
Comparing the succinctness of monadic query languages
over finite trees

Martin Grohe and Nicole Schweikardt
�

Laboratory for Foundations of Computer Science
University of Edinburgh, Scotland, U.K.

email:
�
grohe|v1nschwe � @inf.ed.ac.uk

Abstract. We study the succinctness of monadic second-order logic and a vari-
ety of monadic fixed point logics on trees. All these languages are known to have
the same expressive power on trees, but some can express the same queries much
more succinctly than others. For example, we show that, under some complexity
theoretic assumption, monadic second-order logic is non-elementarily more suc-
cinct than monadic least fixed point logic, which in turn is non-elementarily more
succinct than monadic datalog.
Succinctness of the languages is closely related to the combined and parameter-
ized complexity of query evaluation for these languages.

Keywords: Finite Model Theory, Monadic Second-Order Logic, Fixed Point Logics, � -Calculus,
Monadic Datalog, Tree-like structures, Succinctness

1. Introduction

A central topic in finite model theory has always been a comparison of the expres-
sive power of different logics on finite relational structures. In particular, the expres-
sive power of fragments of monadic second-order logic and various fixed-point log-
ics has already been investigated in some of the earliest papers in finite model theory
[Fag75,CH82]. One of the main motivations for such studies was an interest in the ex-
pressive power of query languages for relational databases.

In recent years, the focus in database theory has shifted from relational to semi-
structured data and in particular data stored as XML-documents. A lot of current re-
search in the database community is concerned with the design and implementation
of XML query languages (see, for example, [FSW00,HP00,GK02] or the monograph
[ABS99] for a general introduction into semi-structured data and XML). The languages
studied in the present paper may be viewed as node-selecting query languages for XML.
They all contain the core of the language XPath, which is an important building block of
several major XML-related technologies. Recently, monadic datalog has been proposed
as a node-selecting query language with a nice balance between expressive power and
very good algorithmic properties [GK02,Koc03].

XML-documents are best modelled by trees, or more precisely, finite labelled or-
dered unranked trees. It turns out that when studying node-selecting query languages for

�
supported by a fellowship within the Postdoc-Programme of the German Academic Exchange
Service (DAAD)

XML-documents, expressive power is not the central issue. Quite to the contrary: Neven
and Schwentick [NS02] proposed to take the expressive power of monadic second-
order logic (MSO) as a benchmark for node-selecting XML-query languages and, in
some sense, suggested that such languages should at least have the expressive power of
MSO. However, even languages with the same expressive power may have vastly dif-
ferent complexities. For example, monadic datalog and MSO have the same expressive
power over trees [GK02]. However, monadic datalog queries can be evaluated in time
linear both in the size of the datalog program and the size of the input tree [GK02],
and thus the combined complexity of monadic datalog is in polynomial time, whereas
the evaluation of MSO queries is PSPACE complete. The difference becomes even more
obvious if we look at parameterized complexity: Unless PTIME �� NP, there is no algo-
rithm evaluating a monadic second-order query in time ��� size of query ����� size of tree �
for any elementary function � and polynomial � [FG03]. Similar statements hold for
the complexity of the satisfiability problem for monadic datalog and MSO over trees.
The reason for this different behaviour is that even though the languages have the same
expressive power on trees, in MSO we can express queries much more succinctly. In-
deed, there is no elementary translation from a given MSO-formula into an equivalent
monadic datalog program. We also say that MSO is non-elementarily more succinct
than monadic datalog. Just to illustrate the connection between succinctness and com-
plexity, let us point out that if there was an elementary translation from MSO to monadic
datalog, then there would be an algorithm evaluating a monadic second-order query in
time ��� size of query ���	� size of tree � for an elementary function � and a polynomial � .

In this paper, we study the succinctness (in the sense just described) of a variety of
fixed point logics on finite trees. Our main results are the following:

1. MSO is non-elementarily more succinct than monadic least fixed point logic MLFP
(see Theorem 2). Unfortunately, we are only able to prove this result under the odd,
but plausible complexity theoretic assumption that for some
��� , NP is not con-
tained in DTIME ��� log ����������� � , where log ����� denotes the
 times iterated logarithm.

2. MLFP is non-elementarily more succinct than its � -variable fragment MLFP � (see
Corollary 3).

3. MLFP � is exponentially more succinct than the full modal � -calculus, that is, the
modal � -calculus with future and past modalities (see Theorem 3, Example 2, and
Theorem 4).

4. The full modal � -calculus is at most exponentially more succinct than stratified
monadic datalog, and conversely, stratified monadic datalog is at most exponen-
tially more succinct than the full modal � -calculus (see Theorem 7 and 8). Fur-
thermore, stratified monadic datalog is at most exponentially more succinct than
monadic datalog (see Theorem 6).
The exact relationship between these three languages remains open.

