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ABSTRACT

We present computational techniques for automaticallyeging
algebraic (polynomial equality) invariants for algebrhidorid sys-
tems. Such systems involve ordinary differential equatiarith
multivariate polynomial right-hand sides. Our approacktgdhe
problem of generating invariants for differential equasoas the
greatest fixed point of a monotone operator over the lattiddes
als in a polynomial ring. We provide an algorithm to computis t
monotone operator using basic ideas from commutative edgeb
geometry. However, the resulting iteration sequence doésln
ways converge to a fixed point, since the lattice of ideals ave
polynomial ring does not satisfy the descending chain dandi

We then present a bounded-degree relaxation based on the con

cept of “pseudo ideals”, due to Colén, that restricts ideahtber-
ship using multipliers with bounded degrees. We show that th
monotone operator on bounded degree pseudo ideals is genter
and generates fixed points that can be used to generate aseful
gebraic invariants for non-linear systems. The techniquectn-
tinuous systems is then extended to consider hybrid systéths
multiple modes and discrete transitions between modes.

We have implemented the exact, non-convergent iterati@n ov
ideals in combination with the bounded degree iteratiom pgeudo
ideals to guarantee convergence. This has been applietbioat
ically infer useful and interesting polynomial invariarits some
benchmark non-linear systems.

Categories and Subject Descriptors: F.3.(Specifying and Veri-
fying and Reasoning about Programs):Invariants,
C.1.m(Miscellaneous): Hybrid Systems.

Terms: Theory, Verification.

Keywords: Ordinary Differential Equations, Hybrid Systems, Al-
gebraic Geometry, Invariants, Verification, Conservatiams.

1. INTRODUCTION

An invariant of a system is an over-approximation of all the
reachable states of the system. Invariants are usefuldactst the

used to establish temporal properties of systems such ety ssth-
bility, termination, progress and so on [12, 3, 18, 15]. Thariant
generationproblem consists of automatically computing useful
variants given the description of a dynamical system. Tloblem
of generating invariants of an arbitrary form is known to benpu-
tationally intractable. However, approaches based orodesing
invariants of pre-specified forms for a given class of systérave
been successful in generating non-trivial invariants.

In this work, we present a technique for generating algebrai
variants for algebraic systems whose variables evolverdtapto
nonlinear ordinary differential equations with multivate polyno-
mial right-hand sides. Our work attempts to synthesize mpatyial
invariants such as/\, p; = 0, withouta priori restrictions on the
number of conjuncts involved. In order to discover polynahm-
variantsfor a given system, we formulate the notion ofiawariant
ideal I over the ring of polynomials, such that for any polynomial
p € I, its Lie derivativealso belongs td. Further, we express
an invariant ideal as a fixed point of a monotonic refinemeset-op
ator over ideals. We present techniques to find an invardewli
as a fixed point using Tarski iteration. Hence, our approaah c
be viewed as an abstract interpretation framework for comtiis
systems described by ODEs [5].

The main contributions of this work are as follows: (A) we geat
invariant generation over continuous vector fields as trefpoint
of a monotonic refinement operator over ideals, (B) we preaen
algorithm for computing the refinement operator over ideatsd
(C) we formulate the refinement operator opseudo idealsorig-
inally defined by Colon [4], by restricting the degree of tiudymo-
mial multipliers involved in ideal membership. The resudfitera-
tion scheme is shown to converge in finitely many steps. Ttiete
nigue of generating algebraic invariants can be extendédndle
continuous algebraic systems with holonomic constraistsvell
as hybrid systems by computing post-conditions over idedle
have implemented a prototype system inside Mathematicgtlfamn
has been used to compute interesting invariants for nurearon-
linear systems.

Recently, there has been a considerable volume of work tsvar

n-

dynamics of a given system and are widely used in numerous ap-2analyzing algebraic systems using techniques from conygx o

proaches to verifying and understanding systems. As shef are
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mization, commutative algebraic and semi-algebraic gegni20,
23,19, 14, 2, 21, 15, 16, 13]. Many of these techniques, éiagu
our previous work, synthesize invariants by computing tamnsts
on the unknown coefficients of a single or fixed number of polyn
mial equalities (inequalities) of a bounded degree, thatratee
that any solution will also be inductive [20, 23, 19, 10, 1Bhund-
ing the degree of the invariant is a restriction, only in thyedt has
been repeatedly demonstrated that useful low-degree paiah
invariants can be found that can help prove properties ofptexn
systems [16, 15, 10]. A more subtle restriction, as pointaidby



Platzer et al. [16] is over the number of conjuncts involvedn in-
variant. For instance, our previous work as well as that ofriMge
et al. [20, 13] consider single polynomial equalities. Tioisn re-
mains very useful for systems, where we find that a vast ntgjofi
invariants that take the form abnservation lawsan be efficiently

discovered. However, useful invariants may have a more com-

plex Boolean structure involving conjunctions of invati&rsuch
as A\ p; = 0, wherein eactp; = 0 is not an invariant by itself
(Cf. Example 1.1, below). Gulwani and Tiwari consider ingats
of an arbitrary but fixed Boolean structure (including disjtions).
However, their encoding restricts the domain of proofs toean
sentially finite domain. In our experience, this restrintie much
more meaningful to discrete programs wherein invariants whit
coefficients are the norm, than to hybrid systems where petiens
may assume irregular values such3ab415726.... Such parame-
ters may require more bits to represent or extra variablesga-
sions) and constraints. Nevertheless, this technique é&s bsed
successfully to analyze the stability of complex adaptighficon-
trol system [22]. The work of Carbonell and Tiwari is remaslea
in that it does not assume bounded degree or restrictionfi®n t
conjuncts [2]. A key restriction however is that it applie®stly
to linear systems. Recently, Platzer et al. have proposeaa p
erful theorem-proving framework for verifying propertie$ hy-
brid systems throughifferential logicthat extends dynamic log-
ics using differential operators [16, 15]. The technique atso
synthesize invariants by parameterizing the coefficiefisnoun-
known polynomial to aid in its proof. Efficiency is guarandesy
usinglocal reasoningnvolving a subset of the state variables and
the dynamics. Our techniques, including most of the othearin
ant generation techniques discussed here, can be natiiftatiiyto
this framework, and thus be used to discharge proof obtigatfor
larger, more complex hybrid system involving many moreablés
such as collision avoidance maneuvers and automatic toeitnat
systems [17].

Example 1.1. Consider the system

dZIQ dmn
=To, — = T3,...,

dt dt dt

with the initial statez1,...,z, = (0,...,0) forn > 2. Our
approach can establish the invariant

d:El
= 5

z1=0A22=0AN ...ANz), =0,

without explicitly integrating the system dynamics. Hosveno
single assertion:; = 0 can be established without simultaneously
asserting thatc; = 0 for all otherj € [1,n]. The same holds for
any fixed number of assertions.

