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Abstract
DataScalar architectures improve memory system performance

by running computation redundantly across multiple processors,
which are each tightly coupled with an associated memory. The
program data set (and/or text) is distributed across these memo-
ries. In this execution model, each processor broadcasts operands
it loads from its local memory to all other units. In this paper, we
describe the benefits, costs, and problems associated with the
DataScalar model. We also present simulation results of one possi-
ble implementation of a DataScalar system. In our simulated
implementation, six unmodified SPEC95 binaries ran from 7%
slower to 50% faster on two nodes, and from 9% to 100% faster on
four nodes, than on a system with a comparable, more traditional
memory system. Our intuition and results show that DataScalar
architectures work best with codes for which traditional parallel-
ization techniques fail. We conclude with a discussion of how
DataScalar systems may accommodate traditional parallel pro-
cessing, thus improving performance over a much wider range of
applications than is currently possible with either model.

1  Introduction

Although microprocessor performance continues to grow at an
exponential rate, not all microprocessor components improve simi-
larly. Imbalances created by divergent rates of improvement are
eliminated through microarchitectural innovations and altered
assignations of resources. Specifically, the relative costs of com-
munication are increasing relative to those of computation. This
trend is resulting in successively larger caches with each processor
generation, as well as more complex and expensive latency toler-
ance mechanisms.

As microprocessor clock improvements continue to outpace
reductions in commodity DRAM access times and improvements
in bus clocks, accesses to main memory grow more expensive.
Techniques to reduce or tolerate this latency often do so by
increasing the bandwidth requirements of the processor, which in
turn increases the latency of memory accesses [4]. Processors that
perform more parallel operations simultaneously may also
increase queueing delays in the memory system.

This paper describes an architecture that exploits comparatively
inexpensive computation to reduce communication overheads. In a
DataScalar architecture, multiple autonomous processing units are
each tightly coupled with a fraction of a program’s physical mem-
ory. Each unit runs the same program, asynchronously executing

the same instructions on the same data. When a processor issues a
load to an operand that is located in its memory (i.e., the operand is
owned by that processor), it broadcasts the result of the load to the
other processors. When a processor issues a load to an operand not
contained in its memory, the load request is buffered until the oper-
and arrives, broadcast by some other processor. Stores are com-
pleted only by the owning processor, and dropped by the others.1

By performing redundant computation, a processor that has a
datum locally can compute the address of that datum, access that
datum, and send that datum to the other nodes quickly. Since all
physical memory is local to at least one processor, a request for a
remote operand never need be made. This execution model elimi-
nates off-chip request and write traffic, reduces memory access
latencies, and creates opportunities for new optimizations.

Current technological parameters do not make DataScalar sys-
tems a cost-effective alternative to today’s implementations. For a
DataScalar system to be more cost-effective than the alternatives,
the following three conditions must hold: (1) Processing power
must be cheap; the dominant cost of each node should be memory.
(2) Remote memory accesses should be much slower than local
memory accesses. (3) Broadcasts should not be prohibitively
expensive.

We believe that technological trends are driving commodity
systems in a direction such that the aforementioned conditions will
all eventually hold. We list three possible candidates for Data-
Scalar systems, ordered in increasing levels of integration, below.
• Networks of workstations: DataScalar execution could per-
form as an alternative to paging to remote physical memories [15]
on a network of workstations, provided broadcasts were suffi-
ciently inexpensive. Some network topologies, such as fat trees,
support efficient broadcasts. Alternatively, some implementations
of optical networks render broadcasts virtually free, enabling effi-
cient DataScalar execution [2].

• IRAM-based systems: the concept of a single-chip computer,
in which processor logic and main memory are merged on the
same die has existed for decades. Processor/memory integration
has received much attention recently [3, 20, 21, 17]; acknowledg-
ing this current enthusiasm, we refer to implementation of such
systems as IRAM [20]. Remote memory accesses (to other IRAM
chips) will certainly be more expensive than on-chip memory
accesses. IRAM chips connected by a bus or point-to-point ring
would exhibit the needed parameters for a cost-effective Data-
Scalar implementation.

• Chip multiprocessors (CMPs): Single commodity chips are
projected to hold a billion logic transistors by 2010. Such copious
silicon real estate will enable fabrication of single-chip multipro-
cessors containing substantial quantities of memory per proces-
sor—such a chip is in development even today [18]. Wiring delays

1. Except when the data are cached, in which case the cache line is updated,
and no write-through or write-back is required.
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on these chips will be substantial [6]; accessing an operand from a
bank to which the requester is tightly coupled is likely to be much
faster than requesting an operand from a memory bank across the
chip (in essence, the former access would be “local” and the latter
“remote,” even though both requests are serviced on the same
chip).

In this paper, we evaluate a DataScalar implementation in the
IRAM context, since we believe that it is a promising technologi-
cal match for these ideas. In Section 2, we describe the ideas and
background in more detail. In Section 3, we describe the benefits
of the base model and present some supportive simulation results.
In Section 4, we describe one implementation of a DataScalar sys-
tem and present timing simulation results comparing it against a
traditional alternative. In Section 5, we discuss the potential for the
interaction of DataScalar and parallel processing. Finally, we dis-
cuss related work and conclude in Section 6.

2  DataScalar overview

DataScalar architectures are intended to mitigate the dual con-
straints of (1) processors coupled with limited memories that may
not easily be expanded—such as a finite on-chip or on-module
capacity in a highly integrated system—and (2) existing uniproces-
sor programs that are not easily parallelized. This architecture
exploits the availability of multiple processors to minimize mem-
ory latency by using the fact that any memory location is local to
some processor. Thus each read operand can be quickly fetched by
some processor. Each memory update can be achieved by means of
only one write by the processor to which the store address is local.

DataScalar is based on the Massive Memory Machine (MMM)
work from the early 1980s. The MMM was a synchronous, SISD
architecture that connected a number of minicomputers with a glo-
bal broadcast bus [13]. Each computer contained a very large
memory, which was a fraction of the total program memory (each
operand was thus owned by only one processor, i.e., it resides in
the physical memory of only one processor). All computers ran the
same program in lock-step, and the owner of each operand broad-
cast it on the global bus when accessed. This broadcast model was
called ESP in the MMM work. We depict an example of synchro-
nous ESP in Figure 1. One processor (the lead processor) is
slightly ahead of the others while it is broadcasting (initially pro-
cessor 3 in Figure 1). When the program execution accesses an
operand that the lead processor does not own, a lead change
occurs. All processors stall until the new lead processor catches up
and broadcasts its operand (e.g., processor 2 broadcasting  at
cycle 7 in Figure 1).

Some advantages to ESP are: (1) that no requests need be sent,
thus reducing access latency and bus traffic, since all communica-
tion is one-way. (2) Writes (or write-backs) never appear on the
global bus, further reducing bus traffic (since all processors are
running the same program, they all generate the same store values,
which need complete only on the owning processor). (3) Since the
MMM was synchronous, and all processors generated the address
for each successive operand, no tags needed to be sent with the
data on the global bus.

