
AXIOMATIC JUSTIFICATION OF STABLE EQUILIBRIA

SRIHARI GOVINDAN AND ROBERT WILSON

Abstract. A solution concept that satisfies the axioms of invariance and strong backward induction selects

a stable set of a game’s equilibria.

1. Introduction

The theory of games is inherently incomplete because a typical game has multiple equilibria. Nevertheless,
because some equilibria seem more plausible than others, several authors suggest that Nash’s (1950) initial
definition of equilibrium should be strengthened. Hillas and Kohlberg (2002) survey proposals for solution
concepts that select equilibria with additional properties. Among those derived from a game’s normal form
are perfect, proper, and lexicographic equilibria, represented as mixtures of pure strategies. Among those
derived from an extensive form with perfect recall are refinements of sequential equilibria represented as
behavioral strategies that allow mixtures of actions at each information set.1 These proposals reflect basic
tensions. The implausibility of some equilibria is often evident in the extensive form where Bayes’ Rule and
backward induction are explicit; hence one can examine the beliefs used to justify behavior at information
sets off the path of equilibrium play. However, similar tests of plausibility can be applied to lexicographic
equilibria of the normal form.

The crux of the problem is that extensive-form analyses suggest criteria for equilibrium refinements, yet the
theory of individual decisions suggests that a theory of rational behavior in games should depend only on the
normal form. The latter, the orthodox view, is implicit in Nash’s definition. Similarly, Kohlberg and Mertens
(1986)[KM hereafter] show that a proper equilibrium of a normal form induces a sequential equilibrium
in every extensive-form having that normal form. Indeed, because the set of sequential equilibria varies
depending on which among many equivalent extensive forms is used, they argue that a refinement should
depend only on the normal form—or better, only on the reduced normal form obtained by deleting pure
strategies that are redundant because their payoffs can be duplicated by mixtures of other pure strategies.2

The orthodox view implements the general principle that a theory of rational behavior should be immune to
presentation effects, such as which extensive form is envisioned. But this principle does not suffice to ensure
that beliefs are plausible in an extensive-form description of the game. KM therefore argue that additional
criteria should be invoked, such as admissibility, backward induction, and forward induction.

Date: Draft, 2/1/04. File: AxiomaticStability040201.tex.
1Perfect, proper, lexicographic and sequential equilibria are defined by Selten (1975), Myerson (1978), Blume, Brandenberger,

and Dekel (1991), and Kreps and Wilson (1982), respectively.
2Thompson (1952) shows that four elementary transformations enable one of two games in extensive form having the same

normal form and no moves of nature to be transformed into the other. KM add the transformation that coalesces final moves

by nature by replacing them with a terminal node at which the payoffs are the players’ expected payoffs. Thompson uses a
weaker definition of the reduced normal form.
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Kohlberg and Mertens argue further that solution concepts have been too restrictive. Criteria that apply
to a single equilibrium have inherent limitations; therefore, they propose that selection should apply criteria
to sets of equilibria.3 With this amendment, KM propose a more ambitious program. Recall that an
equilibrium of an extensive form that is perfect with respect to a sequence of perturbations of behavior
strategies induces a sequential equilibrium, and conversely if the game is generic (or in a 2-player game,
no dominated strategies are used). KM argue that ideally the goal would be to select equilibria that are
truly perfect, that is, essential in that they are perturbed slightly by any small perturbation of strategies.
Although this ideal is impossible with a solution concept that selects singletons, it is feasible with one that
selects sets of equilibria. KM’s main result shows the existence of a component of equilibria that is stable.
Stability requires a kind of continuity in that every nearby game has an equilibrium near the component.
Although this general result is stated for payoff perturbations, KM argue that admissibility suggests that
the relevant payoff perturbations are those induced by strategy perturbations, and further, they focus on
minimal stable sets. Here, minimal sets that are stable against strategy perturbations are called KM-stable
sets.

In this paper we advance KM’s program using a dual approach.

(1) Invariance. Accepting the orthodox view, we invoke an axiom that requires a solution concept to
depend only on the reduced normal form of a game.

(2) Strong Backward Induction. Accepting the relevance of extensive-form analysis, we invoke an
axiom that requires behavior strategies in an extensive-form game to be quasi-perfect.

Invariance says that it is immaterial whether a mixed strategy is introduced as an additional pure strategy.
Quasi-perfection is a refinement of sequential equilibrium proposed by van Damme (1984). It implements
backward induction by requiring that at each information set a player’s continuation strategy is optimal
against perturbed strategies of other players. This ensures conditional admissibility; that is, a sequential
equilibrium does not use a continuation strategy that is dominated in the remainder of the game following
an information set.

These axioms say that a solution should select (1) sets of equilibria in mixed strategies of the reduced
normal form such that (2) for each extensive form with that reduced normal form, each perturbation of
behaviors should refine a selected set by selecting quasi-perfect equilibria. The conjunction of these two
axioms implies stringent restrictions on a solution. Our main theorem is:

Theorem 1.1. If a solution satisfies Invariance and Strong Backward Induction then each selected set

includes a KM-stable set.

Thus the axioms imply that a selected set is affected only slightly by any perturbation of mixed strategies
of the normal form of the game.