Of course we are a not the first to study the succinctness of logics with the same ex-
pressive power. Most known results are about modal and temporal logics. The motiva-
tion for these results has not come from database theory, but from automated verifica-
tion and model-checking. The setting, however, is very similar. For example, Kamp’s
well know theorem states that first-order logic and linear time temporal logic have

the same expressive power on strings [Kam68], but there is no elementary translation
from first-order logic to linear time temporal logic on strings. Even closer to our re-
sults, monadic second-order logic and the modal � -calculus have the same expressive
power on (ordered) trees, but again is well-known that there is no elementary trans-
lation from the former to the latter. Both of these results can be proved by simple
automata theoretic arguments. More refined results are known for various temporal
logics [Wil99,AI00,AI01,EVW02]. By and large, however, succinctness has received
surprisingly little attention in the finite model theory community. Apart from automata
theoretic arguments, almost no good techniques for proving lower bounds on formula
sizes are known. A notable exception are Adler and Immerman’s [AI01] nice games for
proving such lower bounds. Unfortunately, we found that these games (adapted to fixed
point logic) were of little use in our context. So we mainly rely on automata theoretic
arguments. An exception is the, complexity theoretically conditioned, result that MSO
is non-elementarily more succinct than MLFP. To prove this result, we are building on
a technique introduced in [FG03].

The paper is organised as follows: In Section 2 we fix the basic notations used
throughout the paper. Section 3 concentrates on the translation from MSO to MLFP.
In Section 4 we present our results concerning the two-variable fragment of MLFP and
the full modal � -calculus. In Section 5 we concentrate on monadic datalog, stratified
monadic datalog, and their relations to finite automata and to MLFP. Finally, Section 6
concludes the paper by pointing out several open questions.

Due to space limitations, we had to defer detailed proofs of our results to the full
version of this paper [GS03].

2. Preliminaries

2.1. Basic Notations. Given a set � we write ��� to denote the set of all finite strings
over � , and we use � to denote the empty string. We use � to denote the set ���	�
� �	������
of natural numbers. We use ��� to denote the logarithm with respect to base 2. With a
function � that maps natural numbers to real numbers we associate the corresponding
function from � to � defined by ���� ������� ��� . For simplicity we often simply write
����� � instead of � ����� ��� .

The function Tower ����� � is inductively defined via Tower ��� ��� � and
Tower ����� � � � Tower �! � , for all �#"$� . I.e., Tower ��� � is a tower of 2s of height � .

We say that a function �%�&�'�(� has bound ���*) �,+ Tower -�. ��� �/) �10 , for some
function �2�3�4�5� , if there is a function 67"2. ��� � and a)#8#"�� such that for all
) �9) 8 we have ���*) ��+ Tower -/6 �/) �10 . Note that, in particular, every elementary
function � has bound ���*) �:+ Tower - . �*) � 0 . Indeed, for every elementary function �
there is a �$"$� such that, for all �;"#� , ��� � � is less than or equal to the tower of 2s of
height � with an � on top.

2.2. Structures. A signature < is a finite set of relation symbols and constant symbols.
Each relation symbol =>"?< has a fixed arity ar �/= � . A < -structure @ consists of a setACB

called the universe of @ , an interpretation D B " ACB of each constant symbol D:"E< ,
and an interpretation = B'F � ACB � ar �!G � of each relation symbol =H"7< . All structures
considered in this paper are assumed to have a finite universe.

The main focus of this paper lies on the class Trees of finite binary trees. Precisely,
finite binary trees are particular structures over the signature

< Trees � � � Root � stChild � � ndChild � Has-No- stChild � Has-No- � ndChild
�
where Root, Has-No- stChild, Has-No- � ndChild are unary relation symbols and stChild,
� ndChild are binary relation symbols. We define Trees to be the set of all < Trees-structures�

that satisfy the following conditions:

1.
A���� � � � � and for every string �
 " A�� with
 " �
� � we also have � " A�� .

2. Root
�

consists of the empty string � .
3. stChild

�
consists of the pairs - �
��� 0 , for all � ," A�� .

4. � ndChild
�

consists of the pairs - �
��� � 0 , for all � � " A�� .
5. Has-No- stChild

�
consists of all strings �," A�� with � �" A�� .

6. Has-No- � ndChild
�

consists of all strings � " A�� with � � �" A�� .

For
� " Trees and � " A�� we write

�
	
to denote the subtree of

�
with root � .

A schema � is a set of unary relation symbols each of which is distinct from
Has-No- stChild, Has-No- � ndChild, Root. A � -labelled tree is a �/< Trees � � � -structure
consisting of some

� " Trees and additional interpretations �%F7A�� for all symbols
>"�� . We sometimes write label ��� � to denote the set ��4"��>��� "� � of labels at
vertex � in

�
.

We identify a string � � � 8������ � ����� of length � ��� � � � over an alphabet �
with a � -labelled tree

���
in the following way: We choose � to consist of a unary rela-

tion symbol � for each letter ! " � , we choose
�"�

to be the (unique) element in Trees
with universe

A��$# � ��� � � � ����� ���%� , and we choose �$#� � � � � �&� � � ! ,
for each ! " � . This corresponds to the conventional representation of strings by
structures in the sense that ' A��(# � stChild � �) �(#� � �+*-,/. is isomorphic to the structure
'�� � ��� ��� �10 � Succ � �2 �� �3��*-, . where Succ denotes the binary successor relation on
� �	� ��� � �10 and �� consists of all positions of � that carry the letter ! . When reason-
ing about strings in the context of first-order logic, we sometimes also need the linear
ordering 4 on ���	� ����� �10� (respectively, the transitive closure of the relation stChild).
In these cases we explicitly write FO �34 � rather than FO to indicate that the linear or-
dering is necessary.