DataScalar architectures combine ESP with out-of-order execu-
tion, the combination of which is an asynchronous version of ESP.
Each processor may access owned operands simultaneously. This
asynchrony permits each processor to run ahead on computation
involving operands that it owns, generating the total stream of
broadcasts more quickly. We call this capability datathreading.
Unlike synchronous ESP, however, each broadcast must contain an
address or tag, since broadcasts occur in an unknown total order.

Because each processor executes the instructions in a different
order, it is possible for a processor to temporarily deviate from the
ESP model and execute a private computation, broadcasting only

w5

the result—not the operands—to the other processors. We call this
technique result communication, and discuss it in more detail in
Section 5.1. We note that this execution model—which we call
Single-Program, Single Data stream (SPSD)—is a serial analogue
to the Single-Program, Multiple Data stream (SPMD) execution
model proposed by Darema-Rogers et al. in 1985 [5] (which
extended Flynn’s classification [11]).

Requiring every load to be broadcast would generate much
more total traffic than current systems with cache memories. Inter-
chip traffic can be reduced dramatically by replicating the fre-
quently accessed portions of the address space both statically and
dynamically at various granularities (word, cache line, and/or
page).

We replicate data statically by duplicating the most heavily
accessed pages1 in each processor’s local memory. Accesses to a
replicated page will complete locally at every processor, requiring
no off-chip traffic. The address space is thus divided into two cate-
gories: replicated and communicated. Replicated pages are
mapped in each processor’s local memory, and the communicated
part of the address space is distributed among the processors.

Figure 2 shows how loads and stores differ for replicated and
communicated memory; both processors issue a load and store to
replicated memory (L1 and S1), which complete locally. Both pro-
cessors also issue loads to L2 and S2, which are located in the
communicated memory of processor A only. Processor A broad-
casts L2, which processor B receives and consumes. S2 completes
at processor A, but is dropped at processor B.

Static, coarse-grained replication of pages cannot capture local-
ity that is fine-grained or identifiable only at run-time. We must
therefore allow caching at each node, effectively replicating data
dynamically for the period that they are cached. Dynamic replica-
tion of data, however, introduces some new consistency issues that
we will discuss in Section 4.1.

The DataScalar execution model is a memory system optimiza-
tion, not a substitute for parallel processing. When coarse-grain
parallelism exists and is obtainable, the system should be run as a
parallel processor (since a majority of the needed hardware is
already present). We discuss the issues concerning hybrid execu-
tion models for multiprocessors further in Section 5.2.

3  DataScalar benefits

In this section, we describe the benefits associated with the base
DataScalar model (ESP and datathreading) in detail. We show how
ESP reduces about a third of off-chip traffic (on average), and we
show how datathreading offers the potential for reductions in
memory latency. We also present simulation results that address
each of these benefits.

3.1  ESP and traffic reduction

DataScalar systems enjoy nearly the same benefits from ESP as
did the MMM proposal. ESP reduces traffic—thereby increasing
effective bandwidth—by eliminating both request traffic and write
traffic from the global interconnect. ESP, asynchronous or other-
wise, does not further reduce the number of read operands that
must be communicated off-chip over that of a conventional archi-
tecture.

ESP-based systems eliminate request traffic because ESP uses a
response-only (or data-pushing) model. Since all processors run
the same program, if one processor issues a load to an address, all
the other processors will eventually issue that same load. The
owner is therefore assured that when it broadcasts the load, all

1. We assume a static partitioning at the page level, and thus this distinction
would is in the page table. Other schemes are possible.
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other processors will consume it. Conversely, when a processor
issues a load to a datum that it does not own, it can buffer the
request on-chip, and the matching data will eventually arrive.
Thus, requests need never be sent off-chip. Similarly, when a store
is generated at all nodes, only the owner of that address need com-
plete the store on-chip. Since every chip is generating the value
locally, created store values never need be sent off-chip. All pro-
cessors will complete the store if the address is a replicated loca-
tion. If the address is cached at all nodes, the store will complete in
the cache, and the eventual write-back (or write-through) operation
will be dropped at nodes that do not own that address. Note that
there are none of the traditional cache consistency issues, since
every processor is running the same program.

In a synchronous implementation of ESP, tags need not be
broadcast with data—every processor is generating the same
instruction stream in the same order, so tags can be inferred from
the order in which the broadcasts are received. DataScalar systems
do not enjoy this benefit; the out-of-order issue processors will all
issue multiple broadcasts in an unpredictable order. In addition,
more than one processor generally will be attempting to broadcast
at any given time. This lack of predictability means that data must
be broadcast along with their addresses and/or some other identify-
ing tags (multiple instances of the same address may require sup-
plementary tag information, such as a sequence number).

We measured the extent to which ESP reduces off-chip commu-
nication using cache simulation. We used the SimpleScalar tool set
[1], which is an execution-driven set of processor simulators that
simulate a MIPS-like instruction set architecture. We simulated a
64-Kbyte, two-way set-associative, write-allocate, write-back, on-
chip level-one data cache (this size is consistent with typical cache

sizes at the time that SPEC95 was released). We measured the
aggregate miss traffic from the cache, and calculated the fraction of
traffic that remained once write-backs and requests were elimi-
nated. In Table 1, we show this measured fraction for fourteen of
the SPEC95 benchmarks. We show both total traffic eliminated,
and the reduction in the total number of distinct messages (we
count a request/response pair as two transactions). The table shows
that, for this cache size, ESP eliminates roughly 15% to 50% of the
off-chip traffic in bytes, and from 52% to 75% of the individual
transactions (because no requests are sent, the transaction reduc-
tion will always be at least 50%).

These results indicate that—for systems in which memory
bandwidth is at a premium—implementing ESP is likely to
improve performance, or reduce the required system cost to
achieve the same performance. These results focus solely on bus
traffic reduction—they do not address the performance penalties
associated with necessitating broadcasts on interconnects other
than buses. We address that issue in Section 4.4.

3.2  Datathreading and latency reduction

ESP-based systems reduce memory latency by making all off-
chip communications one-way only. These savings might be large
if the remote communication time dominates the memory request
latency, or small if the memory access latency and/or memory sys-
tem queueing delays dominate the request latency.

ESP-based systems offer the potential for further reductions in
memory access latencies, however. Consider a stream of accesses
to memory locations, each address of which is dependent on the
value of the previous address (e.g., pointer chasing). When two or
more dependent addresses reside in one processor’s local memory,
that processor may fetch those values without incurring any off-
chip latencies. Those values may then be sent to the other proces-
sors by pipelining the broadcasts, incurring only one off-chip delay
on the critical path. All processors thus complete the processing of
those addresses faster than would a traditional system.