Our overall approach can be viewed as an abstract interpreta

tion over the lattice of ideals, in the form of a Galois cortimt
between the lattice aflgebraic varietiesepresenting a set of con-
tinuous states and ideals over a polynomial ring whose salee
fine the algebraic variety [5]. Our previous work on lineastgms
also used an abstract interpretation scheme to computar line
equality invariants for such systems [21]. Therein, we aered
the lattice of polyhedral cones and used heurigtidgeningopera-
tors to force convergence. Here, we consider polynomiahkityu
invariants for algebraic systems. Further, our approack Hees
not employwideningoperators. Instead, we prove that our iter-
ation over the lattice of degree-bounded pseudo idealsecgas
in finitely many steps. In this respect, our work presentstafo
similarities with the seminal work of Karr for discoverindfiae
invariants of programs [11]. This also raises the excitinggibil-
ity of a randomized algorithnfor generating invariants efficiently
using pseudo ideals along the lines of Gulwani and Necula [9]

The rest of the paper is organized as follows: Section 2 ptese
some basic notions from commutative algebra, Section 3lsiéte
fixed point characterization for continuous systems andets the
algorithm for computing the refinement operator, Sectiontérds
our technigue to pseudo ideals, Section 5 briefly discussesa
tension to hybrid system, Section 6 presents experimentscoft-
clude by discussing some of the related work and future sites
to our technique.

2. PRELIMINARIES

In this section, we define the basic concepts from commuatativ
algebraic geometry that will be used throughout this workt R
denote the field of real numbers a@dthe field of complex hum-
bers obtained as the algebraic closur&ofMany of the primitives
discussed here can be specialized to any ffél(bf characteristic
0). Unless, otherwise mentioned, we uketo denote one of the
fields@, R, orC. Letz,...,x, denote a set of variables, collec-
tively represented a8. The K'[Z] denotes the ring of multivariate
polynomials over a given field .

A monomialover Z is of the formz('z3? - - z}*, succinctly
written asZ”, wherein eachr; € Z2°. A termis of the form
c-m wherec € K, ¢ # 0 andm is a monomial. The degree
of a monomialz” is given by>"" | r; = 1.7 The degree of a
multivariate polynomialp is the maximum over the degrees of all
monomialsm thatoccurin p with a non-zero coefficient.

Def. 2.1 (ldeal). Anideall C K[z, ..
nomials with the following properties:

., xy] is a set of poly-

e 0cl,
e If p1,p2 € Ithenpy + p2 € 1,
e If p e Iandq € K[Z] thenpq € I.

The ideal generated by a set= {pi,...
of polynomials is written as

P} € K&, n 20,

(P) = {Zgipi | pi € P, gi € K[Z], fori € [1,m]}

Ideal I is finitely generated if = ((P)) for some finite sefP,
called thebasisof I. The Hilbert basis theorenstates that ev-
ery ideall C K|x1,...,z,] is finitely generated [6]. Informally,
ideals can be viewed as representing some of the polynomial ¢
sequences of a finite set of polynomials. Thgebraic variety(or
simply the variety) corresponding to an idégldenoted/ (1)) con-
sists of a set of point8 such thap(z) = 0 forall p € I. Similarly,
an algebraic varietyX' corresponds to the idedl = Z(X) con-
taining all the polynomialp € K[Z] such thaip(Z) = 0 for all
reX.

Theorem 2.1. Letl beanideal generated by : {p,...
Then for any polynomial, if p € I then{p, =0,...

(p=0).

Theorem 2.1 states that in order to establish the entailmept

(p = 0), it is sufficient to test membership efin the ideal gen-
erated byp. The “converse” of Theorem 2.1 is true, provided the
field K is algebraically closed: iy = p = 0 thenp™ € I for
somem > 0. In general, we can ensure that index= 1 for all p

by computing thédeal radicalof I [6].

7p77l}'

Def. 2.2 (Ideal Membership Problem). Given a finite set of
polynomialsP C K|[Z] and a polynomialp € K|[Z] the ideal
membership problem decides whetpez (P)).



In general, there are multiple techniques for deciding teal
membership problem. The theory of Groebner basis [6] andsWu’
method [8] remain popular for deciding ideal membership.ridle
present the notion dByzygies Syzygies will be used in this work
to define a monotonic operator over ideals.

Def. 2.3 (Syzygies)LetP : {pi1,...,pm} be a finite set of
polynomials. ASyzygyof P is a vector of polynomial&g, . . . , gm)
such thaty . g;p; = 0. We denote the set of all Syzygiesroais
Syz(P).

fg: (g1,--.,9m) andh : (h1,...,hm) are syzygies of,
then so are/ + h andpg : (pgi,...,pgm) foranyp € K[z]. Asa
result, the set of all syzygies formmaoduleover the ringK'[Z]. In-
formally, a module can be viewed as the analog of a “vectocespa
over a ring. Whereas the notion of a vector space is definedaove
field K, modules generalize vector spaces over rings.

Theorem 2.2. For a finite setP : {p1,...,pm } Of polynomi-
als, the syzygieSyz(P) has the following property:

1. Syz(P) forms a module oveK [Z].

2. Syz(P) is a finitely generated module for the ring polyno-
mials K [Z] over a fieldK.

3. The generators @yz(P) can be computed using the Groeb-
ner basisG of P.

PROOF A proof is available from Cox et al. [6] or Adams&
Loustaunau [1]. O

We note that once a Groebner ba&iss computed, the genera-
tors of the Syzygy bases can be computed by modifying the stan
dard Buchberger's algorithm for computing the Groebneidg.

2.1 Algebraic Templates

A template polynomiap is a polynomial whose coefficients are
linear expressions over a set of unknowhs

Def. 2.4 (Template).Let A be a set otemplate variableand
Lin(A) be the domain of alinear expressiongver variables inA
of the formeo +cia1 +. .. +cnan, ¢; € K. Atemplateover A, X
is a polynomial inLin(A)[Z]. An A-environmentis a mapa that
assigns a value i’ to each variable inA, and by extension, maps
each expression ifiin(A) to a value ink, and each template in
Lin(A)[Z] to a polynomial inK [Z].

Example 2.1. Let A = {a1,a2,as}, henceLin(A) = {co +
c1a1 + czaz + czaz | co,...,c3 € R}. An example template is
(2a2 + 3)z123 + (3as)xa + (4as + a1 + 10). The environment
a = (a1 = 0,a2 = 1,a3 = 2), maps this template to the polyno-
mial 5x122 + 6z + 18.

