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Abstract— Robotics research tends to focus upon either non-
contact sensing or machine manipulation, but not both. This
paper explores the benefits of combining the two by addressing
the problem of classifying unknown objects, such as found in
service robot applications. In the proposed approach, an object
lies on a flat background, and the goal of the robot is to interact
with and classify each object so that it can be studied further.
The algorithm considers each object to be classified using color,
shape, and flexibility. Experiments on a number of different
objects demonstrate the ability of efficiently classifying and
labeling each item through interaction.

I. INTRODUCTION

Visual sensing and machine manipulation are well-studied
topics within robotics research. Most of this effort, how-
ever, concentrates on only one topic or the other without
considering the significant coupling of the two. To be sure,
an important body of work has been aimed at using remote
sensing to assist in real time with manipulation, e.g., visually-
guided manipulation [1][2]. However, there has been rela-
tively little work aimed at the reverse problem, namely, using
manipulation to guide non-contact sensing in meaningful
ways [3] [4].

Yet, humans routinely adopt this latter approach of
“manipulation-guided sensing.” For example, we routinely
shuffle through papers on a desk or sift through objects in
a drawer to more quickly and efficiently identify items of
interest. In such cases, it is our interaction with the environ-
ment that increases our understanding of the surroundings,
in order to more effectively guide our actions to achieve the
desired goal. In a similar manner, animals such as raccoons
[5] and cats use their front paws to poke, swat, and rummage
to better understand their surroundings.

As a first step in addressing this problem, Katz and Brock
[3] describe a system in which a manipulator learns about the
environment by interacting with it. Video available from an
overhead camera is analyzed by tracking feature points on an
object in order to determine the number, location, and type
(revolute or prismatic) of joints. In later work, Brock and
colleagues [6] use video to locate and track objects. To de-
scribe this new approach toward autonomous manipulation,
they introduce the term “interactive perception.” Rather than
solving action and perception separately, interactive percep-
tion (also known as manipulated-guided sensing) argues that
both should be addressed simultaneously.

Inspired by the above work, this paper introduces a new
approach to interactive perception, in which successive ma-
nipulations of objects in an environment are used to increase
vision-based understanding of that environment, and vice

Fig. 1. The proposed setting for manipulation-guided sensing. The robotic
system automatically learns the characteristics of an object by interacting
with it. An overhead camera (not shown) is used for sensing the object.

versa (see Figure 1). We show that deliberate actions can
alter the environment in a way that simplifies perception and
consequently future interactions. Our work differs from that
of Katz and Brock [3] in its purpose and scope. Our system is
applicable to both rigid and non-rigid objects, and it produces
a richer description of the object including a skeleton and
appearance model, both of which are used to guide future
interactions.

Another piece of related work is that of Saxena et al. [7],
in which information about a scene is gathered to generate
a 3D model of each object in the scene which is then
compared against a database of previously created models
whose grasping locations have already been determined.
Other work on grasping is presented in [8] [9]. Our method
is different in that the objects being examined are unknown
a priori.

Our work is also related to affordance learning [10] [11]
[12]. In [10] [11], a robot learns the properties of an object
(e.g., whether it rolls when tapped), as well as the association
of properties (color, shape) and words spoken audibly by
a trainer to their meaning. The work of [12] is similar
in that it addresses the problem of learning about visual
properties and spatial relations. Though related, our approach
differs from these in that our goal is not to learn semantic
associations with a tutor but rather to autonomously learn
low-level properties for classification and manipulation.

II. APPROACH

A. Overview

The purpose of this work is to automatically learn the
properties of an object for the purpose of classification
and future manipulation. Figure 2 presents an overview of
our classification process. First, the object is located in the
image, and a color histogram model [13] is captured in
order to model the object. Then, a 2D skeleton of the object
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Fig. 2. Overview of our system for manipulation-guided classification of
an unknown object.

is determined using a standard image-based skeletonization
algorithm. The robotic arm then interacts with the object
by prodding it from different directions. By monitoring the
object’s response to these movements, the revolute joints of
the object are computed, as well as potential grasp points.
We focus in this work on revolute joints because they are
common in everyday situations (e.g., stapler, scissors, pliers,
hedge trimmers, etc.) and because they more closely model
the behavior of non-rigid objects containing stiffness (e.g.,
stuffed animals). Each of the boxes in the flowchart are now
described in more detail.