To illustrate this concept, we depict a simple example in
Figure 3. Figure 3a shows a four-chip DataScalar system in which
each IRAM chip contains a quarter of the program’s physical
memory. Figure 3b shows a more traditional organization, in
which one IRAM chip holds a quarter of the program’s memory
and traditional DRAM chips hold the other three-quarters. In both
systems, operands x1, x2, x3 all reside on one chip, and operand x4
resides on a different chip. The address of each  is dependent
on . One processor in the DataScalar system can access the first
three without a single off-chip access, and then pipeline the broad-
casts of those three operands to the other nodes (the broadcasts will
be separated by the memory access time, of course). There will be
a serialized off-chip access between x3 and x4 (analogous to a lead
change in the MMM), and then x4 will be broadcast. The system
thus incurs two serialized off-chip delays. The traditional system,
conversely, incurs two serialized off-chip accesses (one request,
one response) for each operand, for a total of eight in this example
The traditional system would incur zero off-chip delays if all the
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Figure 1. Operation of the ESP Massive Memory Machine (from [13])
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operands happened to reside in the on-chip quarter of the memory,
as opposed to a minimum of one for a DataScalar system.

We call a series of accesses to consecutive local dependent
operands a datathread. If the operands are not dependent, then a
traditional system could simply pipeline multiple non-blocking
accesses, obtaining them in two serialized off-chip crossings.
When a dependence spans two nodes, we view that point as initiat-
ing a datathread migration from one node to the other, beginning
the access stream of that thread at the new node. The overhead of
migrating this conceptual thread is one serialized off-chip access.
The cost of maintaining inexpensive datathread migrations is pre-
cisely that of maintaining SPSD execution— broadcasting loads
and performing computation redundantly at all nodes.

Another conceptual view of asynchronous ESP execution is
that from each processor’s perspective, it is the main processor,
and the others are simply intelligent prefetch engines residing in
the main memory modules. From this perspective, the broadcasts
the processor sends are merely the state the prefetch engines need
to continue performing the accurate prefetching. Since this is a
homogenous system, each processor will have this view of the oth-
ers, of course.

The Massive Memory Machine was able to exploit only one
datathread at any time; when a lead change occurred, a new datath-
read began at the new leader (in Figure 1, operands w1-w4, w5-w7,
and w8-w9 would constitute three datathreads, assuming each
operand is dependent on the previous one). DataScalar systems,
because they implement asynchronous ESP with out-of-order issue
at each node, may have multiple datathreads running concurrently.
DataScalar systems do not require special support for datathreads,
since they transparently exploit the locality already inherent in ref-
erence streams. However, programs would benefit from special
support to increase datathread length or raise the number of datath-
reads executing concurrently.

In Table 2 we show experimental results that measure the mean
number of loads falling consecutively on a single node. This is an
approximation of datathread length, since we do not account for
dependences. All results presented here assumed a four-processor
system. These simulations also used the SimpleScalar tools and

assumed a cache configuration identical to that presented in
Section 3.1. For each benchmark, we replicated 32 4-Kbyte pages
on each node. We selected the pages to replicate by running the
benchmark, saving the number of accesses to each page, sorting
the pages by number of accesses, and choosing the 32 most heavily
accessed pages. We distributed the communicated pages among
the nodes round-robin, in blocks with sizes ranging from 4 to 32
pages. The sizes of the distributed blocks of data are shown for
each benchmark in the first column of Table 2. For each bench-
mark, we tried to maximize the distribution block size (to improve
datathread length) while still keeping it smaller than 1/4 of both the
text and the largest data (globals, heap, stack) segment. This action
prevented either segment from being completely contained at one
processor, a situation which would make the datathread length
equal to the number of references.)

The next four columns in Table 2 show the distribution of repli-
cated pages among the four segments. Columns seven through nine
show the mean (arithmetic) datathread lengths using three different
definitions of datathreads. All three methods count consecutive ref-
erences on a node, beginning the count upon the first reference to a
communicated datum local to some node, ending (and restarting)
the count upon the next reference to communicated data local to a
different node. Column seven approximates datathread lengths
using all references to memory (e.g., all cache misses). The second
and third columns compute datathread length using only instruc-
tion and data references to memory, respectively.

The right-most column shows the average number of contigu-
ous accesses to replicated pages in main memory. High numbers of
references to replicated pages will extend average datathread
lengths. If references to replicated data are frequent, the threads
will tend to be long.

The average datathread lengths in Table 2 are generally high for
instructions—over 20 in every case. These large numbers are par-
tially due to the replication of a high percentage of the text pages,
which is significant for most programs (li, tomcatv, m88ksim,
turb3d, and fpppp have average code datathreads in the hun-
dreds or thousands, and each has from 1/3 to 1/2 of the code repli-
cated across all processors). Part of the explanation for the long
datathreads, however, is the high spatial locality generally found in
code reference streams.

Data reference thread lengths that we see tend to be shorter than
the instruction thread lengths. They are low (less than 3) for some
of the floating point codes (swim, applu, turb3d, mgrid, and
hydro2d). Although floating-point codes tend to have high spa-
tial locality, our approximation of datathreads is cut by interleaved
accesses to arrays residing at different processors (e.g., c[i] =
a[i] + b[i]). Also, some of the spatial locality is filtered out
by the cache. The three other floating-point codes have higher
average datathread lengths, however, ranging from about 6 to 33.
The integer codes tend to have higher datathread lengths than do
the floating-point codes. The datathread length for li is high
because most of its data set is replicated. The others show average
datathread lengths from about three to over 130.

These results show that many programs will be able to exploit
datathreading. Ideally, each processor in a DataScalar system will
run ahead of the others, finding multiple needed operands and

Shows reductions in off-chip data traffic due to ESP (removal of write and request traffic) for the SPEC95 benchmarks. Traffic is measured in
two ways: fraction of bytes eliminated (top row) and fraction of transactions eliminated (second row).
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Table 1: Off-chip data traffic reduced by ESP
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instructions locally, and sending them to the other processors
early—sometimes even before the other processors have resolved
those addresses.

4 Performance of a DataScalar implementation

In this section we present simulation results comparing one
implementation of a DataScalar architecture with a more tradi-
tional architecture. We first discuss the specific solution we imple-
mented to enable caching under asynchronous ESP. We then
describe our simulated architecture, simulation environment and
parameters, and present our results.

4.1  Cache correspondence

In Section 2 we described static replication of data, in which
heavily used pages are copied at each processor running as a Data-
Scalar machine. Static replication is limited in that it cannot use
run-time information to reduce off-chip accesses—caches are uni-
versally used precisely because this run-time information is so cru-
cial. Dynamic replication, therefore, is crucial to the
competitiveness of DataScalar systems.

