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ABSTRACT 

The Multiple Travelling Salesman Problems (MTSP) can be used in a wide range of discrete 
optimization problems. As the solution to this problem has wide applicability in many practical fields, 
this NP Hard problem highly raises the need for an efficient solution. The problem is determining a set 
of routes for the salesmen that jointly visit a set of given cities which are facing difficulty because of 
road congestion. Selection of proper route is based on the road capacity, which is the deciding factor in 
the opt vehicle usage. The objective of the study is to optimize the vehicle utilization and minimize the 
time of travel by salesman based on the road capacity. The solution to this problem is achieved in 3 
steps; the first step is by assigning addresses to cities by Ad-assignment algorithm. The second step is 
by assigning cities and vehicles to salesman by Sl-assignment algorithm. The third step is by using 
Parallel Shortest Path Multiple Salesman (PSPMS) algorithms to obtain the shortest path. The PSPMS 
algorithm runs in parallel for each salesman. The solutions to the problem are known to possess an 
exponential time complexity. From the result we observe that PSPMS is one of the best approximate 
algorithms used to solve MTSP. 
 
Keywords: Multiple Travelling Salesmen, Road Capacity, Shortest Path 

1. INTRODUCTION 

 Multiple Travelling salesman problem is the 
extension of the well known travelling salesman 
problem. This can be applied for various optimization 
problems in research; in genetic engineering to 
minimize the length of universal string in DNA 
sequence, in semiconductor manufacturing, to optimize 
chain in integrated circuits, in space craft to minimize 
the usage of fuel, in design of global satellite system 
network and Matai et al. (2010) stated in many real 
world applications like print press scheduling, crew 
scheduling and school bus routing. MTSP can also be 
used to solve the problem in road network. In today’s 
road traffic, congestion becomes a major problem. 
Selection of proper route would make the company to 
save much fuel. If a vehicle is stuck in a traffic jam, the 
vehicle travel time increases accordingly, this results in 

longer waiting time, from the customer point of view 
stated by Leontiadis et al. (2011).  

There were several methods used to schedule 
automated traffic in network of roads with the help of 
the scheduler to provide time trajectories for all 
vehicles, which follow the respective vehicle routes and 
further ensure that no collision or deadlock will result. 
But the roads in the transportation network need not 
have the same capacity. Capacity means the width or 
the broadness of the road. Some roads are broader and 
some roads are narrow. If the salesman uses the same 
type of vehicle in all these roads it will result in 
congestion. The transport analysis issued by 
authorized office in Indonesia says that lots of factor 
affects the smooth flow of traffic. One of the main 
factors is the level of congestion of the road. Based on 
the road capacity the type of vehicles that can be used 
in that road without congestion can be decided. The 
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aim of this study is to solve the MTSP problem by 
considering the road capacity.  

2. MULTIPLE TRAVELLING SALESMAN 
PROBLEMS 

The MTSP have ‘m’ salesmen to visit a set of ‘n’ 
cities and each salesman has to start and end at the 
same depot. In this, each city must be visited exactly 
once by one salesman named as si, i varies from 1 to m. 
MTSP can also be defined as a problem of finding the 
‘k’ closed circuit paths, given ‘n’ cities and ‘m’ sales 
men, which minimize the sum of the squares of the path 
lengths. There are several variations in MTSP like 
single depot and multiple depot problems. In single 
depot, all the salesmen start and end the tour at the 
same point. In multiple depot, the salesman need not 
end at the startingdepot, but can end at any depot, with 
the restriction that at end of the tour, the number of 
salesmen in all the depot should be same as that in the 
beginning as reported by Levin and Yovel (2012) and 
Yadlapalli et al. (2010). MTSP is also classified as 
symmetric and asymmetric. In Symmetric MTSP the cost 
of travel from node ni to nj is same as the cost of travel 
from nj to ni. The path is bidirectional. This can be 
represented by an undirected graph. In asymmetric TSP, 
the cost of travel from ni to nj is different from the cost of 
travel from nj to ni. This can be represented by a digraph. 

