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It has long been recognized that estimates of isotopic abundance patterns may be instrumental in 

identifying the many unknown compounds encountered when conducting untargeted metabolic 

profiling using Liquid Chromatography-Mass Spectrometry. While numerous methods have been 

developed for assigning heuristic scores to rank the degree of fit of the observed abundance patterns 

with theoretical ones, little work has been done to quantify the errors that are associated with the 

measurements made. Thus, it is generally not possible to determine, in a statistically meaningful 

manner, whether a given chemical formula would likely be capable of producing the observed data. 

In this article, we present a method for constructing confidence regions for the isotopic abundance 

patterns based on the fundamental distribution of the ion arrivals. Moreover, we develop a method 

for doing so that makes use of the information pooled together from the measurements obtained 

across an entire chromatographic peak, as well as from any adducts, dimers and fragments observed 

in the mass spectra. This greatly increases the statistical power, thus enabling the analyst to rule out 

a potentially much larger number of candidate formulas while explicitly guarding against false 

positives. In practice, small departures from the model assumptions are possible due to detector 

saturation, and interferences between adjacent isotopologues. While these factors form impediments 

to statistical rigor they can to a large extent be overcome by restricting the analysis to moderate ion 



counts and by applying robust statistical methods. Using real metabolic data, we demonstrate that 

the method is capable of reducing the number of candidate formulas by a substantial amount, even 

when no bromine or chlorine atoms are present. We argue that further developments in our ability to 

characterize the data mathematically could enable much more powerful statistical analyses. 

 

 

Introduction 

 

Metabolomics1 is a powerful tool for investigating biological systems through the study of biofluids such as 

plasma or urine. Samples are typically analyzed using either nuclear magnetic resonance (NMR) or mass 

spectrometry (MS). When the latter platform is used, it is often preceded by either liquid- or gas 

chromatography, resulting in the so-called hyphenated techniques, LC-MS and GC-MS, respectively2.  

Metabolic samples are highly complex mixtures that are comprised of thousands of compounds. Because of 

the high sensitivity of the LC-MS and GC-MS platforms, experimental runs will typically produce a very 

large number of signals, that are induced by unknown metabolites whose identification forms a core part of 

the analysis. Consequently, a central challenge in MS-based metabolomics lies in developing efficient 

methods for reliably identifying the chemical structures of metabolites based on the information contained 

in mass spectral data. 

The primary measure that is used to identify unknown compounds is their estimated masses, 

which, under optimal conditions, may be accurate to within a few ppm (parts per million) for modern time-

of-flight mass spectrometers3. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers are 

capable of sub 1 ppm accuracy4, but can be prohibitively expensive. Compounds may also be identified 

based on their chromatographic elution times; however, this measure is instrument-specific and typically 

has rather poor reproducibility. 

It is often possible to unambiguously identify unknowns at very low masses (<100 Da) using only 

the mass estimate. However, the number of possible chemical formulas and structures increases 

dramatically with mass, resulting in a very large number of ‘candidate formulas’. Many ‘chemically 

unrealistic’ formulas may be discarded using various heuristic rules based on the ratios of elements 



involved, as well as on their valences5. Nevertheless, this will often leave a substantial number of viable 

candidate formulas; especially if the experiment is carried out on a mass spectrometer with limited mass 

accuracy6. 

Further constraints can be placed on the possible formulas of unknown metabolites by making use 

of their fragmentation patterns7. Unlike mass estimates, the observed fragmentation patterns may reveal 

information regarding the structure of the metabolite and thereby enable the analyst to distinguish between 

isomers. However, their analysis can be severely confounded if there is close coelution of distinct 

metabolites, whose fragments must be distinguished. While improved chromatographic techniques such as 

Ultra-Performance Liquid Chromatography8 (UPLC) have helped to alleviate this problem, the partial 

coelution of distinct metabolites remains a routine phenomenon in LC-MS experiments. Various statistical 

techniques are available to help identify related parent-fragment pairs9-11. 

It is also possible to make use of the observed isotopic abundance pattern of a metabolite in order 

to identify it. This measure is especially useful for detecting the presence of bromine or chlorine due to the 

highly characteristic isotopic distributions of those atoms, but even for compounds comprised solely of the 

most biologically abundant elements it provides information that can be crucial for effective formula 

identification. An insightful study by Kind & Fiehn12 demonstrated that if a hypothetical mass spectrometer 

with an accuracy of 0.1 ppm were available, it would be less successful at identifying unknowns than a 

mass spectrometer capable of only 3ppm accuracy, but which was also capable of estimating isotopic ratios 

with a fixed accuracy of 2%. This would suggest that the extensive efforts put into improving the mass 

accuracy of mass spectrometers might be somewhat misplaced if good estimates of isotopic abundance 

patterns could be obtained instead. 

Since all mass spectrometers produce errors in their spectral intensity measurements, a 

fundamental question that must be asked when exploiting isotopic abundance patterns is whether the 

deviation of a given theoretical isotopic abundance pattern from the observed abundance pattern is 

sufficiently small that it may realistically be attributed to the measurement error. If not, then the chemical 

formula to which the theoretical isotopic abundance pattern corresponds may be deemed to be inconsistent 

with the observed data and excluded from the list of candidate formulas. However, rather than addressing 

this question, most available methods attempt only to rank the degree of fit of all the feasible molecular 



formulas by means of various heuristic scores13-15. Other procedures simply assume that the observed 

isotopic ratios are accurate to within a few percent12, but this is somewhat imprecise, as the accuracy 

depends on numerous factors, including the spectral intensity and the type of detector system used.  

