
Cooperative Techniques for SPARQL Query
Relaxation in RDF Databases

Géraud Fokou, Stéphane Jean, Allel Hadjali, Mickael Baron

LIAS/ISAE-ENSMA - University of Poitiers
1, Avenue Clement Ader, 86960 Futuroscope Cedex, France

{fokou, jean, hadjali, baron}@ensma.fr

Abstract. This paper addresses the problem of failing RDF queries.
Query relaxation is one of the cooperative techniques that allows pro-
viding users with alternative answers instead of an empty result. While
previous works on query relaxation over RDF data have focused on defin-
ing new relaxation operators, we investigate in this paper techniques to
find the parts of an RDF query that are responsible of its failure. Finding
such subqueries, named Minimal Failing Subqueries (MFSs), is of great
interest to efficiently perform the relaxation process. We propose two
algorithmic approaches for computing MFSs. The first approach (LBA)
intelligently leverages the subquery lattice of the initial RDF query while
the second approach (MBA) is based on a particular matrix that improves
the performance of LBA. Our approaches also compute a particular kind
of relaxed RDF queries, called Maximal Succeeding Subqueries (XSSs).
XSSs are subqueries with a maximal number of triple patterns of the ini-
tial query. To validate our approaches, a set of thorough experiments is
conducted on the LUBM benchmark and a comparative study with other
approaches is done.

1 Introduction

With the extensive adoption of RDF, specialized databases called RDF databases
(or triple-store) have been developed to manage large amounts of RDF data (e.g,
Jena [1]). RDF databases are based on a generic representation (a triples table
or one of its variants) that can manage a set of diverse RDF data, ranging from
structured data to unstructured data. This flexibility makes it difficult for users
to correctly formulate RDF queries that return the desired answers. This is why
user RDF queries often return an empty result.

Query relaxation is one of the cooperative techniques that allows providing
users with alternative answers instead of an empty result. Several works have
been proposed to relax queries in the RDF context [2–8]. They mainly focus either
on introducing new relaxation operators or on the efficient processing of top-k
RDF queries. Usually, only some parts of a failing RDF query are responsible of
its failure. Finding such subqueries, named Minimal Failing Subqueries (MFSs),
provides the user with an explanation of the empty result returned and a guide
to relax his/her query.

To the best of our knowledge, no work exists in the literature that addresses
the issue of computing MFSs of failing RDF queries. Inspired by some previous
works in relational databases [9] and recommendation systems [10], we propose in
this paper two algorithmic approaches for searching MFSs of failing RDF queries.
The first one is a smart exploration of the subquery lattice of the failing query,
while the second one relies on a particular matrix obtained by executing each
triple pattern involved in the query. These algorithms also compute a particu-
lar kind of relaxed queries, called Maximal Succeeding Subqueries (XSSs), that
return non-empty answers. Each XSS provides a simple way to relax a query by
removing or making optional the set of triple patterns that are not in an XSS.
Our contributions are summarized as follows.

1. We propose an adapted and extended variant of Godfrey’s approach [9],
called LBA, for computing both the MFSs and XSSs of a failing RDF query.
Both properties and algorithmic aspects of LBA are investigated.

2. Inspired by the work done in [10], we devise a second approach, called MBA,
which only requires n queries over the target RDF database, where n is the
number of query triple patterns. The skyline of the matrix on which this
approach is based, directly provides the XSSs of a query. This matrix can
also improve the performance of LBA.

3. We study the efficiency and effectiveness of the above approaches through a
set of experiments conducted on two datasets of the LUBM benchmark. We
also compare our propositions with existing similar approaches on the basis
of the experimental results obtained.

The paper is structured as follows. Section 2 introduces some basic notions and
formalizes the problem we consider. Section 3 and 4 present our approaches
LBA and MBA to find the MFSs and XSSs of a failing RDF query. We present our
experimental evaluation in Section 5. Finally, Section 6 discusses related work,
then we conclude.

2 Preliminaries and Problem Statement

This section formally describes the parts of RDF and SPARQL that are necessary
to this paper. We use the notations and definitions given in [11].

Data model. An RDF triple is a triple (subject, predicate, object) ∈ (U ∪
B)×U × (U ∪B ∪L) where U is a set of URIs, B is a set of blank nodes and L
is a set of literals. We denote by T the union U ∪B ∪L. An RDF database stores
a set of RDF triples in a triples table or one of its variants [12].

Query. An RDF triple pattern t is a triple (subject, predicate, object) ∈
(U ∪ V)× (U ∪ V)× (U ∪ V ∪L), where V is a set of variables disjoint from the
sets U , B and L. We denote by var(t) the set of variables occurring in t. We
consider RDF queries defined as a conjunction of triple patterns: Q = t1∧· · ·∧tn.
The number of triple patterns of a query Q is denoted by |Q|.

Query evaluation. A mapping µ from V to T is a partial function µ : V →
T . For a triple pattern t, we denote by µ(t) the triple obtained by replacing

the variables in t according to µ. The domain of µ, dom(µ), is the subset of
V where µ is defined. Two mappings µ1 and µ2 are compatible when for all
x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x) i.e., when µ1 ∪ µ2 is
also a mapping. Let Ω1 and Ω2 be sets of mappings, we define the join of Ω1 and
Ω2 as: Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}. Let
D be an RDF database, t a triple pattern. The evaluation of the triple pattern t
over D denoted by [[t]]D is defined by: [[t]]D = {µ | dom(µ) = var(t)∧µ(t) ∈ D}.
Let Q be a query, the evaluation of Q over D is defined by: [[Q]]D = [[t1]]D ./
· · · ./ [[tn]]D. This evaluation can be done under different entailment regimes
as defined in the SPARQL specification. In this paper, the examples as well as
our implementation are based on the simple entailment regime. However, the
proposed algorithms can be used with any entailment regime.