In their Appendix D, KM establish this result in the special case of an equilibrium that assigns positive
probability to every optimal strategy: if such an equilibrium is perfect with respect to every perturbation
of behavior strategies in every extensive form with the same reduced normal form then it is essential. But
such an equilibrium need not exist. Our result differs because we consider sets of equilibria, and we replace

3This is immaterial in an extensive-form game with generic payoffs since a connected set of equilibria induce the same
outcome; that is, these equilibria agree along paths of equilibrium play (Kreps and Wilson, 1982; Govindan and Wilson, 2001).
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perfect by quasi-perfect. The existence of solutions that satisfy the axioms is established by the fact that
they are satisfied by the stronger concept of stability proposed by Mertens (1989).

Section 2 fixes notation and specifies the axioms. Section 3 proves Theorem 1.1 for 2-player games, where
a simple proof is possible. Section 4 uses an alternative proof for games with N players. Section 5 provides
concluding remarks.

2. Formulation

We consider games with finite sets of players and pure strategies. The normal form of a game is specified
by a payoff function G :

∏
n∈N Sn → RN where N is the set of players and Sn is player n’s set of pure

strategies. Interpret a pure strategy sn as a vertex of player n’s simplex Σn = ∆(Sn) of mixed strategies.
The sets of profiles of pure and mixed strategies are S =

∏
n Sn and Σ =

∏
n Σn. Say that two mixed

strategies of a player are equivalent if for every profile of the other players’ strategies they yield the same
expected payoff for every player. A pure strategy sn of player n is redundant if n has an equivalent mixed
strategy σn 6= sn. The normal form is reduced if no pure strategy is redundant. Say that two games are
equivalent if their reduced normal forms are the same except for labeling of pure strategies.

In general, a solution assigns to each game a collection of nonempty sets of its equilibria, called the
selected sets. However, each equilibrium of a normal form induces an equilibrium in equivalent strategies of
its reduced normal form; conversely, an equilibrium of a reduced normal form induces a family of equilibria
in equivalent strategies of each normal form with that reduced normal form. Therefore, as in KM we assume:

Axiom 2.1. A solution depends only on the reduced normal forms of games.

That is, a selected set is the set of equilibria in equivalent strategies of a set selected for the game’s reduced
normal form.

To each game in normal form we associate those games in extensive form with perfect recall that have
that normal form. Each extensive form specifies a disjoint collection H = {Hn | n ∈ N} of the players’
information sets, and for each information set h ∈ Hn it specifies a set An(h) of possible actions by n at h.
In its normal form the set of pure strategies of player n is Sn = {sn : Hn → ∪h∈Hn

An(h) | sn(h) ∈ An(h)}.
The projection of Sn onto h and n’s information sets that follow h is denoted Sn|h; that is, Sn|h is the
set of n’s continuation strategies from h. Let Sn(h) be the set of n’s pure strategies that choose all of n’s
actions necessary to reach h ∈ Hn, and let Sn(a|h) be the subset that choose a ∈ An(h). Then a completely
mixed strategy σn � 0 induces the conditional probability σn(a|h) =

∑
sn∈Sn(a|h) σn(sn)/

∑
sn∈Sn(h) σn(sn)

of choosing a at h. More generally, a behavior strategy βn ∈
∏

h∈Hn
∆(An(h)) assigns to each information

set h a probability βn(a|h) of action a ∈ An(h) if h is reached. Kuhn (1953) shows that mixed and behavior
strategies are payoff-equivalent in extensive-form games with perfect recall.

Given a game in extensive form, an action perturbation ε : H → (0, 1)2 assigns to each information set a
pair (ε(h), ε̄(h)) of small positive numbers, where 0 < ε(h) 6 ε̄(h).4 Use {ε} to denote a sequence of action
perturbations that converges to 0.

Definition 2.2. A sequence {σε} of profiles is {ε}-quasi-perfect if for each a ∈ An, h ∈ Hn, n ∈ N and each
action perturbation ε:

4Our definition differs from van Damme (1984) by requiring 0 < ε(h) and by allowing ε(h) < ε̄(h).
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(1) σε
n(a|h) > ε(h), and

(2) σε
n(a|h) > ε̄(h) only if a is an optimal action at h in reply to σε; i.e., only if sn(h) = a for some

continuation strategy sn ∈ arg maxs∈Sn|h E[Gn | h, s, σε
−n].

Suppose that σn(·|h) = limε↓0 σε
n(·|h). Then this definition says that at h player n’s continuation strategy

at h assigns a positive conditional probability σn(a|h) > 0 to action a only if a is chosen by a continuation
strategy that is an optimal reply to perturbations (σε

n′)n′ 6=n of other players’ strategies. Thus when solving
his dynamic programming problem, player n takes account of vanishingly small trembles by other players but
ignores his own trembles later in the game. In particular, this enforces admissibility of continuation strategies
conditional on having reached h. Van Damme (1984) shows that the pair (µ, β) = limε↓0(µε, βε) of belief
and behavior profiles is a sequential equilibrium, where σε induces at h ∈ Hn the conditional probability
µε

n(t|h) of node t ∈ h and βε
n(a|h) = σε

n(a|h) is player n’s conditional probability of choosing a at h.
Our second axiom requires that each sequence of action perturbations induces a further selection among

the profiles in a selected set.