XML-documents are usually modelled as ordered unranked trees and not as binary
trees. Here ordered refers to the fact that the order of the children of a vertex is given.
However, a standard representation of ordered unranked trees as relational structures
uses binary relations stChild � Next-Sibling and unary relations Root, Leaf, Last-Sibling
(for details, see [GK02]) and thus essentially represents ordered unranked trees as bi-
nary trees. Therefore, all our results also apply to ordered unranked trees.

2.3. Logics and Queries. We assume that the reader is familiar with first-order logic,
for short: FO, and with monadic second-order logic, for short: MSO (cf., e.g., the text-
books [EF99,Imm99]). We use FO �*< � and MSO �/< � , respectively, to denote the class of
all first-order formulas and monadic second-order formulas, respectively, of signature
< . We write 5 ��6 � ��� ���36
7 � 8 � ��� ���38&9 � to indicate that the free first-order variables of the
formula 5 are 6 � � �����:6 7 and the free set variables are 8 � � �����:8 9 . Sometimes we use 6
and 8 as abbreviations for sequences 6 � ��� ���:6(7 and 8 � ��� ���38&9 of variables.

A formula 5 ��6 � of signature < defines the unary query which associates with every
< -structure @ the set of elements !E" A,B such that @ � � 5 �2! � , i.e., @ satisfies 5 when
interpreting the free occurrences of the variable 6 by the element ! . A sentence 5 of
signature < (i.e., a formula that has no free variables) defines the Boolean query that
associates the answer “yes” with all < -structures that satisfy 5 and the answer “no”
with all other < -structures.

Apart from FO and MSO we will also consider monadic least fixed point logic
MLFP which is the extension of first-order logic by unary least fixed point operators.
We refer the reader to [EF99] for the definition of MLFP (denoted by FO(M-LFP)
there).

2.4. Formula size and succinctness. In a natural way, we view formulas as finite trees,
where leaves correspond to the atoms of the formulas and inner vertices correspond to
Boolean connectives, quantifiers, and fixed-point operators. We define the size � � 5 � � of
a formula 5 to be the number of vertices of the tree that corresponds to 5 .

Note that this measure of formula size is a uniform cost measure in the sense that it
accounts just 1 cost unit for each variable and relation symbol appearing in a formula, no
matter what its index is. An alternative is to define the size of a formula as the length of
a binary encoding of the formula. Such a logarithmic cost measure is, for example, used
in [FG03]. Switching between a uniform and a logarithmic measure usually involves a
logarithmic factor.

Definition 1 (Succinctness). Let
� � and

�
� be logics, let � be a class of functions

from � to � , and let � be a class of structures.
We say that

� � is � -succinct in
�
� on � if there is a function � "�� such that for

every formula 5 � " � � there is a formula 5 � "
�
� of size � � 5 � � �&+ ���:� � 5 � � � � which is

equivalent to 5 � on all structures in � . �
Intuitively, a logic

� � being � -succinct in a logic
�
� means that � gives an upper

bound for the size of
� � -formulas needed to express all of

�
� . This definition may seem

slightly at odds with the common use of the term “succinctness” in statements such as
“
�
� is exponentially more succinct than

� � ” meaning that there is some
�
� -formula

that is not equivalent to any
� � -formula of subexponential size. In our terminology, we

would rephrase this last statement as “
� � is not ��� ��� � -succinct in

�
� ” (here we interpret

subexponential as ��� ����� , but of course this is not the issue). The reason for defining � -
succinctness the way we did is that it makes the formal statements of our results much
more convenient. We will continue to use statements such as “

�
� is exponentially more

succinct than
� � ” in informal discussions.

Example 1. MLFP is 	 �*) � -succinct in MSO on the class of all finite structures, be-
cause every formula
 LFP �� ��5 �)6 �:8 � �&� � ��� ��� � is equivalent to �(8 - 8�������6�� 8 6��
5 �)6 �:8 � �&� � � 0 . �

3. From MSO to MLFP

By the standard translation from MSO-logic to tree automata (cf., e.g., [Tho96]) one
knows that every MSO-sentence � can be translated into a nondeterministic tree au-
tomaton with Tower - 	 � � � � � � � 0 states that accepts exactly those labelled trees that sat-
isfy � . This leads to

Theorem 1 (Folklore). MSO-sentences are Tower - 	 �*) � 0 -succinct in MLFP on the
class of all labelled trees. �
To show that we cannot do essentially better, i.e., that there is no translation from MSO
to MLFP of size Tower -�. �*) � 0 we need a complexity theoretic assumption that, how-
ever, does not seem to be too far-fetched. Let SAT denote the NP-complete satisfia-
bility problem for propositional formulas in conjunctive normal form. Until now, all
known deterministic algorithms that solve SAT have worst-case complexity ��� ����� (cf.,
[DGH

�
02]). Although not answering the P vs. NP question, the exposition of a deter-

ministic algorithm for SAT with worst-case complexity + � � � � would be a surprising
and unexpected breakthrough in the SAT-solving community.