Dynamic replication in a DataScalar system is analogous to
caching in a uniprocessor; processors take a broadcast operand or
block of data, and decide to cache the data locally for a period of
time (the difference is that multiple processors are all caching the
same data instead of just one). However, replicating data dynami-
cally is more complicated than simple caching. The goal of repli-
cation is to improve average memory access latency by reducing
the number of broadcasts (which are analogous to cache misses in
a uniprocessor). If the owner of a datum decides not to broadcast it
upon a load, assuming it to be replicated, every other node must
still have that operand, or deadlock will result. Conversely, if the
owner broadcasts the operand and other nodes already have that
operand locally, superfluous messages may fill up the queues on
the remote nodes (depending on the broadcasting/receiving imple-
mentation). Certainly unnecessary broadcasts will waste band-
width.

All nodes in a DataScalar system must therefore keep exactly
the same set of dynamically replicated data, all choosing to stop

replicating a datum at the same point in the access stream. Further-
more, these nodes should ideally make the decisions about what to
keep replicated and what to throw out based on local information
only—requiring continuous remote communication solely to
reduce the number of broadcasts would make DataScalar systems
non-competitive.

While many solutions are conceivable, in this paper we
describe only the one that we have implemented. Our solution is to
fold the decisions about what to replicate dynamically into the
first-level caches—a block is considered to be dynamically repli-
cated so long as it is in those caches.1 If a level one cache miss
occurs for communicated data, the owner must broadcast that line
to the other nodes. This solution implies that no node may ever
miss on a communicated line if another node hits on that line for
the same load. We call this the cache correspondence problem;
data must be kept correspondent in the primary caches to prevent
deadlocks.

Keeping the caches correspondent is a non-trivial problem.
Dynamically scheduled processors will send loads to the cache in
different orders, and will also send different sets of instructions
(when branch conditions take longer to resolve at some processors
than others, allowing more mis-speculated instructions to issue). If
two loads to different lines in the same cache set are issued in a dif-
ferent order at two processors, that set will replace different lines,
and the caches will cease to be correspondent.

Our solution is to update the primary cache state only when a
memory operation is committed, not when it is issued. To maintain
correct program semantics, instructions must be committed in the
same order at all processors, even though they may be issued in
different orders. This solution also prevents mis-speculated
instructions from affecting the cache contents.

We implement this solution with a structure called a Commit
Update Buffer (CUB). We envision separate CUBs for instructions
and data (ICUBs and DCUBs), but in this paper we only evaluate a
DCUB. When a cache miss returns, rather than loading the data

1. It is possible to use lower levels of a multi-level cache hierarchy to per-
form dynamic replication. We chose to use only the level-one caches
because our particular solution requires a tight coupling of the cache tags
and the load/store queue in the processor.

Benchmark
Dist.

size (Kb)

Replicated pages (128Kb) Datathread length approximation

text global heap stack total text data repl.

tomcatv 32 22 6 2 2 42.3 31486.7 6.7 21.7

swim 32 7 24 0 1 2.1 60.2 2.1 1.0

hydro2d 32 25 5 0 2 1.7 176.9 1.6 1.1

mgrid 32 4 27 0 1 1.5 31.4 1.5 1.0

applu 32 23 8 0 1 2.6 43.3 2.6 1.0

m88ksim 64 16 10 5 1 157.3 859.2 69.1 16.2

turb3d 64 19 12 0 1 1.7 1541.6 1.6 1.1

gcc 256 25 1 0 6 7.4 23.9 4.5 1.2

compress 16 6 25 0 1 103.5 41.7 134.7 1.3

li 16 17 2 12 1 841.2 777.2 2027.1 208.4

perl 128 26 2 3 1 7.6 34.5 4.1 2.1

fpppp 64 27 4 0 1 165.6 755.9 33.7 3.7

wave5 64 17 14 0 1 6.4 171.6 5.9 1.7

vortex 128 27 2 1 2 5.5 21.0 2.9 1.9

Table 2: Approximate datathread measurements for a four-processor system
Each row shows the experimental parameters for each benchmark, followed by the results. The first column contains the granularity at which
communicated data are distributed round-robin around the processors. The second through fifth columns show the number of pages from each
segment that were replicated for each benchmark. The right-most four columns show the arithmetic mean of our datathread length approxima-
tions for all reads, all reads to code and data separately, and reads to replicated memory, respectively.
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into the cache, the line is placed into an entry of the DCUB, and a
pointer to that entry is placed in the load/store queue at the entry of
the load that generated the miss. Memory operations to the same
line are serviced by the data in the DCUB (loads may still be ser-
viced by stores farther ahead in the load/store queue). When a
memory operation is committed, the cache tags are updated, and, if
necessary, the line is loaded from the DCUB into the cache. A
DCUB entry is deallocated when the last entry in the load/store
queue that uses that line is committed. In addition to a pointer to
the DCUB entry, each entry in the load/store queue is extended
with state that represents whether the instruction missed in the pri-
mary cache at issue time.

This extra state is necessary because updating the cache at com-
mit time only is sufficient to guarantee cache correspondence, but
not to guarantee identical hit/miss behavior at all processors. Since
instructions may issue at different times across processors, the
same instruction will issue at different commit points in the
instruction stream across the processors, causing some to hit and
others to miss in their caches. By saving whether a hit or miss
occurred at issue time, we can compare that event with the correct
commit-time event, and take corrective action if there is a disparity.

We show a simple example in Figure 4. Two addresses, X and
Y, conflict in the cache. Instructions commit from left to right. The
second load to X (X2) misses when issued, but would have hit at
commit time if the instructions were issued in program order
(because X1 would have already generated the miss). This is an
example of a false miss. Analogously, Y2 hits at issue time because
Y1 had just been committed, but should have missed at commit
time (e.g., at another processor, Y2 might issue after X1 is commit-
ted, causing a miss at issue time instead of a hit). We call this a
false hit, and deal with it by generating a reparative miss when this
situation is detected at commit time (a reparative miss consists of a
reparative broadcast by the owner, or a squash to the local BSHR
by a non-owner of that datum). We deal with false misses by rec-
ognizing that any sequence of accesses to the same line will gener-
ate only one miss (X1 and X2 in this example). If X1 issues after
X2, we can “assign” the miss generated by X2 to X1, thus ensuring
that all processors will generate only one miss for that line.

This “cache correspondence protocol” does not currently han-
dle speculative accesses; if we were to permit incorrect specula-
tions in our simulations, we would have to buffer speculative
broadcasts at the network interface. We would then allow them to
proceed only when they were determined to be correct, and squash
them locally otherwise. We are in the process of extending this cor-
respondence protocol to support speculative broadcasts.

4.2  Simulated implementation

We evaluated a DataScalar system consisting of multiple inte-
grated processor/memory (IRAM) modules connected via a global
bus. In Figure 5 we show a diagram of the high-level datapaths
present in our simulated DataScalar implementation. We assume
split primary instruction and data caches. We replicate the program
text at each node, obviating the need for dynamically replicated
instructions (and therefore a speculative correspondence protocol).
We do support dynamic replication of data, so a DCUB, not the
accesses themselves, updates the data cache tags and storage. We
assume a fast on-chip main memory, which is insufficiently large
to hold an entire program data set, but which is fast enough to
eliminate the need for a level-two cache.