Axiom 2.3. Strong Backward Induction. For a game in extensive form with perfect recall for which

the solution selects a set Σ◦ of equilibria of its normal form, for each sequence {ε} of action perturbations

there exists a profile σ ∈ Σ◦ that is the limit of a sequence {σε} of {ε}-quasi-perfect profiles.

We conclude this section by defining stability. In general, a set of equilibria of a game in normal form
is stable if, for any neighborhood of the set, every game obtained from a sufficiently small perturbation
of payoffs has an equilibrium in the neighborhood. However, KM focus on minimal closed sets that are
stable only against those payoff perturbations induced by strategy perturbations. For 0 6 δ 6 1, let
Pδ = {(λnτn)n | (∀ n) 0 6 λn 6 δ, τn ∈ Σn} and let ∂Pδ be the topological boundary of Pδ. For each η ∈ P1,
and n ∈ N , let ηn =

∑
s∈Sn

ηn(s). Given any η ∈ P1, a perturbed game G(η) is obtained by replacing each

pure strategy sn of player n with ηn + (1− ηn)sn. Thus G(η) is the perturbed game in which the strategy
sets of the players are restricted so that the probability that n plays a strategy s ∈ Sn must be at least ηn(s).
For a vector (λ, τ), we sometimes write G(λ, τ) to denote the perturbed game G((λnτn)n).

Definition 2.4. A set of equilibria of the game G is KM-stable if it is minimal with respect to the following
property: Σ◦ is a closed set of equilibria of G such that for each ε > 0 there exists δ > 0 such that for each
η ∈ Pδ\∂Pδ the perturbed game G(η) has an equilibrium within ε of Σ◦.

KM show that every game has a KM-stable set of equilibria.

3. 2-Player Games

This section provides a direct proof Theorem 1.1 for the special case of two players. It is simpler than the
proof of the general case in Section 4 because 2-player games have a linear structure. This structure enables
a generalization—Statement 3 in the following Theorem—of the characterization of KM-stability obtained
by Cho and Kreps (1987) and Banks and Sobel (1987) for sender-receiver signaling games.

Theorem 3.1. For 2-player games the following statements are equivalent.

(1) A closed set Σ◦ ⊂ Σ contains a KM-stable set of the game G.
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(2) For each τ ∈ Σ\∂Σ there exists sequence σk ∈ Σ converging to σ ∈ S◦ and a corresponding sequence

λk ∈ RN
++ converging to zero, such that σk is an equilibrium of G(λk, τ).

(3) For each τ ∈ Σ\∂Σ there exists σ◦ ∈ Σ◦, a profile σ̃ ∈ Σ and 0 < λ 6 1 such that, for each player

n and each strategy s ∈ Sn for which σ◦n(s) + [1 − λ]σ̃n(s) > 0, s is an optimal reply for player n

against both σ◦ and the profile σ1 = λτ + [1− λ]σ̃.

Proof. We prove first that statement 1 implies statement 2. Suppose Σ◦ contains a KM-stable set. Fix

τ ∈ Σ\∂Σ. Then for each positive integer k one can choose a vector λk ∈ (0, 1/k)2 and an equilibrium σ(λk)
of G(λk, τ) whose distance from Σ◦ is less than 1/k. Let σ be the limit of a convergent subsequence of σ(λk)
as k ↑ ∞. Then σ ∈ Σ◦ satisfies statement 2 for τ .

We prove next that statement 2 implies statement 3. Fix τ ∈ Σ\∂Σ. Statement 2 assures that there
exists a sequence λk in (0, 1)2 converging to zero and a sequence σk of equilibria of G(λk, τ) converging to
an equilibrium σ◦ in Σ◦. By passing to a subsequence if necessary, we can assume that the set of optimal

replies in G to the strategies σk is the same for all k. Define σ̃ by σ̃n = (1− λ1
n)−1(σ1

n − λ1
nτn) where σ1 is

the first element of the sequence. Since σ1 is an equilibrium of G(λ1, τ), σ̃ is a best reply against σ1 and
hence against all the elements of the sequence. In particular, it is a best reply against σ0. To complete the
proof, observe that σ0 must also be a best reply against σ1, since the best replies are constant along the
sequence of equilibria of perturbed games, which converges to σ0.

