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ABSTRACT 

The present research considers the problem of covering a graph with minimal number of trails satisfying the pre-defined 
local restrictions. The research is devoted to the problem of graph covering by minimal number of trails satisfying some 
local restrictions. Algotithm of allowed Eulerian cycle construction is considered. The authors showed that it is possible 
to recognize the system of transitions and solve the problem of constructing the allowable path by linear time. It’s also 
possible to find allowable Eulerian cycle for Eulerian graph or to proclaim that such a cycle does not exist by the time 

   O V G E G  . All presented algorithms have the software realization. 
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1. Introduction 

Lots of problems of finding paths satisfying the different 
restrictions can be applied to some practical problems. 
For example for sheet material cutting problem plane 
graph represents the model of cutting plan, and a path 
covering all its edges defines the trajectory of cutter. The 
restriction defined for this problem is lack of intersection 
of any initial part of path with edges that are not passed 
yet [1]. Creating the control systems using non-oriented 
graphs the following problems of constructing the paths 
with different restrictions can arise. Among them are 
straight-ahead paths [2]; paths the next edge of which is 
defined by the given cyclic order on the set of incident 
edges [3-5]; paths for which it’s necessary to pass some 
edges in pre-defined order [5]. 

The restrictions on the order of vertices and edges can 
be classified as local (the next edge of a path is defined 
by conditions established at the current vertex or edge 
[2-8]), and global (Eulerian, Hamiltonian cycles, bidirec- 
tional double tracing etc.). Most of researches are de- 
voted to algorithms with local restrictions of edges order 
in a path. The present research considers the problem of 
covering a graph with minimal number of trails satisfy-
ing the pre-defined local restrictions. 

2. Constructing of TG-Compatible Path 

The generalization of most of particular cases for prob-

lem of simple trail with local restrictions construction 
and analysis of its computing complexity is made by 
S.Szeider [7].  

Let’s quote the basic definitions and results of this re-
search to make the further statements clear. Let’s confine 
with finite simple graphs. Let’s designate as  V G  and 
 E G  the sets of vertices and edges of graph G corre-

spondingly. For vertex  let’s define the set  v V G
 GE V  of all graph G edges incident to vertex v. The 

degree of vertex v let be designated as ; for  
let 

d v d 0
      d v d: v V G d . Let V G H G  if H be 

vertex-induced subgraph of graph G i.e. the subgraph 
received of graph G by deleting of one set of vertices and 
only all edges incident to vertices of this set. 

Restrictions for paths in graph G can be defined in 
terms of allowed transitions graph. 

Definition 1. Let transition graph  for vertex  GT v
 v V G  be a graph vertices of which are the edges 

incident to vertex v i.e. G , and set of 
edges consists of allowed transitions. 

  V T v   GE v

Definition 2. The system of allowed transitions (or 
shortly, system of transitions) G  is called the set T

    GT v v V G  where  be the transition graph 
for vertex v. 

GT v

Definition 3. The path  for graph G 
is called -compatible if  

0 1 1 k kP v e v e v 
GT   1,i ie e E  G iT v  for 

each i  1 1i k   . 
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Theorem 1 [S. Szeider]. If all graphs of transitions 
belong either class M of full multipartite graphs or class P 
of matchings then the problem of GT -compatible trail 
constructing can be solved by the time   O E G . Oth-
erwise this problem is NP-complete. 

If the system of transitions for a vertex  v V G  is a 
matching then this problem can be reduced to the problem 
for graph  

     :G V G V G v    , 

 
            : ,G i j i j G

E G

E G E v v v v v vv E T v



  .
 

If for any vertex  graph  v V G  GT v  is full mul-
tipartite graph then a trail can be constructed by the fol-
lowing algorithm. 

Algorithm -Compatible Path GT
Input: 

 Graph  , ;  G V E
 Vertices x, y the end-vertices of GT -compatible trail;  
 System of transitions GT :    v V G   G . T v M

Output: 
 The sequence of edges corresponding to GT -compati- 

ble trail between vertices x and y or the message that 
such a path does not exist. 

Step 1. If vertex x or vertex y is isolated then stop: path 
does not exist. 

Step 2. Delete all isolated vertices from graph G.  
Step 3. Construct the supplementary graph G  as fol-

lowing (Figure 1): 
 Each vertex  v V G  should be split into vertices 

 1 2, , , p vv v v  where  p v  be the number of parts 
of graph  GT v . The edges of corresponding part of 
graph  GT v  and one additional vertex  p vv  are in-
cident to vertex pv ; 

 Add two new vertices  1w v  and  2w v , edge 
   1 2 , and edge   w v w v jp vv w v  for each part of 

graph  T v , 1 2j  . G

Step 4. Construct the initial matching for graph G  

        
  

1 2
1,2, ,

p p
v V G p p v

M G v v w v
 


  

 
  w v 




. 

