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Abstract

This paper presents some of the more significant tech-

nical lessons that the Arcadia project has learned

about developing effective software development envi-

ronments. The principal components of the Arcadia-1

architecture are capabilities for process definition and

execution, object management, user interface develop-

ment and management, measurement and evaluation,

language processing, and analysis and testing. In si-

multaneously and cooperatively develc)ping solutions in

these areas we learned several key lessons. Among them:

the need to combine and apply heterogeneous componen-

try, multiple techniques for developing components, the

pervasive need for rich type models, the need for sup-

porting dynamism (and at what granularity), the role

and value of concurrency, and the role and various forms

of event-based control integration mechanisms. These

lessons are explored in the paper.

1 Introduction

The Arcadia project goal has been to Ciimy out validated

research on software development environments. This

research haa stressed development of advanced proto-

types to demonstrate concept feasibility and to demon-

strate integration of these capabilities into an opera-

tional whole. Integrating the various Arcadia compo-

nents has been an important forcing function, com-

pelling consideration of how environment architecture

issues and usage contexts impact the various individual

components.
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This paper presents some of the insights we have
gained while building and experimenting with these

components. We begin by briefly describing our goals

and the principal components of Arcadia. In Sections

4 through 8 we discuss several key lessons that seem

to have general applicability to a wide range of envi-

ronment efforts. Many of these lessons were learned by

repeatedly encountering similar problems and devising

similar solutions in diverse technical areas. Finally, we

summarize our lessons.

2 Arcadia Overview

Arcadia believes an effective software development en-

vironment (S DE) is a collection of capabilities effec-

tively integrated to support software developers and

managers. For us, to be eflective an SDE must be:

extensible, increment ally improvable, flexible, fast, and

efficient. Its components must be interoperable, it must

be able to support multiple users and user classes, it

must be easy to use, able to support effective product

and process visibility, able to support effective manage-

ment control, and it should be pro-active.

Through the years, Arcadia has evolved an architec-

ture that addresses these objectives simultaneously. We

have learned, however, that these various design objec-

tives are not orthogonal and often conflict. Much of the

most challenging work of Arcadia has been concerned

with understanding the various tensions between these

diverse desiderata and devising strategies for supporting

adjust able compromises between conflicting SDE objec-
tives. The focus of this paper is on the tensions that

arose and the lessons we learned in our attempts to al-

leviate these tensions.

Arcadia’s architecture is the result of our efforts to

simultaneously achieve all of the above objectives in the

presence of the various tensions. Several of the devices

used to mediate these tensions are described later in

this paper. In this section we briefly describe the prin-

cipal components that form the basis for our architec-

ture and indicate why we believe they are important

to the structure of any SDE that attempts to meet the
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above-enumerated objectives. 2.5 Language Processing

2.1 Process Definition and Execution

The needs for flexibility, extensibility, and visibility

into project and product status are addressed by Ar-

cadia’s capability for developing software development

processes in an explicit form and for supporting their

execution. Process models show how people, tools, and

software systems are used to address process require-

ments, and process code then implements these models.

Various Arcadia environment components support de-

velopment and execution of the code. The need to flex-

ibly meet changing requirements is met by Arcadia’s

ability to support change to process models and code.

2.2 Object Management

Arcadia generally treats software objects as instances

of abstract data types. Objects can be used locally by

an individual process or shared by processes. Object

management facilities must provide for persistence, type

integrity, interoperability, constraint maintenance, and

multi-access mediation. These capabilities facilitate vis-

ibility into project and product status and provide sup-

port for multiple users and for efficient use of computer

resources.

2.3 User Interface Development

To support multiple, coordinated depictions of objects

and to provide flexibility in meeting changing user

needs, Arcadia supports the development of custom t ai-

lored user interfaces. Graphical presentations and ef-

fective interaction mechanisms are essential. Moreover,

they must be readily alterable. Accordingly, Arcadia

provides a user interface development system (UIDS)

designed for the rapid alteration and enhancement of

user interfaces.

2.4 Measurement and Evaluation

Continuous improvement of product and process qual-
ities is a primary underlying objective of Arcadia.

Demonstrable improvement requires quantifiable mea-
sures of these qualities. Thus, Arcadia incorporates a

system for taking static and dynamic measurements of

software processes and the products that they build.

As software process measurement and evaluation is still

a young discipline, there is little agreement on met-

rics for guiding improvement. Thus Arcadia)s measure-
ment and evaluation system is flexible and adaptable to

changes in measurement and evaluation requirements

and approaches.

Software products and processes contain many compo-

nents, expressed in a variety of languages. An environ-

ment must recognize, analyze, and support these lan-

guages. This is most effectively done through general,

t ailorable language processing capabilities. In addition,
uniform, language-independent represent ations of each

language facilitate processing and analysis of these lan-

guages.

2.6 Analysis and Testing

The need to assure high quality software products and

processes requires Arcadia to provide facilities for anal-

ysis and testing. Arcadia takes a broad view of what

constitutes a software product, construing products to

consist of a wide variety of t ypes of artifacts. Also, Arca-

dia does not believe that quality is a monolithic notion,

but rather that superiority with respect to a variety of

quality attributes is desirable. Thus a correspondingly

diverse set of testing and analysis tools is provided.

2.7 Component Composition

Our work indicates that there is a fundamental tension

in environment design between the need for effective

interoperability and the need for flexibility and exten-

sibility. Tools must communicate about details of their

activities, yet the suite of such tools must change. Ar-

cadia incorporates component composition mechanisms

to help strike compromises between these needs. Ar-

cadia is exploring interprocess communication capabil-

ities that enable the synthesis of higher level tools and

processes out of lower level components implemented

as separately executing programs, possibly written in

different languages and/or executing on different plat-

forms.

2.8 Summary

We believe all of the above capabilities are desirable

in a contemporary environment, but we also acknowl-

edge that different environment projects may weight the

desirability of these capabilities differently. Thus, the

previously enumerated seven capabilities should be se-
lectable and combinable arbitrarily.

It is important to note, however, that any nontrivial

subset of these seven capabilities cannot be expected to

be smoothly integrated into an environment unless plans

to do so have been made in advance, and unless the

basic supports for these capabilities are firmly rooted in

environment infrastructure elements.

In our efforts to investigate these seven capabilities

and their integration, we have gained insight into their

requirements, limitations, benefits, and their interac-

tions. Some lessons have involved general observations
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about environments and issues that arise in implement-

ing environments. While some of these issues may not

seem surprising, the extent of their impact sometimes

was. In the remainder of this paper, we describe the

cross-cutting issues that arose, not from the develop-

ment of one capability or one project, but from our col-

lective experience.