3. RESEARCH GAP AND PROPOSED 
WORK 

 The MTSP problem can be solved by converting 
MTSP to TSP using ACO algorithm, where the shortest 
path is determined based on ant behavior Hlaing and 
Khine (2011). Genetic algorithm is a computational 
intelligence method, a search technique used in 
computer science to find approximate solutions to 
combinatorial optimization problems. Genetic 
algorithm is proven efficient in solving travelling 
salesman problem as stated by Albayrak and Allahverdi 
(2011). Generally for solving MTSP, the problem is 
converted to TSP and then solved. For converting 
MTSP to TSP, various clustering methods are used. 
Each cluster is treated as a sub problem of MTSP and 
solved. The heuristic solution methords are easy to 
solve as stated by Bashiri and Karimi (2010). In the real 
world, Vehicle Routing Problem (VRP) often meets 
road traffic congestion. The congestion itself may be 
caused by the number of vehicles hence; the traffic 

volume is increasing and not balanced within the 
capacity of existing roads. Erfianto et al. (2012) stated 
that Multi Objective Ant Colony System (MOACS) 
algorithm solves the VRP problem by considering the 
level of road traffic congestion as an obstacle. In MTSP 
the road capacity or edge cost and the road traffic 
congestion are taken into consideration to solve the 
problem. In the proposed method, the distance between 
the cities and the road capacities are taken into 
consideration to solve MTSP problem. 

3.1. MTSP with Road Capacity 

This deals with some real world problems where 
there is a need to account for more than one salesman, 
given a group of n cities and the distance between any 
two cities. Suppose there is ‘m’ salesman starting 
from a city to visit the group of ‘n’ cities. Finding the 
nearly equal shortest tour for each salesman such that 
each city be visited only once by one salesman and 
each sales man returns to the starting city at last. MTSP 
was an appropriate model for the problem of bank 
messenger scheduling, where a crew of messengers 
pick up deposits at branch banks and returns them to 
the central office for processing. To facilitate industrial 
municipalities to meet the needs of multiple user groups 
and applications with a single infrastructure by means 
of multiservice mesh platform, a mesh topology can 
be used. A computer network topology is the physical 
communication scheme used by connected devices. A 
mesh topology involves the concept of routes. In Full 
mesh topology, each node is connected directly to 
each of the other node. In partial mesh topology some 
nodes are connected to all the others, but some of 
them are only connected to nodes with which they 
exchange the data because it is less expensive and 
yields less redundancy. Problems of this type can be 
addressed by MTSP with road capacity. 

The distance between two cities is denoted as edge 
cost or road length. In addition to this, each edge or road 
has capacities assigned to them. The capacities differ for 
different roads. The road capacity is decided based on 
the size of the vehicle that can be used in that road. The 
capacities are mentioned using level of the road. In this 
problem different road levels denotes different road 
capacities. The different levels of the road are shown in 
the Fig. 1. with different thickness. There will be several 
cities in all the levels. The capacities can be determined 
with the road level based on the following assumptions: 
 

c1= m; c2 = c1-2; c3 = c2-2; c4 = c3-2 
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4. PROBLEM DEFINITION 

The MTSP is a special case of vehicle routing 
problem. The MTSP can be extended to many variations 
as far as the number of depots and the target paths are 
concerned, it includes a single depot and multiple depots, 
as well as closed and open paths. A closed path starts and 
ends at the same depot, whereas an open path does not 
require returning to the original depot. The study presents 
a novel method for solving a MTSP which allows 
salesmen to start from different depots and end their tours 
at the original depots. Given a set of ‘n’ nodes and ‘m’ 
salesmen located at each depot, the MTSP aims to find M 
routes for each salesman starting from a set of depots and 
ending at the original depots, so that each intermediate 
node is visited exactly once by one salesman and the total 
cost is minimized. Let G = (V, E, W,C) be a connected 
undirectedgraph, where V = {v1,v2,...,vn} is a set of cities 
and E = {<vi,vj>|vi,vj€V, i ≠ j} is an edge set with a non-
negative cost matrix W = {wij| the weight of <vi, vj>} and 
capacity matrix C = {cij ׀ the capacity of <vi,vj>}.The 
graph is said to be symmetric if any <vi, vj>∈E satisfies 
wij = wji. In the study, we only consider symmetric graphs 
that satisfy the triangle inequality: 
 