MFS and XSS. Given a query Q = t1 ∧ · · · ∧ tn, a query Q′ = ti ∧ · · · ∧ tj is
a subquery of Q, Q′ ⊆ Q, iff {i, · · · , j} ⊆ {1, · · · , n}. If {i, · · · , j} ⊂ {1, · · · , n},
we say that Q′ is a proper subquery of Q (Q′ ⊂ Q). If a subquery Q′ of Q fails,
then the query Q fails.

A Minimal Failing Subquery MFS of a query Q is defined as follows:
[[MFS]]D = ∅ ∧ @ Q′ ⊂ MFS such that [[Q′]]D = ∅. The set of all MFSs
of a query Q is denoted by mfs(Q). Each MFS is a minimal part of the query
that fails.

A Maximal Succeeding Subquery XSS of a query Q is defined as follows:
[[XSS]]D 6= ∅ ∧ @ Q′ such that XSS ⊂ Q′ ∧ [[Q′]]D 6= ∅. The set of all XSSs
of a query Q is denoted by xss(Q). Each XSS is a maximal (in terms of triple
patterns) non-failing subquery viewed as a relaxed query.

Problem Statement. We are concerned with computing the MFSs and XSSs

of a failing RDF query over an RDF database efficiently.

3 Lattice-Based Approach (LBA)

LBA is an algorithm to compute simultaneously both the sets mfs(Q) and xss(Q)
of a failing RDF query Q. It is a three steps procedure: (1) find an MFS of Q,
(2) compute the potential XSSs, i.e, the maximal queries that do not include the
MFS previously found and (3) execute potential XSSs; if they return results, they
are XSSs, else this process will be applied recursively on failing potential XSSs.

Finding an MFS. This step is performed with the a mel fast algorithm
proposed in [9]. This algorithm is based on the following proposition (proved
in [9]). Let Q = t1∧ ...∧ tn be a failing query and Qi = Q− ti a proper subquery
of Q. If [[Q]]D = ∅ and [[Qi]]D 6= ∅ then any MFS of Q contains ti.

This property is leveraged in the algorithm 1 to find an MFS in n steps (i.e,
its complexity is then O(n)). The algorithm removes a triple pattern ti from Q
resulting in the proper subquery Q′. If [[Q′]]D is not empty, ti is part of any MFS

(thanks to the previous proposition) and it is added to the result Q∗. Else, Q′

has an MFS that does not contain ti. Then, the algorithm iterates over another
triple pattern of Q to find an MFS in Q′ ∧ Q∗. This process stops when all the
triple patterns of Q have been processed.

Algorithm 1: Find an MFS of a failing SPARQL query Q

FindAnMFS(Q, D)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D
output: An MFS of Q denoted by Q∗

Q∗ ← ∅;
Q′ ← Q;
foreach triple pattern ti ∈ Q do

Q′ ← Q′ − ti;
if [[Q′ ∧Q∗]]D 6= ∅ then

Q∗ ← Q∗ ∧ ti;
return Q∗;

Figure 1 shows an execution of the algorithm 1 to compute an MFS of the
following query Q = t1 ∧ t2 ∧ t3 ∧ t4:

Select ?X ?Y Where {
?Y ub:subOrganizationOf <http://www.University8.edu> . (t1)

?X ub:researchInterest "Research28" . (t2)

?X rdf:type ub:Lecturer . (t3)

?X ub:worksFor ?Y } (t4)

The algorithm removes the triple pattern t1 from Q, resulting in the subquery
Q′. As this subquery returns an empty result, the algorithm iterates over the
triple pattern t2 to find an MFS in t2 ∧ t3 ∧ t4. The subquery t3 ∧ t4 is successful,
hence t2 is part of the MFS Q∗. The same result is obtained for t3, which is added
to Q∗. For t4, the subquery t2 ∧ t3 returns an empty result and thus t4 does not
belong to Q∗. As all the triple patterns of Q have been processed, the algorithm
stops and returns the MFS Q∗ = t2 ∧ t3.

Q′ = t2 ∧ t3 ∧ t4
[[Q′ ∧Q∗]]D = ∅

Q∗ = ∅

Q′ = t3 ∧ t4
[[Q′ ∧Q∗]]D 6= ∅

Q∗ = t2

Q′ = t4
[[Q′ ∧Q∗]]D 6= ∅
Q∗ = t2 ∧ t3

Q′ = ∅
[[Q′ ∧Q∗]]D = ∅
Q∗ = t2 ∧ t3

t1 t2 t3 t4

Fig. 1. An execution of algorithm 1 to find an MFS of Q

Computing Potential XSSs. By definition, all queries that include the
MFS Q∗, found in the previous step, return an empty set of answers. Thus, they
can be neither MFS nor XSS of Q and they are pruned from the search space.
The exploration of the subquery lattice continues with the largest subqueries
of Q that do not include Q∗. If these subqueries are successful, they are XSSs

of Q. Thus, we call them potential XSSs and we denote this set of queries by
pxss(Q,Q∗). This set can be computed as follows:

pxss(Q,Q∗) =

{
∅, if |Q| = 1.

{Q− ti | ti ∈ Q∗}, otherwise.