3 Heterogeneity

Our early concept of an Arcadia environment implicitly

assumed relatively homogeneous approaches and infras-

tructure components. We rapidly discovered, however,

that the range of issues faced by environment builders

is so diverse that it exceeds the capabilities of avail-

able or expectable infrastructure components. Accord-

ingly, Arcadia has been designed to facilitate the syner-

gistic application of heterogeneous cc)mponentry. This

heterogeneity is found across a surprising variety of in-

frastructure components, ranging from user capabilities

such as artist-based visualizations to obj ect manage-

ment regimes. The following paragraphs briefly outline

three areas in which the need for accommodating hetero-

geneity is apparent. Our techniques for accomplishing

this are discussed in subsequent sections.

3.1 Multiple Prototypes

In order to simultaneously address c,pen issues within

the technical areas defined in Sectic,n 2, the Arcadia

project has produced a wide spectrum of tools and in-

frastructure components for environment support. The
diversity of issues addressed in each of these areas has

necessitated the development of multilple prototypes em-

bodying different solution approaches. In some cases a

set of infrastructure components may be designed to

provide a similar category of services, such as object

management, but may have different interfaces due to

fundamental differences in solution approaches or un-

derlying models.

3.2 Multiple Languages

Software environments need to provicle support for het-

erogeneity in programming and process languages. A

software environment has a fundamental multilingual

nature. It supports multiple process languages and

multiple application development languages and incor-

porates components and infrastructure implemented in

multiple languages. Environments also need to ad-

dress software development-in-the-large issues that re-
quire execution and coordination across distributed

platforms.

Initially the Arcadia project attempted to support

a single product language and use a, single implemen-

tation language (viz. Ada) exclusively so that the

analysis tools developed could also be used on the en-

vironment itself. However, intrinsic shortcomings of

Ada coupled with diverse needs for process and prod-

uct representation and analysis resulted in our aban-

doning the single language approach and supporting

a spectrum of language processing and communica-

tion requirements. In order to investigate process pro-

gramming issues, Arcadia has developed three primary

process programming languages: APPL/A [20] (with

TRITON [8]), Ada/pGRAPHITE/13&l% [24] [2’2], and

TEAMWARE [26], which each address different problem

areas of process representation and analysis. The imple-

mentation languages of the infrastructure components

are primarily Ada and C++, with a small amount of

Lisp.

3.3 Diverse Objects

Software environments also support and manage a wide

spectrum of objects that vary in terms of type, persis-

tence, granularity, etc. In Arcadia, the range of objects

includes composite software products as well as their

constituent parts, from requirement specifications and
implement ations to test cases, measurement data, and

bitmaps. The operations on these objects vary in length

and complexity as well as require manipulation of fine-

and coarse-grain objects. Infrastructure support for this

heterogeneity in objects and their operations is substan-

tially different from the support required for queries on

sets of large numbers of homogeneous objects such as is

required in other problem domains.

4 Component Technology

To accommodate these demands for heterogeneity, as

well as to address many other objectives, the Arcadia

project has exploited a variety of techniques under the

general heading of component technology. Component

technology goes far beyond the recognition and defini-

tion of major components and their interfaces. It in-

cludes “wrapping” techniques, language independence,
the pervasive use of generics, and meta-descriptions and

translators. Our objective is to provide considerable

flexibility so that environment builders, and in some

cases software developers, can tailor the environment

and tools to meet their specific needs.

4.1 Abstract Interfaces

A central research principle in the development of

these prototypes has been the use of abstract inter-

faces. When possible, these interface definitions have

been standardized. Interface standardization enables re-
searchers to investigate heterogeneous solutions to sim-

ilar problems, to interchange component implementa-

tions, and to facilitate environment reconfiguration.
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As one example use of standardized interfaces in Ar-

cadia, the CHIRON UIDS [10] provides a standard inter-

face to two different look-and-feel presentations: XView

and Motif. Another example is the SMI storage man-

ager interface, which provides a standard interface to

various underlying storage managers, including Exodus

[5], Mneme [15], and Ada’s “direct 1/0” files.

On the other hand our experience has shown that cre-

ating standard interfaces is not always achievable, par-

ticularly when the underlying architectures are substan-

tially different. A variety of other techniques, discussed

below and in other sections, were developed to mitigate

these sit uations.

4.2 Wrapping

The use of “wrapping” techniques has been useful to en-

capsulate unavoidable inconsistencies in interfaces. The

CHIRON UIDS provides dispatchers that wrap arbitrary

object ADT-interfaces. One key purpose of the dis-

patcher is to provide a common structure and inter-

face to the ADTs for artists (which create visual depic-

tions of the ADTs) to use. The AMADEUS measurement

system [19] provides a script specification language for

wrapping data collection tools and defining their con-

ditions for execution. The script language provides the

event monitoring subsystem of Amadeus with a consis-

tent notation for describing these tools, which may have

varied interfaces. Both the Chiron and Amadeus wrap-

pers use event-based notification techniques, a topic

which is considered more fully in Section 8.

4.3 Language Independent Common

Representations

Analysis techniques have typically been applied to a

small number of well recognized internal representa-

tions, such as abstract syntax graphs, control flow

graphs, and call graphs. In the Arcadia project we have
long recognized the need to agree on the interfaces to

such abstractions so that, once created, these objects

can be shared by many different analysis tools. Arcadia

had the additional requirement that the representations

be language-independent, so that the tools would be

applicable to multiple, although somewhat related, lan-

guages. Our choice of an abstract syntax graph reflects

this requirement.

We chose an IRIS-based abstract syntax graph [2]

and negotiated an interface to the abstraction that sup-

ported creating and accessing the nodes, traversing the

graph, and making graph instances persistent. The IRIS

represent ation had several advantages. It is a language-

independent representation where some aspects of the

static semantics of the language are captured by a lan-

guage description. This language description is also rep-

resented as an IRIS structure. Once a source program

is translated into IRIS there is no distinction between a

user-defined operator (e.g., pop) and a language-defined

operator (e.g., +). This makes it easy to define new lan-

guages or extend or modify existing languages. Also,

if tools judiciously use the description of the language

instead of hardcoding any information about the lan-

guage, they too will be language independent.

The control flow graph, call graph, family of program

dependence graphs, and task interaction graph [12] are

other examples of shared internal representations with

negotiated interfaces.

