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Abstract

An optimal implementation of theλβ-calculus into inter-
action nets, featuring

1. only a single type of scope node,

2. a completely reduction based read-back, and

3. only three reduction rule schemes.

1. Introduction

We present an optimal implementation ofβ-reduction on
λ-terms. For anyλ-term [3] (Section 2), translating it by�
to an interaction net [9] (Section 3), then performing a num-
ber of interaction steps (Section 4), and finally unwinding
the resulting interaction net byM to a tree-like net isomor-
phic to aλ-term again (Section 5), yields aλ-term which
is reachable by a number ofβ-steps (Section 2) from the
initial term.

To show correctness we first introduce the set ofλ-nets
which contains all the nets reachable from translatedλ-
terms, and for which a stack-based read-back mapN from
λ-nets toλ-terms can be defined [10, 7] (Section 6). Us-
ing the read-back we show that a Beta-step from aλ-net is
projected byM onto a multi-Beta-step, performing a num-
ber of Beta-steps simultaneously, from the unwound net [2]
(Section 7). Correctness follows since by its tree-like form,
a multi-Beta-step on a tree-like net, followed by unwinding
corresponds to aβ-development [3] on itsλ-term.

To show optimality [11] it suffices to note that we im-
plement the same abstract algorithm [2] as extant optimal
implementations in interaction nets [10, 7, 2]. Although op-
timality was the original motivation for our studies, we wil

not high-light it here. Instead, we focus on presenting the
calculus itself.

2. λ-calculus

In order to give a rational reconstruction of our optimal
implementation ofβ-reduction in theλ-calculus [3], we first
present a factorisation ofβ-reduction for the namefreeλ-
calculus [5] into argument replication and scope extrusion.1

We employ the following as a running example.

Example 1 The application2 2 of the (Church) numeral
2 = λx.λy.x(xy) to itself, reduces to4 in five steps

2 2 →β λy.2(2y)

→β λy.2λx.y(yx)

→β λy.λz.(λx.y(yx))((λx.y(yx))z)

→β λy.λz.(λx.y(yx))(y(yz))

→β λy.λz.y(y(y(yz)))

(Application of Church numerals is exponentiation.)

Instead ofλ-terms, we implement namelessλ-terms [5].

Example 2 2 2 with 2 = λλ(S0)((S0)0) reduces to4

2 2 →β λ2(20)

→β λ2λ(S0)((S0)0)

→β λλ(λ(SS0)((SS0)0))((λ(SS0)((SS0)0))0)

→β λyλz(λx(SS0)((SS0)0))((S0)((S0)0))

→β λλ(S0)((S0)((S0)((S0)0)))

1To a large extent our presentation reflects the way our implementation
was developed. People not interested in that can fast forward to the next
section, after taking note of the inference system for generalisedλ-terms.



The unary notation for De Bruijn-indices employed here
serves the interpretation of successors as end-of-scope op-
erators as introduced in [8]. This interpretation is illustrated
for 2 by
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displaying from left to right, the syntax tree of theλ-term2,
the syntax tree of the namelessλ-term2, and that tree again
with scopes explicitly indicated by boxes. As illustrated by
the figure, and as observed by [4], namelessλ-terms have
a context free tree structure: every successor and zero of
a closedλ-term matchesa uniqueλ; the box is a way to
represent this matching explicitly. In other words, the usual
notion of binding for namedλ-terms is seen to correspond
to the notion of matching for namefreeλ-terms.

The matching structure can be employed to implement
β-reduction as follows. An occurrence of0 in t matching
theλ of a β-redex(λt)s has the operational meaning: put
the arguments. Dually, an occurrence ofS in t matching
thatλ has the operational meaning: throw the arguments

away (as any subterm of this term will be out of the scope
of theλ, so to speak). The nameless pendant of the idea that
the binding structure is preserved byβ-reduction on named
λ-terms, is then that matching is preserved in case of name-
lessλ-terms. As a consequence,β-reducing(λt)s does not
only involve replicating the arguments an appropriate num-
ber of times, but also managing matching. In the literature
on explicit substitutions starting from [1], one varies on both
aspects. The starting observation for the variation presented
here is that the firstβ-step of Example 2 can be decomposed
as

2 2 →β λ(S2)((S2)0) →β λ2(20)
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scope removal
replication extrusion