Therefore, while these heuristic methods can be extremely useful analytical tools, they do not 

enable the analyst to quantify, in a statistically meaningful manner, the range of molecular formulas that 

could realistically have produced the observed isotopic abundance pattern. The preferred method for doing 

so, according to classical frequentist statistical theory, would be through the construction of a confidence 

region, which, by definition, would cover the true parameter values, say, 95% of the time. However, the 

construction of such intervals requires a detailed understanding of the fundamental distribution of the data, 

which will in turn be dependent on the type of mass spectrometer used as well as the forms of pre-

processing that are applied to the data. 

In the following we demonstrate that the construction of conservative confidence regions is in fact 

possible and has the potential to reduce the number of candidate formulas for unknown metabolites by a 

substantial amount, even when the latter do not contain bromine or chlorine. Moreover, we show how the 

isotopic abundance patterns observed at distinct chromatographic scans and at distinct fragments, adducts 

and polymers that are derived from the same underlying metabolite, may be pooled in order to place further 

constraints on its identity. The statistical model from which the procedure is derived is tailored to the type 

of data produced by time-of-flight mass spectrometers employing a time-to-digital converter (TDC) as part 

of their detector systems. It is therefore not expected to be applicable to different types of mass 

spectrometers, such as FT-ICR, or to time-of-flight mass spectrometers employing the alternative analog-

to-digital converters (ADCs), although similar techniques might be developed for such instruments.  

 

 

Theory 

 

Background. In general, the nature of LC-MS metabolic data is extremely complex. This is in part due to 

the inherent complexity of metabolic samples, but it is also due to the sophisticated nature of the analytical 

platform itself. Moreover, while widely used pre-processing procedures such as peak alignment and 



normalization may serve to facilitate a qualitative analysis, they typically render the underlying statistical 

distribution of the data far more complex. Nevertheless, some of the elementary characteristics of the truly 

raw data can be described by means of rather simple mathematical models. 

A fundamental feature of time-of-flight mass spectrometry is that the rate of ion arrivals at the 

detector plate is governed by the Poisson distribution16. However the distribution of the recorded data is 

generally rather more complicated and, as mentioned above, depends on the type of detection system 

employed. Many mass spectrometers make use of TDCs in order to record the timing and number of ion 

arrivals. An important advantage of TDCs is that they are effectively able to block out electronic noise17, a 

feature which can, to some extent, enable them to preserve the Poisson distribution of the data. However, 

each ion arrival triggers a period of ‘deadtime’ during which the TDC is incapable of registering further ion 

arrivals. Thus, when the rate of the ion arrivals is high, the data output will display strong deviations from 

the Poisson distribution, although these can be reduced somewhat by applying statistical correction 

methods to the data18. 

In principle, a comprehensive mathematical model of a TDC-based detector system might be 

capable of accounting for this limitation. However, the construction of such a model would require very 

extensive knowledge of the workings of the TDC as well as of the dynamics of the ionization process and 

the various ion-focusing mechanisms, which determine the shapes of mass peaks. In the following analysis 

we will therefore focus on the scenario where ion counts are moderate so that the Poisson approximation 

works well. Thus, based on the assumption of Poisson distributed data, a statistically rigorous method for 

determining whether or not a given chemical formula is consistent with the observed isotopic abundance 

pattern is presented in the following subsection. 

 

Statistical Model. In the following we will work with the centroided mass peaks. This does not distort the 

Poisson nature of the data as the sum of independent Poisson-distributed variables is itself Poisson 

distributed. It will be assumed that the peaks studied are comprised of only one metabolite, which may be 

referred to as M. Let us suppose that there are s+1 isotopologues of M, so that we may refer to them as M0, 

M1, ...Ms.  



According to the Poisson distribution, the probability of obtaining the count ki, for the 

isotopologue Mi is given by 

 

P ki( ) = λie
−λi

ki !  

 

where the parameter, λi, denotes the mean number of ion arrivals of the ith isotopologue, Mi, within one 

chromatographic scan. Consequently, the probability of obtaining the sequence of counts k0, k1, ..., ks, from 

the full set of isotopologues can be written 

 

P k0 ,k1,...,ks( ) = λie
−λi

ki !i=0

s

∏
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Each of the λi in the above expression governs the absolute number of ion arrivals of the corresponding 

isotopologue, so that a total of s+1 parameters are required. However, when investigating isotopic 

abundance patterns, we are interested in the relative, rather than the absolute numbers of ion arrivals. We 

may therefore work with the distribution of the ion counts at the various isotopologues, conditional on the 

total number of ion arrivals. If  
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then the conditional distribution that we seek may be written: 

 

P k0 ,k1,...,ks n( ) = P k0 ,k1,...,ks( )
P n( )
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which is a multinomial distribution with n trials and probabilities ρ0, ρ1,... ρs where ρi is the isotopic 

abundance of Mi. 

 

Confidence Regions. Confidence regions may be constructed by exploiting the fundamental duality 

between tests of hypotheses and confidence regions, whereby the confidence regions is defined as the set of 

parameter values that are not rejected by the corresponding test of hypothesis. Several methods are 

available for constructing confidence regions around multinomial proportions and while no one method is 

universally accepted as being optimal in all circumstances, the one based on Pearson’s χ2 test is arguably an 

uncontroversial choice. The statistic which in this case must be “inverted” can be written: 

 

  

x M( )
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where the pi indicate the multinomial parameters that are being tested. If, for all i, pi = ρi, then x2
(M) 

approximates the χ2-distribution with s degrees of freedom (χ2
s in the following). Thus, given the counts k0, 

k1, ..., ks, a 95% confidence region, can be defined as the set of pi for which x2
(M) is less than or equal to the 

95th percentile of the χ2
s-distribution. Since this procedure may be unreliable when the counts are very low, 

a standard rule is to require npi ≥5 for all i. Chromatographic scans for which this condition is not met can 

be pooled together, as will be shown below. 