4.4 Generics

Another way that reusability and flexibility have been

achieved is by the use of generics to instantiate gen-

eral purpose components with specific types. The Con-

trol Flow Graph Generator, for example, is a language-

independent tool that takes a description of the lan-

guage and associated instructions about how to build a

control flow graph for that language and generates an

abstract data type that is used to instantiate a generic

control flow graph build procedure. The same generic

can be instantiated to build a control flow graph or a call

graph for a language, just by altering the instructions

on how to treat different operators of the language. The

PRoDAGI program dependence graph generator [14] is

a tool that constructs several packages of generic instan-

tiation for a given dependence relation and associated

build procedure; the instantiated packages provide an

interface to manipulate and maintain the dependence

relation.

4.5 Translators

Perhaps one of the most prevalent technologies em-

ployed in the Arcadia project is the use of translators,

such as preprocessors and generators, that are often

driven by specialized meta-languages.

As described in section .5, we have extended the type

model and functionality of Ada, our primary imple-

ment ation language. These extensions have usually

been accomplished via the use of syntactic language

extensions that are preprocessed into Ada. Exam-

ples include APPL/A, a process programming language

that adds extended relational data base capabilities to

Ada; PIC [25], which adds module interconnection com-

mands; PGRAPHITE, R&R, and REPOMANGEN, which
together add graph, relation, and relationship types and

persistence to the language. CHIRON extensively em-
ploys preprocessor technology to generate artist tem-

plates, client managers, and dispatchers, among other

things.

I Cedar [21] earlier recognized the need to be able to ask the

same kinds of questions about predefine operators as user-defined
operators. The Cedar abstract machine provided such a capabil-
ity.
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Development of these processors has been supported

by several translator building tools, vvhich have made

this approach viable for us.

4.6 Component Composition

Language heterogeneity, the advantages of a distributed

systems architecture, reuse considerations, and other

reasons have required development of mechanisms to

support component composition. Three kinds of mech-

anisms have played important roles in Arcadia: (a)

interprocess communication providing representation-

level interoperabilit y between processes, (b) multiple

language bindings to services, and (c) automated devel-

opment of interfaces providing type translation between

programs in different languages.

An interprocess communication mechanism, called Q

[13], has been developed baaed on Sun RPC/XDR and

has been used to connect Ada and C programs. Dis-

tributed process execution is enabled through the Q IPC

mechanism as well sa through direct use of Unix IPC

mechanisms such aa RPC and sockets. Q is a generic

that is instantiated with information about the repre-

sentation of types and how they are to be encoded and

decoded before and after transmission.

Many components provide a layer of language bind-

ings to support inter-language component composition.

CHIRON provides a language extension to Ada whose

translation enables (remote) use of ai library of C++

gadgets. The TRITON OMS provides an Ada binding

to the underlying Exodus storage manager written in

a C++ extension. The AMADEUS measurement system

provides Ada, C, and Unix shell script language bind-

ings to its underlying measurement capabilities.

The Specification Level Interoperability (SLI) mecha-

nism [23] attempts to automate the translation from one

type model to another at a higher level of abstraction

than is usually employed. In this approach, type dec-

larations from programs written in different languages

are translated into a common representation, called a

unifying type model (UTM). In the current SLI proto-

type, this common representation is ba~sed on the OROS

type model [18]. When a program in one language needs

to make use of a type defined in another language, an

interface to the defined type in the requested program-

ming language can sometimes be automatically gener-

ated based on the representation in the common rep-

resent at ion. For example, if an Ada program needed

to call an existing C abstraction, the interoperability

mechanism would use the common internal representa-

tion, first to help find the compatible type and then to

create an Ada module implemented using the C abstrac-

tion.

5 Type Models

Our work in Arcadia has repeatedly revealed the need

for rich type models to support software engineering.

Features of such type models include expressive type

definitions for the most frequently used software engi-

neering abstractions, uniform treatment of entities aa

first-class objects, polymorphism and inheritance, and

appropriate support to manage persistence, consistency,

and concurrency.

To satisfy these needs, Arcadia has looked to both

database systems and programming languages, but has

found the type models typically provided in these dis-

ciplinary areaa to be lacking. The database community

has recently acknowledged many of the deficiencies of

database models [3, 27, 1] for software engineering. In

particular, the type models of database systems tend

to be too simplistic. For example, traditional database

systems fail to provide the basic building blocks to sup-

port graph objects, a pervasive type in software engi-

neering, and the typical navigational operations needed

on such structures. There has been recent work on en-

hancing database type models so that they provide a

richer set of base types and some support for inheri-

t ante, but these initial attempts, although promising,

are still too restrictive.

Programming languages tend to offer richer type

models than database systems in terms of constructors

and primitive types, but fail to support relationship and

relation types. Moreover, programming languages offer

only limited support for persistence, consistency, and

concurrency control, all of which tend to be supported

by database systems. Some recent languages have at-

tempted to provide support for polymorphism and mul-

tiple inheritance, but this support haa been limited. Fi-

nally, neither database nor programming language type

models treat most higher-level entities, such as types

and operations, as first-class citizens.

The remainder of this section describes the kind of

support we found that we needed and some of our efforts

to address these needs.

5.1 Type Model Extensions

Many of the objects manipulated by software engineer-

ing environments are graphs, such as abstract syntax

graphs/trees, control flow graphs, or call graphs. Rela-

tionships (n-ary tuples) and relations (collections of re-

lationships) are also ubiquitous types in environments.

For example, software developers might want to main-

tain relationships between abstract syntax trees and

their corresponding control flow graphs. In addition,

software developers might want to aak questions about

these relationships. For example, one might want to

know which nodes in an abstract syntax graph actually

describe the invocations that are captured in the call

graph representation. It is clearly more convenient, re-
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liable, and efiicient to have built-in support for these

abstractions than to have individual programmers de-

veloping their own models and implement ations. Thus,

as part of the Arcadia project we have extended Ada’s

type model to support graphs, relations, and relation-

ships as though they were primitive types of the lan-

guage.

In the GRAPHITE system [6], and its successor

PGRAPHITE, a model of directed graphs is provided

that is a natural extension to the Ada type model. The

graph abstraction includes operations for creating and

manipulating nodes of the graph, as well as graph opera-

tions such as various forms of traversal. As an indication

of the pervasiveness of graph objects in software de-

velopment environments, GRAPHITE and PGRAPHITE

have been used in over a dozen tools within Arcadia.