That is, β-reduction consists of first replicating the argu-
ment2 putting the latter at all0s in the body matching the
λ, and then removing the@ andλ of the redex as well as

the scope ofλ, that is,all Ss matching withλ (in this case
none) are elided. (Not removing them would disturb match-
ing and possibly cause dangling ‘pointers’ or worse.) This
results in the generalisedλ-termλS2((S2)0). Here a gen-
eralisedλ-term, as introduced in [4], is aλ-term where suc-
cessors are generalised to be applicable to any (generalised)
term instead of just to De Bruijn indices. Finally, to turn the
generalisedλ-term into the ordinaryλ-termλ2(20) again,
successors need to be pushed to the leafs in a matching-
preserving way, a process which we call scope extrusion [8].

Formally, the grammar for the setGΛ of generalisedλ-
terms is

t ∈ GΛ ::= 0 | St | λt | tt

We employt, s, u, . . . to range over generalisedλ-terms and
i, j, k, . . . to range over its subset of (De Bruijn) indices,
i.e. repeated applications ofS to 0. Ordinary namelessλ-
terms are obtained by requiring successors to occur as part
of indices.β-reduction on ordinary (nameless)λ-terms fac-
torises then as follows. First replication and removal are
performed according to

(λt)s → t[s]0

with ‘substitution’t[s]i of s in t at depthi defined by

0[s]0 = s

0[s]Si = 0

(St)[s]0 = t

(St)[s]Si = St[s]i

(λt)[s]i = λt[s]Si

(t1t2)[s]
i = t1[s]

it2[s]
i

Next scopes are extruded by reducing to normal form with
respect to thescope extrusionrules

Sλt →λ λtS0

S(t1t2) →@ St1St2

λλ

abstraction extrusion

λ @@

application extrusion

@

where, for indexi, minimal lifting ti is defined by:

t0 = St

0
Si = 0

(St)Si = Sti

(λt)Si = λtSSi

(t1t2)
Si = tSi

1
tSi
2



Note that using the extrusion rules, the first step of Exam-
ple 2, indeed factorises in the way which was displayed
above. In particular, note thatS2 →λ 2 holds since2 is
closed. Here a generalisedλ-term t is closed if0` t in the
following inference system (cf. [6]):

Si` 0
0

Si`St
S

i` t

i`λt
λ

Si` t

i` t1t2
@

i` t1 i` t2

The intuitive reading of the indexi in a judgmenti` t, read:
term t is well-formed under indexi, is as the (number of)
variables bound byλs above this subterm.

Example 3 That2 is indeed closed is witnessed by

0`λλ(S0)((S0)0)
λ

S0`λ(S0)((S0)0)
λ

SS0` (S0)((S0)0)
@

SS0`S0
S

S0` 0
0

SS0` (S0)0
@

SS0`S0
S

S0` 0
0

SS0` 0
0

As usual, anyλ-term can be closed (made well-formed un-
der 0), by putting enough abstractions. Hence it is no re-
striction to prove our results for closed terms only and we
will do so. Moreover, we will abbreviate indices by natural
numbers in sans-serif e.g.SSS0 is abbreviated to3.

3. From terms to nets

We present our translation of the namefreeλ-terms to a
class of graphs known as interaction nets [9]. The signa-
ture of an interaction nets consists of symbols each having
a number of ports among which a designatedprincipal port.
The interaction net signature we employ is

@

function

argument λ bind

body
i i

applicator abstractor delimiter duplicator eraser

where◦s indicate ports and•s indicate principal ports, i.e.
ports along which a symbol may interact (see the rules be-
low). Herei ranges over arbitrary indices, making the sig-
nature infinite.

Apart from@ andλ which will have the meaning one ex-
pects, the signature has symbols for explicitly representing
the different operations of the factorisation ofβ-reduction,
as presented in the previous section. In particular, the du-
plicatorOi (share, fan) and the eraser} (garbage) will to-
gether serve to represent replication, as usual in graph im-
plementations of first-order rewriting. The delimiterti rep-
resents the higher-order aspect of scope. By default, when

we do not write the indexi for a duplicator or delimiter, it
is assumed to be0.

Interaction nets are graphs the nodes of which are la-
belled by symbols of the signature, and the edges of which
connect to the ports of the (symbols of the) nodes. To every
port at most one edge may be connected. If no edge is con-
nected to a port, then the port is called free. A net is closed
if it does not have free ports.