Note that owing to the dependence between the pi, the confidence region defined above cannot be 

expressed as a set of intervals around each of the estimated probabilities. Rather, the shape of the 

confidence region is ellipsoidal, which can make its interpretation rather awkward, depending on the 

physical nature of the multinomial probabilities. A number of procedures have been developed for 

constructing “simultaneous confidence intervals” which can be expressed as a simple set of intervals 

around each of the estimated probabilities19. But while this can indeed facilitate the interpretation, it also 



makes the resulting confidence region larger than it needs to be, reducing the statistical power of the test. 

Moreover, when the purpose of the study is formula elucidation, where there are a finite number of possible 

multinomial probabilities and the aim is simply to narrow them down as far as possible, any extension of 

the confidence region seems difficult to justify. 

We therefore propose that the most appropriate method for constructing confidence regions for 

isotopic abundance patterns is the one based directly on the ellipsoid described above. In practice, this will 

entail conducting a test of hypothesis based on the x2
(M) statistic for all chemically realistic formulas that are 

consistent with the observed mass estimate. The x2
(M) statistics must be calculated using the multinomial 

probabilities that correspond to the known isotopic abundance patterns of the candidate formulas. While the 

total number of formulas for which the statistic must be calculated may be large, depending on the mass 

accuracy, each individual calculation it requires very little computational power. 

 

Pooling Information. It has long been understood that improved estimates of both masses and isotopic 

abundance patterns may be obtained by combining the measurements obtained across a compound’s 

chromatographic peak. However, the procedure by which the data are pooled must be chosen carefully if a 

valid confidence region is to be constructed for the combined data-set. Moreover, in order to make full use 

of the information in the acquired data-set, the pooling procedure should ideally be generalized to 

incorporate the observed isotopic abundance patterns of any adducts, fragments or dimers of the compound 

of interest. 

Since the power of Pearson’s χ2 test increases with the sample size, a higher value of n will reduce 

the volume of the confidence region and allow us to exclude a larger number of chemical formulas. 

However, owing to the risk of detector saturation, we cannot apply the test to scans with high counts, as 

these generally do not adhere to the Poisson distribution. Fortunately there are a number of ways of 

reducing the volume of the confidence region without using high counts. 

The χ2-distribution has the very useful property that if the statistic X adheres to the χ2
A-

distribution and the statistic Y adheres to the χ2
B-distribution, then X+Y adheres to the χ2

A+B-distribution. 

We may therefore calculate the x2
(M) statistic for each of the chromatographic scans, obtained from the 

metabolite M, and sum the resulting x2
(M) statistics, to obtain a pooled statistic, X2

(M). If we have a total of 



N(M) x2
(M) statistics, then X2

(M) approximates the χ2–distribution with N(M)s degrees of freedom, under the 

null hypothesis that the multinomial probabilities p0, p1,..., ps used in calculating the x2 reflect the true 

isotopic abundance pattern of M. Chromatographic scans for which at least one isotopologue produces 

counts that are high enough to induce substantial detector saturation, should be left out. The more counts 

pooled in this manner, the greater the power of the test, so this is a rare scenario in which broader 

chromatographic peaks are desirable, although of course this is entirely dependent on them not having any 

overlap with other peaks. 

There is in fact a rather more straightforward way to pool the data. The multinomial interpretation 

of the ion counts of the isotopologues applies to all of the scans that comprise a chromatographic peak. 

These multinomials differ in the number of trials, n, but they all share the same probabilities, which are 

governed by the same isotopic abundance pattern. Therefore the counts derived from each isotopologue 

may simply be summed, reducing the entire data-set to the outcome of a single multinomial distribution 

with a potentially very large number of trials. While this method of pooling the data is simpler and has 

greater statistical power than the one based on summing the x2
(M) statistics, the latter method has the 

advantage of being capable of providing a p-value associated with each scan. As will be shown below this 

turns out to be very useful when constructing confidence regions that are robust to small departures from 

the model assumptions, as are often encountered in practice. 

It is possible to further constrain the confidence region by exploiting the information that is 

contained in the isotopic abundance patterns of ‘derivatives’ of the compound being investigated, such as 

adducts, fragments and polymers, which are frequently observed in LC-MS experiments. Consider a 

derivative, D, which has been definitively identified in this manner and which has the isotopologues D0, D1, 

...Dt. As with the underlying metabolite, M, we may calculate the x2
(D) statistic associated with a proposed 

set of multinomial probabilities, q0, q1, ..., qt for a given chromatographic scan: 
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and we may sum the x2
(D) statistics obtained over, say, N(D) chromatographic scans to obtain X2

(D). Again, if 

the qi correspond to the true isotopic abundance pattern of the derivative, the distribution of X2
(D) will 

approximate a χ2
t-distribution. We can therefore easily combine it with the X2

(M) statistic to obtain a single 

final statistic: 

X 2 = X M( )
2 + X D( )

2  

 

which approximates the χ2
s+t–distribution, under the null hypothesis that all of the multinomial probabilities 

used were correct. Therefore, information from a given derivative may easily be pooled by using the X2 

statistic, which may be calculated for all chemically realistic formulas that are consistent with the mass 

estimates of M and D, and which are consistent with the neutral loss. It is trivial to generalize the procedure 

to include an arbitrary number of derivatives. 