∅

t1(Q∗∗)mfs(Q) = {Q∗, Q∗∗} t2 t3 t4

t1 ∧ t2 t1 ∧ t3 t1 ∧ t4 t2 ∧ t3(Q∗) t2 ∧ t4 t3 ∧ t4

t1 ∧ t2 ∧ t3 t1 ∧ t2 ∧ t4 t1 ∧ t3 ∧ t4 t2 ∧ t3 ∧ t4 pxss(Q,Q∗)

xss(Q)

t1 ∧ t2 ∧ t3 ∧ t4(Q)

Fig. 2. The lattice of subqueries of Q with its MFSs and XSSs

Indeed, for each triple pattern ti of Q∗, a subquery of the form Qm ← Q − ti
does not include Q∗ and, in addition, it is maximal due to its large size, i.e.,
|Qm| = |Q|−1. Following the previous definition, pxss(Q,Q∗) is computed with
a simple algorithm running in linear time (O(n∗) where n∗ = |Q∗|).

Figure 2 illustrates pxss(Q,Q∗) of our running example (Q = t1 ∧ t2 ∧ t3 ∧ t4
and Q∗ = t2 ∧ t3) on the lattice of subqueries. The maximal subqueries of Q
that do not contain t2 ∧ t3 are t1 ∧ t2 ∧ t4 and t1 ∧ t3 ∧ t4.

Finding all XSSs and MFSs (algorithm 2). IfQ has only a single MFSQ∗

(which includes the case where Q is itself an MFS), then xss(Q) = pxss(Q,Q∗).

Algorithm 2: Find the MFSs and XSSs of a query Q

LBA(Q, D)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D
outputs: The MFSs and XSSs of Q
Q∗ ← FindAnMFS(Q,D);
pxss← pxss(Q,Q∗);
mfs(Q)← {Q∗}; xss(Q)← ∅;
while pxss 6= ∅ do

Q′ ← pxss.element(); /* choose an element of Q′ */
if [[Q′]]D 6= ∅ then /* Q′ is an XSS */

xss(Q)← xss(Q) ∪ {Q′};
pxss← pxss− {Q′};

else /* Q′ contains an MFS */
Q∗∗ ← FindAnMFS(Q′, D);
mfs(Q)← mfs(Q) ∪ {Q∗∗};
foreach Q′′ ∈ pxss such that Q∗∗ ⊆ Q′′ do

pxss← pxss− {Q′′};
pxss← pxss ∪ {Qj ∈ pxss(Q′′, Q∗∗) | @Qk ∈ pxss : Qj ⊆ Qk};

return {mfs(Q), xss(Q)};

Proof. Assume that ∃Q′ ∈ pxss(Q,Q∗) such that [[Q′]]D = ∅. Since Q has a
single MFS, Q∗ is a subset of Q′. Contradiction with the definition of pxss(Q,Q∗).

We now consider the general case, i.e., when Q has several MFSs. For each
query Q′ ∈ pxss(Q,Q∗), if [[Q′]]D 6= ∅ then Q′ is an effective XSS of Q, i.e.,
Q′ ∈ xss(Q). Otherwise, Q′ has (at least) an MFS, which is also an MFS of Q,
different from Q∗. This MFS can be identified with the FindAnMFS algorithm
(see algorithm 1) and thus the complete process can be recursively applied on
each failing query of pxss(Q,Q∗). However, as different queries of pxss(Q,Q∗)
may contain the same MFS, this process may identify the same MFS several times
and thus be inefficient. Algorithm 2 improves this approach by incrementally
computing potential XSSs that do not contain the set of identified MFSs. When
a second MFS Q∗∗ is identified, this algorithm iterates over the previously found
potential XSSs pxss that contain Q∗∗. To avoid finding again this MFS, the
algorithm replaces them by their largest subqueries that do not contain Q∗∗ (i.e,
their own potential XSSs) and are not included in any query of pxss (otherwise
they are not the largest potential XSSs of Q).

Figure 3 shows an execution of algorithm 2 to compute the MFSs and XSSs

of our running example: Q = t1 ∧ t2 ∧ t3 ∧ t4, Q∗ = t2 ∧ t3 and pxss(Q,Q∗) =
{t1 ∧ t2 ∧ t4, t1 ∧ t3 ∧ t4}. The algorithm executes the query t1 ∧ t3 ∧ t4. As
an empty set of answers is obtained, the algorithm 1 is applied on this query
to find a second MFS Q∗∗ = t1. The two potential XSSs contain this MFS and
thus they are replaced with their largest subqueries that do not contain Q∗∗, i.e,

pxss = {t1 ∧ t3 ∧ t4, t1 ∧ t2 ∧ t4}
mfs(Q) = {t2 ∧ t3}

xss(Q) = ∅

pxss = {t3 ∧ t4, t2 ∧ t4}
mfs(Q) = {t2 ∧ t3, t1}

xss(Q) = ∅

pxss = {t2 ∧ t4}
mfs(Q) = {t2 ∧ t3, t1}
xss(Q) = {t3 ∧ t4}

pxss = ∅
mfs(Q) = {t2 ∧ t3, t1}
xss(Q) = {t3 ∧ t4, t2 ∧ t4}

[[t1 ∧ t2 ∧ t3 ∧ t4]]D = ∅
Q∗ = t2 ∧ t3

[[t1 ∧ t3 ∧ t4]]D = ∅
Q∗∗ = t1

[[t3 ∧ t4]]D 6= ∅

[[t2 ∧ t4]]D 6= ∅

Fig. 3. An execution of algorithm 2 to find the MFSs and XSSs of Q

t3∧ t4 and t2∧ t4. By executing these two queries, the algorithm finds that these
potential XSSs are effectively XSSs. The algorithm stops and returns these two
XSSs and the MFSs previously found (see Figure 2).