• Definition 1: w(vi, vj) is the distance between vi and 

vj, denoted by wij  
• Definition2: c(vi,vj) is the capacitybetween vi and vj 

denoted by cij  
• Definition 3: A tour denotes a route that starts at one 

node and ends at the same node 
 

The transportation problem shown in Fig. 1 can be 
solved by means of PSPMP algorithm. Here, both the 
edge weight and edge capacity (road capacity) are 
taken into consideration. Based on the road capacity 
the salesman is assigned with vehicles. Many exact 
and approximate algorithms were developed to solve 
TSP one among that is proposed by Xu et al. (2013). 
The exact algorithms tend to be very time consuming, 
because their time complexity is super polynomial. An 
alternative, perhaps more practical approach is to 
design approximate algorithms which give solutions 
of reasonable quality in a short time. So the 
approximate algorithm is taken to solve the problem. 

4.1. Problem Formulation 

 The structure of MTSP is represented as a graph, 
where the cities are denoted as nodes in a graph. The 
connection between pair of cities denotes edges in a 
graph. Goyal (2010) proposed that each edge has a cost 

associated with it known as the distance between two 
cities. In addition to the edge cost, the edge capacity is 
also taken into consideration to solve the problem. Let 
G = (V, E, W, C) be a connected un direct graph, 
where V = {v1,v2,……..vn} where n is set of nodesand 
E is the edges. The weight wi,j is associated with each 
edge and the capacity ci,j is also associated with the 
edges. Table 1 shows the MTSP problem of Fig. 1 
with number of salesmen and cities. 

The travelling salesman problem introduced here is 
considered in a different approach, suppose a company is 
planning to send salesman a trip to several cities to meet 
the customers and come back to the city where he 
started. In this problem, we assume that, level 1 cities the 
salesman can visit through one mode of transport, say air 
service, but for level 2 cities, the same mode may not be 
possible. For level 2 cities, another mode of transport 
like bus service is possible and in particular level cities 
only two-wheeler service may be possible. This can be 
solved by assigning different types of vehicles. One set 
of salesman uses air service, the other set of salesman 
uses bus service and the other set of salesman uses two 
wheeler service based on the road capacity. Let us 
consider there are 4 levels of roads. Table 1 shows the 
number of nodes needed in each level and the number of 
salesmen needed. The total number of nodes in all the 
levels are 256. There are nodes 84 common nodes. From 
this we summarize that the level of the roads determiners 
the number of salesman. For level 1, roads one salesman 
is needed, for level 2 roads 4 salesmen are needed, this 
can be written in a generalized form as: 
 

No. of Salesman = Level × 4 
 

Table 2 shows the type of vehicle used and the number 
of vehicles used in each type. The number of vehicles 
needed depends on the number of salesman. The vehicles 
are of type vh1, vh2, vh3 and vh4. The vehicles are 
differentiated based on the size and capacity of the vehicle. 

The number of salesmen is directly proposition to the 
number of vehicles. This is applicable only for the above 
example where all the cities are connected to 3 other cities 
of same level. The problem can be solved in 3 stages: 
 
• Assigning addresses to the cities with Ad-

assignment algorithm 
• Assigning salesman to cities based on the capacity 

using SL-assignment algorithm and 
• Applying Parallel Shortest Path Multiple Salesman 

Algorithm (PSPMS) to find the shortest path for 
each salesman in parallel 
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Fig 1. Network showing cities connected by roads of varying capacities 
 