 

 

Figure 1. Illustration how supplementary graph G  is con- 
structed.  

Step 5. Find the alternate sequence between vertices x 
and y that enlarges the cardinality of matching for graph 
G . If it’s impossible to find such a sequence then stop 
(matching  M G  has maximal cardinality and graph 
has no G -compatible path). Otherwise all the edges of 
found enlarging path except of additional edges of graph 

T

G  produce the -compatible path between vertices x 
and y. Stop. 

GT

Let’s admit that there is open question in research [7]. 
This question is about recognition the multipartiteness of 
graphs  GT v . Problems of constructing the allowed path 
or set of paths covering all the edges of given graph are 
not also considered. 

Let’s illustrate an example of graph G (Figure 2) that 
algorithm G -COMPATIBLE PATH cannot be used for 
constructing of paths covering all edges of graph G. Let 
the following system of transitions  is defined for the 
graph: 

T

GT

    2 1 1 5,v v v v ,     6 1 1 4,v v v v ,     4 3 3 7,v v v v , 

    8 3 3 2,v v v v ,     3 2 2 8,v v v v ,     5 2 2 1,v v v v , 

    1 4 4 6,v v v v ,     7 4 4 3,v v v v ,     2 5 5 8,v v v v , 

    2 8 8 5,v v v v ,     3 8 8 7,v v v v ,     3 7 7 8,v v v v , 

    4 7 7 6,v v v v ,     4 6 6 7,v v v v ,     1 6 6 5,v v v v , 

    1 5 5 6,v v v v

G

. 

Supplementary graph  for finding of -com- 
patible path between vertices  and  which con-
struction is reviewed on step 3 of algorithm is shown at 
Figure 3. 

GT

1v 7v

The initial matching  M G  is marked by thick lines. 
The alternate enlarging sequence of edges for this match-
ing be  

 1,1 5,2v v ,  5,2 5,2v v ,  5,2 5,2v w , ,  5,2 5,1w w  5,1 5,1w v , 

 5,1 5,1v v ,  5,1 6,2v v ,  6,2 6,2v v , , ,  6,2 6,2v w  6,2 6,1w w

 6,1 6,1w v ,  6,1 6,1v v , .  6,1 7,2v v

Edges of this sequence not belonging the initial match-
ing are represented by dash line. These edges form the set  
 

 

Figure 2. Example of graph. 
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Figure 3. Graph G' received of graph G by additional constructions. 
 

 1,1 5,2v v ,  5,2 5,2v w ,  5,1 5,1w v , 

 6,1v w , 

 5,1 6,2v v ,  6,2 6,2v w , 

6,1  7,2 . 6,1v v

All edges of this set belonging to graph G i.e.  1 5,v v , 
 vertex

 it’s possi-

v

1v  to vertex 7v
ith

  5 6 6 7, , ,v v v form GT -compatible path from  
. 

Using algor m -COMPATIBLE PATH
bl

re 4 shows the software realization of the repre-
se

 

GT
 a e to construct only simple trail between two different 

vertices (i.e. a trail where each vertex is presented only 
once). 

Figu
nted algorithm. The bold line marks the found trail be-

tween vertices 1 and 4. This trail corresponds the system 
 

 

Figure 4. Software for compatible path algorithm. 

of allowed transitions (see the additional window at right 
botto

olve the problem of -compatible 
pa

m side). 
However in common the direct use of this algorithm 

does not allow to s GT

o
th with maximal number of edges constructing. Actu-

ally the matching of maximal cardinality f r graph G  
cannot contain the pairs of edges forming forbidden tran-
sition because these edges are incident to one comm  
vertex of graph G

on
 . At the same time, in common there 

may exist GT -compatible path containing such a pair of 
edges. 

For exam e, for graph G presented on Figure 2 the 
path 

pl

           2 1 1 4 4 8 8 1 1 5 5 2, , , , ,v v v v v v v v v v v v  

in principle cannot be received by constructing the 
matching of maximal weight for graph . This path G
begins from edge 2 1v v  and ends by edge 5 2v v . These 
edges form forbidden transition  5 2v v , 2 1v , conse-
quently, graph G

v
  s not contain the alternate path 

with both of these edges. 
Thus, the question of multipartite  GT v  graph recog-

nition is still open as well

doe

 as the pro  of allowed path 
co

nstructing of Compatible  
Eulerian Trails 

blem
nstructing or finding the set of paths covering all the 

edges of initial graph G. 