The function� : Λ→IN mapping closed terms to closed
interaction nets is defined in two phases. First, a well-
formed termi` t is mapped to a net havingi+ 1 free ports,
which is defined by induction and cases (0, S, λ, and@) on
the definition of well-formedness as:

i i` t

i

i

Si` t
i i

i

i` t1 i` t2

@λ

After that a}-node (theroot) is connected to the free port.
Here a numberi next to a slashed edge represents that in
fact the edge is a ‘bus’ consisting ofi edges.

Example 4 The translation�(2) of 2 is recursively ob-
tained from the inference displayed in Example 3

@

@

λ

λ

Since the translation is uniform, it is on the one hand easy
to prove properties about, but on the other hand very in-
efficient: it generates many duplicator-eraser combinations
whose net-effect will be (see the reduction rules below) the
same as that of an edge. Removing these yields the net2
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useless duplicator-
eraser combo, and
result of removing
it from �(2)

where the north port of the second application has been ro-
tated to the west, in order to highlight the correspondence
between the interaction net representation of2 and its syn-
tax tree, as displayed above.

4. Interaction net reduction

The intuitive meaning of the symbols in our interaction
net signature, as presented above, is operationalised by just
two rule schemes, forf ,g arbitrary but distinct, and a rule
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wheref ′ andg′ are either identical to or updates of the sym-
bolsf andg, respectively. An update is an increment of the
index i (if any) of either symbol, which takes place iff the
other symbol is eitherλ or tj , with i ≥ j. Instances of the
two schemes are calledx-rules.

Example 5 Annihilate, commute, and commute with up-
date, respectively, are exemplified by the followingx-rules

1

11 λ

λ

1 1

Disintegration is only half of a rule; the rule Beta is defined
by post-composing it with an annihilation of its@:

λ

@

disintegrate annihilate

@

@

=

The set B of interaction rules which interest us is defined to
be the union ofx and Beta (but not disintegrate).

Note that the effect of operators is indeed as expected:
the eraser acts as a garbage collector erasing anything it
can interact with; the duplicator acts as a copier duplicat-
ing anything it can interact with; the delimiter acts as an
extruder putting anything it can interact with into its scope.
All act locally in the sense that they affect one node at the
time. This restriction, which comes with the interaction net
framework, explains our use ofindexeddelimiters: roughly
speaking, the way in which the recursive definition of min-
imal lifting of the previous section is implemented, is to
record the superscript there as an index to the delimiter.

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representation of4. How to
retrieve this term from the net is the topic of the next section.
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5. From nets to terms

The functionM : IN→Λ mapping closed nets to closed
terms is defined in three phases, each consisting of normal-
ising w.r.t. an action first and thex-rules next. (Without
touching the root-}.) This yields the syntax tree of a unique
(derivation of a) term, which is taken as the result ofM(ν).

The three phases are named after their actions given by:

λ λ
S@ @

i

unwind loop cut

y P s

scope remove

Here theS is a new node type, the interaction of which is
governed by thex-rules, i.e.S behaves as a non-indexedti.

After the unwinding action, both abstractionsandappli-
cation have their north port as principal port. This makes



that all replication and delimiter nodes are ‘pushed toward
the leafs/variables’ (causing unsharing and extrusion) by
the subsequentx-normalisation phase, except for some up-
ward directed delimiters with index0. The latter are pushed
toward the leafs as well in the subsequent scope removal
phase, which also puts all replication nodes closer to the
leafs than the delimiter nodes. Finally, cutting the loop
causes all replication nodes to vanish by having them in-
teract with the eraser, yielding a tree proper.

Example 7 Thex-normal forms of the three phases applied
to the normal form in Example 6 are, respectively
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From the final tree it is trivial to reconstruct the term4.

Until now, we have presented a translation of namelessλ-
terms in interaction nets, provided some reduction rules on
the latter, and some more rules for retrieving aλ-term from
nets again. The examples suggest that we have implemented
β-reduction. It remains to prove this.

6. Static correctness

In order to prove correctness of our implementation, we
provide a series of three, each time more stringent, char-
acterisations of the nets reachable from translatedλ-terms,
culminating in the set ofλ-nets. This set satisfies the fol-
lowing three desirable properties:

• The translation� maps intoλ-nets.

• The set ofλ-nets is closed under B-reduction.

• The translationM mapsλ-nets toλ-terms.