Table 1. Nunumber of nodes and salesmen needed  
No. of  No. of Common Total No. 
salesman Level nodes nodes of nodes  
1 1 4 0 4 
4 2 04×4 = 16 4 12 
16 3 16×4 = 64 16 48 
64 4 64×4 = 256 64 192 
  84 256 

 
Table 2. Vehicle allotment to salesmen 
No. of Levels  Vehicle No. of 
salesman needed types vehicles 
1 1 vh1 1 
4 2 vh2 4 
16 3 vh3 16 
64 4 vh4 64 

 
5. ASSIGNING ADDRESS TO CITIES 

Computing optimal routes in a road network is one of 
the focuses of real world applications of algorithms. Our 
bench mark throughout the study is Indian road which 
has 192 nodes and 256 edges. This can be denoted as a 
non linear multiple travelling salesman problem as 
proposed by Nallusamy et al. (2010). The input to the 
algorithm is the adjacency matrix with the weight 
assigned to each edge i.e., connecting the nodes ni, nj. 

The graph also has the capacity matrix in addition 
to the weight matrix. The capacity matrix gives the 

capacity of edges connecting the pair of nodes. The 
capacities are assigned based on the level of the road. 
Level of the road is decided based on properties on the 
road. The property taken here is the width of the road.  

Roads like 6lane, 4lane. In the proposed work we 
assume road with broadness based on lane. So based on the 
level of the road the capacities are fixed in the following 
manner. For example roads are at level l1, l2,…ln then the 
capacity of the node can be any value, which can be 
calculated with the capacity of first level node. After 
assigning weight and capacity to edges the next step is to 
read the capacity and assign address to cities. For example 
the cities at level 1 are assigned 4 digit integer value having 
value only in the thousands position. The values in 
thousands position will be incremented for level 1 nodes. 
For level 2 nodes the value in hundreds position is 
increment by 1 each time: 
 
Level 1 node address as 1000,2000,3000,….. 
Level 2 nodes address 1100,1200..2100,2200….. 
Level 3 nodes address 1110,1120,2110,2210…. 
Level 4 nodes address 1111, 1121,…,2111,2211 
 

Based on the above sequence the addresses are assigned 
for all the cities. 

The algorithm 1 explains the address assignment to 
cities. 
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Algorithm 1: Ad_assignment (Graph, Source) 
Input: Graph G = (V, E) with edge-capacity. 

1. Initialize A to be empty; 
2. Place each vertex in its own set; 
3. Sort edges of G in increasing-order; 
4. for each (vi,vj) in G// take each pair of nodes in the 

sorted set 
5. I = 1;a = 1000; // initialize the first address 
6. addr [vi] = i×a; //Assign address to vi; 
7. increment i; // Increment for assigning next address 
8. addr[vj] = i×a; //Assign address to vj; 
9. increment i; //Increment for assigning next address 
10. Else  
11. A = a div 10; 
12. Add addr[vi], addr [vi] to A; //add vi and vj to address 

assigned values 

The algorithm reads the adjaceny matrix and assigns 
address for assignment operation it is only 1×1×1….n = 1. 

 For matrix operation, which is a two dimensional 
array the complexity is O (n2). 

Thus the addresses are assigned to all the 256 
nodes for common nodes if address is already 
assigned it will be ignored during assignment of 
address for the next time. All the 256 nodes are 
assigned address based on their level. All the 256 
cities are assigned with a 4 digit address. 

6. ASSIGNING CITIES TO SALESMAN 

After assigning the address to cities based on the 
Ad_assignement algorithm. Each salesman is allotted 
with number of cities to travel. This is done by taking the 
city addresses. Let it be addr[v1], addr [v2]. This will be 
in an array A. The address of the cities is read from the 
array. The address values are 4 digit numbers. A constant 
‘Ar’ is fixed with the value of 1000 and the address is 
divided by ‘Ar’ the remainder value is assigned to 
salesman j, where j is initially 1. The process is 
continued until there is a value for the address if not the 
‘Ar’ is divided by 10 and the process is continued till all 
the salesmen are assigned with cities. For assigning cities 
to next salesman the j value is incremented by 1.  