In the following, we write �!� ����� to denote the
 times iterated logarithm, inductively
defined by �!� � � � ��� � � � ��� ��� � and �!� ��� � � � � � ��� � �!� �/��� ����� ��� � � . Moreover, we we write
��� � to denote the “inverse” of the Tower function, that is, the (unique) integer valued
function with Tower �*�!� � ��� � 0 � 4 �;+ Tower �/��� � ��� � � .
Theorem 2. Unless SAT is solvable by a deterministic algorithm that has, for every

 ">� , time bound � � �1� � � � � ��� ����� (where � is the input formula and � the number of
propositional variables occurring in �), MSO is not Tower - . �/) � 0 -succinct in MLFP
on the class of all finite strings. �
The overall proof idea is to assume that the function � specifies the size of the transla-
tion from MSO to MLFP and to exhibit a SAT-solving algorithm which

– constructs a string � that represents the SAT-instance � ,
– constructs an MSO-formula � ��� � of extremely small size that, when evaluated in
� , specifies a canonical satisfying assignment for � (if � is satisfiable at all),

– tests, for all MLFP-formulas � ��� � of size + ��� � � � � � � , whether � specifies a satis-
fying assignment for � .

Before presenting the proof in detail we provide the necessary notations and lemmas:
It is straightforward to see

Lemma 1. There is an algorithm that, given an MLFP-formula � ��� � , a string � , and
a position � in � , decides in time � ����� �
	�	 ��	�	 � whether � � � � ��� � . �
Let us now concentrate on the construction of a string � that represents a SAT-instance� and of an MSO-formula � ��� � that specifies a canonical satisfying assignment of �
(provided that � is satisfiable at all). Since we want � to be extremely short, we can-
not choose � to be the straightforward string-representation of � . Instead, we use the
following, more complicated, representation of [FG03]:

For all � � let � � �� �	�
� <1> � </1> ��� ��� <h> � </h> � . The “tags” <i> and
</i> represent single letters of the alphabet and are just chosen to improve readability.
For every � � let

� ��� � be the length of the binary representation of the number �10 ,
i.e.,

� �/� � � � , � � � � , and
� � � � ��� �!� � �10 ��� � , for all � � � . By bit �
 � � � we

denote the
 -th bit of the binary representation of � , i.e., bit �
 � � � is 1 if � �� ��� is odd, and
bit �
 � � � is � otherwise.
We encode every number � " � by a string � ��� � over the alphabet � , where � � � �
is inductively defined as follows: � � �/� � � � <1></1>, and

����������� � <1> bit �! #"$�&%('�� bit �)'*")��%('��,+-+.+ bit �!/0�����1%2'3"$�&%('�� </1> "

for � � . For � � � we let � ��� � � � <h></h> and

��� ����� � � <h></h> ����� � �! *� bit �! "��&%('�� +-+-+ </h> ����� � �!/ �����1%('�� bit �!/0�����1%('*"$�&%('�� </h> "
for � � . Here empty spaces and line breaks are just used to improve readability.

To encode a CNF-formula � by a string we use an alphabet � � that extends � by the
symbols � ��0,��� and a number of additional tags. Let
 "#� and let 8 � be a propositional
variable. The literal 8 � is encoded by the string

� ��8 � �?� � <lit> � �
 � � </lit> �
and the literal � 8 � is encoded by � � � 8 � �?� � <lit> � ��
 �
0 </lit> �
A clause

� � �
	 � � ����� � 	�� of literals is encoded by

� � � � � � <clause> � � 	 � � ����� � � 	� � </clause> �
A CNF-formula � � � � � � ����� � ���

is encoded by the string

� ��� �?� � <cnf> � � � � � ����� � � ��� � </cnf> �
We write CNF ��� � to denote the class of all CNF-formulas the propositional variables of
which are among 8�8 � �����:8 ����� . To provide the “infrastructure” for specifying a truth
assignment, we use the string

��� �����3"����."���� � � � � � <ass><val> ��� �! ��� </val> +-+.+
<val> ��� ���&%('���� </val></ass> �

Remark 1. There is a 1–1-correspondence between assignments � � � ��� "����-"���� � � ����
true " false � , on the one hand, and sets of positions of � ��8 8 � �����:8 ����� � that carry the

letter � , on the other hand: Such a set specifies the assignment "! that, for each
 4 � ,
maps the variable 8 � to the value true iff the � -position directly after the substring � �
 �
in � ��8 8 ����� �38 ���%� � belongs to . Conversely, a given assignment specifies the set
$# consisting of exactly those � -positions of � ��8 8 ����� �38 ���%� � that occur directly after
a substring � ��
 � where �)8 � � � true. �
Finally, we encode a formula �;" CNF � � � by the string

� ��� ��� � � � � ��� � � �)8 8 � �����:8 ����� � �
� �!� ��� � is the string � that we will furtheron use as the representative of a SAT-
instance � . We use the following result of [FG03]:

Lemma 2.

(a) There is an algorithm that, given � " � and �'" CNF ��� � , computes (a binary
representation of) the string � ��� ��� � in time 	 - � � �*�!� � � � �/��� � � � � �:� � � � � � � � 0 (cf.,
[FG03, Lemma 9]).
The string � ��� ��� � has length � � �!� ��� ��� � 	 - � � �*�!� � � � � � � � �1� ��� � � 0 .