This shows static correctness in the sense that B-reduction
can then be viewed as a transformation onλ-terms. In the
next section dynamic correctness will be shown in the sense

that the transformation is not just any transformation, but
that it corresponds toβ-reduction.

Unfortunately, we did not succeed yet in proving static
correctness directly using oursyntactic reduction-based
functionM. Instead, we fall back to asemanticstack-based
read-back functionN mapping nets toλ-terms in the spirit
of [10, 7], for proving static correctness. We then conclude
by noting that this read-back functionN coincides withM

on the class ofλ-nets. The reason why we think this is
unfortunate, except for causing a detour, is that the seman-
tic read-back mapN is quite complex. For this reason, we
only include proof ideas in this and the next section. (How-
ever, note that the semantic read-back is only needed in our
proof of correctness; the actual implementation does not
need it and is extremely simple to implement (just three rule
schemes).)

6.1. Directed nets

The interaction nets yielded by the function� can be
turned into (rooted) directednets in DN, by directing the
edges in the function� as:

@ iλ S i

Because of the reversely directed east port edge ofλ, there
must also be reverse versions of the symbols commuting
with λ, i.e. oft, S, O and}, which are obtained from the
above by reversing all arrows for them.

Theorem 8 � maps into DN, which is reduction closed.

The proof of the first part consists in directing the edges
in the translation in Subsection 3 such that they cross the
dashed box borders downward.

For a proof of the second part, it suffices to show that for
each interaction rule whose left-hand side can be directed,
its right-hand side can be directedwith the same directed
interface. This is easy. (Note that although the right-hand
side of the disintegrate rule cannot be directed, it combines
with @-annihilation to yield the Beta-rule, the right-hand
side of whichcanbe directed).

From the theorem it follows that the annihilation rules
for @ (on its own) andλ are superfluous, as their left-hand
sides cannot be directed.

6.2. Tree nets

The read-back function (cf. [7])N maps tree-nets (to be
defined below) to (potentially infinite) trees. It will be de-
fined in three phases, which can be intuitively understood
as follows.



Recall that the set of namelessλ-terms is context free.
That is, one can define a push-down automaton for recog-
nising namelessλ-terms. Correspondingly, the class of tree
nets will consist of nets which are context free in the sense
that they are recognised by a ‘generalised push-down au-
tomaton’ (GPDA). This automaton, which will be defined
in the first phase, is generalised in that its stack has more
structure and allows for more operations than usual PDAs.

In the second phase, we show how the walks of the au-
tomaton can be combined to form a tree, which will be the
tree read back from the net.

Recall from the first section, that a variable being bound
by a λ-abstraction in the namedλ-calculus, was rendered
in the namelessλ-calculus as an index0 matchingwith a
λ-abstraction. For nets, the corresponding notion is that of
abinding loopon aλ-node, which will be introduced in the
third phase. Just as provingβ-reduction of(λx.M)N cor-
rect involves showing that substitutingN for x in M yields
a correct term again, in the case of nets Beta-reduction will
cause cutting the binding loop and reconnecting it to the ar-
gument and one has to show that this yields a correct walk
again. This will be enforced in the third phase, by requiring
all binding loops to be transparent in the sense that they do
not modify the stack; hence once cut, they can be used to
lengthen any path.

After this intuitive explanation, we proceed with the first
phase.

6.2.1. The automaton

Any directed netν is mapped to a directed graphGν (the
‘GPDA’) as follows.

A vertex ofGν is a pair(e, σ) with e an edge ofν andσ

a stack, where the grammars for the syntactic categories of,
respectively,blocks, levelsandstacksare:

b ∈ B ::= i~δ

` ∈ L ::= b~̀

σ ∈ S ::= i~̀

Herei ranges over indices as before, andδ ranges over the
set∆ = {L, R} of directors. For a stacki((j~δ)~κ)~̀, i andj

are called itsbodyandbind indices, respectively.

Intuitively the body index of stack represents how many
λs have been visited thusfar, and the stack records all the
matching information encountered thusfar, bothquasharing
as well asquascoping.