To finish the proof we show that statement 3 implies statement 1 by showing that Σ◦ satisfies the property
in Definition 2.4. Fix an ε-neighborhood of Σ◦. Take a sufficiently fine simplicial subdivision of Σ such that:
(i) the union U of the simplices of this complex that intersect Σ◦ is contained in the neighborhood; and (ii)
the best-reply correspondence is constant over the interior of each simplex. Because G is a two-player game,
this simplicial subdivision can be done such that each simplex is actually a convex polyhedron. Observe that
U is itself a closed neighborhood of Σ◦. Let Q be the set of all pairs (η, σ) ∈ P1 × Σ such that σ ∈ U and
σ is an equilibrium of G(η) and let Q0 be the set of (0, σ) ∈ Q; i.e., the set of equilibria of the game G that
are contained in U . By property (ii) of the triangulation and because the simplices are convex polyhedra,
Q is also a finite union of polyhedra. Triangulate Q such that Q0 is a subcomplex, and take a barycentric
subdivision so that Q0 becomes a full subcomplex. Since Q is a union of polyhedra, both the triangulation
and the projection map from Q to P can be made piecewise-linear. Let X be the union of simplices of Q

that have a vertex in Q0. Let X0 = X ∩Q0 and let X1 be the union of simplices of X with no vertex in Q0.
Then each point in X is a convex combination [1 − α]x0 + αx1, where xi ∈ Xi for i = 1, 2; moreover, this
combination is unique if x 6∈ X0 ∪X1.

Choose δ∗ > 0 such that for n = 1, 2, ηn > δ∗ for each (η, σ) ∈ X1. Such a choice is possible since
X1 is a compact set disjoint from X0. Fix now δ1, δ2 < δ∗ and τ ∈ Σ. The proof is complete if we can
show that the game G(δ1τ1, δ2τ2) has an equilibrium in U . Statement 3 assures that there exists σ0 ∈ S◦,
σ̃ ∈ Σ and 0 < λ 6 1 such that σ(γ) = ((1− γδn)σ0

n + γδn((1− λ)σ̃n + λτn))n=1,2 is an equilibrium of

G(γλ(δ1τ1, δ2τ2)) for all 0 6 γ 6 1—since every pure strategy in the support of the corresponding convex
combination of σ and σ̃ remains an optimal reply. Because σ(0) = σ0 ∈ Σ◦ we can choose γ sufficiently small
that the point x = (γλ(δ1τ1, δ2τ2), σ(γ)) belongs to X\(X0 ∪X1); hence there exists a unique α ∈ (0, 1) and
xi ∈ Xi for i = 0, 1 such that x is an α-combination of x0 and x1. Because the projection map is linear on
each simplex of X, the point x1 is of the form (γ∗λ(δ1τ1, δ2τ2), σ) for some σ ∈ Σ and some positive real
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number γ∗. Since points in X1 project to P1\Pδ∗ , γ∗λδn > δ∗ for each n; i.e., γ∗λ > 1 since δn < δ∗ for each
n by assumption. Therefore, the point [1− 1/γ∗λ]x0 + [1/γ∗λ]x1 corresponds to an equilibrium of the game
G(δ1τ1, δ2τ2) that lies in U . This proves statement 1. �

The characterization in statement 3 can be stated equivalently in terms of lexicographic probability
systems [LPS] as in Blume, Brandenberger, and Dekel (1991).

Corollary 3.2. A closed set Σ◦ ⊂ Σ contains a KM-stable set if and only if for each τ ∈ Σ\∂Σ there exists

σ0 ∈ Σ◦, a profile σ̃ ∈ Σ, and for each player n, an LPS Ln = (σ0
n, . . . , σKn

n ) for which σKn
n = [1−λn]σ̃n+λnτn

for some λn ∈ (0, 1], such that for each player n every strategy that is either: (i) in the support of σk with

k < Kn or (ii) in the support of σ̃n if λ < 1, is a lexicographic best reply to the LPS of the other player.

Proof. The necessity of the condition follows from statement 3. To prove sufficiency, observe that for each

sufficiently small α > 0 the strategy profile σ(α) defined by σn(α) =
∑Kn

k=0 αkσk
n is an equilibrium for the

perturbed game G(η) where player n’s perturbation vector is ηn = αKnλnτn. Since σ(α) converges to σ0 as
α goes to zero, the condition of the Corollary implies statement 2 of the Theorem. �

Theorem 3.3. If a solution satisfies Invariance and Strong Backward Induction then for any 2-player game

a selected set includes a KM-stable subset of its normal form.

Proof. Let G be the normal form of a 2-player game. Suppose that Σ◦ ⊂ Σ is a set selected by a solution
that satisfies Invariance and Strong Backward Induction. Let τ = (τ1, τ2) be any profile in the interior of
Σ. We show that Σ◦ satisfies the condition of Corollary 3.2 for τ . Construct as follows the extensive-form
game Γ with perfect recall that has the same reduced normal form as G. In Γ each player n first chooses
whether or not to use the mixed strategy τn, and if not, then which pure strategy in Sn to use. Denote
the two information sets at which n makes these choices by h′n and h′′n. At neither of these does n have
any information about the other player’s analogous choices. In Γ the set of pure strategies for player n is
S∗

n = {τn}∪Sn (after identifying all strategies where n chooses to play τn at his first information set h′n) and
the corresponding simplex of mixed strategies is Σ∗

n. For each δ > 0 in a sequence converging to zero, let
{ε} be a sequence of action perturbations that require the minimum probability of each action at h′n to be
ε(h′n) = δ, and the maximum probability of suboptimal actions at h′′n to be ε̄(h′′n) = δ2. By Invariance there

exists a solution Σ̃◦ in Γ that is equivalent to Σ◦. By Strong Backward Induction there exists a sequence
{σ̃ε} of {ε}-quasi-perfect profiles converging to some point σ̃0 ∈ Σ̃◦. By Blume, Brandenberger, and Dekel