We use a simple queue to buffer broadcasts being placed on the
global bus. The process of receiving broadcasts is more involved.
We call the broadcast-receiving structures that we simulate Broad-
cast Status Holding Registers, or BSHRs. We implement the
BSHRs as a circular queue. When a broadcast arrives from the net-
work, the BSHR performs an associative search on that address. If

a match occurs, the earliest entry matching that address in the
queue is freed and the data are forwarded to the processor. If no
match occurs, the BSHR allocates the next entry in the queue and
buffers the data. In this case, when the processor issues the request
for the data, it finds them waiting in the BSHR, and effectively sees
an on-chip hit.

Level-one cache misses become broadcasts if the missing cache
line is in communicated memory, and the processor is the owner of
that cache line. The miss allocates a BSHR entry if, at a given pro-
cessor, the miss is to a line that is both communicated and
unowned by that processor. In Figure 5 we show a datapath from
the processor to the BSHR queue; this path is used to squash
BSHR entries allocated due to false misses.

Our simulation platform was a substantially modified version
of the SimpleScalar tools [1]. To simulate DataScalar systems, we
extended the SimpleScalar out-of-order processor simulator with

X1 Y2X2Y1

1 4 2 3

UncommittedCommitted

Issue order:

Program order:

1. Y1 is committed, is loaded into cache
2. X2 is issued, and misses in the cache
3. Y2 hits in the cache
4. X1 misses, but hits in the MSHR

X and Y are accesses to two lines that conflict in the cache

False miss: X2 missed at issue but would have hit if in-order issue
False hit: Y2 hit at issue but would have missed if in-order issue

Figure 4. Cache correspondence example

Load/store queue

Main

CPU logic

I-cache

(DRAM)
memory
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Interface
logic

network in

network out

DCUB

D-cache

BSHR = Broadcast status holding register

DCUB = Data commit update buffer

Figure 5. Simulated DataScalar chip datapath
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multiple target contexts. The simulator switches contexts after exe-
cuting each cycle (i.e., it simulates cycle  for all contexts before
simulating cycle  for any context).

We also implemented address translation, which was not
present in the original version. We assume a single-level page
table, locked in the low region of physical memory. We maintain
the replicated vs. communicated state of each page with a bit in the
page table entry. Each page table entry also has one bit that deter-
mines ownership of a communicated page (only one processor will
have the ownership bit set for a communicated page; the bit for that
page is cleared in the page table entries of all other processors).

Processor parameters

Evaluating future systems, particularly those five or ten years
away, is always difficult. Simulating the processors of tomorrow on
the machines of today (using the benchmarks of yesterday) makes
choosing parameters that give meaningful results difficult. We
opted for an aggressive processor model, coupled with a memory
hierarchy that has cycle times matching the generation of our
hypothetical future processor, but which is sized according to the
year that the benchmarks were released.

For all our experiments, we targeted a processor that might be
built about five years hence. We assumed an 8-way issue, 1 GHz,
out-of-order issue processor. Our processor used a Register Update
Unit (RUU) [24] to keep track of instruction dependencies. We
simulated an instruction window size of 256 instructions (RUU
entries). Our simulated processor also contains a load/store queue,
to prevent loads from bypassing stores to the same address. Loads
are sent from this queue to the cache at issue time, while stores are
sent to the cache at commit time. Loads can be serviced in a single
cycle by stores to the same address that are ahead in the queue. For
all simulations, we simulated a load/store queue that had half as
many entries as did the simulated RUU.

Modern branch predictors are already quite accurate, however,
and we have no way of knowing what prediction techniques will be
prevalent in future processors, or the extent to which these proces-
sors will engage in aggressive speculation. We therefore assumed
perfect branch prediction in our simulations. This assumption sim-
plified our handling of the BSHRs (since our cache correspon-
dence protocol does not currently support speculative broadcasts).
Assuming perfect branch prediction will also increase the mea-
sured IPC, due to the absence of branch misprediction penalties
(the IPC of future processors is likely to be even higher as they
engage in speculation that is much more aggressive than branch
prediction [25]).

Memory system parameters

On-chip memories are likely to be significantly faster than
DRAMs are today. Using sub-banking, with hierarchical word-
and bit-lines, will enable DRAM banks to have access latencies
that are comparable with those of cache memories. Current high-
density (1 Gb) DRAM prototypes, the processes of which are opti-
mized for density and not speed, have access latencies in the low
30’s of nanoseconds [7, 8]. On-chip DRAM banks implemented in
hybrid memory/logic processes are likely to be significantly faster.

For our simulations, we assume a memory hierarchy on-chip
that is just two levels. The first level is split instruction and data
caches, 64KB each with single-cycle access. The caches are direct-
mapped (for speed) and the data cache implements a write-back,
write-noallocate policy. We believe that this write policy is supe-
rior to write-allocate in an ESP-based system (with a write-allocate
protocol, a write miss requires sending an inter-processor message,
only to overwrite the received data). Both caches are fully non-
blocking and can support an arbitrarily high number of outstanding
requests. The second level of the hierarchy is composed of high-

n
n 1+

capacity, on-chip memory banks that can be accessed in 8 ns. They
are connected with a 256 bit bus that is clocked at the processor
frequency. We assume that our off-chip bus is 128 bits wide and is
clocked at 200 MHz. Commodity parts that expect to do most of
their computing and memory accesses on-chip are not likely to
have support for extremely aggressive off-chip connections.

We assume BSHRs with 3-ns access latencies and 128 entries.
We assume a broadcast queue for the DataScalar simulations,
which incurs a two-cycle access penalty before broadcasting data
onto the global interconnect (the traditional architecture, similarly,
buffers off-chip requests at a network interface that functions as a
connection between the local and global buses, also incurring a
two-cycle penalty).

4.3  Performance results

As with the previous experiments, the benchmarks that we used
were drawn from the SPEC95 suite [26]. We used the test input
set in all cases, although we reduced the number of iterations in
some programs (after performing experiments to ensure that the
reduced number of iterations did not perturb our results).

We simulated six of the SPEC95 benchmarks: go, mgrid,
applu, compress, turb3d, and wave5. We ran each bench-
mark for 200 million instructions or to completion, whichever
came first. We did not statically replicate any data pages; all pages
were distributed round-robin across all nodes. We ran simulations
for both two-processor and four-processor DataScalar systems.
Each processor has sufficient capacity to hold one-half and one-
fourth of the data set, respectively, for each benchmark. Our target
DataScalar system dynamically replicates remote data in the data
cache, as described in Section 4.1.