(b) There is an algorithm that, given � "$� , computes (the binary representation of) a
FO �34 � -formula 5 �&% � in time 	 -�� � �!� � 0 , such that for all � + Tower ��� � , for all� " CNF � � � , and for all sets of � -positions in the string � ��� ��� � we have

� ��� ��� � � � 5 �) � iff ! is a satisfying assignment for �
(cf., [FG03, Lemma 10]). The formula 5 �'%�� has size1 � � 5 �'%���� � � 	 ��� � . �

1 In [FG03], an additional factor (*),+ occurs because there a logarithmic cost measure is used
for the formula size, whereas here we use a uniform measure (cf., Section 2.4).

Given a CNF ��� � -formula � and its representative � ��� ��� � , we now specify a canonical
satisfying assignment of � , provided that � is satisfiable at all. As observed in Remark 1,
every assignment � �+8 8 ��� ���38 ���%� �� � true � false corresponds to a set # of
positions in � �!� ��� � that carry the letter � . �# , again, can be identified with the 0-1-
string of length � � ��� ��� ��� that carries the letter 1 exactly at those positions that belong
to $# . Now, the lexicographic ordering of these strings gives us a linear ordering on the
set of all assignments � ��8 8 ����� �38 ���%� C� � true � false . As the canonical satisfying
assignment of � we choose the lexicographically smallest satisfying assignment.

Lemma 3. There is an algorithm that, given �;" � , computes (the binary representa-
tion of) an MSO-formula � � � � in time 	 - � � �!� � 0 , such that for all � + Tower ��� � , for
all � " CNF � � � , and for all positions � of � �!� ��� � that carry the letter � , we have

� ��� ��� � � � � ��� � iff in the lexicographically smallest satisfying assignment
for � , the propositional variable corresponding to posi-
tion � is assigned the value true.

The formula � ��� � has size � � � � � � 	 ��� � . �
Finally, we are ready for the Proof of Theorem 2:

Proof of Theorem 2.
Let �#� ��� � be a function such that there is, for every MSO-formula � ��� � , a MLFP-
formula � ��� � of size � � � � � + ���:� � � � � � which defines the same query as � on the class of
all finite strings (recall that such an � does indeed exist, because MSO and MLFP have
the same expressive power over the class of finite strings).
Consider the algorithm displayed in Figure 1, which decides if the input formula � is
satisfiable.
The correctness of this algorithm directly follows from Lemma 3 and from the fact that
at least one of the formulas � ��� � of size + ��� � � � � � � defines the same query as � ��� � .

It remains to determine the worst-case running time of the algorithm. Let � be an
input CNF-formula for the algorithm, let � be the number of propositional variables of� , and let � � � �!� � � � � .
The steps 1–4 of the algorithm will be performed within a number of steps polynomial
in � � �1� � , and the MSO-formula � ��� � produced in step 4 will have size � � � � � + D � � ,
for a suitable constant D:" � (cf., Lemma 2 (a) and Lemma 3).
The loop in step 5 will be performed for ��� ��� � �
	�	 ���#	�	 � � � � � � �
	�	 ��� 	�	 ��� times, for a suitable
constant D � " � . To see this, note that formulas of length + ��� � � � � � � use at most
���:� � � � � � different first-order variables and at most ���:� � � � � � different set variables.
I.e., these formulas can be viewed as strings of length ���:� � � � � � over an alphabet of
size D � � � � ��� � � � � � � , for a suitable constant D � "7� . Therefore, the number of such
formulas is + ��D � � � � ��� � � � � � � � � �
	�	 ��� 	�	 � + �	� � � � �
	�	 ��� 	�	 � � � � � � �
	�	 ��� 	�	 ��� .
Each performance of the loop in step 5 will take a number of steps polynomial in

� � ��� ��� ��� � � � �
	�	 ��� 	�	 ��� + �/D�
 � � � �*�!� � � � � � � � � � � �� � � � � � � �
for suitable constants D�
 �1D�� "9� (cf., Lemma 1 and Lemma 2 (a)). Altogether, for
suitable constants D ����"$� , the algorithm will perform the steps 1–6 within

� � � � � � � � � � � � � � � � � � � � ���

Input: a SAT-instance � in CNF

1. Count the number � of propositional variables occurring in � , and
modify � in such a way that only the propositional variables � �*"����-"���� � � occur in it.

2. Compute + � � (*)��*��� � , i.e., choose +���� such that Tower � +�% '���� �
	 Tower � + � .
3. Construct the string ��� ��� " �#� that represents � (see Lemma 2 (a)).
4. Construct an MSO-formula � � �� � that has the following property:

Whenever � is a position in � � ��� "'�#� that carries the letter � , we have

� � ��� "'�#��� ��� � ���,� iff in the lexicographically smallest satisfying assignment
for � , the propositional variable corresponding to posi-
tion � is assigned the value true

(cf., Lemma 3).
5. For all MLFP-formulas �(�� � of size ��� ������	�� ����� � ����� � do:

(a) Initialise the assignment � � ��� .
(b) For all positions � in ��� ��� "'� � that carry the letter � do

check whether ��� ��� "'�#��� ���(���,� ;
if so, then insert the propositional variable corresponding to � into � .

(c) Check whether � is a satisfying assignment for � ;
if so, then STOP with output “ � is satisfiable via assignment � ”.