There is an edge from(e1, σ1) to (e2, σ2) in Gν if the tar-
get ofe1 and the source ofe2 are ports of the same node in
ν, which are connected according to (the arrows in):

i

σ[(jL~δ)~̀]i σ[(jR~δ)~̀]i

σ[j~δ~̀]i

Si0

i~̀

iκ~̀i0~̀ σ[b~̀, κ]i

σ[bκ~̀]i

@

σ σ

σ

σ λ

i~̀

(Si)(Si)~̀
0

such that the stacksσ1 andσ2 satisfy the constraints spec-
ified. Here we have employed the context-notationσ[~̀]i to
denote a stackσ = jκ0, . . . , κk whereκi has been replaced
by ~̀, implicitly assuming thati ≤ k.

A read-backpath ofν is a path inGν starting at(%, 0),
where% is the unique edge from the root ofν. A read-
backstack is a stack occurring as the second component of
a vertex along a read-back path.

Example 9 We show the stacks along a read-back path
along the final net in Example 6, where we have omitted
the part of the net irrelevant to this path, for clarity.
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λ
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202010

22010

0

00

110

1010

22010
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2(02)(0L)10

202010

6.2.2. Reading back trees

Second, the graphGν is turned into a rooted treeN(ν). The
vertices ofN(ν) are the vertices(e, σ) of Gν such that

• e = %. Then the vertex(e, σ) is theroot-vertex, or

• the source ofe is the body port of aλ. Thene is called
a bodyedge and the vertex aλ-vertex, or

• the target ofe is the bind port of aλ, in which casee is
called abindedge. Then the vertex is aSi−j(0)-vertex,
for i andj the body and bind indices ofσ, or

• the target ofe is the north port of an@ (an@-vertex).

There is an edge inN(ν) from vertexv to w if there is a path
from v to w (as edges!) inGν through edges not inN(ν) (as
vertices!). Note that paths are deterministic except on@s.

Example 10 The read-back path displayed in Exam-
ple 9 witnesses that the rooted treeN(ν) looks like
λλ?(?(?(?0))), where the?s are unknowns to be determined
by the other read-back paths (they will all be1s). Note that
the0 is caused by the body and the bind index of the final
stack22010 both being2, hence their difference is0.



6.2.3. Binding loops

Third, the set TN of tree-nets is the subset of DN consisting
of netsν such that any finiteν-walk is a binding loop, where
aν-walk is a read-back path ofν which cannot be extended
since it either ends in a bind edge or it is infinite, and a walk
is said to be a binding loop if it has a cyclic transparent
suffix. Here, a path from(e1, σ1) to (e2, σ2) is

• cyclic if the source of the body edgee1 is the target of
the bind edgee2, and the body index ofσ1 is the bind
index ofσ2.

• transparentif σ̃1 vi σ̃2 with i the body index ofσ1,
and wherẽσ denotesσ with its body index replaced by
0.

Informally, transparency means thatσ1 andσ2 are identi-
cal except that the latter may have been extended with extra
(sharing) data on top of the stack (i.e. for the variable intro-
duced by the abstraction).

Example 11 The path displayed in Example 9 is a binding
loop for the suffix starting with the body edge of the second
λ encountered:

• The suffix ends with a bind edge toward that sameλ

node, and the respective body indices are both2.

• The suffix is transparent as both stacks are identical,
hence still identical after replacing the body index by
0.

To formalise a parametric notion of extension (v) it
is convenient to employ an alternative representation of
stacks, which enables a definition ofextensionof a stack
by means of substitution. The alternative representation is
obtained by replacing each0-index in any block of a stack
with a variable, and by putting a variable to the right of any
vector in it, in such a way that variables occur at most once.
(This is analogous to the fact that a term-based definition of
strings, representing letters by unary function symbols and
the tail of the string by a variable, allows for the definition
of extension (concatenation) by means of substitution.)

Thehigherthan relation on levels is generated by letting
the levelb`0, . . . , `k and levels iǹ Si all be higher than any
level in `i. For a stacki`0, . . . , `k the situation is reverse:
any level in`i is higher than the levels iǹSi. Variables
and (indices) of blocks are related according to their level.
Finally, stackextensionis then defined as

σ vϑ
i τ , if σϑ = τ for someϑ

with ϑ a syntactic-category-preservingsubstitution which is
the identity on variables lower thani. Here, we implicitly
assume ifi 6= 0, thati occurs in bothσ andτ .

Theorem 12 � maps into TN, which is B-reduction closed.

If ν →x µ one even hasN(ν) ' N(µ). The proof is
analogous to the proofs of similar results in the literature
e.g. [10, 2]:

• In the case ofx-steps one shows that there is a bijective
correspondence between the walks before and after the
step.