We compared the Datascalar performance against two points:
an identical processor with a perfect data cache (single-cycle
access to any operand), and a more traditional system which has
the same amount of on-chip memory as does one chip in each
DataScalar experiment. We thus compare a two-processor Data-
Scalar execution against a system which has the same processor,
half the memory on-chip, and half off-chip (to make a fair compar-
ison, the buses are the same, and both systems cache updates at
instruction commit, not issue). We show an example of this com-
parison, assuming four processors, in Figure 6. A traditional sys-
tem (Figure 6a) being compared against a four-processor
DataScalar machine (Figure 6b) would thus have one-fourth of its
main memory on-chip and three-fourths off-chip.

While the traditional system would certainly benefit if all of the
on-chip memory was devoted to a large second- or third-level
cache, measuring such a system against our simulated DataScalar
implementation would be an unfair comparison. We consider the
IRAM chip used in both types of system to be a commodity part,
intended for stand-alone use, with the large on-chip memory func-
tioning as main memory and not a cache.

In Figure 7 we plot the instructions per cycle for each experi-
ment. We ran each benchmark assuming two and four DataScalar
processors. The actual IPC value resides atop each bar. We see that
the performance benefits that the DataScalar system has to offer
are substantial. The results are particularly striking for com-
press, almost a doubling of IPC over the traditional architecture.
That performance gain is so much higher because compress
issues almost as many stores as loads, which never have to go off-
chip in a DataScalar system. For all other benchmarks, the Data-
Scalar system manages to capture much of the available ILP,
approaching the IPC of the perfect data cache in some cases.

The DataScalar system deals with a finer-grain distribution of
memory better than does the traditional system; the drops in Data-
Scalar performance when going from two-processor to four-pro-
cessor systems are less than 0.05 IPC (the comparable drops in
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performance on the traditional system range from 0.1 to 0.6 IPC).
The IPC for wave actually improves when running on four pro-
cessors instead of two (the benefits of more processors running
datathreads concurrently outweigh the additional off-chip commu-
nication). In only two cases (mgrid and turb3d with two nodes)
does the DataScalar system perform worse than the traditional sys-
tem. This abnormality results from poor correspondence protocol
performance (a high rate of false hits at one node causes the other
node to stall frequently, waiting for the owner to commit the
offending load and issue a reparative broadcast).

We present the results of a sensitivity analysis in Figure 8. The
two benchmarks presented are go and compress, each of which
was run to completion. For each benchmark, we plot results
assuming the same parameters that we used for the experiments in
Figure 7, except that we vary one parameter in each graph. The
parameters we varied were: data cache size, main memory access
time, global bus clock speed, width of the global bus, and number
of RUU entries. On each graph, we plot the IPC for the same five
systems as we measured in Figure 7 (perfect data cache, two- and

four-processor DataScalar machines, and traditional systems
assuming one-half and one-fourth of the main memory on-chip).

We see that the DataScalar runs consistently outperform the tra-
ditional runs over a wide range of parameters. As expected, the
performance of the two types of systems converges when memory
bank access times come to dominate the latency of a memory
request (because DataScalar systems reduce the overhead of trans-
mitting the data, not accessing them). Conversely, when the speed
differential between the global and on-chip buses grows, so does
the disparity between DataScalar and traditional performance.

In Table 3 we list a few of the BSHR and broadcast statistics
from the two-processor runs. We list the percentage of broadcasts
that were issued late, at commit time, due to false hits. These per-
centages will drop for larger caches, since the probability that a
block will be replaced in between issue time and commit time is
inversely proportional to cache size. The middle column lists the
percentage of BSHR entries that were squashed due to false hits.
The right-most column lists the percentage of remote accesses that
were waiting in the BSHR for the local processor’s request. Those
values range from 2% to 9%, showing evidence that some effective
datathreading is occurring, since a processor needs to be running
fairly far ahead of another for that situation to occur.

4.4  Other implementation issues

In this subsection we describe other issues pertinent to Data-
Scalar architectures—namely, the cost overheads of the extra pro-
cessors, the expense of requiring broadcasts, speculation in
DataScalar, and operating systems issues.

Cost

Conventional systems today typically consist of a single pro-
cessor and a collection of memory chips. Each of these compo-
nents comprise a significant fraction of the total cost of the system.
A DataScalar system would consist of a collection of identical
chips, each of which costs more than a conventional DRAM chip,
but less than a processor chip. When comparing the cost of a Data-
Scalar system and a traditional system with one processor and
“dumb memory” (such as the comparison in Figure 6), the Data-
Scalar system becomes cost-effective when the performance it
adds outstrips the cost of the additional processors.

CPU $

DRAM
(1/4 M)

CPU $

DRAM
(1/4 M)

CPU $

DRAM
(1/4 M)

CPU $

DRAM
(1/4 M)

Global bus
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Global bus

(b) DataScalar architecture (4 nodes)
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(1/4 M)
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Figure 6. Comparing two IRAM organizations
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Wood and Hill showed [28] that for a parallel system to be cost-
effective, the costup (the relative increase in total cost as more pro-
cessors are added) should be less than the speedup (the relative
increase in performance as more processors are added). When
memory or interconnect costs dominate those of the additional pro-
cessors, the system may still be cost-effective even if the speedups
are comparatively small.

A majority of the die of most modern processors is devoted to
memory, even though the total cache capacity for each is generally
only in the tens of kilobytes. We believe that the ratio of on-chip
memory area to total chip area will continue to grow in the future,
making the relative expense of the processing logic shrink over
time. If true, this trend will make memory and packaging the dom-
inant costs of future systems. DataScalar architectures could thus
be cost-effective, even though the speedups they provide are much
less than linear.

Inter-chip communication

Because of the symmetric nature of the DataScalar model, all
communicated values must be broadcast to all nodes. In general,
broadcast operations are both expensive and not scalable. On cer-
tain interconnects—such as on a ring or bus—they may be effected
with only minor additional cost, though reliable delivery and error
recovery are inevitably more complicated for broadcast operations.

Broadcasts on a bus are free, since every bus transaction is an
implicit broadcast. However, the very feature that makes broad-
casts cheap—the centralized nature of a bus—makes the bus an
unlikely candidate for the high-performance interconnect of the
future. However, the demise of the bus has been much slower than
predicted, and buses may persist for some time to come.

Ring operations, such as the IEEE/ANSI standard Scalable
Coherent Interface [16, 23] seem well-suited for this kind of opera-
tion. On a ring, operations are observed by all nodes if the sender is
responsible for removing its own message. We envision a ring
interconnect because of the high-performance capability [22], but
broadcast on a ring is complicated by the fact that operands origi-
nating at different processors are received at other nodes in differ-
ent orders. A simple tag can sort out data to different addresses, but
the issue is complicated when two accesses to the same datum are
broadcast close in time. Complications also arise whenever certain
data items must be rebroadcast (e.g., because a receive queue is
full), or cancelled.