4 Matrix-based Approach (MBA)

In the approach proposed in the previous section, the theoretical search space
exponentially increases with the number of triple patterns of the original query.
Jannach [10] has proposed a solution to avoid this problem in the context of
recommender systems. This approach is based on a matrix, called the relaxed
matrix, computed in a preprocessing step with n queries where n is the number
of query atoms. This matrix gives, for each potential solution of a query, the
set of query atoms satisfied by this solution. The XSSs of the query can then be
obtained from this matrix without the need for further database queries.

In this section, we adapt this approach to RDF databases to compute both
the XSSs and MFSs of a query. Compared to [10], the main difficulty is to
compute the set of potential solutions of a query. Indeed, in the context of
recommender systems, these solutions are already known as they are the set of
products described in the product catalog. This is not the case in the context
of RDF databases.

The Relaxed Matrix of a Query. We first informally define the notion
of relaxed matrix through an example. Figure 4(c) presents the relaxed matrix
of the query Q given in Figure 4(b) when it is executed on the RDF dataset

�������

� � �

�� ���� ���	

��
����� ��

�� ���� ���	

��
����� ��

��
�� ��

�� ���� �����
�����	

��
����� ��

��
�� ��

��
�� ��

	� 	�
�
�

�� ���� � � �

�� ���� � � �

�� �� � � �

�� �� � � �

�� �� � � �

�� �� � � �

�� �� � � �

�� �� � � �

�� �� � � �

���� �� � � �

���� �� � � �

������������� �

��������
������

��� ����������� ��
��������

�����������������	�� �

���������
����� ���� �

���������
�� ����

����!""� �#��$�"� ����

!���"�����#��� ��$��� ��$��� ���%

&	��"����#��� �� ���%

Fig. 4. Matrix-based approach

presented in Figure 4(a). Each row of the matrix is a mapping (as defined in
Section 2) that satisfies at least one triple pattern. For example, the first row
corresponds to the mapping µ : ?p → p1. A mapping µ has the value 1 in the
column ti, if µ satisfies ti. Thus the matrix entry that lies in the first row and
the t1 column is set to 1 as p1 is a professor in the considered RDF dataset.

As we have seen in Section 2, the evaluation of a query consists in find-
ing the mappings that satisfy all its triple patterns using join operations. The
relaxed matrix contains the mappings that satisfy at least one triple pattern.
Intuitively, one can think of using the OPTIONAL operator of SPARQL to compute
these mappings. However, the semantics of this operator is based on the outer
join operation [11], which eliminates from its operands the mappings that satisfy
the inner join operation [13]. In our case, we need to keep these mappings as
they may be compatible with the mappings of another triple pattern. For exam-
ple, the operation [[t1]]D ./ [[t2]]D eliminates the mapping µ : ?p→ p1 from the
relaxed matrix in the example presented in Figure 4. This mapping is needed
to find other mappings such as µ : ?p→ p1 ?s→ s2. As a consequence, we have
defined an extended join operation, which is defined as follows.

Formal Definition of the Relaxed Matrix. Let Ω1 and Ω2 be sets of
mappings, the extended join of Ω1 and Ω2 is defined by: Ω1 ./

∗Ω2 = Ω1∪(Ω1 ./
Ω2) ∪ Ω2. Let Q be a query, the relaxed evaluation of Q over D is defined by:
[[Q]]RD = [[t1]]D ./ ∗ · · · ./ ∗ [[tn]]D. We define the relaxed matrix M of a query
Q over an RDF database D as a two-dimensional table with |Q| columns (one
for each triple pattern of the query) and |[[Q]]RD| rows (one for each mapping of
[[Q]]RD). For a mapping µ ∈ [[Q]]RD and a triple pattern ti ∈ Q, M [µ][ti] = 1 ⇔
µ(ti) ∈ D, else M [µ][ti] = 0.

Computing the Relaxed Matrix. Thus, to obtain the relaxed matrix, we
need first to evaluate each triple pattern ti over D to obtain [[ti]]D. Then, we
compute the extended joins of all the [[ti]]D while keeping track of the matched
triple patterns to get the matrix values. The algorithm 3 follows this approach
using a nested loop algorithm. This algorithm only requires n queries where n
is the number of triple patterns. Yet, our experiments conducted on the LUBM

benchmark (see Section 5) show that this algorithm can still take a notable
amount of time as the size of the matrix can be large for queries over large
datasets involving triple patterns that are not selective. Moreover, proper sub-
queries of the initial query can lead to Cartesian products (the triple patterns
do not share any variable), which imply an expensive computation cost as well
as a matrix of a large size (see Section 5 for details). As a first step to improve
this approach, we have specialized this approach for star-shaped queries (i.e, a
set of triple patterns with a shared join variable in the subject position) as they
are often found in the query logs of real datasets [14].

Optimized Computation for Star-shaped Queries. The computation
of star-shaped queries is simpler than in the general case. First, subqueries of
a star-shaped query cannot be Cartesian products. Second, a single variable is
used to join all the triple patterns. Thanks to this latter property we can use
full outer joins to compute the relaxed matrix as depicted in the algorithm 4.

This algorithm executes one query for each triple pattern. For each result µ of
such a subquery, the value of the join variable (i.e, the restriction of the function
µ to {x} denoted by µ|{x}) is added to the matrix, if it is not already in it, and
the value of this row is set to 1 for the corresponding triple pattern.