B. Color histogram labeling

A color histogram is a representation of the distribution
of the colors in a region of an image, derived by counting
the number of pixels with a given set of color values [13].
Color histograms are chosen in this work because they are
invariant to translation and rotation about the viewing axis,
and for most objects they remain stable despite changes
in viewing direction, scale, and 3D rotation. Objects are
matched by comparing their color histograms with models
of previously encountered objects using the technique of
histogram intersection [13], which is conveniently affected
by subtle differences in small areas of color while at the
same time being guided by the dominant colors. We use
eight bins for each (red, green, blue) color channel, leading
to 512 total bins. The histogram intersection is normalized
by the number of pixels in the region, leading to a value
between 0 and 1 that can be interpreted as the probability of
a match.

C. Skeletonization

Skeletonization is the process of determining the internal
structure of a 2D image region. One way to describe a
skeleton uses the analogy of a prairie fire: The boundary
of the region is set on fire, and the skeleton is the loci
of pixels where two or more fronts meet and quench each
other [14]. The skeleton is therefore a single-pixel-wide

Fig. 3. LEFT: An isolated object to be classified. MIDDLE: The binary
mask of the object. RIGHT: The image-based skeleton.

representation of the object’s 2D shape. From the skeleton, it
is possible to estimate candidate grasp points by noting the
end points of the skeleton (where a branch terminates), while
candidate revolute joints are given by intersection points of
the skeleton (where two branches meet). It is widely known
that the skeletonization process is extremely susceptible to
noise in the image; therefore, an additional interactive step is
necessary to refine these estimates. Figure 3 gives an example
overhead image of a stuffed bunny on a table, along with its
binary mask (obtained by thresholding) and skeleton.

D. Monitoring object interaction

To improve upon the noisy skeletonization model, the
robot interacts with the object by repeatedly pushing it.
The end effector is placed two inches away from an end
point of the object, and the end effector is moved in the
direction of the vertical or horizontal axis of the image
plane (depending on the distance of the end point to the
top and left image borders). As the robot interacts with
the object, Kanade-Lucas-Tomasi (KLT) features [15] are
tracked between successive image frames to monitor the
scene changes that result from the object motion. These
features are detected and tracked in the largest image region
resulting from graph-based segmentation [16] that does not
touch the image border. We have found it necessary to first
dilate this region by one pixel to ensure that features along
the boundary of the object are included. See Figure 4 for
example features found on an object.

Fig. 4. LEFT: KLT features detected in the whole image. RIGHT: The
subset of features that are located within the foreground region found by
graph-based segmentation.

Tracked features are automatically clustered based on
their Euclidean distance and motion vectors in the image
plane. Features that are near each other and moving sim-
ilarly are grouped together, while those that are far apart
and/or moving differently are separated into distinct groups.
The clustering algorithm is run every five frames to allow
sufficient motion to accumulate. In contrast to the work
of [3], in which small groups with three or fewer features
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are discarded from the image, we have found that such
groups are important when the object contains small regions,
and some of the features have been lost. Therefore, in our
approach all groups with at least two features are retained;
while groups with a single feature point are attached to
the nearest group using Euclidean image distance. Figure
5 illustrates the clustering of feature points.

Fig. 5. Example of clustering feature points according to inter-distance
values, in Euclidean space: (a) Before clustering and (b) after clustering
with decision boundary.