One technology that may be an excellent match for DataScalar
programs running on large systems is optical interconnects. One of
the properties of free-space optical interconnects is that they have
extremely cheap (essentially free) broadcasts. For massively paral-
lel systems that use optical interconnects, the SPSD execution
model may be a good way to reduce the execution time spent in
serialized code, thus improving scalability [2].
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Figure 8. Sensitivity analysis of DataScalar experiments

The parameters are the same as for the experiments described in
Section 4.3. The numbers are the arithmetic mean at all nodes. The
percentages are out of total number of broadcasts (column one) and
out of BSHR accesses (columns two and three).

Benchmark
Late

broadcasts
BSHR

squashes
Data found

in BSHR

(# of nodes) 2 4 2 4 2 4
applu 10% 9% 12% 12% 10% 7%

compress 11% 8% 16% 22% 8% 4%

go 9% 10% 12% 15% 19% 7%

mgrid 23% 21% 31% 31% 6% 4%

turb3d 38% 37% 59% 59% 3% 1%

wave5 9% 7% 11% 3% 3% 1%

Table 3: DataScalar broadcast statistics
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Speculative execution

Fine-grain speculative execution is now present in state-of-the-
art processors, and a successful DataScalar architecture must be
compatible with speculation. Much of the promise we see in Data-
Scalar comes from out-of-order execution, which enables multiple
processors to race ahead simultaneously on different instruction
sequences. However, speculation must be tightly controlled: the
broadcast of data may well be a critical limitation of this model,
and frequent superfluous broadcasts would greatly hinder perfor-
mance. The two endpoints for speculative policies are (1) to hold
onto speculative broadcasts until the speculative condition is
resolved, and (2) to send the broadcast immediately upon issue and
then send a corresponding squash if the load that generated the
broadcast is squashed.1 The former conserves bandwidth at the
expense of added latency, while the latter consumes bandwidth
while reducing latency (bandwidth limitations add latency, how-
ever, so there is likely a crossover point at which one policy
becomes better than the other). A promising approach is to assign
confidence values to speculative loads; loads with high correctness
confidence should be broadcast and squashed if incorrect, whereas
loads with low confidence should be held locally until the specula-
tive condition is resolved.

Operating systems issues

To the extent that an executing program is non-deterministic,
operating system code can be executed in the same manner as user
code. Synchronous exceptions, such as for an unaligned address,
would be observed at slightly different times at different proces-
sors, but would cause no special problems. However, asynchronous
events could potentially cause difficulty if they are not observed at
precisely the same point by all processors. Consider the case in
which a write causes a page fault. Since only one processor actu-
ally performs a write to communicated data—the other processors
all simply discard their result—only the owning processor would
observe the page fault. If the other processors did not recognize the
page fault, they might proceed beyond the fault point indefinitely.
While it is interesting to consider such a variation on the idea of an
imprecise exception, the problem can be avoided by making sure
that all processors have the same page table entries, and actually
check for exceptions on every memory operation. Thus each pro-
cessor would observe this page fault. External interrupts, likewise,
must be injected into the system with care to assure that all proces-
sors observe them at the same point in their execution.

5  Exploiting parallelism with DataScalar

DataScalar is a memory system optimization, intended for
codes that are (1) limited by the memory system and (2) difficult to
parallelize. Every DataScalar machine is a de facto multiprocessor,
however. When codes contain coarse-grain parallelism, the system
should be run more like a traditional multiprocessor. We view
DataScalar and multiprocessing as two endpoints on a spectrum:
the former runs transparently and makes no attempt to exploit par-
allelism in the code; the latter requires compiler and/or program-
mer support, and its main focus is explicit exploitation of coarse-
grain parallelism.

In this section we discuss some of the intermediate points along
this spectrum. In Section 5.1 we describe new opportunities for
exploiting medium-grain parallelism in a DataScalar architecture.

1. A squash is necessary because all incoming broadcasts are buffered in
the BSHRs. Incorrectly speculated broadcasts would not always be
matched with a request from the receiving processor, and would thus accu-
mulate until the BSHR was full. An alternative solution is to periodically
flush the BSHRs, cleansing them of stale broadcasts.

In Section 5.2 we present some issues associated with running a
mixed-mode program, in which some parts of the program run in
DataScalar mode and others run as on a traditional MIMD
machine.

5.1  Multiprocessing from a Datascalar perspective

DataScalar systems benefit from both ESP and datathreading
transparently, without requiring recompilation. In many codes
there is limited parallelism, which is insufficient to justify porting
the code to a full-blown parallel processor, but which could
improve DataScalar performance. We propose using software sup-
port to expose this parallelism in a DataScalar context.

When the programmer or compiler identifies an isolated block
of code that can be executed on one node and not the others
(requiring few or no remote operands), that processor may tempo-
rarily “peel off” from ESP mode. The processor will then compute
some result, and either store the result locally, or communicate it to
the other processors when the processor rejoins ESP execution. We
call this technique result communication. Only the participating
processor(s) must execute the code block in question; the others
must branch around the code. The compiler must perform the anal-
ysis to ensure that the non-participating nodes do not need any of
the intermediate results generated during the isolated computation.

Result communication has the potential to reduce global traffic
as well as reduce the critical path at the non-participating nodes.
We note that this is a special case of data parallel execution; if all
nodes are independently performing computations and writing the
results to communicated data that they own, the execution looks
similar to traditional data parallel [5].

Performing this parallelizing analysis in a DataScalar context
has distinct advantages. Hardware support in the processor, cou-
pled with run-time system support (described below), can assist in
making run-time checking efficient. When the data for a computa-
tion are scattered across all nodes, the system has an efficient fall-
back case (asynchronous ESP). The compiler’s job is therefore to
provide the hardware with options (break from ESP if most or all
of the data are local), not guarantees about where the data are
located.

When a processor deviates from ESP, the code it executes must
not perturb the state of the correspondent caches, if the caches are
indeed used to implement dynamic replication. We may prevent
such a perturbation by marking non-ESP accesses, and dropping
them at commit time, rather than updating the caches. If, while in
this mode, a processor requires a communicated datum that it does
not own, either the compiler must have generated code to force the
owning processor to send the operand, or the processor could fall
back to a traditional request/response model. The most important
guarantee the compiler must make, however, is that there are no
side-effects in the isolated code that were supposed to have
changed the state at every processor.

In the rest of this subsection we present an illustrative example
of result communication. The branch test could be implemented by
performing a test on a bit stored in the page table. We call this test
the “local” function. A processor might take the branch if the
local bit in the TLB for a given address was zero (the local bit
corresponds to ownership of the operand). To make this run-time
check efficient, however, the processors should not have to check
ownership of multiple addresses, the resolution of some of which
the processors would need to run the code being parallelized to
resolve. We can fold the check for multiple operands into a single
check, by securing a guarantee from the run-time system that cer-
tain data items are placed local to the same processor. One tech-
nique for doing so is to modify the run-time storage allocator by
both giving it an ownership assignation function and passing it an
address on a request for storage. The storage allocator then ensures



11

that the allocated storage was allocated at the same processor as
the address that was passed to it. The goal is to ensure that all of an
aggregate (either an array or a dynamically allocated structure)
falls entirely on one node. Binding the aggregate to one node
should be avoided if the aggregate is so large that it should be
spread across multiple nodes.