The above theory has assumed that the multinomial probabilities reflect the isotopic abundance 

patterns, but in practice it is rarely possible to make use of the full set of isotopologues. This may be 

because of interference from coeluting compounds, or because the observed ion counts are too low. It is 

straightforward to exclude any subset of the isotopologues M0, M1, ...Ms from the analysis, so long as two 

or more remain. Whichever isotopologues are excluded, the degree of freedom of the X2
(M) statistic will 

equal the total number of remaining isotopologues minus 1. The theoretical isotopic abundance patterns of 

putative formulas must be normalized when evaluating the X2
(M) statistic. 

 

Robustness. A critical issue that arises when applying this procedure to groups of isotopologues stems 

from the requirement that the centroiding of the mass peaks must in principle be carried out over wide 

enough mass intervals that essentially all ions of each species are included. However, as will be 

demonstrated in the following, there is evidence to suggest that mass peaks have very heavy tails, so that a 

significant number of ions may be detected over mass ranges very distant from the peak apices, and even 

beyond 1 Da of the true mass. Consequently a mild mixture of adjacent isotopologues can arise when peak 

centroiding is applied, which has the effect of inducing an observed isotopic abundance pattern that, in 

general, differs from the theoretical one, somewhat beyond what may be attributed to the Poisson statistics. 

While this contamination appears to be very slight, and largely undetectable based on the x2
(M) statistics 



obtained from the individual scans, it inevitably will lead us to reject the true chemical formula more often 

than the chosen significance level would indicate. This is a trait that is highly undesirable in a test of 

hypothesis, as it severely weakens the statistical argument on the basis of which a candidate formula is 

rejected as being ‘inconsistent with the observed data’. Moreover, the larger the sample size, the higher the 

probability will be of falsely rejecting the true chemical formula, so that the pooling of data becomes highly 

problematic. 

It may therefore be advisable to employ a more robust version of the test of hypothesis described 

above, that is, a version which is not disproportionately affected by small departures from the model 

assumptions. This may relatively easily be accomplished by discarding, or ‘trimming’, a sufficiently high 

proportion of the largest x2
(M) statistics obtained from the individual scans, so that the nominal significance 

level is higher than the actual false positive rate. In other words, we ensure that we falsely reject the correct 

chemical formula less often than is specified by the chosen significance level. Therefore, the robust test 

produces p-values which, if they are very low, allow us to reject putative chemical formulas using the 

argument that:  

 

“Assuming the proposed chemical formula is true, the probability of obtaining a 

deviation from its theoretical isotopic abundance pattern that is at least as extreme as the 

one observed, is at most p. The proposed formula is therefore not plausible.” 

 

Thus, in rejecting a given chemical formula we have at least the degree of confidence that we would for a 

test whose nominal significance level is exactly equal to the false positive rate. The robust nature of this 

procedure comes at the cost of reduced statistical power – the test will be somewhat less effective at 

rejecting false candidate formulas. But as the failure to reject a false chemical formula is arguably a lesser 

concern than falsely rejecting the true chemical formula, such a tradeoff will in most cases be warranted.  

 An issue that arises when applying the robust procedure regards the choice of the specific 

proportion of x2
(M) statistics that should be ‘trimmed’, T. Ideally, T, should be set as low as possible while 

ensuring that the false positive rate is consistently less than the chosen significance level. In practice it will 

be advisable to inspect the distributions of the x2
(M) statistics, after trimming, for a series of known 



compounds, so as to ensure that their tails are consistently substantially lighter than the appropriate χ2-

distribution. Clearly, this is not ideal, as it will not guarantee with absolute certainty that the test is 

conservative for the full dataset, although, qualitatively, it may be regarded as “very likely” that it is, 

assuming the sensitivity to these interference effects is reasonably uniform. The development of a test of 

hypothesis with a known null distribution would be highly desirable, but for want of a detailed 

mathematical model which can rigorously account for the mixture of isotopologues, the procedure outlined 

above may be close to the best that can be achieved. 

Note also that it has so far been assumed that the isotopic abundance patterns of the elements 

included in the analysis do not significantly deviate from the standard values20. While the deviations are 

usually so slight that they will not be noticeable for the measurements made at individual chromatographic 

scans, the greater statistical power obtained by pooling the data, could potentially make the test sensitive to 

them. However, any substantial deviations from the standard natural abundances would be detectable 

through the inspection of the x2 statistics derived from known compounds, and the value of T might be 

increased accordingly. It has also been assumed that distinct isotopologues have the same underlying 

retention time profiles and that their ionization propensities are identical. Again, unless a very large data-set 

is used and T is very close to zero, this is not likely to confound the analysis. 

 

 

Experimental section 

 

The validity of the methods described may be evaluated by investigating the distribution of the x2
(M) 

statistics of known compounds for which the theoretical isotopic abundance patterns are known. If these 

x2
(M) statistics were to approximate the appropriate χ2-distribution, then the results relating to the 

construction of the simple multinomial confidence region follow immediately. However, owing to the 

distorting effects of the heavy tails of the mass peaks, this is not generally the case, and the distribution of 

the x2
(M) statistics has a somewhat heavier tail than the appropriate χ2-distribution. It therefore remains to 

determine whether the robust confidence region is sufficiently small to be useful in excluding candidate 

formulas. 