The algorithm 4, called NQ, can be used for any RDF database (implemented
on a relational database management system (RDBMS) or not). If we consider an
RDF database implemented as a triples table t(s, p, o) in an RDBMS, we can use
a single SQL query to compute the relaxed matrix. This query is roughly the
translation of the [[t1]]D ./ · · · ./ [[tn]]D expression. Inspired by the work of
Cyganiak conducted on the translation of SPARQL queries into SQL [15], we use
SQL outer join operators to compute this expression and the coalesce function1

to manage unbound values. In addition, we use the case operator to test if a
triple pattern is matched and thus to get the matrix values (1 if it is matched,
else 0). For example, the SQL query used to compute the relaxed matrix of the
query t1 ∧ t2 (Figure 4) is:

select coalesce(t1.s , t2.s),

case when t1.s is null then 0 else 1 end as t1,

case when t2.s is null then 0 else 1 end as t2

from (select distinct s from t where p=’type’ and o=’professor’) t1

full join (select distinct s from t where p=’advises’) t2 on t1.s = t2.s

1 The coalesce function returns the first non-null expression in the list of parameters.

Algorithm 3: Computation of the relaxed matrix of a query Q

ComputeMatrix(Q, D)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D
output: The relaxed matrix M
M ← ∅;
foreach triple pattern ti ∈ Q do

foreach µ ∈ [[ti]]D do
isInserted← false;
foreach µ′ ∈M do

if µ and µ′ are compatible then
if (µ′ ∪ µ) /∈M then

M ←M ∪ {µ′ ∪ µ};
M [µ′ ∪ µ][tk]←M [µ′][tk] for k ∈ 1 · · ·n ∧ k 6= i;

M [µ′ ∪ µ][ti]← 1;
if (µ ∪ µ′) = µ then

isInserted← true;

if not isInserted then
M ←M ∪ {µ};
M [µ][tk]← 1 if k = i, else 0; (k ∈ 1 · · ·n)

return M ;

This approach, called 1Q, has two advantages: 1) a single query is used to
compute the relaxed matrix, 2) the RDBMS chooses the adequate join algorithm.

Algorithm 4: Computation of the matrix for star-shaped queries (NQ)

ComputeMatrixStarQueryNQ(Q, D)
inputs : A failing star-shaped query Q = t1 ∧ ... ∧ tn with x as join variable;

An RDF database D
output: The relaxed matrix M
M ← ∅;
foreach triple pattern ti ∈ Q do

foreach µ ∈ [[ti]]D do
if µ|{x} /∈M then

M ←M ∪ {µ|{x}};
M [µ|{x}][tk]← 0 for k ∈ 1 · · ·n ∧ k 6= i;

M [µ|{x}][ti]← 1;

return M ;

Computing the XSSs from the Relaxed Matrix. Abusing notation, we
denote by xss(µ) the proper subquery of Q that can be executed to retrieve µ. It
can be directly obtained from the relaxed matrix: xss(µ) = {ti | M [µ][ti] = 1}.
Finding the XSSs of a query Q can be done in two steps:

1. Computing the skyline SKY of the relaxed matrix: SKY (M) = {µ ∈
[[Q]]RD | @µ′ ∈ [[Q]]RD such that µ ≺ µ′} where µ ≺ µ′ if (i) on every triple
pattern ti, M [µ][ti] ≤ M [µ′][ti] and (ii) on at least one triple pattern tj ,
M [µ][tj] < M [µ′][tj]. This step can be done by using one of the numerous
algorithms defined to efficiently compute the skyline of a table (see [16] for
a survey). In Figure 4(c), all the rows composing the skyline of the relaxed
matrix are marked with ∗.

2. Retrieving the distinct proper subqueries of Q that can be executed to re-
trieve an element of the skyline: xss(Q) = {xss(µ) | µ ∈ SKY (M)}. Each
such proper subquery is an XSS. The XSSs of our example are given in
Figure 4(d) and appear in bold in the relaxed matrix.

Using the Relaxed Matrix as an Index for the LBA Approach. In
the LBA algorithm, subqueries are executed on the RDF database to find whether
they return an empty set of answers or not. Instead of executing a subquery,
one can compute the intersection of the matrix columns corresponding to the
subquery triple patterns. If the resulting column is empty, the subquery returns
an empty set of answers and conversely.

Thus, the MBA approach can be seen as an index to improve the performance
of the LBA approach. This approach still requires exploring a search space that
exponentially increases with the number of triple patterns, but this search space
does not require the execution of any database query.

LUBM20 LUBM100

Q3 Q5 Q7 Q3 Q5 Q7

Computation time with NQ (in sec) 8.6 8.6 8.6 42.6 43.4 44.6

Computation time with 1Q (in sec) 6.1 6.3 6.8 30.4 34.6 38.5

Size (in KB) 293 400 335 1385 1912 1590

Number of rows (in K) 430 430 430 2149 2149 2149
Table 1. Relaxed Matrix Properties

5 Experimental Evaluation

Experimental Setup. In this section, we investigate the scalability of our
proposed algorithms and compare them with two baseline methods. We have
implemented these algorithms in JAVA 1.7 64 bits on top of Jena TDB (version
1.0.1). Our implementation is available at http://www.lias-lab.fr/forge/

projects/qars. These algorithms take as input a failing SPARQL query and
return the set of MFSs and XSSs of this query. We run these algorithms on
a Windows 7 Pro system with Intel Core i7 CPU and 8GB RAM. All times
presented in this paper are the average of five runs of the algorithms. The
results of algorithms are not shown for queries when they consumed too many
resources i.e, when they took more than one hour to execute or when the memory
used exceeded the size of the JVM (set to 4GB in our experiments).

