necessary 
to know what a typical pore looks like. A typical average 
sized pore (in 500ppi fingerprint) may have gray levels as 
shown in Fig. 1. It has high (white to light gray) intensity 
value at the centre and low (gray to black) intensity around 
the centre pixel. When the image is inverted, the pores also 
get inverted, which can be then analyzed using the pore 
model as presented in [5], as shown in Fig. 3. 

 
 
 
 
 
 
 
 
The majority of pores within a 500 dpi image can be 

approximated using a slightly modified 2-dimensional 
Gaussian function as shown in equation (1) [5]: 

 
 
 

The plot of the fingerprint pore model and the resulting 
3 x 3 filter are shown in Figure 2 and Figure 3. 

 

0.7569 0.6321 0.7569 

0.6321 0 0.6321 

0.7569 0.6321 0.7569 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An error map is generated which is given by equation (2) 
[5]: 

 
 
where, F(i, j) is the normalized value of the gray pixel  

between 0 and 1. Here, the lower the value of E(x, y) in 
equation (2), the stronger the pore remains. In other words, 
there remains a high probability of 3x3 region (with 
minimum value) to be a pore.  Hence a low value of error 
means more chances of existence of pore. 

A. Effective area (foreground) estimation and region of 
interest (ROI) determination 
Foreground area is very important to evaluate (besides 

noise, dryness, wetness, scars/bruises etc.) the quality of the 
fingerprint images. It is difficult to pick up the details of the 
images if the foreground area is too small. A good quality 
image should have enough foreground area. So, we initiate 
the process with the foreground area calculation, which is 
defined as the percentage of the foreground blocks.  

The effective foreground area (Aeff) is the ratio of 
foreground area (Afg) as percentage of total area (Atotal):  

 

     Aeff%  = (Afg /Atotal ) * 100              (3) 
 

A smaller value of Aeff would mean a smaller area of 
fingerprint has been captured. For a given optimum threshold 
value Teff, if Aeff < Teff, the fingerprint image quality is 
declared “not good enough”, which needs to be recaptured, 
refer to Fig. 20. 

We propose a ROI-based quality estimation scheme, 
which comprises two phases: ROI determination and quality 
estimation of the area within ROI. 

The analysis and evaluation process begins with the 
division of image under ROI into a set of disjoint blocks (w x 
w). The standard deviation of the gray scale values of the pixels 
in the kth block (stdK) is then calculated using the equation (4) 
[2]. For a given optimum threshold value Tstd, if stdk(I) > Tstd, 
the block is declared “foreground block” or else 
“background block”, refer to Fig. 5 (only ROI portion). 
 
 
 

B. Quadrant analysis (QA) and quality index (QI) 
estimation 
This novel approach is towards the projection and 

analysis of pores distribution in four quadrants. For any 
good quality print, the pores are generally found evenly 
distributed in all quadrants, which is not the case otherwise. 
Empirically determined optimum thresholds (in terms of 
percentage of pores) are specified and quality index is 
estimated declaring the image as good/acceptable/poor, refer 
to Fig. 4, 5 & 6. 

 
 
 

     (4)

Figure 3. A 2-D Gaussian kernel as a pore model 

Figure 1. A typical Pore (in 3x3 neighborhood) and its inversion

   (1)

Figure 2. The 3 x 3 pore mask 

(2) 
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Pores are identified and marked with red bubbles, as shown 
Fig. 5. Not all the pores could be marked, as we need to 
change the value of ‘r’, which is the distance from the 
center of the pore model to the edge as well as the mask 
size (from 3x3 to 5x5 for r=2 and 7x7 for r=3), but 
otherwise most of them are located. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compute and plot the four quadrants for quadrant 

analysis, the pore locations within the ROI are identified 
and plotted using squared error method as given in equation 
(2). The centroid of the foreground region (within the ROI) 
is computed and then the quadrants are accurately and 
adaptively figured out. As can be evident from Fig. 16, 17, 
21 and 22, for degraded quality prints, the pores distribution 
is seldom uniform in four logical regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Pores Count 
This is a simple yet effective way of assessing the image 

quality from pores view-point, refers to the total count of 
identified pores in a given image, as shown in Fig. 7.  

 
 
 
 
 
 
 
 
 
Empirically determined optimum thresholds (in terms of 

number of pores) are specified and quality index is estimated 
declaring the image as good/acceptable/poor. 

D. Pores Contrast (Michelson-based) 
This approach is all towards computing the pore-ridge 

contrast, which is based on Michelson contrast method [9]. 
Local contrast is computed using equation (5) for all the pores 
(and only the pores) in their local neighborhoods (here, 3x3), 
and a pore contrast image is generated, which is used further to 
classify pores into Strong/Average/Weak classes. Strong pores 
have been found exhibiting better reproducibility, as discussed 
in experimental results.  

The image contrast is defined as relative local differences 
in pixel intensities. The definition is: 

 

 

where, Lmax is the maximum gray level and Lmin is the 
minimum gray level in the image.  