Thegeneric template polynomiakerzy, ..., x, of degreen >
0 is formed by considering all monomial terdS such thad, r; <
m.

2.2 \ector Fields

For the remainder of this discussion, |&t = R. A vector
field F* over an (open) seK C R" isa mapF : X — R"
mapping each poinf € X to a vectorF(z) € R". A vec-
tor field F' is continuous if the mag’ is continuous. A polyno-
mial vector fieldF' : X — R[Z]" is specified by a map'(%) =

(p1(Z),p2(Z), ..., pn(Z)), whereinpi, ..., p, € R[Z]. A system

of ordinary differential equation®,

d,,
o= pi(zn,..,ze)
d;”—: Pr(T1,. .., Tn)
specifies the evolution of variablés,, ..., z,) € X over timet.

Such a system can be viewed as a vector #&ld) : ,pn(Z)).

Def. 2.5 (Lie Derivative). Given a continuous vector field(z) :
(f1,..., fm), theLie derivativeof a continuous and differentiable
function f () is given by

fz')

Henceforth, wherever the vector fieldis clear from the context,
we will drop subscripts and usg(p) to denote the Lie derivative
of pw.rt F.

(p1(2); - -

Le(f) = (V) F(T)

*Z<axi’

i=1

Example 2.2. Consider a mechanical system expressed in gen-
eralized position co-ordinate§;:, ¢2) and momentdp:, p2) de-
fined using the following vector field:

F(p1,p2,q1,42) : { —2q145, —2¢iq2, 2p1, 2p2 )
The Lie-derivative off — ¢3 is given byd(p1qi — p2qe).

A continuous vector fielg is locally Lipschitz continuous [25],
if for eachZ € X there exists an open subsg{z) C X and
a constantZ(Z) > 0 such that for ally, ' € S(Z), ||F(§') —
F@)|| < L(2)||¥ —¥l]- In general, all polynomial vector fields are
locally Lipschitz continuous, but not necessadlgbally Lipschitz
continuous over an unbounded domain

2.3 Invariants
We first define algebraic systems and their semantics.

Def. 2.6 (Algebraic System).An algebraic system ove¥ is
a pair A : (F, Xo) such thatF’ : & — R[Z]" is a polynomial
vector field andXy C R"™ is analgebraic varietyspecifying the set
of initial statesof the system.

Note: For algebraic syster, Xo), we assume thaX is spec-
ified by the generators of its ide@( X,) C R[Z].

Given an algebraic system, its time trajectories are defined as
a vector-valued function over time whose gradient coirgigéth
the value of the vector field at all times.

Def. 2.7. Given an algebraic systert : (F, X,), a continuous
and differentiable functior : [0,7) — R" is atime trajectoryof
A upto timeT" > 0 if it satisfies the following conditions:

1. T(O) € Xo,

2.¥se€[0,T), &

Tt lt=s = F(7(s)).
The Lipschitz continuity of the vector fielH, ensures that given
T = ¥y, there exists a tim& > 0 and a unique time trajectory

7:[0,T) — R™ such thatr () = Zo.

Theorem 2.3 (Picard-Lindeldf). Let F' be a (time indepen-
dent) polynomial vector field over an open subSetC R". For
any initial valueZ, € U there exists a time intervéd, 7'), 7' > 0
and a unique, continuous and differentiable (lodat)e trajectory
7:[0,T) — U of F such thatr (0) = Zo.



The proof of this theorem involves an iteration otantractive

operatorover the space of continuous functions that is termed the

Picard iteration.

Def. 2.8 (Invariant Set). A setX is an invariant of a given
algebraic system iff all time trajectories of the system lie iK.

Example 2.3. Consider the system from Ex. 2.2 using the ini-

tial set of initial states defined by
Xo :{Z: (p1,q1,p2,42) | P +P3—4=0, ¢°—1=0,q2 = 0}.

Using our approach, we show that the following set is an iiarr
of the system above starting from the initial set of stafgs

H(p1,p2,q1,¢2) : pt + 3+ digs —4=0.

Incidentally, H is an expression for the Hamiltonian of the system

in the co-ordinatey, .

In this work, we wish to study algebraic invariants that aee d
scribed by the common zeros of a (finite) set of multivariaib/p
nomials inR[Z], i.e, invariant sets that aedgebraic varietiesNat-
urally, algebraic invariants can be described by theiresponding
ideals inR[Z] as follows:

Def. 2.9 (Invariant Ideal). Anideall C R[Z] isinvariantfor
the algebraic syster#, X,) iff

1. (Vp eI, @ € Xo) p(Zo) = 0, alternatively,] C Z(Xo).
2. (Wpel), L(p) €I

Informally, an invariant ideal is a sub-ideal ofZ(Xy) that is
closed under the action of computing Lie derivatives of tblypo-
mials in the ideal. We wish to prove that any invariant idedtily
invariant w.r.t. to all the time trajectories of a systemfd@e we do
so, we first prove the following key fact about the time trajeies
of a system with polynomial right hand sides.

Lemma 2.1. Let trajectory : [0,7) +— R" be the unique
solution to the algebraic ODEZ = F(Z), for initial value zo €
U. Thenr is analytic around = 0.

unique solution in the entire intervill, T'). We know thatf (t) = 0
is one possible solution far € [0,7"). By uniqueness, it must be
the only possible solution in the intervf), T'). As a result we
conclude thap(r(t)) = 0forall t € [0,T).

Thereforer(t) € V(I) foreacht € [0, 7). O

Example 2.4. Returning to Ex. 2.3((p? + p3 + qig5 — 4)) is
an invariant ideal. Its value as well as that of its Lie detive are
both zero at the initial state of the system.

3. INVARIANT IDEALS

In this section, we present techniques for computing iaveri
ideals using a characterizations of such ideals as the firgtt p
under a suitably define@finement operator

3.1 Fixed-Point Characterization

Let A : (Xo, F) be an algebraic system addbe an invariant
ideal for A. We define a monotonic operator over the lattice of
ideals such that any invariant ideatan be seen as a the pre fixed
point of this operator.

Def. 3.1 (Refinement Operator).Let ! be an ideal andd be
an algebraic system. Thiefinemenof the ideall w.r.t A is defined
as:

0a(l): Z(Xo)N{peI|L(p)e}.

In other words, the refinement operator interse€{sY,) with
the set of those polynomials inwhose Lie derivatives w.ri also
liein I.

An ideal I is apre fixed pointof 04 iff I C 04(I). We show
that the refinement operator is a monotone map over thedatfic
ideals ordered by inclusion and furthermore, any pre fixeidtpaf
this operato is an invariant of the systet.