3. Algorithm for Co

In the previous section the restrictions for paths were 
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sta lowed transitions system [7]. It’s ted in the terms of al
shown that the problem of constructing the allowed path 
in graph G can be solved by polynomial time if a system 
of transitions GT  consists only of matchings and full 
multipartite graphs. It’s trivial to recognize if graph of 
allowed transitions belongs to the class of matchings. If 
we want recognize if transitions graph belongs to class of 
full multipartite graphs it’s expedient to use the definition 
of partition system [3-5,8]. 

The conception of partition system is used for defini-
tion of allowed trail in terms of forbidden transitions. 

Definition 4. Let  ,G V E  be a graph. Let  GP v  
be some partition of set  GE v . Then the partition sys-
tem e syst of graph G be th ets  

   
em of s

 :G GP P v v V G  . 
Definition 5. Let 

 
 Gp P v , ,e f p . A trail not 

containing the s e v transition f  and   f v e   
can be called GP -comp  t s  
e v f   and 

atible, and ransition
f v  dden. 

Let's admit that graph of allowed transitio
e  are forbi

ns  T vG

nsitions 
itions

 
unambiguously defines the graph of forbidden tra

 v  which is the complement of allowed trans  
graph to full graph. Thus, using definitions 1-3 the prob-
lem either with use of allowed transitions or forbidden 
transitions can be stated.  

So the partition system is defined on the set of 

GT

 E v  
(the set of vertices incident to v). If edges e  and e  
be

1 2

long to one subset then edge 2e  cannot be placed after 
the edge 1e  in a trail. Let graph  ,G V E  be defined b  
the adjacency list. Its elements are the structures. Each 
element of this structure consists of two fields: vertex 
number iv  (this vertex is adjacent to the current one); 
the number of partition element ic . To define the degree 
of the current vertex it is enough to count the number of 
elements of adjacency list. 

Let’s admit that each edge e belongs to two adjacency 
lists of vertices iv  and 

y

jv  (the ends of an edge). But for 
each vertex edge e belongs to different partition systems. 

Input data are represented by the following list 
vector < list < pair <string, int> > > Graph; 

es, eachAll data are represented by a vector of vertic
first

 
el  pair of 
ea

dden transitions 

ement of this vector is a list of pairs. The 
ch list is a vertex number, the second one is its degree. 

The other pairs represent the numbers of adjacent vertices 
and number of corresponding partition set. 

On the other side, graph of allowed transitions defined 
by partition system GP  cannot be arbitrary, and belongs 
to class M of full multipartite graphs: the elements of par-
tition  GP v  define the parts of graph  GT v M , and 
set of its edges  

       , :G GE T e f E v p P v   .s 

Graph of forbi

   ,G v e f p 

 GT v  in this case will 
consist of  GP v  cliques, this fact can be used for rec-

ognition if  T v M  
As it was considered earlier, 

imal le
ils. The ne



using algorithm [9]. 
algorithm of S. Szeider in 

co cting 

condition for 

mmon does not allow constru of allowed trails 
having max ngth. The most interesting are allowed 
Eulerian tra cessary and sufficient 

G -compatible trails existence is proved by the following 
theorem [8]. 

Theorem 2 [A. Kotzig]. Connected Eulerian graph G 
has GP -compatible Eulerian trail if and only if 



P

    1
v  

2G G 
 

Ob ously, complexity of checking the con

V p 

GP -com
 

P v p d v  . 

vi dition of 
existence of patible Eulerian trail is not more 
than  G . 

t the al
O E

Let’s lis gorithm for construction of compatible 
tra

G

ut data: 
 

il. 
Algorithm P -Compatible Eulerian Trail 
Inp
Eulerian graph  ,G V E , 

 Transitions system  P v  G

Output data: 
 v V G  . 

 . Allowed Eulerian cycle 1k

Step 1. Let 0k
G

 , G Gk  . 
Step 2. Find a vertex h    v for w ich

ment of partit  containing 
t  ough to look through 

th n x v and count how 
m on meets at this list. 
C

2
kGd v . 

ion systemStep 3. Find ele
maximal number of edges. I ’s en

e adjacency list of curre t verte
any times each element of partiti
hoosing this element we get a class  

    1 1: max
k kG GC P v C C C P v   . 