 

Preparation of synthetic urine. Eighty-three endogenous mammalian metabolites were weighed into a 1 L 

bottle and dissolved in 1 L HPLC grade water (Sigma-Aldrich, St Louis, MO). The remaining solids were 

removed by vacuum filtration. The final metabolite concentrations were targeted to fall between 1 and 20 

mM, with sodium azide added at 0.05% v/v as a preservative. In order to eliminate the effect of salt 

suppression in the sample introduction interfaces, the ordinarily high levels of inorganic salts found in urine 

were not added. The stock solution was stored at -80ºC. 

  

Instrumentation. The synthetic urine samples (5µl) were injected onto a 2.1 x 100mm (1.7µm) HSS T3 

Acquity column (Waters Corporation, Milford, USA) and were eluted using a 18min gradient of 100% A to 

100% B (A = water, 0.1% formic acid, B = acetonitrile, 0.1% formic acid). The column temperature was 

40ºC, the sample temperature 4ºC and a flow rate of 500µl/min was used. Samples were analyzed using a 

UPLC system (UPLC Acquity, Waters Ltd. Elstree, U.K.) coupled online to a Q-ToF Premier mass 

spectrometer (Waters MS Technologies, Ltd., Manchester, U.K.) in both positive and negative ion 

electrospray mode, using a scan range of 50-1000 m/z and a scan time of 0.08s. A total of three technical 

replicates were run. The data were acquired in continuum mode in order to obtain data that were as raw as 

possible. Similarly the Dynamic Range Enhancement (DRE) lens, which the Q-ToF Premier employs in 

order to minimize detector saturation, was switched off. 

  

 

Results 

 

Selection of test data-sets. The distribution of the x2
(M) statistics was examined for Hippurate, 

Nitrotyrosine and Chenodeoxycholic acid, as well as their respective derivatives (see Table 1). For 

Chenodeoxycholic acid and its dimer, the three lowest-mass isotopologues produced signals of sufficient 

strength for them to be included in the analysis, for the remaining compounds only the two lowest-mass 

isotopologues were included. 



Since the construction of the confidence regions require that the chromatographic peaks used be 

pure (or comprised only of isomers), continuum plots of all the peaks used were closely inspected. No 

evidence of contamination was found, and while this cannot guarantee that the peaks are pure, any 

interference from compounds that are not isomers would tend to inflate the resulting x2 statistics, which 

would lead us to trim a larger proportion of the x2 statistics, thus reducing the statistical power of the test. 

This validation procedure is therefore quite conservative. 

In order to reduce the effects of detector saturation, Coates’ deadtime correction algorithm18 was 

applied to the continuum data. In addition, the chromatographic scans for which the sum of the corrected 

ion counts were greater than 300 were removed. Chromatographic scans for which the ion counts were too 

low, that is nρi < 5 for some i, were pooled together before the x2 statistics were calculated. In order to 

obtain a relatively unbiased sampling from the multinomials, all related isotopologues were centroided over 

an identical number of mass bins.  

 

Validation. In order to evaluate the degree to which the x2-statistics derived from the scans adhere to the 

appropriate χ2-distribution, they were sorted and plotted against the theoretical quantiles of the 

corresponding χ2-distributions.  Any substantial departures from the 45° line on the resulting quantile-

quantile plots would be indicative of deviations from the predicted distributions. The x2 statistics derived 

from Hippurate, Nitrotyrosine and their derivatives should all adhere to the χ2-distribution with one degree 

of freedom, since they were derived from two isotopologues. Similarly the statistics derived from 

Chenodeoxycholic acid and its dimer should all adhere to the χ2-distribution with two degrees of freedom, 

since they were derived from three isotopologues.  

The quantile-quantile plots of the x2 statistics obtained for the three compounds are shown in 

Figure 1. The distribution of the statistics obtained from Chenodeoxycholic acid appears to be consistent 

with the χ2
2-distribution. The distribution of the statistics obtained from both Hippurate and Nitrotyrosine 

closely approximate the χ2
1-distribution over much of its central range, but have substantially heavier tails 

as evidenced by the most extreme x2 statistics, which render the quantile-quantile plots slightly “flatter” 

than would be expected for χ2
1-distributed data.  



  It is possible that the deviations from the χ2
1-distributions could be explained by mild 

contaminations from unrelated compounds that were not visible on the continuum plots or by deviations 

from the standard natural isotopic abundances. However, a more likely explanation is that the tails of the 

mass peaks of adjacent isotopologues of the same molecular species are heavy enough to have been 

included in the centroiding thus distorting the isotopic ratios. Figure 2, shows a continuum plot of the two 

lowest mass isotopologues of Nitrotyrosine, where this phenomenon is clearly visible. 

In order to account for the effects of the heavy tails, the robust procedure described in the Theory 

section was applied to the data. When T = 0.05 so that the largest 5% of the x2 statistics obtained from the 

individual scans were removed, the quantile-quantile plots of the resulting distributions displayed tails that 

were slightly lighter than the χ2
1-distribution. However, in order ensure that a cautious approach was taken, 

the value of T = 0.10 was used. The quantile-quantile plots of the resulting distributions are shown in 

Figure 3. 

As evidenced by the steep trends on their plots, the tails of the distributions of x2 statistics obtained 

from Hippurate and Nitrotyrosine are now considerably lighter than that of the χ2
1-distribution. While the 

value of T = 0.10 is more than sufficient for all of the compounds that we have investigated, different mass 

spectrometers operating under different conditions and with different settings, might produce mass peaks 

with heavier tails than we have encountered. Thus, any analyst employing the technique should apply it to 

known compounds to ensure that the chosen value of T makes the test sufficiently conservative. 