Lemma 3.1. For an ideal I, its refinement4(I) is also an
ideal.

PrROOF It suffices to prove that the set
I'={pel|L(p)el},
is an ideal and note that ideals are closed under intersectio

PROOF. This theorem is a special case of the more general Cauchy-First of all, we note thab € I’. Secondly, ifp1,p2 € I’ then

Kowalowskaya theorem for partial differential equatiors [ [J

Using the fact that all derivatives exist for a trajectorgamd the
initial statezo, we show the soundness of the invariant ideal.

Theorem 2.4. Let I be an invariant ideal for the syster :
(F, Xo). For any time trajectoryr : [0,7") — R" of A, 7(t) €
V(I)forall¢t € [0,T).

PROOF. We establish thap(7(t)) = 0 for all p € I andt €
[0,T). Considep € I. Itfollows that since C Z(Xo), p(7(0)) =
0. Letp, : £ (p) denote then'”" Lie derivative ofp, and let
Sm : pm(7(0)).

We first prove by induction that,, € I for all m > 0, and thus
sm = 0 forallm > 0. This holds form = 0. Assuming that
pr € I, we havepi+1 = L(px) € 1. Therefore, sincd C I, it
follows thatsy+1 = 0.

Consider the functiorf (¢t) = p(7(¢)). We have% =g(t) =
L(p)(r(t)). The functionf(¢), satisfies the differential equation
% = g(t). We can show thaj(t) = L(p)(7(¢)) is continuous (in
fact it is analytic around = 0). First of all, f(0) = 0,¢(0) =
0 and all derivatives of(¢) vanish att = 0. Secondly, by the
continuity of g(¢), the differential equation fof (¢) must have a

p1 + p2 € I and furthermorefL(p1 + p2) = L(p1) + L(p2) € 1.
Thereforep: + p2 € I'.

Finally, for eachp ¢ I’, we wish to show thay - p € I’ for
g € K|[Z]. First, we observe that- p € I. Using the product rule
for Lie derivatives,L(gp) = pL(g) + gL(p) Note that, both the
terms belong to the idedl and thereforeC(gp) € I. As a result,
gpel'. O

We now relate invariant ideals to pre fixed pointsiof.

Theorem 3.1. An ideal I is invariant for a system! iff I C
oa(I).

PROOF [«<] We will establish that (ay C Z(Xo), and (b)
Vp € I, L(p) € I. Note that,

I C aA(I)
C I(Xo)n{pel|L(p)el}

We deduce that C Z(Xo) and alsal C {p € I | L(p) € I}. As
a result, we conclude thdtis an invariant ideal ofd.

[=] Similarly, if Vp € I,L(p) € I,thenl C {p € I | L(p) €
I}. This combined with the fact that C Z(X,) completes the
proof. [



Finally, we establish the monotonicity 6f;.

Lemma 3.2. The refinement operatad is monotonic in the
lattice of ideals ordered by set inclusion.

PROOF LetI; C I, we would like to establish thadta (I;) C
0a(I2). This follows directly from the observation that

{peh|Lp) e} C{pel|L(p) € I2}.
[l
The monotonicity of the operatéry allows us to apply the Tarski-

Knaster fixed point theorem to deduce the existence of a naxim
invariant ideal w.r.t set inclusion.

Theorem 3.2. There exists a maximal fixed point iddalsuch
thatoal* =1".

PROOF The operatoi®4 is monotone over ideals. The lat-
tice of ideals is closed under infinite intersection. ApptyiTarski-

We now show that modulé&/ (1) C K[Z]™ completely character-
izesOa(I). Furthermore, we show that it is finitely generated. For
the ensuing discussion, l1&t= ((p1, ..., pm)) andI’ be the set

I' {pcl|L(p)clI}.

We note thaB4(I) = Z(Xo) N I’. The following lemma provides
a link between the derivative modul&(7) and the ideal’.

7gm) € G(I)7 p= Zj gjPj-

PROOF Letp = > hip; € I'. By definition,p € I and
L(p) € I.Ourgoalistoshowthaie I' < (h1,...,hm) €
G(I). Note that by product rule

Lemma 3.3. p € I' iff 3(gu, . . .

m

L(p) = L(h)p:i + Z hiL(p:) -

=1

Knaster theorem we conclude the existence of a maximal fixed Since>_", L(hi)p: € I. Therefore L(p) € Iiff 3=, hiL(p:) €

O

Note that the maximal fixed point ideal is the strongest [ssi
invariant for the given system. We first demonstrate an algebraic
technique to compute the refinement operdter This enables us
to carry out Tarski iteratiody : K[Zo], I1 : 0a(K[Zo]), ... tO
computel*. However, this iteration may not necessarily converge
to a fixed point in finitely many steps.

Therefore, we present a relaxation of the refinement opeuato
ing the notion of degree-boundedeudo-idealslue to M. Coldn [4].
Using pseudo-ideals, we will provide an efficient as wellasver-
gent scheme that for computing an invariant ideal I*. In prac-
tice, we combine exact refinement with pseudo-ideal relaman
order to obtain a powerful technique for discovering algébin-
variants.

3.2 Computing Refinement

In this section, we present tlexactscheme for computing the
refinement operator. Our approach first computes a finitehege
ated Syzygy module (informally, as&ctor-spactover the ring of
polynomials naturally derived from an ideal, Cf. [1, 6]).v@h an
ideal 7 = {(p1,...,pm)), our approach for computin@a () is as
follows

point I'*.

1. We first characterize moduleG(I) defined as follows:
GI)={(g1,.-.gm) | Y 9;L(p;) € T}.
j=1

We show thatG(I) is a finitely generated module, obtained
by projecting the basis of th&yzygy modulef the ideall =

(L(p1)y - L(Pm)sP1s -+ - D).

2. Given the matrix of polynomiald € K[#]**™, whose
rows represent the generators of the modulld), we com-

pute
P1
oa(I) : Z(Xo) N <<H : >> .

Pm
Derivative Module: Let I be an ideal and” a polynomial vector

field. Thederivative moduleof the ideall w.r.t F' is defined as
follows:

G(I) = {(91,-- -, 9m) | Z 9iL(pj) € I}

1. By definition of G(I), we note that this is equivalent to requiring
(h1,...,hm) € G(I). O

We now demonstrate thék(/) can be computed and represented
using a finite set of generators. This can be proved readilygus
non-constructive techniques along the lines Hilbert'ssb#morem,
as shown below. We provide a constructive technique for egmp
ing G(I) through Syzygy modules.

Lemma 3.4. The moduleZ(I) is finitely generated.