• In the case of a Beta-step one shows that a walk after
the step can be obtained by cutting and pasting walks
before the step. In order for this to be a proper walk,
transparency is crucial.

6.3.λ-nets

The setΛN of λ-nets is the subset of TN consisting of
nets having only finite walks. As a consequence the read-
back function yields finite terms, i.e.N : ΛN→Λ.

Theorem 13 � maps intoΛN, which is B-reduction closed.

6.4 M'N

To prove this isomorphism, we show

N(ν) ' N(M(ν)) (1)

N(µ) ' µ (2)

for everyλ-netν, and any tree-likeλ-netν, from which we
conclude sinceM(ν) is tree-like by construction.

To show (1) it suffices to show thatN is invariant for the
interactions in each of the three phases ofM. First we show
thatM is well-defined, since each of its three phases is.

Proposition 14 →x is complete (confluent and terminat-
ing) onΛN, also after y, P, s, and it preservesN.

Let us sketch why this proposition holds. Completeness
holds since confluence holds for any interaction net by de-
sign, and termination follows from read-back paths being
finite.

Preservation ofN holds for the first phasey, since in it
onlyx-rules are applied, and these were already seen to pre-
serveN above.

Since after the first phase a read-back path is a path
through the net which is assumed to be inx-normal form, it
consists of a number of edgesfromprincipal ports, followed
by a number of edgesto principal ports. By the assumption
that the read-back path does not get stuck, the edgesfrom
principal ports cannot arise from arrows alongtSi- or Oi-
nodes, as these require structure which is not present (on
the stack). Hence, a read-back path first visits a number of
@-, λ- andt0-nodesfrom their principal port, followed by



visits toti- andOi-nodesto their principal ports. As a con-
sequence, the net is tree-like in the sense that a read-back
path nevers visits a node twice, for this would require pass-
ing a node with in-degree greater than1, hence aOi-node
but then the tail of the path would be a cycle consisting only
of edgesto the principal port, hence either the path gets
stuck, if someti-node is on the cycle since passing these
decrements the (finite) height of the stack, or it is infinite,if
only Oi-nodes are on the cycle, both of which are impossi-
ble by assumption. Now to show invariance ofN holds for
the second phaseP, note that mapping all indices to0 pre-
serves read-back. Essentially, this holds since tree-likeness
implies that the vertices associated to bind edges have as
indexi, the difference between the ordinary and the reverse
occurrences oft-nodes on their binding loop. Hence letting
S have the same semantics ast0, the result follows sincei
is easily seen to be invariant under→x.

Finally, to show invariance in the third loop-cutting-
phases and of (2) the invariant above suffices, giving as
semantics ofentering}-nodes, the semantics of bind edges.

7 Dynamic correctness

From the above, we know thatλ-nets are closed under
B-reduction. It remains to show that this reduction imple-
mentsβ-reduction and not some other transformation onλ-
terms. The proof is along standard lines of reasoning in the
area of explicit substitutions [1], showing that unwinding
a Beta-step on aλ-net ν unwinds to a Beta-multistep on
the unwinding ofν. As for explicit substitution calculi, to
show commutation of Beta-steps would involve showing a
variant of the substitution lemma, arising from the ‘critical
pairs’ betweenβ-redexes (beforey) and thex-steps (of y).
Instead, we show thatN commutes with Beta-steps. This is
easier (the hard work having been done in Section 6), since
N is more semantic thanM.

Proposition 15 If ν ◦−→Beta µ and if theλ-netν unwinds
to ν′, thenν′ can be unwound further to aλ-net ν′′ such
thatν′′ ◦−→Beta µ′′ with N(µ) ' N(µ′′).

By Section 6, it follows that ifν →Beta µ, then�(ν) ◦−→Beta

µ′, for some netµ′ with N(µ) ' N(µ′). Moreover, also
by the previous section, applyingM to µ′ yields a tree-like
unwound net isomorphic toM(µ).

Roughly speaking, an arbitrary B-reduction on nets
projects onto a reduction between tree-like unwound nets,
such that each of its ‘steps’ consists of a multi-Beta-steps
followed by the three phases ofM, i.e. by substitution nor-
malisation. Correctness follows, since on tree-like unwound
trees this is just the usually procedure for Bourbaki-graphs.