6. STOP with output “ � is not satisfiable”.

Fig. 1. A SAT-solving algorithm.

steps.
Now let us suppose that � has bound ���*) � + Tower - . �*) � 0 . From Lemma 4 be-

low we then obtain that our SAT-solving algorithm has, for every
 " � , time bound
� � �1� � � � ����������� . This finally completes the proof of Theorem 2. �

Lemma 4. Let ��� � � � be a function with bound ���/) � + Tower - . �*) � 0 , and let
D ����"#� . For every
 "$� there is an � 8,"$� such that for all � � � 8 we have

� + �"!�#�+�(*) � �����%$ +�(*)&!'� �(#�+�(*) � �������%$)	 (*)+*�,.- ����� � �

4. The Two-Variable Fragment of MLFP and the Full Modal � -Calculus

Defining the 2-variable fixed-point logics requires some care: MLFP � is the fragment of
MLFP consisting of all formulas with just 2 individual variables and no parameters in
fixed point operators, i.e., for all subformulas of the form
LFP �� � 5 � � � � , 6 is the only
free first-order variable of 5 . This is the monadic fragment of the standard 2-variable
least fixed-point logic logic (cf. [GO99]). Without the restriction on free variables in
fixed-point operators, we obtain full MLFP even with just two individual variables (we
prove this in the full version of this paper [GS03]).

We first note that MLFP � , and actually FO � , the two variable fragment of first-
order logic, is doubly exponentially more succinct than nondeterministic automata on
the class of all finite strings:

Example 2. Let � � � � � �1= � � ��� ��� � and

5 � � � �
6�� � 6E� � � - = � �
��
��� � �) � 6�� � � � 0�� �

We claim that every nondeterministic finite automaton accepting precisely those strings
over alphabet �
	 that satisfy 5 has at least � ��� states. To see this, for every F
��� � ����� � ��� , we define strings 8 � �� � and � � �� � such that

–
� � � ��� � � A � � ��� � and =�� � ��� � � A � � ��� �

– For all � "� there exists an 6 " A � � ��� � and an �E" A � � ��� � such that
� � �
 � 6 " � � ��� �� � �
 � ��" � � ��� �� .

Let � � �� � � �7� � 8 � �� � � � � � � be the concatenation of 8 � �� � and � � � � � . Then� � �� � � � � � 5 ��� F � � Clearly, a nondeterministic finite automaton accept-
ing precisely those strings � � �� � � � with F � needs at least � ��� states. �
Let us return to binary trees now. Following Vardi [Var98], we define the full modal � -
calculus FL on binary trees as follows: For each schema � , an FL -formula of schema
� is either:

– true, false, , or � , where " � � � Root � Has-No- stChild � Has-No- � ndChild ;
– � � � � � or � � � � � , where � � and � � are FL -formulas of schema � ;
– 8 , where 8 is a propositional variable;
– '/= . � or
 =�� � , where =4"7� stChild � � ndChild � stChild ��� � � ndChild ��� and �

is an FL -formula of schema � ;
– ��8 � � or !�8 � � , where 8 is a propositional variable and � is an FL -formula of

schema � .

The semantics of FL is defined in the usual way interpreting the binary relations over
trees. The following is starightforward:

Proposition 1. FL is 	 �*) � -succinct in MLFP � .
Our next result is that there also is a reverse translation from MLFP � to FL which only
incurs an exponential blow-up in size:

Theorem 3. MLFP � is � poly � � � -succinct in FL on the class of labelled trees. �
Theorem 4 (Vardi [Var98]). For every formula � of the full modal � -calculus FL
there is a nondeterministic tree automaton of size � poly �
	�	 ��	�	 � that accepts exactly those
labelled trees in which � holds at the root. �
As a matter of fact, Vardi [Var98] proved a stronger version of this theorem for infinite
trees and parity tree automata. But on finite trees, a parity acceptance condition can
always be replaced by a normal acceptance for finite tree automata.
The Theorems 3 and 4 directly imply

Corollary 1. For every MLFP � -formula 5 ��6 � there is a nondeterministic tree automa-

ton of size � � poly ��" " #$" " � that accepts exactly those labelled trees in which 5 holds at the
root. �

5. Monadic Datalog and Stratified Monadic Datalog

We assume that the reader is familiar with datalog, which may be viewed as logic
programming without function symbols (cf., e.g., the textbook [AHV95]). A datalog
program is monadic if all its IDB-predicates (i.e., its intensional predicates that appear
in the head of some rule of the program) are unary. In this paper we restrict attention to
monadic datalog programs that are interpreted over labelled trees. A monadic datalog
program of schema � may use as EDB-predicates (i.e., extensional predicates which
are determined by the structure the program is interpreted over) the predicates in < Trees,
the predicates in � , and a predicate � for every " � which is interpreted as the
complement of . We use IDB ��� � to denote the set of IDB-predicates of � , and we
write MonDatalog to denote the class of all monadic datalog programs.

More formally, a monadic datalog program � of schema � is a finite set of rules
of the form 8 ��6 ��� ���)6 � � � , where � is a conjunction of atomic formulas over the
signature < Trees � � � � � 5�� " � � IDB ��� � . Every program has a distinguished
goal IDB-predicate that determines the query defined by the program.

We define the size � � � � � of � in the same way as we defined the size of formulas.
In [GK02] it was shown that MonDatalog can define the same unary queries on the

class of labelled trees as monadic second-order logic. In the remainder of this section
we will compare the succinctness of MonDatalog, S-MonDatalog, FL , MLFP, and a
particular kind of tree automaton.