(1991) there exists for each player n: (i) an LPS L̃n = (σ̃0
n, σ̃1

n, . . . , σ̃Kn
n ), with members σ̃k

n ∈ Σ∗
n; and (ii) for

each 0 6 k < Kn a sequence of positive numbers λk
n(ε) converging to zero such that each σ̃ε

n in the sequence
is expressible as the nested combination ((1− λ0

n(ε))σ̃0
n + λ0

n((1− λ1
n(ε))σ̃2

n + λ1
n(· · ·+ λKn−1

n (ε)σ̃Kn
n ))). Let

k∗n be the smallest k for which σ̃k
n assigns positive probability to the “pure” strategy τn.

Claim 3.4. If sn ∈ Sn is assigned a positive probability by some σ̃k
n for k 6 k∗n then sn is a lexicographic

best reply to the LPS of the other player.

Proof of Claim. If sn is not a lexicographic best reply to the LPS of the other player then sufficiently far along
the sequence sn is not a best reply against σ̃ε for when ε (i.e., δ) is sufficiently small. Strong Backward Induc-
tion requires that σ̃ε

n(τn|h′n) > ε(h′n) = δ and σ̃ε
n(sn|h′′n) 6 ε̄(h′′n) = δ2. Hence limε↓0 σ̃ε

n(sn|h′′n)/σ̃ε
n(τn|h′n) =

0. Therefore σ̃k
n(sn) = 0 for all k 6 k∗n, which proves the Claim. �
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Construct now an LPS L̃′ from L̃ by deleting for each player n all levels k > k∗n. From the LPS L̃′

construct for each player n an LPS Ln = (σ0
n, σ1

n, . . . σ
k∗n
n ) for the game G by letting σk

n be the mixed strategy

in Σn that is equivalent to σ̃k
n. By the definition of k∗n, σ

k∗n
n = λnτn + [1 − λn]σ′n for some 0 < λn 6 1

and σ′n ∈ Σn. The LPS L = (L1,L2) satisfies the condition of Corollary 3.2 for τ . Hence Σ◦ contains a
KM-stable set. �

4. N-Player Games

This section provides the proof of Theorem 1.1 for the general case with N players. We begin with
some definitions. For a real-valued analytic function (or more generally a power series) f(t) =

∑∞
i=0 ait

i

in a single variable t, the order of f , denoted o(f), is the smallest integer i such that ai 6= 0. The order
of the zero function is +∞. It follows that for any two power series f and g, o(fg) = o(f) + o(g) and
o(f + g) > min(o(f), o(g)). We say that a power series f is positive if ao(f) > 0; thus if f is an analytic
function then f is positive if and only if f(t) is positive for all sufficiently small t > 0. For two analytic
functions f(t) and g(t), say that f > g iff f − g is positive.

By a slight abuse of terminology, we call a function F : [0, t̄] → X, where X is a subset of a Euclidean
space Rl, analytic if there exists an analytic function F ′ : (−δ, δ) → Rl, δ > t̄, such that F ′ agrees with F

on [0, t̄]. For an analytic function F : [0, t̄] → Rk, the order o(F ) of F is mini o(Fi). If σ : [0, t̄] → Σ is
an analytic function then for each pure strategy sn of player n his payoff Gn(σ−n(t), sn) in the game G is
an analytic function as well, since payoff functions are multilinear in mixed strategies. We say that sn is
a best reply of order k for player n against σ if for all s′n ∈ Sn, Gn(σ−n(t), sn) − Gn(σ−n(t), s′n) is either
nonnegative or has order at least k + 1. We say that sn is a best reply to σ if it is a best reply of order ∞.

Lemma 4.1. Suppose σ, τ : [0, t̄] → Σ are two analytic functions such that o(σ− τ) > k. If sn is not a best

reply of order k against σ then it is not a best reply of order k against τ .

Proof. Let s′n be a pure strategy such that Gn(σ−n(t), sn) − Gn(σ−n(t), s′n) is negative and has order, say,
l 6 k. Let τ ′ = τ − σ. We can then write Gn(τ−n(t), sn)−G(τ−n(t), s′n) as

Gn(σ−n(t), sn)−G(σ−n(t), s′n)+
∑
s−n

∑
N ′$N\{n}

 ∏
n′∈N ′

σn′(t)
∏

n′′∈N\(N ′∪{n})

τ ′n′′(t)

 [Gn(s−n, sn)−Gn(s−n, s′n)].

The first term in the above expression is negative and has order l by assumption. Therefore, to prove the
result it is enough to show that the order of the summation is at least k +1: indeed, it then follows from the
above-mentioned property of the order of sums of power series that the whole expression is negative and has
order l. To prove this last statement, using once again the same property of orders, it is sufficient to show
that each of the summands in the second term has order at least k+1. Consider now a summand for a fixed
s−n and N ′ $ N\{n}. If both sn and s′n give the same payoff against s−n then the order of this term is ∞.
Otherwise, using the property of the order of products of functions, the order of this term is∑

n′∈N ′

o(σn′) +
∑

n′′ /∈(N ′∪{n})

o(τ ′n′′) > k,
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where the inequality follows from the following two facts: (i) the order of each σn′ is at least zero; and
(ii) there exists at least one n′′ /∈ (N ′ ∪ {n}) and for any such n′′ the order of τ ′n′′ is greater than k by
assumption. �

We use the following version of a result of Blume, Brandenberger, and Dekel (1991).