PrROOFR We first note tha&/(I) is a submodule oi’[Z]™, since

apgm) € G(I) .

The result follows from the observation that[Z] is a Noetherian
ring and a theorem in commutative algebra that states tlyagan
module of B™ for a Noetherian ringB is finitely generated (here
B=K[Z]) [1]. O

Vp € K[z], (pg1, - ..

The generators of/() can be computed by using the standard
techniques for computin§yzygiesLet S be the generators for the
syzygy module corresponding to the ideal:

T: {L(D1),-  LDPm)P1s- -, Pm) -

As aresult,
S={(g1,---92m) | D_giL(pi) + > gitmpi =0.}
=1 =1
Let 'S be obtained by projecting: components away frorf:

?:{(gh,, ..,ggm)ES}.

The generators of the moduleare obtained by projecting the last
m components away from the generatorsSof

. 797”) | (917 vy my Gm+l, -

Theorem 3.3. G(I) = S.

PROOF Let(g1,...
of polynomials(gs, . . .

,gm) € S. It follows that there exists a set
s Gms Gm+1, - - -, g2m) SUCh that

S L) + > givmpi = 0.
j=1 j=1

As aresult, we conclude that, g; L(p:) € I andthugg, ...
G(I). O

,gm) €



Input: A : (Z(Xo), F') (Algebraic System)] : (p1, ...
(Ideal)
Result 041
begin
Il — (['(pl)7 ey [/(pm)JJM cee apm)
M, «— SyzygyModuleGenerators(/1)
M «— ProjectOutColumns(Mi,m + 1,2m)
I' «— MatrixVectorProduct(M, (p1,...,pm))
9a(I) « Ideallntersection(I’,Z(Xo))
end

,pm»

Algorithm 1: ComputeRefinement

Computational ComplexityThe computational complexity of the
refinement step shown in Algorithm 1 depends on the number of
variables in the systeml and the degree of the vector field. In
practice, the computation of Syzygy bases require an exgens
Grébner basis computation, whose complexity is not welleund
stood, in general. Similarly, the ideal intersection idissed on
a Grobner basis computation.

As mentioned earlier, the downward Tarski iteration on tte |
tice of ideals does not converge since ideals dv¢f] do not ex-
hibit the descending chain condition unles$z] is an Artinian
ring. In practice, the ring®)[z], R[Z], C[Z] of rational, reals and
complex polynomials are not Artinian.

PROOF Notethatifpi,...,p; € PSEUDGIDEAL4(P) then for
anyAi,..., N\ € K, >, \ipi € PSEUDGIDEALy(P). As are-
sult,PSEUDGIDEAL 4(P) forms a vector space ovér

Each elemenp of PSEUDGIDEAL4(P) is represented by some
tuple (g1,...,gm) € Ka[Z]™, such thad """ | gip; = p. The di-
mension of the vector space is bounded éiyn (K 4[Z]))™, which
yields the required upper bound[]

Example 4.1. Consider the set of polynomialB = {z$ —
1,23 — 1,22 — 1}. The parametric form (template polynomial)
ai1T1 + aiexe + aisxs + b; for i = 1,2, 3 represents the un-
known multipliers fronk: [z1, z2, z3]. As a result, any polynomial
in PSEUDGIDEAL+ (P) can be written as

S (aina1 + s + aisas + aw) (22 — 1)
allcc:f + a12CC%CC2 + alS‘T%CCS + a14m%
217173 + azeT3 + az3T3T3 + a2473
a31T173 + as2T2r3 + aszxi + asar3

(a11 + a21 + as1)z1 — (a12 + a2z + as2)z2
(a13 + a23 + ass)xs — (@14 + az4 + ass)

p

I+ + 1

Def. 4.2 (Pseudo-ldeal Degree)The pseudo ideal degreef
I: PSEUDGIDEAL4(p1,...,pm) is defined as

degree(I) : d 4+ max{degree(p1),...,degree(pm)}.

We now present a convergent technique based on a relaxdtion o The degree of a pseudo ideal places an upper limit on the elegre

the refinement procedure to consider degree boupdeddo ide-
als. Such a relaxation also yields a convergence guaranteador t
Tarski iteration as well as providing an efficient refinemepera-
tor. Furthermore, the techniques developed in this segtione to
be quite useful as a starting point for the pseudo ideal atian.

4. INVARIANT PSEUDO IDEALS

In this section, we present our technique over the domain of
pseudo idealsThe notion of pseudo ideals was originally formu-
lated by M. Colén [4] in order to generate invariants for pags.

We first recall some basic properties of pseudo ideals.

4.1 Pseudo ldeals

Let K4[#] C K|[Z] denote the set of polynomiajs such that
degree(p) < d. The setK,[#] can be viewed as a vector space
generated by a basis set consisting of all monomials 8wehose
degrees are at most

Def. 4.1 (Pseudo Ideal).Thepseudo ideagjenerated by a fi-
nite set of polynomial$®> = {p1,...,pm} using multipliers with
degree bound is given by:

PSEUDOIDEAL4(P) = {> _ gipi | g; € Kald]}.

ThusPSEUDGIDEAL4(P) consists of polynomial combinations of
the elements i usingmultipliersdrawn from K 4[Z].

A pseudo ideal differs from an ideal as follows: whereas an
ideal generated by’ considers polynomial combinations of the
elements ofP using arbitrary polynomial multipliers drawn from
K|[Z], a pseudo ideal restricts the multipliers to a degree badinde
setK 4[Z]. The basic properties of pseudo ideals can be formulated
clearly once we establish that pseudo ideals formeetor space
overK.

Lemma 4.1. For any finite set of polynomial® = {p1,...,pm},
the pseudo ideabSEUDGIDEAL4(P) is a vector space oveK,
whose dimension is at mogt: %)™, wheren = ||.

of the polynomials in it. Alsodegree(PSEUDGIDEAL4(P)) > d,
unless all polynomials it are of degre®.

Representation: Any pseudo ideal : PSEUDGIDEALq(P) can
be represented implicitly as a parametric polynomial farj# whose
degree coincides with that &f along with linear constraints on the
coefficients of the parametric form:

w[e] : {anf“|M5:0} .

In practice, many of the constraints on are of the forme, = 0.
We, therefore, optimize the representation of pseudo sdeglre-
moving the corresponding monomials from the parametrig/{pol
nomials, thus retaining a list of monomials that are parthaf t
parametric polynomial and linear constraints involvingiticoef-
ficients.

Lemma 4.2. A set of polynomiald is a pseudo ideal iff there

exists parametric polynomiat|c] and a matrix)/ such that:
I: {x[d| Mc=0}.