Step 4. Find any edges  1 1e v C  and  
   e v E v C2 1kG  . If it’s possible choose edges  and 

rtices of ore than 2. If set 
1e

2e incident to ve degree m
 E v C1kG    

Eu
then stop: there is no G

lerian trail. Otherwise go to step 5. 
t graph 1kG   by detaching vertex v

P -com tible 

Step 5. Construc

pa


, 

 which only edges 1e  and 2e  are incident, from ver-
edges are kept incident to vertex v. 

Step 6. Let class  
kGC P v  

to
tex v. The other 

contains the edge 2

 2 v . Exclude vertices 1v  2v  from partition sys-
tem. Define 
e  and

     1 2: ,
k kG GP v P v C C   . 

For further modification of partition system define the 
fo

Ste
he modified system without any changes. 

llowing. 
p 6.1. All partition systems not containing vertex v 

are taken to t
Step 6.2. If systems 1C  and 2C  had been consisted 

of one edge 1 2 1C C  en th     :
1k kG GP v P v . 


Step 6.3. If 


1 2 1C C   then 

      1 1:
kG GP v P v C e v

   .  1k

Step 6.4. If 2 1C   then 
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         1 1 1 2: ,
k kG GP v P v C e v C e v


     . 

nstruct 

x . 

e  

2

Step 6.5. Co  

 
 

1 1

1,2

k kG G
x V G

P P
 



 

Step 7. Define the valu

      1 12k kG E G V G    . 1k

r of edges is a constant value 
and the number of vertices is increased by 1. 

Step 8. If , let and go to step 2 
fo

rtices 

Let’s admit that the numbe

 1 0kG   1k k   
r graph 1kG  . Otherwise go to step 9. 
Step 9. Choose any vertex v and mark all achievable 

vertices. If there are unmarked ve go to step 10 oth-
erwise stop the received graph 1kG   is Eulerian trail 
without forbidden transitions. 

Step 10. Get vertices 1v  and 2v  from a list of 
marked and unmarked vertices of graph 1kG  . These 
vertices are split from vertex v of g G . Unite them 
to

raph 
di

0

 one vertex 1,2v . There we get a mo fied graph 1
ˆ

kG  . 
Let 1k k  . 

Step 11. Choose edges  1 1,2 1e v C nd  

  2 1,2 1,2 1e v E v C   so that   1 2 1,e e E v a  

E

 a

nd 




kG

  e e 1 2 2, v . If set  1,2kGE v C 

vertex 1,2v

1  then 
P -compatible Eulerian trail. Othe

stop: 
rwise con-

by s
there is no G

struct graph kG 1 plitting 


 fr

2e  are incident to 
om vertex 

1,2v  Only edges 1e  and vertex 1,2v


. 
All other ed  are incident to vertex 1,2v  and go to step 
9. 

The following theorem i  proved in [9]. 
Theorem 3. Algorithm GP -compa le Eulerian trail 

correctly solves the problem of constructing the - 
co

ges

s
tib

GP
mpatible Eulerian trail. 
That paper also shows that computing complexity of 

this algorithm is  

 
 

    
0,1, ,

kG k
k G

O d v O E G V G


   
 




. 
 

Thus, the constructed algorithms are resolved by the 
polynomial time and can be simply realized using stan-
dard computing facilities. 

Let’s consider the allowed trail construction for a 
graph on Figure 5. Let its transitions system is as shown 
in a table below. The numbers in white circles show the 
number of partition system the edge belongs for each 
vertex. 

Let’s construct allowed Eulerian cycle beginning and 
ending at vertex 1. At the first iteration the first vertex is 
split. To simplify the illustration let’s consider the “short 
version” of vertex splitting (the example of “full version” 
is presented on Figure 3). Figure 6 and table show graph 
with split vertex 1 and a list of connectivity where 

 

1 (2,2) (6,1) (8,2) (5,1) 

2 (1,2) (6,1) (7,1) (3,2) 

3 (2,1) (7,1) (5,2) (4,2) 

(6 ) (8 ) 

4 (3,2) (5,1)   

5 (4,1) (3,1) (8,2) (1,2) 

6 (1,1) (2,1) (7,2) (8,2) 

7 (2,2) (3,1) ,1 ,2

8 (1,2) (6,1) (7,2) (5,2) 

Figure 5. Example.
 

 

 

1 (8,2) (5,1)   

2 (1',2) (6,1) (7,1) (3,2) 

3 (2,1) (7,1) (5,2) (4,2) 

4 (3,2) (5,1)   

5 (4,1) (3,1) (8,2) (1,2) 

6 (1',1) (2,1) (7,2) (8,2) 

7 (2,2) (3,1) (6 ) (8 ) ,1 ,2

8 (1,2) (6,1) (7,2) (5,2) 

1' (2,2) (6,1)   

Figure e first tion of ithm. 
 
new or modified ents are y. 