5.1. From MonDatalog to Finite Automata. Several mechanisms have been proposed
in the literature for specifying unary queries by finite automata operating on labelled
trees (cf., [NS02]). One such mechanism, introduced in [Nev99] and further investi-
gated in [FGK03,Koc03], is the selecting tree automaton:

Definition 2 (STA). Let � be a schema. A selecting � -tree automaton (� -STA, for
short) is a tuple � � ��� � �
	 � � � � � � , where F � is the set of selecting states and
��� � �$	�� � � � � is a conventional nondeterministic bottom-up tree automaton (cf., e.g.,
[Tho96]) with finite state space � , input alphabet � 	 , accepting states � F � , and
transition function

� � � 	 � - � 	�
��� � 	 0 � - � � 	�
��� � 	 0 � - ���
�� � 	 0 � ���$�
A run of � on a � -labelled tree

�
is a mapping � � A � � � that has the fol-

lowing property, for all vertices � �3� � �3� � " A��
: if � has no children then � ��� � �� � label ��� � � ; if stChild ��� �:� � � � Has-No- � ndChild ��� � then � �)� � " � - ��� ��� � � � label ��� �10 ; if

� ndChild ��� �:� � � � Has-No- stChild ��� � then � ��� � " � - �	��� ��� � � � label �)� � 0 ; if stChild ��� �3� � � �
� ndChild ��� �:� � � then � �)� � " � - � ��� � � ��� �)� � � � label ��� � 0 .

A run � of � on
�

is said to be accepting if it maps the root of
�

to a state in � . The
unary query defined by � is the query which maps every � -labelled tree

�
to the set of

those vertices � " A � that satisfy the following condition: � �)� � " for every accepting
run � of � on

�
. �

It was shown in [FGK03,Nev99] that STAs can define exactly those unary queries on
the class of labelled trees that are definable in monadic-second order logic.

Theorem 5 ([FGK03,GK02]). MonDatalog is � � � � � -succinct in STAs on the class of
labelled trees. �

It is not hard to show that this result is asymptotically optimal, that is, that MonDatalog
is not ��� �

� � -succinct in STAs on the class of labelled trees (see [GS03] for details).

5.2. From S-MonDatalog to MonDatalog. In this section we show that S-MonDatalog-
programs can be translated into MonDatalog-programs of at most exponential size. It
remains open if the exponential size is indeed necessary or if, on the contrary, for every
S-MonDatalog-program � there exists an equivalent MonDatalog-program � � of size
polynomial in � � � � � .
Lemma 5. For every � -STA � � ��� � �
	�� � � � �� � there is a MonDatalog-program � of
size 	 -�� � �
 � � �$	%�1� � � � � � �$	 � 0 that defines the complement of the query defined by � on
the class of all � -labelled trees. �
Using Theorem 5 and Lemma 5 one easily obtains

Proposition 2. For every MonDatalog-program � there is a MonDatalog-program � �
of size � � �
	�	 � 	�	 � that defines the complement of the query defined by � on the class of
labelled trees. �
Using the above proposition, it is not difficult to prove

Theorem 6. S-MonDatalog is � � � � � -succinct in MonDatalog on the class of labelled
trees. �
5.3. S-MonDatalog vs FL . From Theorem 4 and Lemma 5 one directly obtains

Theorem 7. FL is � poly � � � -succinct in S-MonDatalog on the class of labelled trees.
�
Conversely, it is not hard to show the following

Theorem 8. S-MonDatalog is � � � � � � � � � -succinct in FL on the class of labelled
trees. �
It remains open whether the above bounds are optimal.

5.4. From MLFP to S-MonDatalog. Similarly to Theorem 1 one easily obtains

Theorem 9 (Folklore). MLFP-sentences are Tower -�	 �*) � 0 -succinct in S-MonData-
log on the class of labelled trees. �
The aim of this section is to show that there are no essentially smaller translations from
MLFP to S-MonDatalog. We will use the following well-known observation:

Proposition 3 (Folklore). There is no function � � � � � with bound ���/) � +
Tower -�. �/) �10 such that for every FO � 4 � -sentence 5 there is a nondeterministic finite
automaton � with at most ��� � � 5 � � � states that accepts exactly those strings that satisfy
5 . �
Using Proposition 3 and the results of the Sections 5.1 and 5.2, one obtains the follow-
ing:

Theorem 10. There is no function � � ��� � with bound ���/) � + Tower -�. �/) �10 such
that for every FO � 4 � -sentence 5 there is a S-MonDatalog-program � of size � � � � � +
���:� � 5 � � � and a designated goal predicate 8 " IDB ��� � such that ��� �38 � defines the
same Boolean query as 5 on the class of all finite strings. �

Since FO �34 � is included in MLFP, the above theorem directly implies the following:

Corollary 2. MLFP is not Tower - . �/) � 0 -succinct in S-MonDatalog on the class of all
finite strings. �
It remains open if this result remains valid when replacing MLFP with MLFP � . Note,
however, that for the proof of Proposition 3 a small number

�
of first-order variables

suffices. I.e., Proposition 3 remains valid when replacing FO � 4 � with FO
7 � 4 � , and

Corollary 2 remains valid when replacing MLFP with MLFP
7
.