E. Labeling revolute joints using motion

After the features in the region have been grouped, any
group whose computed motion is greater than a prespecified
threshold is determined to be movable and hence connected
to the rest of the object via a revolute joint. The assumption
is that the region with which the robot is interacting moves,
while the other areas remain relatively stationary. In the
case of a rigid, non-articulated object, of course there is
just one region since the entire region moves together. The
surrounding ellipse of the group is computed using principal
component analysis (PCA) [17], and the revolute joint is
considered to be the intersection point closest to the point
of maximum curvature (along the major axis) of the ellipse
toward the interior of the object. Figure 6 gives an example
of the ellipse fitting.

Fig. 6. Example of grouping feature points to locate revolute points near
the endpoints of the major axis.

Figure 7 illustrates the initial skeleton labeled with inter-
section points and end points, along with the revised skeleton
showing revolute joints labeled after several interactions with
the robotic arm. In the revised skeleton, the end points that
are considered noise in the skeleton are removed, where
this determination is made based on whether the nearest
intersection point (traversed along the skeleton) to the end

point is a revolute joint. That is, the only branches in the
skeleton that are considered extremities of the object (and
therefore retained) are those whose intersection point is a
revolute joint.

Fig. 7. LEFT: Original image with initial skeleton overlaid. RIGHT:
Original image with revised skeleton overlaid after multiple interactions.

III. EXPERIMENTAL RESULTS

The proposed approach was applied in a number of
different scenarios to test its ability to perform practical
interactive perception. A PUMA 500 robotic arm was used
to interact with the objects, which rested upon a flat table
with uniform appearance. The objects themselves and their
type were unknown to the system. The entire system, from
image input to manipulation to classification, is automatic.

A. Articulated rigid object

In [3], revolute and prismatic joints on a rigid object were
categorized using a similar technique of grouping feature
points within a video sequence. One scenario shown is that
of determining the revolute joint of a pair of hedge clippers.
To demonstrate that our approach can calculate similar
information, Figure 8 presents the result of our algorithm on
a pair of pliers, along with the steps taken by the algorithm.
For comparison, the result of [3] on the pair of hedge clippers
is shown in Figure 9.

B. Classification experiment

We conducted an experiment with a set of eight unknown
non-rigid objects to demonstrate the classification process
and the possible uses of labeling individual objects for further
learning. The system captured an image of each isolated
object, from which the color histogram and final skeleton
were computed. The images and skeletons are shown in
Figure 10.

After the database of histograms and skeletons was built,
the objects were randomly rearranged in a new order to test
the classification performance of the system. The probability
that the test and training objects were the same was comput-
ing using the color histogram, the number of revolute joints,
and the number of extremities. Two versions of the algorithm
were compared, one using only information available from
vision, the other using information from both vision and the
final skeleton resulting from interaction. Figure 11 shows
the images gathered in the second run along with the best
matching image from the first run. These results demonstrate
that the color histogram and skeleton are fairly robust to
orientation and non-rigid deformations of the objects.
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object object mask skeleton with points

feature points mapped points final skeleton

Fig. 8. Example of our approach on a pair of pliers. In lexicographic order: The original image of the object, the binary mask of the object, the skeleton
with the intersection points (red dots) and end points (green dots) labeled, the feature points gathered from the object, the image after mapping the feature
points to the intersection points, and the final skeleton with the revolute joint (red point) automatically labeled. The red dots represent the intersection
points (possible revolute joints) of the skeleton. The green dots represent the end points (interaction points) of the skeleton.

Fig. 9. Results of [3] on a pair of hedge clippers, with the green dot representing the revolute joint.

1 2 3 4 5 6 7 8

Fig. 10. TOP: Images of the individual objects used for creating a database of previously encountered items. BOTTOM: The final skeletons of the objects
with revolute joints automatically labeled (red dots).

1 → 1 2 → 2 3 → 3 4 → 4 5 → 5 6 → 6 7 → 7 8 → 8

Fig. 11. Results from matching query images obtained during a second run of the system (top) with database images gathered during the first run (bottom).
The numbers indicate the ground truth identity of the object and the matched identity. All of the matches are correct.
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Tables I and II display the comparison matrix indicating
the probability of each query image matching each database
image using vision only and using vision plus interaction,
respectively. The higher the value, the more likely the two
images match. Bold is used to indicate, for each query image,
the database image that contains the highest match value.
Note that Item #1 is correctly classified only when interaction
information is used.