8. Related and further work

Since there is a lot of related and further work, we only
briefly touch upon some issues.

8.1. Optimal vs. efficient

Our calculus is an optimal implementation of theλ-
calculus in the sense of [11], i.e. allβ-redexes having the
same Lévy label in aλ-term along a reduction will be rep-
resented by the same Beta-redex in the correspondingλ-net.
A prototype implementation, which we have dubbedlamb-
dascope, shows that out-of-the-box, our calculus performs
as well as theoptimizedversion of the reference optimal
higher-order machine BOHM (see [2]) (hence outperforms
the standard implementations of functional programming
languages on the same examples as BOHM does).

However, being optimal does not necessarily imply be-
ing the most efficient. Indeed, the presented calculus is not
optimised, so it would be interesting to try to apply existing
optimisation techniques to it.

For instance, extruding a scope over a closedλ-term
costs time linear in the size of the term in our implemen-
tation, whereas one observes that in such cases it would be
safe to simply remove the scope. In order to be able to im-
plement this, one should be able to observe whether aλ-
abstraction is closed or not. In the approach of [13] this is
possible, explaining in some sense its efficiency. Since at
first sight, both the present approach and that of [13] seem
to be compatible, it would be interesting to attempt to unify
them. More generally, a goal worthwhile pursuing is to try
to lift standard first-order optimization techniques toλ-nets.

For another instance, our calculus is based on the un-
typedλ-calculus whereas most of the timeλ-terms will be
typable. One would expect a better translation function�

taking advantage of the type information.

8.2. Disconnected vs. connected scopes

Since in our approach scope delimiter nodes are not di-
rectly connected (by an explicit edge or via other scope
nodes) to their matching openingλ-abstraction node, there
is no way to remove them locally when performing aβ-
step. However, simply removing theλ-abstraction would
leave dangling the closing scope nodes matching it. Our so-
lution was to not remove the scope at all, instead mimicking
the scope opening effect of the disappearedλ-abstraction
by adjoining explicit scope opening operators, i.e. thet0-
nodes in the disintegrate rule in Section 4.

Another solution would be tomake the scope nodes
matching aλ-abstraction local to it, by explicitly connect-
ing the formers to the latter. Then they can be removed



upon performing aβ-reduction. This is the approach taken
in [13].

8.3. The ideal explicit substitution calculus?

Although we do not show it here, we claim the pre-
sented implementation of theλ-calculus has all properties
one might desire of an explicit substitution calculus, safe
being atermcalculus.

8.4. Scoping first vs. replication first

Existing work on the optimal implementation of theλ-
calculus, e.g. [10, 7, 2], has focused on dealing with ex-
plicit local replication, viewing the explicit scope operators
(brackets and croissants) only as a necessary evil needed to
implement the so-called oracle. Instead, we have followed
the opposite route as was suggested in [8] There, an exten-
sion of theλ-calculus with an explicit global scope operator
called λwas introduced, leaving replication implicit. The
λ-operator is a generalisation of the generalised successor

of [4], which in turn is a generalisation of the successor on
De Bruijn indices [5]. The λ-operator corresponds to at-
node here. In [15], the global scope operatorλis made
local, still leaving replication implicit. Roughly speaking,
this amounts to making scope extrusion and in particular the
inductive definition of minimal lifting of Section 2 local,
leading to the introduction ofindexedgeneralised succes-
sor (and predecessor) nodes, corresponding to theti-nodes
(and their inverses) here.

The advantage of following this route is that once ex-
plicit (local) scoping is in place, adjoining explicit replica-
tion both in its local [14] and global version proceeds anal-
ogous [12] to the way replication is made explicit and local
in the first-order case.

8.5. Conclusion

We have presented an implementation of theλ-calculus
in the spirit of the calculational approach of [5], and which
is fully in the traditions of calculi with explicit substitution
and of graph implementations of term rewriting. As far as
we know it is the first such calculus which is optimal in
the sense of Lévy. Moreover, as far as we know this is the
first optimal calculus featuring only a single scope delim-
iter node instead of the usual two, croissants and brackets,
which by force eliminates the problems which are caused by
having more than one scope node [2, Chapter 9]. The calcu-
lus is simple, half a page suffices (see Section 4) to describe
it, and completely reduction-based (no semantic read-back
in the implementation). As a consequence it can be trivially
implemented in any (modern) programming language.
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