PROOF. Letdcy, ..., cn generate the kernel of the mati{ and
p; = 7[¢;] be apolynomial. Thud, = PSEUDGIDEALo(p1,...,DN).
Conversely, letl = PSEUDGIDEAL4(P) and D = degree(I).
Sincel is a vector space, we may conceivelofs a subspace of
Kp[Z]. Letw|[c] be the generic polynomial form of degree at most

D with coefficientsé. We can express the pseudo idéak sub-
space ofK p[Z], as the kernel of a matri®x/. [

We provide an example of a parametric representation.

Example 4.2. PSEUDGIDEAL:(P) from Example 4.1 can be
represented using a parametric polynomial representediditly

here for lack of space:
1,5,k >0,i+7+k <3,

. o 2(60,k)
w2 e St T 2 )

By convention, let the coefficient in a template correspond to
the monomialz®. Note that there is no term in corresponding



to x1z2x3 (i.€.,c1,1,1 = 0). The following constraints od define wherein the operatadr (I) is now interpreted over sets of polyno-

PSEUDGIDEAL1(P): mials that are pseudo-ideals instead of ideals. Refinermeo¢eds
as follows:
€0,0,0 + €2,0,0 + Co,2,0 + Co,02 = 0
€1,0,0 + 3,00 + 2,10 +c201 = 0 1. We first compute the parametric forml : Lg(w[é]). This
€0,1,0 +€1,2,0 + 0,30 +co21 = 0 will result in a polynomial whose coefficients are linear ex-
€0,0,1 + 1,02 +co,1,2 +co03 = 0 pressions over.
In practice, our data structures currently list the set ofnte of 2. We derive constraints ovérto ensure thatz(r) € 1. Let
the parametric polynomials explicitly, storing the comastits in a M'E = 0 be the constraints thus derived.

matrix. o ] o ]
3. We conjoinM’¢c = 0 with the original constraintd/¢ = 0

Membership TestingTesting whether polynomial belongs taJ : and simplify based on these new constraints.

PSEUDGIDEAL4(P) is performed by checking if the coefficients
of p satisfy the linear constraintd/¢ = 0, corresponding to/.
Note that ifdegree(p) > degree (J), then we may conclude that

Example 4.4. Consider the pseudo ideREEUDGIDEAL (27—
1,23 + 2z1 — 2x7) represented using parametric polynomial

pé&J. [ : e2,027 + €223 + c1,021 + co,0
Intersection: Informally, intersection of two pseudo ideats, P> with constraints

is performed by conjoining their constraini$; ¢ = 0 and M>¢ = a0+ cro+coo = 0
0. In general, however, the monomial terms involved in theapar Mc: e —20s = 0

metric representations d?; and P, differ. Therefore, (A) we first

compute a common set of monomials that occur bott#®inand Let F' be the vector fieldx2z1, —21). The Lie derivative ofr is
P»’s parametric form. (B) FoP; (P2) we drop the coefficients cor- '
responding to monomials that do not appea®i{ resp. P1) by T
setting them to zero. This corresponds to removing the spoed-

ing columns from the matrix/, (resp. M>) to obtain a matrixj/{ We would liker’ € I. Note that the terms?z» and 1z do not

(resp. M3). Furthermore, the monomial terms corresponding to exist inm[c]. As a result, we obtain the constraints:
these columns are eliminated. (C) Finally, we conjoin the taa-

trices M{ and M} as c20 =0 A c1,0=2¢c02=0.

M, The refinement can be expressed using the forsatisfying these
Mpynp, : { M)} } constraints as well as the original constraints ovgt]. After sim-
plification, we obtain

2¢2,0t1(x221) 4 2c0,222(—21) + c1,0(x221)
= 2co0xiza + (c1,0 — 2c0,2)T122

Example 4.3. We recall the pseudo ideeSEUDGIDEAL 1 (P)
from Exs. 4.1 and 4.2. The degréepseudo ideal) = (z1 —
1,2 — 1,3 + 1) is represented by a generic degree two polyno- Note that the term for? is no longer present due to the constraint
mial >, eeo di, ki 22} with the following constraintonits  c20 = 0. The constraints on the coefficients after simplification
coefficients: are:

2
T1 @ Co,2Z% + C1,0L1 + Co,0 -

di1,0,0 +do,1,0 +doo,1 = doo,0+ d20,0+ do20+ c1,0 —2co2 =0 A c1,0+ co0=0.
do,o,2 +di,1,0+doi,1 —dion

PSEUDGIDEAL:(P)NPSEUDGIDEAL:(Q) is computed as fol-
lows: PSEUDGIDEAL+(P) has a higher degree template polyno-

This is in factPSEUDGIDEAL (23 + 21 — 2).

Lemma 4.4. If I is a pseudo ideal, then the set

mial. We therefore zero away all variables with degseer above. or(I): {peI|Lr(p)el}

This corresponds to removing the corresponding coeffioranit

ables from the constraints faPSEUDGIDEAL:(P). Finally, we is also a pseudo ideal.

conjoin the two sets of constraints and obtain a pseudo idgal PROOF. After computing the parametric representatior pthe
resented by a generic template of degree two procedure for refinement yields a parametric form with con-

) ) , : . e o . .
T2 = €000 + €2,0.0%7 + €0.2,02% + €0,0,222 - straints on its coefficients. This is a pseudo ideal follapliemma4.2. [

with the following constraint on its coefficients: We now state the theorem guaranteeing convergence of tite ove

all Tarski iteration over pseudo ideals.
€0,0,0 + €2,0,0 + €0,2,0 + €002 = 0

Lemma 4.5. Consider an infinite sequence of pseudo ideals
I DI D I3---. There exists alimifV > 0s.t. Iy = In+1 =

Lemma 4.3. Let I, I» be two pseudo ideals. It follows that - In other words, any descending chain of pseudo ideals con-
degree(I; N I2) < min(degree(I), degree(I2)). verges to a limit.

PROOF. Pseudo ideals are in fact finite dimensional vector spaces.

Refinement:We discuss the computation of a refinement operator If Z; O I;+1 then the dimension af; 1, is strictly lower than that
over pseudo ideals. Let be a pseudo-ideal of degrek. Let of I;. As aresult the descending chain of pseudo ideals converges
7[c] be the parametric form associated witand /& = 0 be the in finitely many steps. [J
constraints on the coefficients ofc]. We seek to compute

This is, in fact, a representation 8SEUDGIDEALq(P).

Finally, we show that the fixed point obtained is an invariant
Or(I):{pel|Lr(p) €l}, ideal. Before doing so, we first relate pseudo ideals to &eal



Lemma 4.6. Given finite seP C K|[Z], PSEUDGIDEAL4(P) C

(P)-

Theorem 4.1. LetPSEUDGIDEAL4(P) be a pre-fixed point over
pseudo ideals. It follows thdtP)) is an invariant ideal.