 We note that for the test11 proposed by the authors, for identifying related parent-fragment pairs, 

which also involved rather similar x2 statistics, no trimming was necessary as the x2 statistics adhered 

closely to the appropriate χ2-distribution. A key difference between the two methods is that the test for the 

identification of parent-fragment pairs required the ρi in the expression for x2 to be estimated from the 

acquired data, rather than calculated from a theoretical model. It therefore has a degree of flexibility that 

the current technique does not, and we believe this explains why the latter shows greater sensitivity to the 

heavy tails of the mass peaks. 

 

 

Results 



 

As mentioned earlier, the practical procedure for formula elucidation, using the confidence regions 

described above, involves calculating the X2 statistic for all chemically realistic formulas that are consistent 

with the mass error of the mass spectrometer. This was done for Hippurate, Nitrotyrosine and 

Chenodeoxycholic Acid. The robust procedure for which the 10% most extreme statistics were discarded 

was applied. The set of chemically realistic formulas was extracted from a list12 compiled by the Fiehn 

group, which includes all formulas comprised of C, H, S, N, O, and P, which are consistent with the 

LEWIS rule. 

It is difficult to determine the range of chemical formulas that are consistent with a mass estimate 

obtained through TOF-MS since the uncertainty associated with such estimates is not very well quantified. 

Modern TOF mass spectrometers are often said to have an accuracy of around 5 ppm, however, to our 

knowledge, no serious attempt has been made at devising a method for constructing proper confidence 

intervals for them, although such a procedure would clearly be extremely valuable. While it is true that 

TOF mass spectrometers are capable of routinely producing mass estimates within 5 ppm of the theoretical 

mass, this is dependent on having carefully controlled operating conditions, which, in practice, cannot be 

ensured for all of the compounds encountered in high-throughput LC-MS experiments. Thus, mass errors 

substantially higher than 5 ppm are possible. 

Therefore, in order to obtain a quite conservative list of candidate formulas, all chemically realistic 

compounds within 30 ppm of the theoretical masses of the compounds investigated were regarded as being 

consistent with the mass error of the mass spectrometer. In order to provide a broader illustration of the 

ability of the isotopic confidence regions to rule out putative formulas, a second list of all realistic chemical 

formulas within 0.1 Da of the theoretical masses was also compiled.  

In an effort to assess the degree to which a standard chromatographic scan provides information 

regarding the isotopic abundance pattern, the p-values associated with the median x2 statistics, after 

trimming, of each of the candidate formulas was calculated. Similarly, the median X2 statistics derived from 

the full chromatographic peaks of both the parent compounds and their respective derivatives were 

calculated. The results are shown in Figure 4. 



It is very clear that despite the conservative nature of the robust confidence region, it remains a 

powerful tool for excluding candidate formulas. While the confidence regions constructed from a single 

scan range from being incapable of rejecting a single formula, in the case of Nitrotyrosine, to being capable 

of rejecting 12, for Chenodeoxycholic Acid, the confidence regions constructed from the pooled data-sets 

all exclude a substantial number of formulas. Especially in the case of Nitrotyrosine, where the proportion 

of candidate formulas that can be rejected rises from zero to around two thirds, the benefit of pooling the 

data is impressive. For the wider mass window of ±0.1 Da the percentage of false candidate formulas that 

are rejected for all three compounds is 26.79% for the single scan and 70.27% for the pooled data. 

 

 

Future prospects 

 

It may be worth investigating the upper limits of what might be achieved if instrumental developments 

allowed us to sample from undistorted multinomials corresponding to the isotopic abundance patterns. In 

this scenario we may pool the multinomial counts across the chromatographic peaks, as described in the 

Theory section, so that we can construct confidence regions, based on the outcome of a single multinomial 

with a very large number of trials. Chromatographic peaks for which detector saturation effects are 

relatively minor may easily be comprised of 10,000 ion counts, under standard operational settings. More 

intense peaks for which the high ion counts induce significant detector saturation may be comprised of over 

100,000 ion counts.  

401 compounds ranging in nominal mass from 100 to 500 and all spaced close to 1 Da apart were 

extracted from the list of chemically realistic compounds. For each of these, all compounds within 30ppm 

of the theoretical masses were considered to be consistent with the mass estimate. 10,000 multinomials 

corresponding to the isotopic abundance patterns of the selected compounds were simulated. Confidence 

regions were constructed for each of these simulations and the mean number of false candidate formulas 

within these regions was calculated, when a significance level of 0.05 was used.  

The scenario in which a total of 10,000 counts were obtained was investigated when using either 

the two or the three lowest-mass isotopologues. A more idealized scenario in which a count of 100,000 was 



obtained was also investigated for the three lowest-mass isotopologues. In addition, the number of false 

negatives obtained when using only the mass estimate was calculated. The results, shown in Figure 5, 

demonstrate that, as anticipated, the strong statistical power achieved through the high ion counts, allows 

for a very substantial reduction in the number of false candidate formulas, when isotopic information is 

exploited. The statistical power achieved in the scenario in which 100,000 ions are counted is especially 

impressive, and it should be noted that at such high counts, it will usually be possible to use more than 3 

isotopologues. 

Undoubtedly, the assumptions on which the simulations are based are currently highly idealized. 

However, they clearly suggest that the potential utility of isotopic abundance estimates could be very 

considerable. Moreover, even without further instrumental developments, it is entirely possible that careful 

modeling of the detailed characteristics of the mass peaks and of the detection system might allow us to 

better account for some of the phenomena that currently impede the analysis, and thereby obtain 

substantially improved estimates of the isotopic abundance patterns. 