KPPL/A has extended the Ada type model to sup-

port relations and provides operations for creating and

manipulating those relations. The R&R system was

modeled after APPL/A but moved farther away from

the traditional database model of relations by allowing

relationships to be first class objects. This means that

a relationship can be shared by more than one relation,

a concept that has proven very useful to the analysis

tools.

Both APPL/A and R&R provide some support for

simple queries. Neither of these systems provides the

type of support for complex and ad hoc queries that we

feel is truly needed. Moreover, there needs to be better

support for both navigation and queries over an object,

including the ability to access the same object through

both types of operations when appropriate.

5.2 First Class Citizenship

In our work on Arcadia we have frequently been frus-

trated by our inability to treat key programming lan-

guage entities, such as types, tasks, and operations, as

first class citizens. The inability to manipulate these

objects, as we would any other object in a language,

limits the flexibility of the components we are develop-

ing. For example, we would like to be able to pass oper-

ations and tasks as parameters. Without such support

we have had to use preprocessors to generate low level

code to get around these limit at ions. In CHIRON, for

instance, when an operation of a depicted abstract data

type is called, the corresponding artist operation must

be called for each active artist associated with the ob-

ject. Maintaining a list of active artists and then passing

each package and operation that must be invoked would

be a straightforward way to handle this. Unfortunately,

as in most programming languages, packages and tasks

are not first class citizens in Ada; thus, this can not be

done. There are numerous examples in Arcadia where

such flexibility would be beneficial.

5.3 Polymorphism and Multiple Inheri-

tance

A type model that supports polymorphism and inher-

itance is also desirable. Such a typing model clearly

reduces the burden on the programmer when design-

ing and coding complex systems. For example, Ada’s

polymorphism mechanism (generics) is not sufficiently

powerful to support specification of a variable number of

generic formal parameters. We have mimicked these fa-

cilities through the use of generator/preprocessor tech-

nology instead, e.g. in CHIRON and TRITON.

5.4 Consistency

Being able to control consistency is important when

dealing with many different abstractions that may be

related in complex ways. It can be argued that ex-

ception handling mechanisms provide a limited form of

consistency control, depending on their recovery model.

A more general model of consistency is desired where

programmers can define arbitrary constraints that will

cause an operation to be triggered if the constraint is

violated. We have also found that it is desirable to al-

low programs to dynamically control constraint enforce-

ment.

Although not currently implemented, APPL/A’S def-

inition supports the definition of constraints over rela-

t ions. If a constraint is violated, as ystem defined excep-

t ion is raised. The R&R system also defines a constraint

mechanism. Currently R&R constraints can only be de-

fined over relations and relationships but the intent is to

extend the applicability to objects of any type. When

a constraint is violated, a user defined operation is trig-

gered. If no such operation is provided, a system defined

default is triggered instead. Both APPL/A’S and R&R’s

constraint constructs are programming language-level

representations for the underlying event-based control

integration mechanisms described in Section 8.

Constraints and triggers provide a powerful mecha-

nism for achieving interoperability between abstractions

that were not originally designed to coordinate their ac-

tivities. This was our experience in implementing a

demonstration that involved tools originally designed

independently of each other. It can be a dangerous pro-

gramming style, however, if not judiciously applied since

it relies on side effects that can lead to circular depen-

dencies.

6 Dynamic Definition and Ac-

cess

Various forms of dynamism are essential in enabling the

evolution of the Arcadia environment while it is in op-

eration and being used for productive work. As with

heterogeneity, Arcadia has struggled with the issue of
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dynamic definition and access with regard to a variety

of objects in the environment. Of course, any interest-

ing environment supports large classes of dynamically

defined objects, along with some means for accessing

those objects. But there is also a significant portion

of any environment that is not easily evolvable, This

induces a qualitative measure of “granularity” for dy-

namism. The degree of granularity y is a, measure of the

effort needed to make a change that is visible to the

environment.

Our initial emphasis on using Ada caused us to choose

program recompilation as our unit of granularity. That

is, many changes were not visible until dependent pro-

gram units were re-compiled and re-instantiated in the

environment. Over time, we have come to recognize

that this level of granularity is not sufficient; in some

situations, it is undesirable to recompile some collection

of programs in order to effect changes. Rather, we are

pursuing more interpretive approaches where changes

can be immediate y exported into the environment.

This section addresses two main issues: identifying

the objects that can change dynamically and defining

the granularity of dynamic changes.

6.1 Sources of Dynamism in Arcadia

Object management is one obvious source of dynamic

change in any environment. By definition, an object

manager allows for the dynamic creation and manipu-

lation of a variety of objects: application objects and

indices, for example. Here, and subject to transaction

semantics, changes to objects can quiclkly be made vis-

ible,

A surprising number of object managers do not allow

immediate changes to the schema, including even the

addition of new types, without significant delays. For

example, one of our initial object management systems,

CACTIS [9], used recompilation in order to implement

dynamic changes to schemas.

Our current object management systems, which are

PGRAPHITE and TRITON, both provide substantial im-

provements in dynamic schema management. We recog-

nize the difficulties around general schema changes [11],

and in both PGRAPHITE and TRITON we have chosen to

provide a level of support for dynamic schema changes

that is useful without being comprehensive.

PGRAPHITE supports a structural object-oriented

model in which the structure of objects is embedded

into the accessing programs but provides a level of in-

terpret ation in accessing fields to these objects. AS a

result, one can extend objects to include new fields with-

out having to re-compile accessing programs. Of course,

deletion of fields or changes in the semantics of existing

fields require tracking and re-compiling programs that

depend on the modified fields.

TRITON provides a behavioral object-oriented model

derived from the E [17] type model. TRITON embeds

this model in a client-server architecture that supports

certain kinds of immediate augmentation for recorded

schemas. Specifically, it allows for the dynamic defi-

nition of functions, methods, classes, and triggers and

deletion of the same. Changes require deletion followed

by (re-)definition.

Dynamic procedure definition is provided by a facility

for dynamically loading the code for methods and trig-

gers, and by providing mechanisms by which clients of

TRITON can invoke those newly defined methods with

relatively low overhead. Addition of new structural

fields, something that is easy in PGRAPHITE, is diffi-

cult in TRITON since that information is encoded into

the compiled method code. TRITON also provides for

the deletion of schema elements, although we are not

sure that we have the appropriate deletion semantics.

In order to address dynamism in the presence of mul-

tiple models, we have developed the A LA CARTE het-

erogeneous data management system [7]. A LA CARTE

presents tools for incrementally integrating multiple ob-

ject managers at various levels of processing, such as

physical object management, transaction management,

and data modeling.