PROOF Let P = {p1,...,pr}. We note that each of the gen-
erators ofZ (X, ) belong toPSEUDGIDEAL4(P) and thus ta(P)).
AsaresultZ(Xo) C (P)). By the property of pseudo ideal refine-
ment, for eaclp € P, L(p) € PSEUDGIDEAL4(P). As a result,
L(p1),...,L(px) € (P)). Therefore, for everp = >, gipi €
(P)), we haveC(p) = 3", g:L(pi) + 3, L(gi)ps € (P). O

Complexity: Let N be the dimension oPSEUDGIDEAL4([o) at
the start of the iteration. Each pseudo ideal encounteren gen-
eral, a subspace df represented by & x N matrix. As a result,
each iteration requires a refinement followed by intersectie-
quiring time O(N?). We may iterate for at mosV steps, leading
to aO(N?) complexity. On the other hand, checking for conver-
gence is also & (N?) operation. If we repeatedly check for con-
vergence, we have@(N*) worst case, wherd/ = O(("1%)™).

In practice, we maintairl to be smalld = 0, 1,2, and observe
convergence in number of steps much smaller tan

5. EXTENSIONS TO HYBRID SYSTEMS

We have thus far presented a technique for generating aari
of continuous systems with polynomial ODEs. In this sectiva
extend our discussion to hybrid systems with discrete maahels
transitions between them.

Continuous Systems with Constraint@/e first consider an exten-
sion to continuous algebraic systef{#,, F') in order to consider
the effect ofholonomic constraint®n the state-space. In other
words, the evolution of the system is constrained to rem@ite a
domainX. We assume thaX C R" is an algebraic variety whose
corresponding ideal i%(X).

Def. 5.1 (Constrained Algebraic System)A constrained al-
gebraic system consists @F, Xy, X) whereinF' is a polynomial
vector field, X, is a variety describing possible initial states and
X is an algebraicconstrain{commonly termed an invariant).

The semantics of the system are modified to ensure that al tim

trajectoriesr : [0,T) — R" satisfy the condition(t) € X for

all ¢ € [0, 7). Naturally, any invariant of such a system will also,
in general, be subsumed by. Let Or be a refinement operator
over ideals (resp. pseudo ideals) defined for the systenX,)

in the absence of any constraints. In the presence of camsset

X represented by idedl(X), the iteration scheme is modified as
follows:

Int1 = F(In) = (Z(Xo) N Or (In)) ® I(X) @

wherein® denotes the ideal addition (i.e, the union of generators
of the ideal), representing the intersection of the cowesing al-
gebraic varieties. Over pseudo ideals, we may intergrets the
vector space addition of the two subspaces representec aydh-
ments.

Theorem 5.1. Let F denote the operator in Eq. 1. The follow-
ing facts hold aboufF both over ideals as well as pseudo ideals.

Monotonicity: I C J thenF(I) C F(J).
Inclusion: F(J) C Z(X).

5.1 Hybrid Systems

We now extend our notions to hybrid systems.

Def. 5.2 (Algebraic Hybrid System). An algebraic hybrid sys-
temis atupldS, 7), whereinS = {51, ..., Sk} consists of: dis-
crete modes and@ denotes discrete transitions between the modes.
Each modeS; € S consists of an algebraic systeiXo,;, Fi, X;).

Each transitionr : (S;, S, P;;) € T consists of an edgé; —

S; along with analgebraic transition relatioR; ; [Z, '] specifying
the next stater’ in relation to the previous stat& Note that the

transition isguardedby the assertiodlz’' P;;[Z, Z'].

Discrete transitions are treated in the process of gemeyat-
variants using the post-condition operator.

Def. 5.3 (Post-Conditions).The post condition of a (pseudo)

ideal I; over a transitionr : (S; — S;, P;;[Z,Z']) is defined as:

(37) [L[Z] @ Py[Z, &)

We recall that the operatio® over ideals represents the inter-
section of the associated variety and is computed by comipitie
generators of; and P;;. The elimination of the variableg from
the resulting ideal is performed by computing the Groebrasid
using arelimination ideal[6]. The computation of post conditions
over pseudo ideals is described in detail elsewhere [4].

Thus far, we have computed invariant ideals for continudus a
gebraic systems as fixed points over ideals as well as pseledo i
als. For the case of hybrid systems with multiple modes, oait g
is to compute multiple invariant ideals, one for each modéhef
system. Therefore, we lift our notions from invariant (pde)ide-
als to a map that associates (pseudo) ideals to each Ma@cS:
n: S — P(K[Z]), s.t.n(S;) C K[Z]. The notion of an invariant
(pseudo) ideal for an algebraic system is extended to amiamta
(pseudo) ideal map.

Def. 5.4 (Invariant Ideal Map). Amapn : S — P(K[Z]) is
an invariant map iff the following facts hold:

post(I;,T) :

Initiation and Mode Constraints: VS; : (Xo,s, Fi, X;), we have
Z(X:) € n(Si) € I(Xo,:). In other words, the invariant
associated with mod#&; must respect the initial condition
and constraints af;.

Continuous Sub-system:VS; : (Xo:, F3, X;), the idealn(S;
is a fixed point w.r.tF;: 7(S;) C [Z(Xo,:) N Irn(Si)]
I(X;).

Discrete Transitions: V7 : (S;, Sj, Pi;), the idealsn(S;) and
n(S;) must satisfigonsecutionn(S;) C post(n(S;), 7).

In order to compute the invariant map, we start with an ihitia
mapn® such thaty)(®)(S;) = K[z], and update using the rule
D = G(n™) such that

ﬂf;s/ﬂs pOSt(n(i) (S/): )
R ——

Discrete Transition

VS =IXD @ | 10x00 0 (r (S)

Continuous System

The extensions to pseudo ideals proceeds along similas. lifiee
initial map is set to)”) (S;) = K,[&] for the case of iteration over
pseudo ideals.

6. EXPERIMENTS

In this section, we describe our prototype implementatiod a
some results on some interesting non-linear systems.



Table 1: Results of various runs of our technique. Note: Ideka
Iter: number of initial refinement steps, Pseudo Degree: dege
of pseudo ideal, Steps: number of steps taken to converge, #
Inv: number of generators in invariant ideal.