At the high counts used in the above simulations, it is quite possible that the deviations from the 

standard values of the natural isotopic abundances could confound the analysis. However, we may assume, 

for simplicity, that the standard abundances had been confirmed in advance, through separate 

measurements. This supposes a relatively uniform distribution of abundances across the entire sample, but 

if this assumption is false, the results might be even more interesting. Since different biological reactions 

can occur at different rates for different isotopologues21 they tend to leave a weak isotopic signature on the 

compounds involved. It is conceivable that potentially very interesting lines of research might be opened if 

isotopic abundance patterns could be estimated with sufficient accuracy to allow for the detection of these 

signatures for individual species of molecules. 

 

 

Discussion and Conclusion 

 

The above analysis suggests that Pearson’s χ2 test provides a reliable method for constructing conservative 

confidence regions for the isotopic abundance patterns observed in LC-MS experiments. Thus, it is possible 



to determine, in a statistically rigorous manner, whether or not the theoretical isotopic abundance pattern of 

a given chemical formula is consistent with the observed data, and thereby reduce the number of candidate 

formulas for unknown compounds. This is a substantial improvement over alternative methods which 

attempt only to rank the fit of candidate formulas13-15, or assume, rather imprecisely, that isotopic 

abundance estimates are accurate to within a few percent12. The method easily allows for information to be 

pooled from distinct chromatographic scans and from distinct derivatives of the same underlying 

metabolite. 

The method is based on the assumption that the ion counts are Poisson distributed, and therefore 

does not apply to chromatographic scans for which the ion counts are high enough to induce significant 

detector saturation. This constraint reduces the power of the test, but it does not affect its validity since 

even very large chromatographic peaks, which are severely saturated near their apices, will have low ion 

counts near their edges, to which the test can be applied. Moreover, the fact that information from distinct 

scans and distinct derivatives of the same underlying metabolite may be pooled has the effect of increasing 

the power of the test.  

A more serious constraint stems from the fact that there appears to be a certain degree of mixture 

of the mass peaks of adjacent isotopologues. While the effect is often minor, it necessitates the use of 

robust methods, if a rigorous statistical argument is to be used in declaring candidate formulas to be 

inconsistent with the observed data. Again, the consequence is reduced statistical power, although, as was 

demonstrated, the test remains capable of excluding a substantial number of false candidate formulas. 

A fundamental requirement of the test is that the detector used must employ a TDC. While it 

seems quite possible that confidence regions may also be constructed for mass spectrometers employing 

ADCs, the procedure may not prove to be as straightforward as for TDCs as it is the ability of the latter to 

block out electronic noise and preserve the Poisson distribution of incoming ions that makes the procedure 

particularly simple. Thus, while TDCs are criticized for their relatively limited dynamic range, their ability 

to produce data that approximate a simple and well-understood distribution constitutes an important 

advantage. 

The application of the test to the three compounds investigated suggests that the information 

contained in the observed isotopic abundance patterns may be extremely valuable in identifying unknown 



metabolites, even when these do not contain bromine or chlorine. While we have outlined methods for 

reducing the size of the confidence regions, it is likely that these might be reduced much further if the 

information from the chromatographic scans with high ion counts could be included in the analysis, or if 

the mixture of the mass peaks of adjacent isotopologues did not arise. Thus it is clear that there is scope for 

improvements in the accuracy with which isotopic abundance patterns can be estimated, and such 

improvements may be as just as important as improvements in mass accuracy. Considering the very high 

cost of mass spectrometers capable of high mass accuracy this line of research is, in our view, somewhat 

neglected. 

While the excellent sensitivity of the LC-TOFMS platform has helped to establish it as one of the 

most predominant analytical tools in metabolomics, the data produced are widely regarded as being of quite 

variable quality, especially when compared with those obtained through NMR. It is quite possible that this 

drawback might be overcome if further efforts were made at developing a detailed and comprehensive 

understanding of the data generated through LC-TOFMS. A method for quantifying the uncertainty 

associated with the measurements made, as has been presented in this article, constitutes a small step in this 

direction. A more ambitious goal would involve a detailed characterization of the underlying mass and 

chromatographic peaks and of the detector system. This would facilitate further rigor in the data analysis, 

which may broaden the range of inferences that can be drawn from carrying out a given experiment and 

strengthen the certainty with which they can be made. In this sense, further developments in the underlying 

theory of mass spectrometry may be as valuable as developments in instrumentation. 

 

 

Acknowledgements 

 

Thanks are due to Tony Gilbert for valuable advice. The authors acknowledge Laura Egnash and Michael 

Reilly, formerly of the Department of Discovery Biomarkers, Pfizer Global R & D, Ann Arbor, MI 48105, 

for providing the synthetic urine. EJW would like to acknowledge Waters Corporation for funding. This 

work was supported by the Wellcome Trust through grant 080714/Z/06/Z.  

 



 
 
References 

1. Raamsdonk, L. M.; Teusink, B.; Broadhurst, D.; Zhang N. S.; Hayes, A.; Walsh, M. 

C.; Berden, J. A.; Brindle, K. M.; Kell, D.B.; Rowland, J. J.; Westerhoff, H. V.; van 

Dam, K.; Oliver, S. G. Nat. Biotechnol. 2001, 19, 45-50. 

2. Want, E. J.; O’Maille, G.; Smith, C. A.; Brandon, T. R.; Uritboonthai, W.; Qin, C.; 

Trauger, S. A.; Siuzdak, G. Anal. Chem. 2006, 78, 743–752. 

3. Want, E. J.; Cravatt, B. F.; Siuzdak, G. ChemBioChem 2005, 6, 1941 – 1951.  

4. Sleno, L.; Volmer, D. A.; Marshall A. G. J. Am. Soc. Mass Spectrom. 2005, 16, 183-

198. 