Dataset and Queries. Due to the lack of an RDF query relaxation bench-
mark, Huang et al. [6] have designed 7 queries based on the LUBM benchmark.
These queries cover the main query patterns (star, chain and composite) but they
only have between 2 and 5 triple patterns. Yet the study proposed by Arias and
al. [14] has shown that real-world SPARQL queries executed on the DBPedia and
SWDF datasets range from 1 to 15 triple patterns. As a consequence, we have
modified the 7 queries proposed in [6] to reflect this diversity. The modified
versions of these queries, given in Figure 5 have respectively 1, 5, 7, 9, 11, 13
and 15 triple patterns. Q1, Q2 are chain, Q3, Q5, Q7 are star and Q4, Q6 are
composite query patterns. We used two generated datasets to evaluate the per-
formances of our algorithms on these queries: LUBM20 (3M triples) and LUBM100

(13M triples).
Relaxed Matrix Size and Computation Time. The MBA approach relies

on the relaxed matrix. To define the data structure of this matrix, we have
leveraged the similarity between this matrix and bitmap indexes used in RDBMS.
Thus, the matrix is defined as a set of compressed bitmaps, one for each column.
We have used the Roaring bitmap library version 0.4.8 for this purpose [17]. As
Table 1 shows, this data structure ensures that the matrix size remains small
even if the number of matrix rows is large (less than 2MB for 2M rows). Table 1
only includes results for star-shaped queries as other queries required too many
resources due to Cartesian products.

For the computation of the MBA relaxed matrix, we have tested the two algo-
rithms 1Q and NQ described in Section 4. As the 1Q approach requires an RDF

database implemented on top of an RDBMS, we have used the Oracle 12c RDBMS

��� �������	
��������	
������������������������������� �

�!�

"����

#$%���

�������	
�	&��	&!�	&'�	&(��������	
�������)�#%����*��$���	&��+��

	&�����%�,�����	&!�+�	&!����-��.�/���	&'�+�	&'�������0��%��1%����0��	&(�+��

	&(������%#$��0��2$����33---+4��%��5���6+7��,������6+���3�������8� �

�'�

9����

��%��

�������	
�	&��	&!�	&'�	&(��������	
�����������%��%��4�����/��5�

2$����33---+7��,������'6'+���8�+�	
�������������:�%��%����������+��

	
�����%.���������2$����33---+4��%��5���6+7��,����;��6+���3:�%��%��������68�+��

	
�����%5��	&��+�	
������)��$����	&!�+�	
����5�5���0��	&'�+�	
����%�,�����	&(� �

�(�

<���

#�5��;�

�����

�������	
�	&��	&!�	&'�	&(�	&"��������	
�������������/�))����������+��

	
������#���%)4�����/��5�2$����33---+7��,������=+���8�+�

	
��������%�#$>��������?���%�#$!'?�+�	
�����%5��	&��+�	
������%#$��0��	&!�+��

&'�����%.���������	&!�+�	&'�����%5��	&(�+�	&'����%�,�����	&"�+��

	&"����-��.�/���2$����33---+4��%��5���6+7��,������6+���8� �

�"�

�����

��%��

�������	
�	&��	&!�	&'�	&(�	&"�	&@�	&9�	&=�	&<��������	
����������

���������������������+�	
����5�5���0��2$����33---+4��%��5����+7��,�������+���8�+�

	
�����%5��	&��+�	
�����5%�)*�������	&!�+�	
������)��$����	&'�+�

	
�����������%��%��4�����/��5�	&(�+�	
����5%�����4�����/��5�	&"�+��

	
������#���%)4�����/��5�	&@�+�	
����-��.�/���	&9�+��

	
��������%�#$>��������	&=�+�	
����$�%�0��	&<� �

�@�

�'���

#�5��;

�����

�������	
�	&��	&!�	&'�	&(�	&"�	&@�	&9�	&=�	&<��������	
���������������#������+�

	
��������%�#$>��������?���%�#$!=?�+�	
�����%5��	&��+�	
�����5%�)*�������	&!�+�

	
������)��$����	&'�+�	
�����������%��%��4�����/��5�	&(�+�	
����5%�����4�����/��5�

	&"�+�	
������#���%)4�����/��5�	&@�+�	
����$�%�0��	&9�+�	
����-��.�/���	&=�+�	&=�

������0��%��1%����0��2$����33---+7��,������=+���8�+�	&<�������)�#%����*��$���	
�+�

	&<�������)�#%����*��$���2$����33---+4��%��5���6+7��,������6+���3/�))���������68 �

�9�

�"���

��%��

�������	
�	&��	&!�	&'�	&(�	&"�	&@�	&9�	&=��������	
���������������������+�

	
�����������%��%��4�����/��5�2$����33---+4��%��5���6+7��,������6+���8�+��

	
����5%�����4�����/��5�2$����33---+4��%��5���6+7��,������6+���8�+��

	
����5�5���0��2$����33---+4��%��5����+7��,�������+���8�+��

	
�����%.���������2$����33---+4��%��5���6+7��,������6+���3:�%��%��������@"8�+��

	
�����%5��	&��+�	
�����5%�)*�������	&!�+�	
������)��$����	&'�+�	
�������)��	&(�+�

	
����%���	&"�+�	
����%�,�����	&@�+�	
������%#$���*�����%��0��

2$����33---+4��%��5���6+7��,������6+���3�������8�+�	
������%#$���*�����%��0��	&9�

+�	
��������%�#$>��������	&=�+�	
��������%�#$>��������?���%�#$!?� �

�

Fig. 5. Benchmark queries (TP = triple patterns)

 1

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
u
e
r
y

T
i
m
e

(
m
s
)

LUBM 20DFS
ISHMAEL

LBA
MBA+M
MBA-M

 1

 10

 100

 1000

 10000

 100000

 1e+006

Q1 Q2 Q3 Q4 Q5 Q6 Q7

LUBM 100

Fig. 6. Performance of the algorithms on LUBM20 and LUBM100

to implement the triples table and test this algorithm. As Table 1 shows, the
1Q algorithm is about 25% faster than NQ. Even with this optimization, which
is only possible for specific RDF databases, the computation time of the matrix
is important: around 6 seconds on LUBM20 and 35 seconds on LUBM100. Despite
this important computation time, the MBA approach can still be interesting as the
matrix can be precomputed for usual failing queries identified with query logs.
Moreover, the next experiment shows that MBA is faster than other algorithms
for large queries even if the matrix is computed at runtime.