System Var || Ideal | Pseudo| Steps| Time | # Inv
Iter | Degree (sec)
\olterra-3D | 3 1 1 3 1.1 4
Coup-Spring| 5 1 2 23 21 4
Collision2 12 1 1 3 570 10
Collision3 | 16 1 0 2 4 4
Collision3 | 16 2 0 3 196 14
Collision3 16 1 1 6 372 15
Collision3 | 16 3 0 3 12900| 13
6.1 Implementation.

The techniques described here have been implemented inside

Mathematica(tm) for finding invariants of continuous sysste us-
ing Singular package interface to Mathematica(tm). We have
plemented the Syzygy-based refinement procedure as wetlleas t
one based on pseudo ideals. In practice, our iteration selvem
sists of running a small and fixed number of iterations of tkece
refinement operator. The resulting generators form the rgeors

of a pseudo ideal for some fixed degrée The iteration is then
carried out further over the lattice of pseudo ideals urtihwer-
gence. The soundness of this scheme follows from the fatt tha
O% (I) C I(Xo) for all I and from the soundness of the pseudo
ideal fixed point. The Mathematica(tm) implementation glarith

the systems analyzed and invariants computed will be maaié av
able on-liné.

6.2 Experiments

We now present the results obtained over some interestimghbe
mark systems. Table 1 summarizes the parameters used ireur e
cutions and the performance of our technique at a glance.

3D-Lotka-Volterra SystemiWe considered the followingD Lotka
\olterra System over variables y, z:

F(@,y,2)  (wy —x2,y2 — yz, 22 — 2y).
The initial states lie over the vertices of an unit cube:
Xo: (=17 —1,2° = 1).

The initial pseudo ideal involved8 unknown parameters in our
initial template. We obtained the following invariants:

p1: —1—2yz — 2% +yt2® + 2323 + 422",

pa: —x—y+ylrd x4+ 3y — 32t + 23 — 2728 — gyt
ps: —x+axy® + P — 24+ 3%z —yte +y2® — 2827 — %23,
pa: =342 —y® —dyz+ 282 — 2% 4+ 49?27 + 2923

All of them are mutually dependent on each other. Furtheangpt-
ing to obtain these using generic templates of degreequires
126 x 4 unknowns as opposed 18 unknowns that were used.

Coupled Spring-Mass Syster@onsider a mechanical system mod-
eling the undamped/unforced oscillation of two masses leoluys-
ing springs with constants;, k2 and masseg;, m2 tuned such
that - = 22 — k. Furthermore, we assume that, = 5ms.

1

Cf.\url {http://ww.cs. col orado. edu/
~sri rans/ al gebraic-invari ants}.

p1 576 + 12000% + 62507 + 2880v1v2 + 300003 v+
528v3 + 41500303 + 13200103 + 12103
—1860kx3 4 2750kv?x3 + 1600kv; vox3
+710kv3z3 + 525k% x5,
P2 240z1 + 250021 + 600v1voxy + 110v3 2,
+396x2 — 52507 @9 — 260v1vaxs — 131v3xe — 105k3,
p3 24 + 2507 4 60viv2 + 1103 + 50kz 1z + Sk’
Pa —21 + 2502 4 10v1v2 + 60v3 + 25kx? + Sk

Figure 1: Invariant obtained for coupled mass spring system

ce?4e2 b2, p2:di+di—a®

ter — 120 +0y2, pa:—a+di —raw+ wre

b — ez — 110 + Oy,

c—bri +by1 + e1r2 — e1y2 — ear1 + e211

bra — by2 — e1r1 + e1y1 — eara2 + eay2

ps:—d2 —riw+ wx

po :adars — adazs + didary — didozs — rider + d3a
P1o :ar1 —ax1 — dir1 + dix1 — dars + daxo

P1
P3
Ps
Pe
pP7

Figure 2: Invariants obtained for the two aircraft collision
avoidance system.

The resulting system consists of variablés (x1,x2,v1, v2, k)
representing the displacements, velocities and the spongtant.
The evolution is specified using the vector field:

@) : (1, v2,—kz1 — E(w1 — 22), k(z1 —22), 0 ) .

The initial condition is settay = 22 = 0,v1 = 1,v2 = —1.
This resulted in the invariant ideal shown in Fig.ds andp, are
seen to be conservation laws satisfyiff = 4 = 0. How-
ever,p1, p2 are mutually dependent on themselves as welkag..
Finding these invariants parametrically require a degremmplate
with 4 x 462 unknowns. Our initial pseudo ideals involves an ini-
tial parametric form witl84 unknowns. The choice ofi = 5m,

in this example was arbitrary. We found interesting invatseof a
similar form for all other choices we experimented with inding
mi = 2m2, 3’!77,27 11777,27 P

Collision Avoidance Maneuvers:Finally, we consider the alge-
braic abstraction of the collision avoidance system arealywe-
cently by Platzer and Clarke [16] and much earlier by Tomlin e
al. [24]. The two airplane collision avoidance system cstsf the
variables(z1, x2) denoting the position of the first aircrafy:, y2)

for the second aircraftd:, d2) representing the velocity vector for
aircraft 1 and(e1, e2) for aircraft 2. In addition, the parameters
w,0,a,b,71, 72 are also represented as system variables. The dy-
namics are modeled by the following differential equations

Ccll = d1 CCIQ = dz dll = —wd2 dl2 = wdl
/ / / /

yir=e€e1 yYs=e2 e =—l0ex e5=~0er
ad=0 V=0 ri=0 rh =0

We note that the form of the equations are invariant undee tim
reversalt — —t. The initial set

r1=y1=7r1 AN xa=y2 =12 AN di =aAl
do=0ANe1=bAe=0

represents a collision. Fig. 2 presents the invariants. ifittial
parametric form ha@52 unknowns.p1, ..., ps andpg are conser-
vation laws. The remaining invariants are dependentgn. . , ps



andps. Our tool also was run on a larger system withircrafts
consisting ofL6 variables in all (removed three parameters from the
model). Table 1 shows the behavior of our implementationeund
various values for the number of initial iterations and therting
degree of the pseudo ideal. The blowup involved in going from
2 initial iterations to3 is interesting. The overall time required to
compute three iterations of the exact refinement remainggdb
seconds for this case. However, the result has rouggdypolyno-
mials. Most of the time is spent parameterizing the initiséypdo
ideal, computing its derivatives and so on. We hope to reamgint
parts of our system inside C++/Java to avoid such a slowdown i
the future.

Conclusions: Thus far, we have presented an invariant generation
technique using a fixed point iteration over ideals and psede-
als. A prototype implementation of our technique has beemsh

to compute interesting and non-trivial invariants for syss that
would currently be considered non trivial. In the future, hxape

to explore extensions to compute inequality invariants ali as

to integrate these techniques inside a theorem provingamwient
such as KeYmaera [17].
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