5. Kind, T.; Fiehn, O. BMC Bioinformatics 2007, 8, 105.  

6. Wu, Q. Anal. Chem 1998, 70, 865-872. 

7. Clarke, N. J.; Rindgen, D.; Korfmacher, W. A.; Cox, K. A. Anal. Chem. 2001, 73 

(15), 430–439.  

8. Plumb, R.; Johnson, K. A.; Rainville, P.; Smith, B. W.; Wilson, I. D.; Castro-Perez, J. 

M.; Nicholson, J. K. Rapid Commun. Mass Sp. 2006, 20(13), 1989-1994. 

9. Tautenhahn, R.; Bottcher, C.; Neumann, S., Lecture Notes in Computer Science. 

Bioinformatics Research and Development. Springer, Heidelberg 2007, 371–380. 

10. Geromanos, S. J.; Silva J. C.; Li, G.-Z.; Gorenstein, M. V. US Patent Application 

Publication 2008, Pub. No. US 2008/0272292. 

11. Ipsen, A.; Want, E. J.; Lindon, J. C.; Ebbels, T. M. D. Anal. Chem. 2010, 82, 1766–

1778. 

12. Kind, T.; Fiehn, O. BMC Bioinformatics 2006, 7, 234. 



13. Böcker, S.; Letzel, M. C.; Liptákand, Z.; Pervukhin A. Bioinformatics 2009, 25(2), 

218–224. 

14. Tong, H.; Bell, D.; Tabei, K.; Siegel, M. M. J. Am. Soc. Mass Spectrom. 1999, 10, 

1174-1187. 

15. Zhang, J. F.; Gao, W.; Cai, J. J.; He, S. M.; Zeng, R.; Chen, R. S.; Ieee-Acm T. 

Comput. Bi. 2005, 2(3), 217-230. 

 
16. Chernushevich, I. V.; Loboda A. V.; Thomson B. A. J. Mass Spectrom. 2001, 36(8), 

849-865. 

17. Bateman, R. H.; Brown, J. M.; Green, M.; Wildgoose, J. L. International Patent 

2006, WO 2006/129094. 

18. Coates, P. Rev. Sci. Instrum. 1991, 63(3), 2084-2088. 

19. May, W. L.; Johnson, W. D. Commun Statist Simul Comput 1997, 26(2), 495-518. 

20. Bohlke, J. K.; de Laeter, J. R.; De Bievre, P.; Hidaka H.; Peiser, H.; Rosman K. J. R.; 

Taylor, P. D. P. J. Phys. Chem. Ref. Data 2005, 34(1), 57-67. 

21. Gannes, L. Z.; del Rio, C. M.; Koch, P. Comp. Biochem. Physiol. 1998, 119A(3), 

725–737. 

 



 

Figure 1 – Quantile-quantile plots of the x2-statistics obtained from the three compounds, against the 

appropriate χ2-distributions. The red line indicates the idealized fit that would be obtained if the 

observed x2-statistics coincided exactly with the theoretical quantiles of the χ2-distributions. While 

the observed fit is very good for low quantiles, it is clear that the tails of the distributions obtained 

for Hippurate and Nitrotyrosine are too heavy to be consistent with the χ2
1-distribution. 

 

 

Figure 2 – Continuum plot of the two lowest-mass isotopologues of Nitrotyrosine. The tails of the 

mass peaks are heavy enough to reach the apices of the mass peaks of adjacent isotopologues, so that 

it is not possible to construct a centroid that is comprised of only one species of isotopologue. While 



the effect is less apparent for chromatographic scans where the total ion count is lower, the mass-

peaks at these scans will be all the more sensitive to any contamination. 

 

Figure 3 – Quantile-quantile plots of the x2-statistics obtained from the three compounds, after the 

most extreme 10% have been trimmed. The quantiles obtained for Hippurate and Nitrotyrosine are 

now consistently smaller than those of the χ2
1-distribution, as required. The effects are more 

moderate for the x2 statistics obtained from Chenodeoxycholic acid due to the smaller sample size. 

 

 

 

 

 

 



 

Figure 4 – Using the robust approach, the median x2 and X2 statistics were evaluated for the data 

obtained from Hippurate, Nitrotyrosine and Chenodeoxycholic Acid. The statistics were calculated 

for all formulas within 0.1 Da of the theoretical mass (black), for all formulas within 30 ppm of the 

theoretical mass (green) and for the true formula (magenta). Above each plot is listed the number of 

formulas that may be rejected at the 5% significance level (red line) out of the list of formulas within 

30 ppm of the theoretical mass. 

 

 



 

Figure 5 – The mean number of false candidate formulas within the confidence regions (false 

negatives) obtained from the simulated isotopic abundance patterns. The probability that a true 

candidate formula lies outside a given confidence region (a false positive) is given by the chosen 

significance level, which was set to 0.05 for these simulations. 

 

 

Compound Chemical structure 
Molecular 

Weight 
Isotopologues 

Isotopic 

abundance 
Derivatives 

Hippurate 

 

179.173 
[M+H]+, 

[M+1+H]+ 

90.63% 

9.37% 

Loss of 

Glycine 

Nitrotyrosine 

 
226.186 

[M-H]-, 

[M+1-H]- 

90.28% 

9.72% 
Dimer 

Chenodeoxycholic acid 

 

392.572 

[M-H]-, 

[M+1-H]-, 

[M+2-H]- 

76.47% 

20.31% 

3.22% 

Dimer 

Table 1 – The three compounds used in the validation of the confidence regions. 

 