TABLE I

EVALUATING PROBABILITIES OF STUFFED ANIMALS USING VISION

ONLY: THE ROWS REPRESENT QUERY IMAGES AND THE COLUMNS

REPRESENT DATABASE IMAGES.

# 1 2 3 4 5 6 7 8
1 0.84 0.27 0.25 0.22 0.15 0.27 0.92 0.18
2 0.33 0.81 0.35 0.39 0.26 0.38 0.46 0.33
3 0.54 0.50 0.70 0.67 0.45 0.40 0.56 0.36
4 0.41 0.45 0.60 0.88 0.56 0.41 0.39 0.48
5 0.19 0.19 0.25 0.41 0.90 0.20 0.15 0.42
6 0.39 0.51 0.32 0.33 0.27 0.69 0.47 0.35
7 0.78 0.36 0.28 0.24 0.16 0.33 0.97 0.25
8 0.29 0.33 0.37 0.61 0.51 0.33 0.24 0.83

TABLE II

EVALUATING PROBABILITIES OF STUFFED ANIMALS USING VISION AND

THE SKELETON: THE ROWS REPRESENT QUERY IMAGES AND THE

COLUMNS REPRESENT DATABASE IMAGES.

# 1 2 3 4 5 6 7 8
1 0.78 0.76 0.55 0.54 0.48 0.62 0.77 0.53
2 0.68 0.80 0.72 0.66 0.65 0.73 0.75 0.71
3 0.75 0.70 0.83 0.76 0.72 0.73 0.79 0.72
4 0.67 0.65 0.77 0.79 0.78 0.70 0.76 0.73
5 0.56 0.53 0.68 0.60 0.93 0.60 0.65 0.67
6 0.60 0.60 0.61 0.54 0.62 0.73 0.72 0.62
7 0.69 0.52 0.63 0.48 0.69 0.58 0.92 0.55
8 0.66 0.51 0.72 0.80 0.67 0.64 0.61 0.88

C. Sorting using socks and shoes

Another practical scenario of interactive sensing is that of
sorting socks in a pile of laundry, or organizing shoes by
pairing them. We used typical socks and shoes of different
colors and sizes for this experiment, for which the results
are shown in Figures 12 and 13.

The comparison matrix is shown in Tables III and IV,
indicating the probability of each query image matching
each database image using vision only and vision plus
interaction, respectively. Again, interaction is necessary to
correctly classify all the objects (in this case Item #5).

IV. CONCLUSION

We have proposed an approach to interactive perception
in which an autonomous robot system is able to classify and
label an unknown object. The proposed approach has been
found to be effective over a wide range of environmental
conditions. Monitoring the interaction of the object builds
upon the approach in [3] to group different feature points
together that share similar characteristics. Like [3], the
approach is also able to determine the locations of revolute

TABLE III

EVALUATING PROBABILITIES OF SOCKS AND SHOES USING VISION

ONLY: THE ROWS REPRESENT QUERY IMAGES AND THE COLUMNS

REPRESENT DATABASE IMAGES.

# 1 2 3 4 5
1 0.87 0.69 0.26 0.29 0.16
2 0.62 0.90 0.24 0.38 0.18
3 0.29 0.25 0.86 0.20 0.12
4 0.25 0.26 0.17 0.93 0.38
5 0.26 0.24 0.12 0.99 0.56

TABLE IV

EVALUATING PROBABILITIES OF SOCKS AND SHOES USING VISION AND

THE SKELETON: THE ROWS REPRESENT QUERY IMAGES AND THE

COLUMNS REPRESENT DATABASE IMAGES.