Fi 12 tables r them represent all other 
iterations of algorithm. 

 6. Th  itera  algor

 elem colored by gra
gures 7-  and  unde
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1 (8,2) (5,1)   

2 (7,1) (3,2)   

3 (2,1) (7,1) (5,2) (4,2) 

4 (3,2) (5,1)   

) (1 ) 5 (4,1) (3,1) (8,2 ,2

6 (1',1) (2',1) (7,2) (8 ) 

) (5 ) 

,2

7 (2,2) (3,1) (6,1) (8,2) 

8 (1,2) (6,1) (7,2 ,2

1' (2',2) (6,1)   

2' (1',2) (6,1)   

Figure 7. The second iteration of algorithm. 
 

 

1 (8,2) (5,1)   

2 (7,1) (3',2)   

3 (7,1) (4,2)   

4 (3,2) (5,1)   

5 (4,1) (3',1) (8,2

 

1 (8,2) (5,1)   

2 (7,1) (3',2)   

3 (7,1) (4,2)   

4 (3,2) (5',1)   

5 (3',1) (1,2)   

(7 ) (8 ) 

(6 ) (8 ) 

(7 ) 

6 (1',1) (2',1) ,2 ,2

7 (2,2) (3,1) ,1 ,2

8 (1,2) (6,1) ,2 (5 ) ',2

1' (2',2) (6,1)   

2' (1',2) (6,1)   

3' (2,1) (5,2)   

5' (4,1) (8,2)   

Figure 9. The forth iteration of algorithm. 
 

 

1 (8,2) (5,1)   

2 (7,1) (3',2)   

3 (7,1) (4,2)   

4 (3,2) (5',1)   

5 (3',1) (1,2)   
) (1 ) 

(7 ) (8 ) 

) (8 ) 

) (5 ) 

,2

6 (1',1) (2',1) ,2 ,2

7 (2,2) (3,1) (6,1 ,2

8 (1,2) (6,1) (7,2 ,2

1' (2',2) (6,1)   

2' (1',2) (6,1)   

3' (2,1) (5,2)   

6 (2',1) (8,2)   

7 (2,2) (3,1) (6 ) (8 ) 

(7 ) (5 ) 

',1 ,2

8 (1,2) (6,1) ,2 ',2

1' (2',2) (6',1)   

2' (1',2) (6,1)   

3' (2,1) (5,2)   

5' (4,1) (8,2)   

6' (1',1) (7,2)   

Figure 8. The third iteration of algorithm. Figure 10. The fift tion of algorithm. h itera
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1 (8,2) (5,1)   

2 (7',1) (3',2)   

3 (7',1) (4,2)   

4 (3,2) (5',1)   

5 (3',1) (1,2)   

(7 ) (5 ) 

6 (2',1) (8,2)   

7 (6',1) (8,2)   

8 (1,2) (6,1) ,2 ',2

1' (2',2) (6',1)   

2' (1',2) (6,1)   

3' (2,1) (5,2)   

5' (4,1) (8,2)   

6' (1',1) (7,2)   

7' (2,2) (3,1)   

Figure 11. The sixt tion of algorithm. 
 

h itera

 

1 (8',2) (5,1) 

2 (7',1) (3',2) 

3 (7',1) (4,2) 

4 (3,2) (5',1) 

5 (3',1) (1,2) 

6 (2',1) (8',2) 

7 (6',1) (8,2) 

8 (7,2) (5',2) 

1' (2',2) (6',1) 

2' (1',2) (6,1) 

3' (2,1) (5,2) 

5' (4,1) (8,2) 

6' (1',1) (7,2) 

7' (2,2) (3,1) 

8' (1,2) (6,1) 

Figure 12. The las ation of algorith

In result graph is split i simple cycle. I ssible 
to cons t allowed Eul cycle beginning at any its 
vertex. r example, the wing cycle b ing at 
vertex 1 n be constructe

It’s possible to recognize the system of transitions and 
to solve the problem of constructing the allowable path 
by linear time. It’s also possible to find -allowable 
Eulerian cycle for Eulerian graph or to oclaim that 
such a cycle does not exist. This problem be solved 
by the time 

t iter m. 

nto a t’s po
truc erian 
Fo  follo eginn
 ca d:  

1 2 6 8 1 5 3 2 7       
 

3 4 5 8 7 6 1.      

GP
 pr

 can 
G  

    O V G E G  using hm - 
compatible Eulerian trail. 
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