Lemma 4.2. If t̄ > 0 and the map τ : [0, t̄] → Σn is analytic then τ(t) =
∑K

k=0 fk
n(t)τk

n , where K 6 |Sn|,
each coefficient τk

n is in Σn, and each map fk
n : [0, t̄] → R+ is analytic.

Proof. Let τ0
n = τ(0) and S0

n = supp τ0
n. Define f0

n(t) to be mins∈S0
n

τn,s(t)/τn,s(0); and let τ1
n(t) = [1 −

f0
n(t)]−1[τn(t) − f0

n(t)τ0
n]. It follows from the definitions of f0

n and τ1
n(t) that the latter is an analytic

function from [0, t̄] into Σn for which there exists s ∈ Sn such that τn,s(t) > 0 while τ1
n,s(t) = 0. Moreover,

τn(t) = f0
n(t)τ0

n + [1 − f0
n(t)]τ1

n(t). Now let τ1
n = τ1

n(0) and S1
n = supp τ1

n. Define f̂1
n(t), as before, to

be mins∈S1
n

τ1
n,s(t)/τ1

n,s(0); τ2
n(t) = [1 − f̂1

n(t)]−1[τ1
n(t) − f̂1

n(t)τ1
n]; τ2

n(t) = [1 − f̂1
n(t)]−1[τ1

n(t) − f̂1
nτ1

n] and

f1
n(t) = [1− f0

n(t)]f̂1
n(t). Then τn(t) = f1

n(t)τ0
n + [1− f0

n(t)][f1
n(t)τ1

n + τ2
n(t)]. Likewise, we can obtain mixed

strategies τ3
n, etc., and corresponding coefficients f3

n(t), etc. This process must terminate in a finite number
of steps since for each k there exists an s ∈ Sn for which τk

n,s(t) is positive but τ l
n,s(t) is zero for all l > k. �

Theorem 4.3. If a solution satisfies Invariance and Strong Backward Induction then for any game a selected

set includes a KM-stable subset of its normal form.

Proof. We show that if a solution selects a set Σ◦ ⊂ Σ of profiles that does not contain a KM-stable set for
the normal-form game G then it satisfies Invariance only if it violates Strong Backward Induction.

Suppose Σ◦ does not contain a KM-stable set. Then there exists ε > 0 such that for each δ ∈ (0, 1) there
exists η ∈ Pδ\∂Pδ such that the perturbed game G(η) does not have an equilibrium in the ε-neighborhood
U of Σ◦. Take a sufficiently fine simplicial subdivision of Σ such that the union X of those simplices

intersecting Σ◦ is contained in U . X is then a neighborhood of Σ0. Let A = {(λ, τ) ∈ (0, 1)N × (Σ\∂Σ) |
G(λ, τ) has no equilibrium in X}; then A is nonempty and there exists τ◦ ∈ Σ such that (0, τ◦) is in the
closure of A. Further, since X is semi-algebraic, A too is semi-algebraic. Therefore, by the Nash Curve
Selection Lemma (cf. Bocknak, Coste, and Roy, 1998, Proposition 8.1.13), there exists t̄ > 0 and an analytic
map t 7→ (λ(t), τ(t)) from [0, t̄] to [0, 1]N × Σ such that (λ(0), τ(0)) = (0, τ◦) and (λ(t), τ(t)) ∈ A for all
t ∈ (0, t̄]. Define the compact semi-algebraic set

Y = {(t, σ) ∈ [0, t̄]×X | (∀ sn ∈ Sn) σn,sn
> λn(t)τn,sn

(t)} .

Claim 4.4. There exists a positive integer p such that for every analytic function ζ 7→ (t(ζ), σ(ζ)) from an

interval [0, ζ̄] to Y , where t(ζ) is positive, there exists a player n and a pure strategy sn ∈ Sn such that

σ(ζ) > λn(t(ζ))τn,sn(t(ζ)) and sn is not a best reply of order o(t(ζ))p against σ(ζ).

Proof of Claim. Define the maps α, β : Y → R via

α(t, σ) = max
n,sn∈Sn

{
[σn(sn)− λ(t)τn,sn

(t)]× max
s′n∈Sn

[Gn(s′n, σ−n)−Gn(sn, σ−n)]
}

and β(t, σ) = t. By construction, α, β > 0 and α−1(0) ⊆ β−1(0). By Lojasciewicz’s inequality (see Bochnak
et al., 1998, Corollary 2.6.7) there exist a positive scalar c and a positive integer p such that cα > βp.
Given an analytic map ζ 7→ (t(ζ), σ(ζ)) as in the statement of the theorem, observe that for each n, sn, s′n,
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σn,sn
(ζ) − λ(t(ζ))τn,sn