The notion of placing data can be generalized so that pages
containing parts of a structure are tagged with a class identifier.
This would decouple structures from specific nodes, so that the
number of processors (and page assignation) could change dynam-
ically (the OS would ensure that all of the pages of a given class
came to reside entirely on one processor).

In Figure 9 we depict an example that could make effective use
of result communication. We show a chained hash table, the main
array of which is distributed across multiple processors. Below the
hash table we show the high-level code transformation that would
alter the insertion routine. The additions to the code are marked
with arrows. Whenever a collision occurs and an entry must be
added to a chain, the run-time allocator (malloc in this example)
is passed the address of the head of the chain, and it returns storage
that is local to the same processor as is the head of the chain. When
insertions or deletions into the hash table need to be made, the
compiler places a branch around the insertion or deletion code.
The processor that owns the head of the chain will thus own the
entire chain, and can make the insertion or deletion without requir-
ing any off-chip communication.

Since every part of the array resides local to some processor,
every insertion and deletion can be made with no remote communi-
cation. The run-time test is efficient because the locality bit for the
head of the table is obtained with a simple address translation, and
the tests for every element in entire chain are subsumed by the
locality test for the head of the list. Many such optimizations are
possible, and are a promising area of research.

5.2  DataScalar from a multiprocessing perspective

If much coarse-grain parallelism is extractable from a program,
the program should be run using the system as a multiprocessor
rather than as a DataScalar architecture. Few codes are “embar-
rassingly parallel,” however. Codes should perhaps be run on a
hybrid architecture, which runs a program as a multiprocessor
when there is sufficient coarse-grain parallelism, and as a Data-
Scalar architecture when there is not (thereby reducing serial over-
heads). The program may either switch statically or dynamically
between the two modes, or run both modes simultaneously, using
tagged instructions or regions of data addresses to decide which
mode to use at a given point.

Future microprocessors will soon have sufficient resources to
put multiple processing units on a single chip. Whether chip multi-
processors (CMPs) will succeed is a subject of debate in the
research community. Widespread use of CMPs is more likely if
techniques are developed that speed up uniprocessor programs—
particularly those that are not easily parallelizable—by running
them on a tightly coupled multiprocessor. DataScalar architectures
may be one such candidate, depending on the future disparity
between the cost of near versus far intra-chip communication.

Given the wide variance of characteristics across important
applications, CMPs may benefit by supporting multiple modes of
execution, so as to execute the broadest possible range of applica-
tions efficiently. To this end, we propose a “three C’s” model for
CMP execution modes.1 In our model, we characterize an applica-
tion as being limited by either computation, control, or communi-

1. Our model is not to be confused with Mark Hill’s “three C’s” model that
characterizes cache misses [14].

cation. We propose to run a CMP as a different organization for
each limiting category.

• Computation-bound: the application has enough coarse-
grain parallelism that functional unit throughput is the limiting fac-
tor. If enough work can be found to allow all processing units to be
utilized, the CMP should be run as a conventional multiprocessor.

• Control-bound: limited instruction-level parallelism requires
the CMP to perform coarse-grain speculation. Control dependen-
cies prevent a single processor from running very far ahead. The
program execution could therefore benefit from having the proces-
sors function as stages in a Multiscalar-like architecture [12, 25],
wherein each processor speculatively executes large blocks of
code. The processor thereby obtains a much larger instruction win-
dow in which to find sufficient ILP.

• Communication-bound: a single processor is limited by fre-
quent, slow accesses to non-local (on-chip) memory banks. The
program execution could benefit from an architecture that uses
multiple processors to reduce communication overheads. Data-
Scalar architectures are one such example, and may be a good
match for this category.

Many applications are unlikely to fall squarely into one cate-
gory or another; it is probable that an application will run alter-
nately in two or all three of these modes. Both characterizing
applications in this manner, and designing the mechanisms needed
to support concurrent execution of multiple modes, are interesting
research issues to be explored.

6  Future directions and conclusions

This work began as a solution for running programs on multiple
single-chip computers, when the physical memory requirements
exceeded the capacity available on a single chip. Other groups are
also working on issues associated with the integration of proces-
sors and main memory, notably the IRAM project at UC-Berkeley
[20] and the PPRAM project at Kyushu University [18]. Some
companies are already prototyping preliminary designs that incor-
porate processing logic with a substantial amount of memory on a
single die; Sun Microsystems [21] and Mitsubishi [9] are two
examples. Our proposal uses multiple processing units to enhance

    entry->key = key;

Processor 0 Processor 1

B: Insert elementA: Remove element

struct t_entry *HASH_TABLE[SIZE];
insert_entry(int key)
{
  struct t_entry *entry;
  int h_index = HASH_FN(key);
  entry = (struct t_entry *)
          malloc(sizeof(struct t_entry),

&HASH_TABLE[h_index]);
  if (local(&HASH_TABLE[h_index])) {

    entry->next = HASH_TABLE[h_index];
    HASH_TABLE[h_index] = entry;
  }
}

Figure 9. Medium-grain parallelism in a hash table
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the performance of uniprocessor programs. Other groups are also
exploiting this concept—Stanford Hydra [19] uses automatic par-
allelization, Wisconsin Multiscalar [12, 25] uses coarse-grain spec-
ulation, and both the M-machine [10] and the Simultaneous
Multithreading work [27] use aggressive multithreading.

In this paper we have proposed a system organization that
exploits cheap computation to reduce memory system overheads.
DataScalar architectures combine dynamic execution and specula-
tion with the Massive Memory Machine’s ESP execution mode.
This class of architectures works well when remote memory
accesses are significantly more expensive than local memory
accesses, when global broadcasts are relatively inexpensive, and
when the cost of additional processors is a small addition to the
total cost of the system. We evaluated one conceivable DataScalar
implementation, and showed that these ideas can indeed improve
performance when memory system performance is critical.

Our current research efforts include a performance decomposi-
tion of DataScalar execution, to determine the relative fractions of
performance gains coming from the elimination of write traffic, the
elimination of requests, and datathreading. We are extending our
cache correspondence protocol to handle speculation. We are also
studying the potential of static replication, both coarse- and fine-
grained, the effectiveness of more coarse-grained dynamic replica-
tion, and software support for improving datathread length.
Finally, a major effort underway addresses exploiting parallelism
within the DataScalar context, both at a medium grain (compiler
support for result communication) and at a coarser grain (mixed-
mode execution of SPSD and MIMD).
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