XSS and MFS Computation Time. In this experiment, we compare the
performance of the following algorithms for computing the XSSs and MFSs of the
benchmark queries.

– LBA: the algorithm described in Section 3.
– MBA+M: this algorithm first computes the relaxed matrix using algorithm 4

for star-shaped queries and algorithm 3 for other queries. Then, it computes
XSSs and MFSs of the query with the LBA algorithm that uses the relaxed
matrix instead of executing queries.

– MBA-M: same as MBA+M but without the computation of the relaxed matrix.
– DFS: a depth-first search algorithm of the subquery lattice that we modified

to prune the search space when no more MFSs and XSSs can be found.
– ISHMAEL: the algorithm proposed in [9] that we have tailored to return both

the XSSs and MFSs of a query.

Figure 6 shows the performance of each algorithm displayed in logarithmic
scale for readability. An algorithm that evaluates most of the subqueries such
as DFS can be used for queries with only a few triple patterns (Q1 and Q2). For
larger queries, the number of subqueries exponentially increases and thus the
performance of DFS quickly decreases.

In this case, the smart exploration of the search space provided by the LBA

and ISHMAEL algorithms is more efficient. Their response times are between 1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14

Q
u
e
r
y

T
i
m
e

(
m
s
)

 Number of Triple Patterns

LUBM 20DFS
ISHMAEL

LBA
MBA+M
MBA-M

 1

 10

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14

 Number of Triple Patterns

LUBM 100

Fig. 7. Query 7 performance as the number of its triple patterns increases

and 10 seconds for queries that do not have more than 11 triple patterns (Q1-
Q5). The performance of LBA and ISHMAEL are close for queries Q1-Q5 and
LBA outperforms ISHMAEL on Q6 and Q7 (recall that the results are presented
in logarithmic scale). We have identified that the performance difference is due
to the simplified computation of the potential XSSs and to the order in which
these potential XSSs are evaluated. Indeed, according to this order, the caching
performed by Jena TDB can be more or less efficient. For example, we have
found some cases where the same query can be executed with a response time
differing by a factor of 2 according to the caching usage. Thus, a perspective is
to find the best ordering of the potential XSSs to maximize the cache usage.

Finally, the MBA approach can only be used for star-shaped queries. MBA− M

provides response times of some milliseconds even for Q7, which has 15 triple
patterns. This is due to the fact that this approach just needs to compute the
intersection of bitmaps using bitwise operations instead of executing subqueries.
However, this approach makes a strong assumption: the matrix must be pre-
computed i.e., the query must have been identified as a usual failing query (e.g.,
using query logs). If the matrix is computed at runtime (MBA + M), this com-
putation time is important (see Table 1) and thus MBA + M is only interesting
for queries with a large number of triple patterns or with only selective triple
patterns (they can be identified using database statistics). As a consequence,
the MBA approach is complementary with an approach such as LBA: it should be
used when LBA does not scale anymore.

Performance as the Number of Triple Patterns Scales. The previous
experiments show that the number of triple patterns plays an important role in
the performance of the proposed algorithms. In order to explore this further, we
have decomposed Q7 in 15 subqueries ranging from 1 to 15 triple patterns. The
first subquery only includes the first triple pattern of Q7, the second subquery
includes the first two triple patterns and so on. The result of this experiment
is shown in Figure 7. This experiment confirms our previous observation. DFS

does not scale when a query exceeds 5 triple patterns. LBA and ISHMAEL can be
used with a response time between 1 and 10 seconds for queries with less than
13 triple patterns. The MBA− M scales well for star queries even with a large

number of triple patterns. The MBA + M is only interesting when the query has
more than 13 triple patterns as the cost of computing the matrix is important.

6 Related Work

We review here the closest works related to our proposal done both in the context
of RDF and relational databases. In the first setting, Hurtado et al. [5] proposed
some rules and operators for relaxing RDF queries. Adding to these rules, Huang
et al. [6] specified a method for relaxing SPARQL queries using a particular se-
mantic similarity measure based on statistics. In our previous work [7], we have
proposed a set of primitive relaxation operators and have shown how these op-
erators can be integrated in SPARQL in a simple or combined way. Cali et al. [8]
have also extended a fragment of this language with query approximation and re-
laxation operators. As an alternative to query relaxation, there have been works
on query auto-completion [18–22], which check the data during query formula-
tion to avoid empty answers. But, none of the previous works has considered
the issue related to the causes of RDF query failure and then the issue of the MFS

computation.
As for relational databases, many works have been proposed for query re-

laxation (see Bosc et al. [23] for an overview). In particular, Godfrey [9] has
defined the algorithmic complexity of the problem of identifying the MFSs of fail-
ing relational query and developed the ISHMAEL algorithm for retrieving them.
The LBA approach is inspired by this algorithm. Compared with ISHMAEL, LBA
computes both the MFSs and the potential XSSs in one time. Moreover, LBA pro-
poses a simplified computation of the potential XSSs. Bosc et al. [23] and Pivert
et al. [24] extended Godfrey’s approach to the fuzzy query context. McSherry
et al. [25] and Jannach [10] studied the concept of MFS in the recommendation
system setting, with a view different from the one of Godfrey in the sense that
the former leverages a particular matrix while the latter exploits a lattice of
subqueries. The MBA approach is inspired by [10]. Contrary to [10], the compu-
tation of the matrix rows is not straightforward in the context of RDF queries.
Moreover, in [10], the matrix is only used to retrieve the XSSs of the query while,
in our work, we used and stored this matrix as a bitmap index to improve the
performance of LBA.