(t(ζ)) and Gn(s′n, σ−n(ζ)) − Gn(sn, σ−n(ζ)) are also analytic in ζ. Therefore there
exists a pair n, sn that achieves the maximum in the definition of α for all small ζ. Then

max
s′n

[Gn(s′n, σ−n(ζ))−Gn(sn, σ−n(ζ))] > α(t(ζ), σ(ζ)) > (t(η))p
/c ,

where the first inequality follows from the fact that σn,sn(ζ)− λn(t(ζ))τn,sn(t(ζ)) 6 1. By assumption, t(ζ)
is positive. Therefore, maxn,sn,s′n [Gn(s′n, σ−n(ζ))−Gn(sn, σ−n(ζ))] is also a positive analytic function and,

being greater than c−1(t(ζ))p, has order at most o(t(ζ))p. �

Using Lemma 4.2, express each τn(t) as the sum
∑Kn

k=0 fk
n(t)τk

n , where each τk
n is a mixed strategy in Σn

and fk
n : [0, t̄] → R+ is analytic. Construct the game Γ in extensive form in which each player n chooses

among the following, while remaining uninformed of the others’ choices. Player n first chooses whether to
commit to the mixed strategy τ0

n or not; if not then n chooses between τ1
n or not, and so on for k = 2, . . . ,Kn;

and if n does not commit to any strategy τk
n then n chooses among the pure strategies in Sn. By Invariance,

the solution also selects Σ◦ for the game Γ. For perturbations of the game Γ use the following action
perturbation: for the information set where n chooses between τk

n or not, use εk
n(t) = ε̄k

n(t) = λn(t)fk
n(t);

and at the information set where n chooses among the strategies in Sn, use εKn+1
n (t) = ε̄Kn+1

n (t) = tp+1.

Let S̃ and Σ̃ be the sets of pure and mixed-strategy profiles in Γ. (As in the two-person case, for each
player n and each 0 6 k 6 Kn we identify all strategies of n that choose, at the relevant information set, to
play the strategy τk

n .) Let E be the set of (t, σ) ∈ (0, t̄]× Σ̃ such that σ is an ε(t)-quasi-perfect equilibrium
of Γ (i.e., satisfying conditions 1 and 2 of Definition 2.2) whose reduced-form strategy profile in Σ lies in X.
Since the minimum error probabilities are analytic functions of t, E is a semi-analytic set.5 Strong Backward
Induction requires that for each sequence {ε(t)} of action perturbations with values sufficiently small there
exists an {ε(t)}-quasi-perfect sequence of equilibria whose reduced forms are in X, i.e., that there exists
σ̃0 ∈ Σ∗ such that the reduced form of σ̃0 belongs to X and (0, σ̃0) belongs to the closure of E. By the
Curve Selection Lemma (cf. Lojasiewicz, 1993, II.3), there exists an analytic function ζ 7→ (t(ζ), σ̃(ζ)) from

[0, ζ̄] to [0, t̄] × Σ̃ such that (t(ζ), σ̃(ζ)) ∈ E for all ζ > 0 and (t(0), σ̃(0)) = (0, s̃0). By construction, t(ζ) is
nonconstant, i.e., 0 < o(t(ζ)) < ∞.

From σ̃(ζ) construct the analytic function σ̂(ζ) as follows: for each player n, choose a strategy s∗n in Γ such
that o(σ̃n,s∗n) is zero—i.e., a strategy in the support of σ̃n(0). Let S′

n be the set of all pure strategies sn of

the original game G that are chosen with the minimum probability in σ̃(t) (i.e., with probability (τ(ζ))p+1);

let σ̂n,sn
(ζ) = 0 for each sn ∈ S′

n; define σ̂n,s∗n(ζ) = σ̃n,s∗n(ζ) + |S′
n|(t(ζ))p+1; and finally, let the probabilities

of the other strategies in σ̂ be the same as in σ̃. Obviously, o(σ̃ − σ̄) > o(t(ζ))(p + 1) > o(t(ζ))p.
If σ̂n,sn

(ζ) > 0 for some sn ∈ Sn then sn is a best reply against σ̃(ζ); hence by Lemma 4.1, sn is a best

reply of order o(t(ζ))p against σ̂(ζ). Likewise, for each k the strategy sn that plays τk
n at the appropriate

information set is optimal of order o(t(ζ))p against σ̂n(ζ) if σ̂n,sn(ζ) > λn(t(ζ))fk
n(t(ζ)).

Let σ(ζ) be the reduced form of σ̃(ζ) in the game G. Then we have a well-defined analytic function
ϕ : [0, ζ̄] → Y , given by ϕ(ζ) = (t(ζ), σ(ζ)): indeed, by definition, σ(ζ) is contained in X; also, for each n

and sn ∈ Sn, σn,sn(ζ) > λn(t(ζ))τn,sn(t(ζ)), since in σ̃(ζ) (and therefore in σ̂(ζ)) the “pure” strategy τk
n is

chosen with probability at least λn(t(ζ))fk
n(t(ζ)). Therefore, by the above Claim, there exist n, sn such that

5A ⊆ Rk is semi-analytic if for all x ∈ Rk, there exists a neighborhood U of x, such that A ∩ U is a finite union of sets of
the form {y ∈ U | f1(y) = · · · = fm(y) = 0, g1(y) > 0, . . . , gl(y) > 0} where f1, . . . fm, g1, . . . , gl are analytic on U .