# 1 2 3 4 5
1 0.82 0.43 0.69 0.63 0.59
2 0.47 0.77 0.41 0.39 0.53
3 0.50 0.42 0.75 0.47 0.64
4 0.58 0.32 0.62 0.81 0.56
5 0.49 0.41 0.51 0.73 0.79

joints for planar rigid objects, but it is also applicable to
non-rigid objects.

The proposed approach only begins to address the chal-
lenging long-term problem of interactive perception. Other
avenues can be explored regarding improving the classifi-
cation algorithm and learning strategy. When looking for a
target item, one must consider the orientation of the object
along with the angle from which it is viewed. Additional
interaction and labeling techniques could be used to improve
the ability of the system to determine which characteristics
of an object make it distinguishable from other objects.

Currently, the system only allows interactions from two
directions. Using the camera as a mode of reference, the
robot is able to interact with the top part and the left part
of the object in the classification images, but the and bottom
parts of the object are out of reach from the robotic arm,
because it would occlude the object from the camera’s view
if it tried to interact with these other parts of the object.
One possible solution to this problem would be to place the
isolated objects on a turntable so that the robot would be able
to interact with all directions of the object without occluding
any part of the camera’s viewing area.

Another improvement in the modeling of the object would
be to incorporate a 3D model instead of a 2D model. The 3D
model would provide a more accurate representation of how
each revolute joint moves and give a more detailed skeleton
that describes the overall shape of the object. In the case of
giving the system a round single colored ball, after viewing
and interacting with the ball, the cameras would only see a
circle that does not roll, in a 2D world. The system would
disregard information vital to discovering the dynamics of
each object if the object did something in the 3D world and
looks like another in the 2D world, just like the ball scenario.
We believe these are all fruitful areas for future extensions
of our research.
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1 2 3 4 5

Fig. 12. TOP: Images of the individual objects gathered automatically by the system for the purpose of creating a database of objects previously
encountered. BOTTOM: The final skeletons with revolute joints labeled.

1 → 1 2 → 2 3 → 3 4 → 4 5 → 5

Fig. 13. Results from matching query images obtained during a second run of the system (top) with database images gathered during the first run (bottom)
for the sorting experiment. There is one mistake.

V. ACKNOWLEDGMENTS

This research was supported by the U.S. National Science
Foundation under grants IIS-0844954 and IIS-0904116.

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servoing and visual tracking,”
in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer, 2008, pp. 563–584.

[2] D. Kragic, M. Björkman, H. I. Christensen, and J.-O. Eklundh, “Vision
for robotic object manipulation in domestic settings,” Robotics and
Autonomous Systems, vol. 52, no. 1, pp. 85–100, Jul. 2005.

[3] D. Katz and O. Brock, “Manipulating articulated objects with inter-
active perception,” in Proceedings of the International Conference on
Robotics and Automation, May 2008, pp. 272–277.

[4] P. Fitzpatrick, “First contact: An active vision approach to segmenta-
tion,” in International Conference on Intelligent Robots and Systems
(IROS), 2003.

[5] I. Walker, “A successful multifingered hand design — The case of the
raccoon,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Aug. 1995, pp. 186–193.

[6] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for
manipulation in unstructured environments,” in International Confer-
ence on Robotics and Automation (ICRA), 2009, pp. 1377–1382.

[7] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,” International Journal of Robotics Research,
vol. 27, pp. 157–173, Feb. 2008.

[8] A. Bicchi, “Hands for dexterous manipulation and robust grasping: A
difficult road toward simplicity,” IEEE Transactions on Robotics and
Automation, vol. 16, no. 6, pp. 652–662, 2000.

[9] P. Gibbons, P. Culverhouse, and G. Bugmann, “Visual identification
of grasp locations on clothing for a personal robot,” in Towards
Autonomous Robotic Systems (TAROS), Aug. 2009, pp. 78–81.

[10] V. Krunic, G. Salvi, A. Bernardino, L. Montesano, and J. Santos-
Victor, “Affordance based word-to-meaning association,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2009, pp.
4138–4143.

[11] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory-motor coordination to imitation,”
IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26, 2007.
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