7 Conclusion and Discussion

In this paper we have proposed two approaches to efficiently compute the MFSs

and XSSs of an RDF query. The first approach, called LBA, is a smart exploration
of the subquery lattice of the failing query that leverages the properties of MFS
and XSS. The second approach, called MBA, is based on the precomputation of a
matrix, which records, for each potential solution of the query, the set of triple
patterns that it satisfies. The XSSs of a query can be found without any database
access by computing the skyline of this matrix. Interestingly, this matrix looks
like a bitmap index and can also improve the performance of the LBA algorithm.

We have done a complete implementation of our propositions and evaluated
their performances on two datasets generated with the LUBM benchmark. While
a straightforward algorithm does not scale for queries with more than 5 triple
patterns, the LBA approach scales up to approximatively 11 triple patterns in our
experiments. The MBA approach is only interesting for star-shaped queries. If
the matrix is precomputed, which assumes that the query has been identified as
a usual failing query, XSSs and MFSs can be found in some milliseconds even for
queries with many triple patterns (a maximum of 15 in our experiments). If the
matrix is computed at runtime, this approach can still be interesting for large
queries as the cost of computing the matrix becomes acceptable in comparison
with the optimization of LBA it permits. Optimizing the MBA approach for other
kinds of RDF query is part of our future work. We also plan to define query
relaxation strategies based on the MFSs and XSSs found thanks to the approaches
proposed in this paper.

References

1. Wilkinson, K.: Jena Property Table Implementation. In: SSWS. (2006)
2. Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries

based on user and domain preferences. IJIIS 33(3) (2009) 239–260
3. Elbassuoni, S., Ramanath, M., Weikum, G.: Query Relaxation for Entity-

Relationship Search. In: ESWC’11. (2011) 62–76
4. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards Fuzzy Query-

Relaxation for RDF. In: ESWC’12. (2012) 687–702
5. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query Relaxation in RDF. Journal

on Data Semantics X 10 (2008) 31–61
6. Huang, H., Liu, C., Zhou, X.: Approximating query answering on RDF databases.

Journal of World Wide Web 15(1) (2012) 89–114
7. Fokou, G., Jean, S., Hadjali, A.: Endowing Semantic Query Languages with

Advanced Relaxation Capabilities. In: ISMIS’14. (2014) 512–517
8. Caĺı, A., Frosini, R., Poulovassilis, A., Wood, P.: Flexible Querying for SPARQL.

In: ODBASE’14. (2014) 473–490
9. Godfrey, P.: Minimization in Cooperative Response to Failing Database Queries.

International Journal of Cooperative Information Systems 6(2) (1997) 95–149
10. Jannach, D.: Fast computation of query relaxations for knowledge-based recom-

menders. AI Communications 22(4) (2009) 235–248
11. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL.

ACM Transaction on Database Systems 34(3) (2009) 16:1–16:45
12. Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD

Record 38(4) (2009) 23–28
13. Galindo-Legaria, C.A.: Algebraic Optimization of Outerjoin Queries. PhD thesis,

Harvard University. Technical report TR-12-92. (1992)
14. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An Empirical

Study of Real-World SPARQL Queries. In: USEWOD. (2011)
15. Cyganiak, R.: A relational algebra for sparql. HP-Labs Technical Report, HPL-

2005-170 (2005)
16. Hose, K., Vlachou, A.: A survey of skyline processing in highly distributed envi-

ronments. VLDB Journal 21(3) (2012) 359–384

17. Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap performance with
Roaring bitmaps. arXiv preprint arXiv:1402.6407 (2014)

18. Gombos, G., Kiss, A.: SPARQL Query Writing with Recommendations Based on
Datasets. In: Human Interface and the Management of Information. Information
and Knowledge Design and Evaluation. (2014) 310–319

19. Lehmann, J., Bühmann, L.: AutoSPARQL: Let Users Query Your Knowledge
Base. In: ESWC’11. (2011) 63–79

20. Campinas, S.: Live SPARQL Auto-Completion. In: ISWC’14 (Posters & Demos).
(2014) 477–480

21. Möller, K., Ambrus, O., Josan, L., Handschuh, S.: A Visual Interface for Building
SPARQL Queries in Konduit. In: ISWC’08 (Posters & Demos). (2008)

22. Clark, L.: SPARQL Views: A Visual SPARQL Query Builder for Drupal. In:
ISWC’10 (Posters & Demos). (2010)

23. Bosc, P., Hadjali, A., Pivert, O.: Incremental controlled relaxation of failing
flexible queries. JIIS 33(3) (2009) 261–283

24. Pivert, O., Smits, G., Hadjali, A., Jaudoin, H.: Efficient Detection of Minimal
Failing Subqueries in a Fuzzy Querying Context. In: ADBIS’11. (2011) 243–256

25. McSherry, D.: Incremental Relaxation of Unsuccessful Queries. In: Advances in
Case-Based Reasoning. (2004) 331–345