We recognize that there are dependencies between the

TRITON schema and the client programs that use it. So

some schema changes will require (at least) re-compiling

dependent clients. It is possible to write clients that ob-

tain sufficient schema information at execution time to

react to changes. Type and inst ante browser programs

are often written in this fashion.

User interface is another area where dynamic opera-

tion is desirable, and the CHIRON UIDS has evolved in

the direction of increasing dynamism. In its first ver-

sion (CHIRON-0), artist procedures had to be compiled

into the application code and there was a limit of one

artist per abstract data type(ADT). In CHIRON-1 .0, the

artists still had to be compiled with the application, but

the single artist restriction was removed by the use of an

event dispatcher per ADT. Multiple artists may register

interest in the same ADT. Very recent changes in CHI-

RON have opened up the possibility (as yet unexploited)

for adding and deleting artists on-the-fly without the

need for recompilation.

Evaluation (in the form of AMADEUS) is both a pro-

ducer and consumer of dynamism in Arcadia. As a

consumer, it requires an ability to dynamically insert

measurement probes into various processed in the en-

vironment without disrupting those processes. As a

producer, AMADEUS uses its event mechanism to dy-

namically define and activate scripts that can process

collected measurements.
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6.2 Mechanisms Supporting Dynamism

Arcadia provides a variety of mechanisms support-

ing dynamism at a level of granularity requiring re-

compilation. Without being exhaustive, we can single

out three mechanisms that directly support more rapid

dynamic changes in Arcadia: events, dynamic loading,

and client-server architect ures.

As described in section 8, the various event dispatch-

ers in Arcadia allow for dynamic specification of pro-

cedures (or scripts or triggers) to be invoked whenever

certain events occur. In effect, we have an anonymous

invocation mechanism in which the recipients to be in-

voked can be defined and changed in a highly dynamic

fashion.

TRITON supports dynamic loading of code into the

TRITON server along with simple mechanisms for invok-

ing that dynamically loaded code. This is currently only

usable for object methods and for triggers, but the basic

mechanism has potential applications in other compo-

nents such as the CHIRON server where it could be used

to extend its functionality on-the-fly.

The whole client-server apparatus in Arcadia (Q) pro-

vides a significant degree of dynamism. It allows a

client program to invoke an (almost) arbitrary server

program and to decide, on-the-fly, the particular server

and operation within the service in which it is inter-

ested, CHIRON currently exploits this capability. This

gives a rather different flavor to Arcadia compared to,

for example, Cedar [21], which had the mixed blessing

of a single address space where it was possible to dy-

namically bind code, but in so doing, inter-component

dependencies were lost that made it difficult to unbind

components.

6.3 Costs

We are aware that the use of dynamism, especially

structural dynamism, does not come free. Often it is

difficult to type-check with a compiler, or analyze with

various tools. This introduces the possibility of run-time

errors, which are the most expensive ones to find. When

errors occur, they may be time or context-dependent,

and the programmer may not even be able to capture

the context. These difficulties should not be read as

arguments against dynamism so much as they are argu-

ments for using caution when it is introduced and for

providing appropriate support to make its use as safe as

possible.

7 Concurrency

There are a wide variety of reasons for supporting con-

currency in a software development environment. For

example, Arcadia has found that all too many SDES

are implicitly developed for single users. Our goal of

providing a pro-active, heterogeneous environment for

multiple users and multiple classes of users demanded

that we use languages and system programming mech-

anisms that effectively support concurrency.

Some of the many demands for concurrency in Arca-

dia are as follows. With regard to user interfaces we

recognize that both users and tools may be simultane-

ously active and in need of periodic communication with

each other. Consequently the UIDS must not preordain

one or the other to be “in charge” and must therefore

exhibit a concurrent control model. CHIRON is designed

to support multiple users working cooperatively, such as

through multi-view editing sessions. Similarly, the pro-

cess programming mechanisms in Arcadia are designed

to orchestrate the actions of multiple, concurrent users,

cooperating on tasks such as creating a requirements

specification. These process mechanisms must enable

specification and enaction of cooperating concurrent ac-

tivities. This objective has further consequences, re-

quiring, for example, support for concurrency controls

on shared data. We have also found that many process

components are effectively expressed as reactive control

units, which can best be described logically using for-

malisms involving concurrency. Effectively supporting

flexible measurement and evaluation of processes also

demands concurrency: monitoring and analysis activ-

ities should, in many cases, take place transparently,

unobtrusively, and simultaneously with the monitored

process. Concurrent mechanisms in the AMADEUS sys-

tem support this non-interference approach. It is also

clear, in all the above situations as well as others, that

performance benefits can be achieved through the pro-

gramming of concurrent activities.

Though not as obvious and stringent a demand for

concurrency, the heterogeneous systems approach ex-

hibited by the Arcadia environment is also perhaps best

supported by distributed computation. For example,

use of some tool may require execution on a particular

hardware platform, distinct from the primary platform

of the environment. Integration of that tool into a pro-

cess would likely require distributed systems support,

and would bring the potential for concurrency along at

the same time.

There are three practical consequences of the needs

for concurrency in Arcadia,

First, environment components supporting require-

ments wherein concurrency is a key part benefit from

being programmed in a language which has effective

constructs for using and controlling concurrency. This

reduces the burden on the developer (as compared to

simulating the concurrency in a sequential language)

and keeps the implementation cleaner. On the other

hand, for various reasons one does not always have this

capability and therefore a fall-back strategy must be

provided. Use of operating system capabilities from a

sequential language is a natural resort. (This often leads
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to the creation of heavyweight processes with separate

address spaces, which has other advantages discussed

below.)

Second, the presence of concurrency presents many

well-known challenges to developers: developing bug-

free concurrent code is notoriously difficult. As a re-

sult, we found that our development benefited subst an-

tially from the use of good formal analysis. For example,

the CHIRON system, consisting of apprc)ximately twenty

Ada tasks in two Unix processes, was analyzed by the

CATS analyzer (which performs a type of reachability

analysis and temporal logic checking). Two race condi-

tions and a deadlock possibility were thus identified and

subsequently removed.