10 S. GOVINDAN AND R. WILSON

σn(ζ) assigns sn more than the minimum probability even though it is not a best reply of order o(t(ζ))p
against σn(ζ) (and σ̂(ζ)). By the definition of σ(ζ) and σ̂(ζ), either (i) sn is assigned a positive probability by
σ̂(ζ) or (ii) a strategy τk

n—containing sn in its support, when viewed as a mixed strategy in Σn—is assigned
a probability greater than λn(τ(ζ))fk

n(t(ζ)), even though it is not a best reply of order o(t(ζ))p against σ̂(ζ),
which contradicts the conclusion of the previous paragraph. In the game Γ, therefore, for any sequence of
sufficiently small t there cannot be a sequence of {ε(t)}-quasi-perfect profiles whose reduced forms are in X.
Thus Strong Backward Induction is violated. �

5. Concluding Remarks

We view the arguments for Invariance adduced by KM to be entirely convincing. Our results differ from
theirs primarily in using quasi-perfection to formulate Strong Backward Induction. In spite of its awkward
name, quasi-perfection seems to be an appropriate refinement of weaker forms of backward induction such
as sequential equilibrium. Some strengthening is evidently necessary since a sequential equilibrium can use
inadmissible strategies and strategies that are dominated in the continuation from an information set, and
compared to perfection, quasi-perfection avoids pathologies from a player’s anticipation of his own trembles
at subsequent information sets. However, one might conjecture that similar conclusions could be derived from
a formulation in which Strong Backward Induction requires only that a selected set include for each extensive
form an equilibrium of the agent-normal form that excludes inadmissible strategies and that evaluates each
agent’s conditional payoff at its information set as the player’s continuation payoff. Alternatively, the reader
may have noticed that Strong Backward Induction is used in the proofs mainly to establish existence of
lexicographic probability systems that “respect preferences” as defined in Blume, Brandenberger, and Dekel
(1991). Thus Axiom 2.3 might state directly that each sequence of perturbations of an extensive form should
refine the selected set by selecting a lexicographic equilibrium that respects preferences, as in statement 3
of Theorem 3.1 and Corollary 3.2 for two-player games. Indeed, it seems plausible that quasi-perfection can
be characterized in terms of a lexicographic equilibrium with the requisite properties.

Theorems 3.3 and 4.3 remain true if Axiom 2.3 is replaced by the requirement that a selected set must
include, for each information set h of each player, an equilibrium that is a quasi-proper continuation from h.
That is, it is the limit of ε-quasi-proper equilibria for which conditions 1 and 2 of Definition 2.2 are replaced
by the requirement that if the expected continuation payoff from h for a ∈ An(h) is less than it is for a′ then

ε
|An(h)|
h 6 σε

n(a|h) < εhσε
n(a′|h). In particular, in Govindan and Wilson (2002a) we establish for a generic

class of sender-receiver signaling games an analog of Theorem 3.3, but rather than Axiom 2.3 we assume
that the selected set contains an equilibrium that is quasi-proper in continuation from each information set
of the receiver. Similar results are established in Govindan and Wilson (2002b) for outside-option games,
and by adding topological assumptions one obtains the stronger conclusion that a selected set is stable in
the sense of Mertens (1989).

In a companion paper (Govindan and Wilson, 2004) we show that the axioms invoked here imply a version
of Hillas’ (1996) conjecture that Invariance and backward induction imply forward induction; that is, the
selection is not affected by deleting a strategy that is inferior at every equilibrium in the selected set. This
is also the gist of the “intuitive criterion” proposed by Cho and Kreps (1987) for signaling games, and its
extension to the solution concept of “divinity” proposed by Banks and Sobel (1987).
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Lojasiewicz, S. (1993), “Sur la géométrie semi- et sous- analytique,” Annales de l’institut Fourier, 43: 1575-

1595.
Mertens, J. (1989), “Stable Equilibria—A Reformulation, Part I: Definition and Basic Properties,” Mathe-

matics of Operations Research, 14, 575-625.
Myerson, R. (1978), “Refinements of the Nash Equilibrium Concept,” International Journal of Game Theory,

7: 73-80.
Nash, J. (1950), “Equilibrium Points in n-Person Games,” Proc. Nat. Acad. Sciences USA, 36: 48-49.
Selten, R. (1975), “Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games,”

International Journal of Game Theory, 4: 25-55.
Thompson, F. (1952), “Equivalence of Games in Extensive Form,” RM-759, RAND Corporation, Santa

Monica, California. Reprinted in H. Kuhn (ed.), Classics in Game Theory, Princeton University Press,
Princeton, New Jersey, 1997.



12 S. GOVINDAN AND R. WILSON

Economics Department, University of Iowa, Iowa City, IA 52242 USA.

E-mail address: srihari-govindan@uiowa.edu

Stanford Business School, Stanford, CA 94305-5015 USA.

E-mail address: rwilson@stanford.edu