Together with Corollary 1 and Lemma 5, the above Corollary 2 implies

Corollary 3. MLFP is not Tower -�. �/) �10 -succinct in MLFP � on the class of all finite
strings. �

6. Conclusion

We studied the succinctness of a number of fixed point logics on trees. We believe that
the analysis of succinctness, which may be viewed as a refined, “quantitative” analysis
of expressive power, is a very interesting topic that deserves much more attention.

Even though we were able to get a good overall picture of the succinctness of
monadic fixed point logics on trees, a number of questions remain open. Let us just
mention a few of them:

– The exact relationship between monadic datalog, stratified monadic datalog, and
the full modal � -calculus remains unclear. In particular: Is the class of all queries
whose complements can be defined by monadic datalog programs polynomially
succinct in monadic datalog, or is there an exponential lower bound? (Recall that
in Proposition 2 we prove an exponential upper bound.)

– Our proof that MSO is not Tower �/. �/) � � -succinct in MLFP relies on a complexity
theoretic assumption. Is it possible to prove this result without such an assumption?

– We have only considered the 2-variable fragment of MLFP here. What about the�
-variable fragments, for

� ��� ? Do they form a strict hierarchy with respect to
succinctness?

References

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases.
Addison-Wesley, 1995.

[AI00] N. Alechina and N. Immerman. Reachability logic: An efficient fragment of transitive
closure logic. Logic Journal of the IGPL, 8(3):325–338, 2000.

[AI01] M. Adler and N. Immerman. An ��� lower bound on formula size. In Proceedings of
the 16th IEEE Symposium on Logic in Computer Science, pages 197–206, 2001.

[CH82] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of
Computer and Systems Sciences, 25:99–128, 1982.

[DGH � 02] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P.
Raghavan, and U. Schöning. A deterministic ��� %��
	 ���� '���� � algorithm for � -SAT
based on local search. Theoretical Computer Science, 289(1):69–83, 2002. Revised
version of: Deterministic algorithms for � -SAT based on covering codes and local
search, ICALP’00, LNCS volume 1853.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer, New York,
second edition, 1999.

[EVW02] K. Etessami, M. Y. Vardi, and Th. Wilke. First-order logic with two variables and
unary temporal logic. Information and Computation, 179(2):279–295, 2002.

[Fag75] R. Fagin. Monadic generalized spectra. Zeitschrift für mathematische Logik und
Grundlagen der mathematik, 21:89–96, 1975.

[FG03] Markus Frick and Martin Grohe. The complexity of first-order and monadic
second-order logic revisited. Journal version of LICS’02 paper. Available at
http://www.dcs.ed.ac.uk/home/grohe/pub.html, 2003.

[FGK03] Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed
trees. In 18th IEEE Symposium on Logic in Computer Science (LICS’03), Ottawa,
Canada, June 2003.

[FSW00] M. F. Fernandez, J. Siméon, and Ph. Wadler. An algebra for XML query. In S. Kapoor
and S. Prasad, editors, Proceedings of the 20th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS’00), volume 1974 of
Lecture Notes in Computer Science, pages 11–45. Springer-Verlag, 2000.

[GK02] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power of
web information extraction languages. Submitted, November 2002. Journal version
of PODS’02 paper. Available as CoRR report arXiv:cs.DB/0211020.

[GO99] E. Grädel and M. Otto. On Logics with Two Variables. Theoretical Computer Science,
224:73–113, 1999.

[GS03] M. Grohe and N. Schweikardt. Comparing the succinctness of monadic query lan-
guages over finite trees. Technical Report EDI-INF-RR-0168, School of Informatics,
University of Edinburgh, 2003.

[HP00] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing language (preliminary
report). In D. Suciu and G. Vossen, editors, International Workshop on the Web and
Databases, 2000. Reprinted in The Web and Databases, Selected Papers, Springer
LNCS volume 1997, 2001.

[Imm99] Neil Immerman. Descriptive complexity. Springer, New York, 1999.
[Kam68] H. Kamp. Tense Logic and the theory of linear order. PhD thesis, University of

California, Los Angeles, 1968.
[Koc03] Christoph Koch. Efficient processing of expressive node-selecting queries on XML

data in secondary storage: A tree-automata based approach. In Proceedings of the
29th Conference on Very Large Data Bases, 2003. To appear.

[Nev99] Frank Neven. Design and Analysis of Query Languages for Structured Documents –
A Formal and Logical Approach. PhD thesis, Limburgs Universitair Centrum, 1999.

[NS02] Frank Neven and Thomas Schwentick. Query automata over finite trees. Theoretical
Computer Science, 275(1-2):633–674, 2002. Journal version of PODS’00 paper.

[Tho96] Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salo-
maa, editors, Handbook of formal languages, volume 3. Springer, New York, 1996.

[Var98] Moshe Y. Vardi. Reasoning about the past with two-way automata. In K.G. Larsen,
S. Skyum, and G. Winskel, editors, 25th International Colloquium on Automata, Lan-
guages and Programming (ICALP’98), volume 1443 of Lecture Notes in Computer
Science, pages 628–641. Springer-Verlag, 1998.

[Wil99] T. Wilke. CTL+ is exponentially more succinct than CTL. In C. P. Rangan, V. Ra-
man, and R. Ramanujam, editors, Proceedings of the 19th Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 1738 of Lecture
Notes in Computer Science, pages 110–121. Springer-Verlag, 1999.