Third, because many tools do not anticipate working

in a concurrent world, it is often necessary to adopt a de-

fensive implementation strategy that protects tools from

each other. For example, one version of the CHXRON

system makes use of the XView user interface toolkit

and processor. Since XView assumes a sequential con-

trol model, while CHIRON is concurrent, it was neces-

sary to place them in separate address spaces, since the

XView notifier destroyed the Unix signals used by the

Ada (tasking) run-time system. More generally, the ba-

sic solution is to guarantee separate resources for each

run-time system, including signals, file-descriptors, and

possible heap memory. Heap memory does imply sep-

arate address spaces, while technically signals and de-

scriptors do not (though on Unix they do.)

The use of separate address spaces also contributes,

in an incidental fashion, to addressing several other is-

sues, including strongly controlled interfaces and multi-

language issues. Multi-language issues should be clear

from the preceding paragraph. The issue with strongly-

controlled interfaces is that, in the absence of effective

language constructs and analyzers that guarantee that

design-level interface rules are not violated, placing ser-

vice providers and service requesters in separate address

spaces yields an effective operational way of ensuring

conformance to the interface rules. That is, “t bin-wire”

communicant ion helps enforce the abst r act ions.

8 Event-based Control Integra-

tion Mechanisms

To facilitate the sorts of highly flexible control flow

necessary in the face of rapid change in the structure

and componentry of an environment, we found event-

based control integration mechanisms to be broadly use-

ful. For example, event-based control has been used

from statistics gathering, to enforcing constraints, to

maintaining consistency between multiple simultaneous

graphical views of objects. In this section, we will first

describe the various purposes served by the event-based

mechanisms. The details of the mechanisms will then

be contrasted.

The common objective of all the mechanisms dis-

cussed is the combination (“integration” ) of separate

components to perform desired services. Such mecha-

nisms are necessary when no single component suffices

to perform the service and the necessary compositions

of components are unpredictable. Moreover, an exten-

sible mechanism is needed, so that new components can

be added in a convenient, and often dynamic, manner.

“Components” in the systems above include, for exam-

ple, artists (CHIRON), data analysis agents (AMADEUS),

and data-constraint maintenance programs (APPL/A

and R&R).

In CHIRON, dispatcher events are accesses to the in-

terface functions of abstract data type (ADT) instances

(Ada packages, in the primary implementation). These

events and the supporting mechanism are used to pro-

vide dynamic, non-invasive coordination of tools and

art ists, where artists are code units that provide cus-

tomized graphical depictions of the state of the ADT

instance. Among the functionality provided is simulta-

neous updates of all views of an object, regardless of

which views are used as editing interfaces.

In AMADEUS, an event is a fundamental abstraction

on which process or product measurement and evalua-

tion is based. (Events may be aggregated and analyzed

to yield insight into products or processes. ) The pur-

pose of AMADEUS’ event-based integration mechanism

is to detect events and enter them into the measurement

and evaluation framework, possibly resulting in changes

to components in the environment.

Events in APPL/A are operations on relations. Their

purpose is to allow automatic, reactive response to op-

erations on relations. Response to a change to a file,

for example, might be to issue a warning message that

a configuration was out of date and to initiate recom-

pilation of other components to bring the configuration

back into a consistent state.

In TRITON, events are invocations of methods or func-

tions stored in the TRITON server. Functions can be

triggered upon such invocations, and may be used to

support, e.g., unobtrusive monitoring, to provide for-

ward and backward in ferencing, and to export database

events to the rest of the environment.

Events in NEXUS, the event-based control mechanism

underlying R&R’s constraint facilities, are similar to

those in CHIRON in that NEXUS events are accesses

to the interface operations of ADT instances. NEXUS

events are used to support consistency maintenance over

shared objects (e.g., R&R relations and relationships,

and graphical depictions) where changes in the state of

an object might be of interest to other entities in the

environment.

It should be clear that the various Arcadia event-

based integration mechanisms exist and operate at dif-

ferent levels of abstraction for the different purposes de-
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scribed above. Nevertheless, a common set of design

issues can be used to highlight both similarities and dif-

ferences. We first consider the notion of event types,

then present several issues that arise in the context of

event recognition and processing. Cross-cutting issues

of dynamism and concurrency are then considered.

8.1 Event Types

Three types of events that are explicitly identified in

AMADEUS cover all the event types in the Arcadia mech-

anisms: changes in data values, time-based events, and

messages. Messages may represent (name, value) pairs

or procedure/function calls (which includes operations

on relations or relationships). The information content

of messages, including the notion of the type system

to which they belong, varies, and is discussed below.

It is not clear that there is any intrinsic difference be-

tween event types; each may be modeled (and repre-

sented) different ways. An obvious but important ob-

servation is that the definition of an event is tied to

a particular set of abstractions (e.g. what constitutes

an event for Chiron’s user interface purposes may not

be an event for Nexus’ constraint-managment purposes,

and vice versa).

8.2 Event Occurrence and Processing

Registration. Prior to event occurrence, event emit-

ters may register descriptions of the kinds of events

they may produce. Components interested in receiv-

ing events may register their interest in certain types

(or values) of messages. Filtering, or transformation,

protocols may also be registered. These items may be

registered several places. There may be a single cen-

tral authority for handling registrations or there may

be many registration agents.

Event generation. Events may be “naturally occur-

ring” or be seeded, either manually or automatically.

Events are naturally occurring in CHIRON, APPL/A-

TRITON, NEXUS, and in some AMADEUS components,

in that the events occur as an ordinary part of achiev-

ing some other functionality, e.g., accessing an ADT

instance’s access function or operating upon a relation.

Events in AMADEUS may be seeded. For example, a

process program may have event generation code in-

serted to yield the raw data needed by AMADEUS; other

events monitored by AMADEUS may be natural, such as

watching for a file to be edited.

Recognition. Once an event occurs it must be rec-

ognized and thereby entered into the event-processing

mechanism(s). This may happen by, e.g., the event-

generating component, a database mechanism, or a

“watcher)’ — a specific tool designed for that purpose.

CHIRON events are recognized and initially handled by

dispatchers, which are located in the application’s ad-

dress space. In TRITON, trigger detection and invoca-

tion is performed as part of the TRITON interface oper-

ations that invoke methods in the server. The NEXUS

server is a component separate from object manage-

ment services and is capable of operation on types not

described via OM technology, AMADEUS events are

recognized by specialized components (AMADEUS event

servers), each having its own address space.

Represent ation and meaning. Events may be rep-

resented with strong or weak typing, and may convey

their semantics either within the message or with re-

spect to an external (to the message) definition. CHI-

RON messages are strongly typed, with their type system

being the type system of the application. The message

consists of the name of the operation performed, the

value of all arguments to the operation, and the value

of any return parameters. The meaning of the message

is confined to the address space in which the event oc-

curs. Both APPL/A and TRITON messages are similar.