Figure 6. Quadrant Analysis: 012_3_1.tif  
(slightly enlarged for a clear view) 

Figure 4. Sample fingerprint: 012_3_1.tif [11]  
(Cross Match Verifier 300 scanner at 500 dpi) 

Figure 5. Pores Detection: 012_3_1.tif 

Figure 7. Pores Count: 012_3_1.tif 

CMichelson = ( )        (5)
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While computing, depending upon their respective 
intensities and threshold values, pores are categorized as: 
‘Strong’, ‘Average’ and ‘Weak’ Pores, and are stored separately. 
Strong pores are characterized by high intensity values, average 
and weak ones with lesser values, refer to Fig. 8 and 9. As 
evident from the figures, we have very bright pixels (white, 
bright yellow etc.) referred to as Strong pores (with their known 
locations/indices). Similarly, average and weak pores are 
defined by relatively darker shades, refer to Fig. 16, 17, 18 and 
19 for additional snapshots.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E. Pores Strength 
As discussed in sec. II (preamble) and shown in Fig. 1. and 2., 
the lower the value of E(x,y), the stronger the pore is. In 

other words, there is a high probability of that 3x3 region to 
be a pore.  Hence a low value of error means more chances 
of existence of pore.  

Since information is related to probability in a similar 
manner i.e. low probability means more information, error 
value can give us information on existence of pore. To 
calculate the existence and strength of pore we first 
normalize the error value with its maximum possible value. 
Its maximum value will be generated when the pore has 
values as shown in Fig.10. 
 

1 1 1 

1 1 1 

1 1 1 

 
 

This generates a Emax(x, y) = 3.88979208.  
 

EN (x, y) = E(x, y)/ Emax(x, y)      (6) 
 

Where, EN (x, y) is the normalized error map with the values 
in the range 0 and 1. Now, the strength of pores can be 
calculated as: 
 

Sp = �� (EN (x,y))*log2(EN (x,y)) /(Number of Pores)  (7) 
 

over the entire image. A higher value means there is more 
possibility of existence of pores, and the pores strength is 
more.  
 
 
 
 
 
 
 
 
 

This is how the image is analyzed from ‘pores availability’ 
point of view. Also, through a little strict thresholding, we 
may ensure a constellation of pores bearing relatively more 
strong pores, which may ensure better reproducibility and 
thus a higher pores matching accuracy. As far as quality 
index is concerned, depending upon the pores strength value 
and the corresponding thresholds, current image can be 
labeled as good (2)/acceptable (1)/poor (0).  

F. Fusion Engine 
The fusion engine combines the individual quality scores 

from different sub-systems and generates the final quality 
score, which are then used to adjudge the quality of the 
image, refer to Fig. 14 and 15. 

Fusion rule. The fusion rules adopted here for combining 
the available data are: the ‘Weighted Sum Rule’ [7][8].  

• Weighted sum rule: In weighted sum rule (Ong et al., 
2003; Nakagawa et al., 2006), a weighted factor is multiplied 

Figure 8. Pores contrast image: 012_3_1.tif 

Figure 9. Magnified view of the ‘pores contrast image’: 012_3_1.tif 

Figure 11. Pores Strength: 012_3_1.tif 

Figure 10. The 3 x 3 pore mask 
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with the score and then sum is calculated as given in 
equation (8).  

                                                          (8) 
 

Each submodule is assigned some weight, Wi, such that 
 The submodule weights are calculated through 

empirical calculations, where weights are directly 
proportional to their respective sub-system’s accuracy. 

III. EXPERIMENTAL RESULTS 
Five quality measures have been selected and 

implemented in MATLAB. They are tested on images 
scanned with Cross Match Verifier 300 scanner at 500 dpi 
(pores are quite visible in these samples, as of now, no 
1000ppi datasets are publicly available). 

We have tested this module (Weighted Sum) over 15 
images. We have presented experimental results to 
demonstrate the performance of the proposed multi-
algorithm scheme, refer to Fig. 12 and 13. From the dataset, 
we have manually classified the images in three classes (i.e. 
good, acceptable and poor) based on their properties. The 
result (Fig. 12) shows that our method can distinguish the 
images as per their quality attributes with respect to level 3 
sweat pores. The accuracy rate observed is 93.33%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The result shown in Fig. 13, reveals the fact that the 
strong pores exhibit a good reproducibility of 91.93%. Here, 
same dataset is used, bearing 8 impressions per finger. The 
output (total number of strong pores identified and isolated) 
of the best image (out of 8) is considered as a reference 

image, and outputs from the rest 7 are then manually 
analyzed (over a range) with respect to the strong pores. 

IV. CONCLUSION 
In this paper, we have proposed a novel sweat pores-

based quality assessment model for reliable estimation of 
fingerprint image quality from pores view-point. The 
proposed method spans across multiple measures with very 
high accuracy by analyzing primarily the micro 
characteristics of the image. Though the fusion scheme could 
perform extremely well over the small datasets presented 
here, it needs to be confirmed and tested rigorously over full 
range of other publicly available large datasets. 
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Figure 12. Experimental Results: manual vs machine grading 

Figure 13. Experimental Results: Strong Pores Reproducibility
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Figure 14. Sweat Pores-based Quality Assessment Scheme: Process Flow 

 

Figure 15. Sweat Pores-based Quality Assessment Scheme: Flow Chart
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Figure 19. Pores Contrast Image: Unscaled & Scaled (012_6_5.tif)

 
Figure 16. Sample Images (012_6_5.tif and 047_7_1.tif)  

Figure 17. Detected Pores (slightly scaled) (012_6_5.tif and 047_7_1.tif)

Figure 18. Pores Contrast Image: Unscaled & Scaled (047_7_1.tif)  

Figure 20. ROI-based fingerprint effective area calculation 

Figure 22. Pores Distribution (slightly scaled) (047_7_1.tif) 

Figure 21. Pores Distribution (slightly scaled) (012_6_5.tif)
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