NEXUS messages are strongly typed, where the NEXUS

type system is derived from the UTM, AMADEUS mes-

sages are weakly typed, being essential y (name, value)

pairs encoded as ASCII strings, the interpretation of

which is conventionalized by AMADEUS.

Processing. In general, event processing may involve

collection and aggregation, filtering according to regis-

tered protocols, and propagation. Propagation may oc-

cur via a single distributor per environment, per event

type, per object type, or per object. Distribution may

be cascaded. Notions of transactions and rollback may

be present. Propagation may be either synchronous or

asynchronous, and whether it is synchronous or asyn-

chronous may depend on the level of granularity y con-

sidered. CHIRON events are processed by dispatchers,

where there is one dispatcher per object. Some asyn-

chrony of processing is possible but the primary no-

tification activity is synchronous (involving the orig-

inator of the operation on the ADT, the dispatcher,

and the listening artists). AMADEUS events are filtered

and distributed by event servers under the control of

scripts which define the desired processing in terms of

which actions to take, such as which tools or processes

should be executed. There may be multiple servers

per AMADEUS application, and scripts are explicitly de-

clared to have synchronous or asynchronous processing.

In NEXUS, collection and propagation are performed by

the NEXUS server, where there is one server per names-

pace. Synchronization in NEXUS is listener-controlled;

the informer specifies a maximum level of synchroniza-

tion that can be supported, and the listener specifies

the minimum level that is desired.

Post-processing. Subsequent to processing of events,

various activities may occur, such as sending of acknowl-

edgments, modification of filtering policies, or genera-

tion of new events. CHIRON’s dispatcher synchroniza-

tion/transaction policy ensures one dispatch is complete

before another can begin. AMADEUS events may cause
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further events to be generated and propagated which

may cause additional scripts to be interpreted. Event

generation may be turned off (or on) depending on the

actions associated with event processing. TRITON trig-

gers are invoked with a pre-defined interface that in-

cludes the arguments to the function or the result of the

function. The trigger may perform arbitrary manipula-

tions on that information and may even abort the actual

invocation of the target method. NEXXJS listeners may

control the receipt of events by dynamically registering

and unregistering with the server.

Cross-cutting Issues. Cutting across all the above

are issues of dynamism and concurrency. Dynamism is

the degree to which changes can be made to any of the

definitions or mechanisms after their initial construc-

tion, Concurrency is the degree to which parts of the

mechanisms may operate simultaneously. Some aspects

of dynamism have already been identified. AMADEUS

is the most dynamic of all the current mechanisms, as

new event kinds may be generated while an Arcadia

process is executing and new event servers to receive

and dispatch events may be activated, Such dynamism

goes hand-in-hand with AMADEUS’ weakly typed mes-

sage structure. The other mechanisms, more strongly

typed, are less dynamic.

8.3 The Point

Though serving a wide range of purposes and though de-

veloped independently, a high degree clf commonality of

structure is present in the above subsystems. Tradeoffs

among specific design choices are aplparent. We con-

clude that this type of mechanism is widely adaptable

and useful in the software environment context, well be-

yond the typical uses of early systems such as Field [16]

and Softbench [4], which have been la,rgely confined to

infrequent control integration of large, monolithic (from

the perspective of Field/Softbench) to,ols.

9 Conclusion

If we were pressed to summarize our lessons, we would

have to say that Arcadia is about abstraction and flex-

ibility in the face of the multiple tensions created by

a broad set of goals and a wide variety of component

technologies.

We remain convinced that appropriate use of abstrac-

tion remains a key to effective large-scale system devel-

opment. All environment capabilities and artifacts (e.g.,

processes, operands, etc.) should be captured through

disciplined used of abstraction. Further, we believe that

these abstractions must not only capture functionality,

but also support viewability, measurability, and persis-

tence.

There do seem to us to be certain :risks, however, in

premature codification of abstractions. In the absence

of a fixed structure, it is important to favor flexibility

in the structuring of abstractions. That being the case,

we found that it was preferable to define smaller and

more general abstractions rather than larger and more

specific abstractions.

As illustrated by our experience with abstractions,

flexibility is the other hallmark of Arcadia. Many of the

lessons we have learned involve our attempts to move

in the direction of increasing flexibility. Heterogeneity,

met a-languages, dynamism, events, concurrency, and

powerful type systems are all driven by a requirement

for flexibility.

In sum, we believe that the Arcadia project shows

that it is possible to provide a system that begins to

match the ambitious goals that we established for our-

selves. In the process of producing such an environment,

we have learned a number of lessons that, while specific

to our own diverse research efforts, seem likely to be of

interest and value to many environment projects outside

Arcadia.

Acknowledgments

This paper represents the opinions of the principal investi-

gators of the current university Arcadia grants: University

of Massachusetts: Lori A. Clarke, Jack C. Wileden; Uni-

versity of California at Irvine: Leon J. Osterweil, Debra J.

Richardson, Richard W. Selby, Richard N. Taylor; Univer-

sit y of Colorado: Dennis M. Heimbigner, Roger King.

The work upon which this paper is based was the result

of efforts of many people, including the following whom we

would particularly like to acknowledge: Stephanie Leif Aha,

Jennifer Anderson, Ken Anderson, Deborah Baker, Robert

Balzer, Douglas Bell, Frank Belz, Jim Berney, Navdip

Bhachech, Barry Boehm, Greg Bolter, Billie Bozarth, De-

bra Brodbeck, Mary Burdick, Mary Cameron, Yldong Chen,

Satish Chittamuru, Pamela Drew, Jose Duarte, Matthew

Dwyer, Stuart Feldman, Joseph Fialli, Charles Fisher, David

Fisher, Kari Forester, Susan Graham, Thomas Huynh, Greg

James, Rajesh Jha, Takuya Kat ayama, Alan Kaplan, Ruedi

Keller, Walter R. Kopp, Peter Lee, Barbara Lerner, David

Levine, Chyun Lin, Doug Long, Dave Luckham, Craig Mac-

Farlane, Kent Madsen, Mark Maybee, Erik Mettala, Cynthia

Tlttle Moore, Elliot Moss, Kurt Olender, Owen O’Malley,

Lolo Penedo, Adam Porter, Ron Reimer, William Rosen-

blatt, Wilhelm Schafer, Bill Scherlis, John Self, Izhar Shy,

Xiping Song, Craig Snider, Tom Souksamlane, Stephen

Squires, Stan Sutton, Peri Tarr, Kojii Tori, Dennis Troup,

Sandy Wise, Alex Wolf, Harry Yessayan, Michal Young,

Patrick Young, Steven Zeil, Hadar Ziv.

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,

D. Maier, and S. Zdonik. The Object-Oriented

Database System Manifesto. In Proceedings of the First

International Conference on Deductive and Object-

Oriented Databases, 1989.

179



[2] D. A. Baker, D. A. Fisher, and J. C. Shultis. The gar-

dens of IRIS. Technical Report Arcadia-IncSys-88-03,

Incremental Systems Corporation, August 1988. Draft.

[3] P. A. Bernstein. Database system support for software

engineering. In Proceedings of the Ninth Inter-national

Conference on Software Engineering, pages 166-178,

Monterey, California, March 1987. IEEE Computer So-

ciety Press.

[4] M. R. Cagan. The HP SoftBench environment: An

architecture for a new generation of software tools.

Hewlett-Packard Journal, 41(3):36–47, June 1990.

[5] M. J. Carey, D. H. DeWitt, D. Frank, G. Graefe,

M. Muralikrishna, J. E. Richardson, and E. Shekita.

The architecture of the EXODUS extensible DBMS. In

International Workshop on Object-Oriented Database

Systems, pages 52-65, 1986.

[6] L. A. Clarke, J. C. Wileden, and A. L. Wolf. Graphite:

A met a-tool for Ada environment development. In Pro-

ceedings of the IEEE Computer Societ~ Second Inter-

national Conference on Ada Applications and Environ-

ments, pages 81–90, Miami Beach, Florida, April 1986.

IEEE Computer Society Press.

[7] P. Drew, R. King, and D. Heimbigner. A toolkit for the

incremental implementation of heterogeneous database

management systems. Very Large Database Journal,

1(2), 1992, To appear,

[8] D. Heimbigner. Triton Reference Manual, 1 July 1990.

[9] S. E. Hudson and R. King. The Cactis project:

Database support for software environments. IEEE

Transactions on Software Engineering, 14(6):709-719,

June 1988.

[10] R. K. Keller, M. Cameron, R. N. Taylor, and D. B.

Troup. User interface development and software envi-

ronments: The Chiron-1 system. In Proceedings of the

Thirteenth International Conference on Software Engi-

neering, pages 208–218, Austin, TX, May 1991.

[11] B. S. Lerner and A. N. Habermann. Beyond Schema

Evolution to Database Reorganization. In Proceedings

of the Joint ACM 00 PSLA/ECOOP ’90 Conference

on Object-Oriented Programming: Systems, Languages,

and Ayqdications, Ottawa, Canada, October 1990.

[12] D. L. Long and L. A. Clarke. Task interaction graphs for

concurrency analysis. In Proceedings of the Eleventh In-

ternational Conference on Software Engineering, pages

44–52, Pittsburgh, May 1989,

[13] M. Maybee, L. J. Osterweil, and S. D. Sykes. Q: A

multi-lingual interprocess communications system for

soft ware environment implement ation. Technical Re-

port CU-CS-476-90, University of Colorado, Boulder,

June 1990.

[14] C. T. Moore, T. O. O’Malley, D. J. Richardson, S. H. L.

Aha, and D. A. Brodbeck. ProDAGI: A program de-

pendence graph system. Technical Report UCI-91-25,

Department of Information and Computer Science, Uni-

versity of California, 1991.

[15] J. E. B. Moss. Implementing persistence for an object

oriented language. In Proceedings of the Workshop on

Persistent Object Systems: Their Design, Implemen-

tation, and Use, Port Appin, Scotland, 25-28 August

1987.

[16] S. P. Reiss. Connecting tools using message passing in

the field environment. IEEE Software, 7(4):57–66, July

1990.

[17] J. E. Richardson and M. J. Carey. Programming con-

structs for database system implementation in EXO-

DUS. In Proc. ACM SIGMOD Conf., pages 208-219,

1987.

[18] W. Rosenblatt, J. Wileden, and A. Wolf. OROS: To-

ward A Type Model for Software Development Envi-

ronments. In O OPSLA Conference Proceedings, pages

297–304, October 1989. Published as ACM SIGPLAN

Notices, 24(10).

[19] R. W. Selby, A. A. Porter, D. C. Schmidt, and

J. Berney. Metric-driven analysis and feedback systems

for enabling empirically guided software development.

In Proceedings of the Thirteenth International Confer-

ence on Software Engineering, Austin, TX, May 1991.

[20] S. M. Sutton, Jr., D. Heimbigner, and L. J, Osterweil.

Language constructs for managing change in process-

centered environments. In Proceedings of ACM SIG-

SOFT ‘9o: Fourth Symposium on Software Develop-

ment Environments, pages 206–217, Irvine, CA, Decem-

ber 1990.

[21] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann.

A structural view of the Cedar programming environ-

ment. ACM Transactions on Programming Languages

and Systems, 8(4):419–490, October 1986,

[22] P. Tarr, J. Wileden, and L. Clarke. Extending and

Limiting PGRAPHITE-st yle Persistence. In Proceed-

ings of the 4th International Workshop on Persistent

Object Systems, Martha’s Vineyard, MA, pages 74-86,

August 199o.

[23] J. Wileden, A. Wolf, W. Rosenblatt, and P. Tarr. Spec-

ification Level Interoperabilit y. Communications of the

ACM, 34(5):73-87, May 1991.

[24] J. C. Wileden, A, L. Wolfj C. D. Fisher, and P. L. Tarr.

PGRAPHITE: An experiment in persistent typed ob-

ject management. In Proceedings of ACM SIGSOFT

’88: Third Symposium on Software Development Envi-

ronments, pages 130–142, Boston, November 1988,

[25] A. Wolf, L. Clarke, and J. Wileden. The AdaPIC

toolset: Supporting interface control and analysis

throughout the software development process. IEEE

Transactions on Software Engineering, 15(3):250-263,

March 1989.

[26] P. S. Young and R. N. Taylor. Team-oriented process

programming. Technical Report UCI-91-68, Depart-

ment of Information and Computer Science, University

of California, 1991.

[27] S. Zdonik and D. Maier. Fundamentals of Object-

Oriented Databases. In S. Zdonik and D. Maier, ed-

itors, Readings in Ob~’ect- Oriented Data Systems, pages

1–32. Morgan Kaufman, San Mateo, California, 1990.

180