 The process of assigning cites to salesman is shown 
in the algorithm 2: 

Algorithm 2: SL_Assignement 2 (A, source) 
Input: Graph = (V,E) with vertex-address. 
1. Initialize S to be empty; 

2. Place each vertex address in its own set 
3. Sort the vertex of a graph in increasing order 
4. for each vertexin the set A(vi,vj)//start the loop 

takingpair of nodes in the sorted list 
5. Initialize I = 0; j = 0; // initialize i and j values 
6. Ar = 1000; // initialize the ‘Ar’ value as 1000; 
7. If vertex_address mod Ar;//divide the node address 

by m and if remainder is zero. 
8. assign to s[i] [j]; //assign the remainder values as 

salesman number 
9. Assign vh[k] to s[i][j] // assign the vehicle number 

as salesman number 
10. j++//increment j 
11. Else // if vertex address has remainder 
12. Ar=Ar/10; //divide the value of ‘Ar’ by 10 
13. I++;//increment i; 
14. End if //end 
15. End for //end loop if all salesmen are assigned with 

cities and vehicles 
16. Return S 

For example if the city address is 1000, 2000 …, the 
address is divided by 1000 and there is a remainder values 
like 1,2,3 so it is assigned to salesman1. 1100, 1200… is 
the next level so it is divided by 100 and the remainder is 
11,12 so assigned to saleman2, but 2100, 2200 n2 since 
the first digit is not same. The cities address 2100, 2200 … 
is assigned to salesman3. Thus the algorithm assign 
salesman with the cities based on the city address. 

6.1. Assigning Salesman with Vehicle 

If salesmen are assigned with cities, it easy to assign 
salesman with vehicle. The salesman visiting the cities at 
level1 is assigned with a vehicle type v1. The salesman 
travelling at level 2 is assigned with a vehicle of type v3. 
From Table 2 we find that the number of vehicle in each 
type depends on the number of salesman at each level. 
So vehicles are assigned to salesman, while assigning 
cities to the salesman. The algorithm 2 shows the 
allotment of cities and vehicles to salesman. The above 
SL-assignement have the complexity of O (n2). 

For reading the adjacency matrix with city address it 
is O (n2). 

For assigning salesman with address the complexity 
is 1×1×1×…n≈1. 

For assigning salesman with vehicle it is again it 
takes 1×1×1×…n≈1. 

So the run time complexity of the SL-Assignement2 
algorithm is O (n2). 
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7. PARALLEL SHORTEST PATH 
MULTIPLE SALESMAN ALGORITHM 

(PSPMS) 

The classical way to compute the shortest path 
between the given nodes in a graph is with the given 
edge lengths. On this network, Dijkstra’s algorithm 
takes more than a second on a state-of-the-art 
workstation to compute the shortest path between two 
random nodes. This is too slow for many applications. 
To overcome this PSPMS algorithm is used. The aim of 
the algorithm is to obtain the shortest route in less time. 
The algorithm will start at level 1 vertex. The salesman 
assigned to thelevel1 cities starts the tour at the level1 
nodes with the broader vehicles named as ‘vh1’. Now 
Salesman s1 will be using the vehicle vh1. The 
salesman finds the shortest path among the allotted 
level 1cities using the Shortest path algorithm. The 
algorithm inputs a graph G (V, E) and salesman set S 
with s1, s2…sn salesmen. All salesmen are allotted 
with cities using SL-Assignment algorithm. The 
salesman 1 starts the tour from the source vertex v1, 
which can be assumed as depot for level1 cities. This 
depot will be common for salesmen at different levels. 
If the salesman visits the next city, all other salesman in 
that city also takes his tour to find the shortest path. 
Thus this algorithm runs in parallel. 

The Fig. 2 shows the cities with the node level to 
decide road capacity. There will be several node or 
cities known as common node. The common node will 
have a road to level i and level j of cities. In that 
common node the salesman will hand over the charge 
to the other salesman. Because the salesman allotted 
to level1 cities cannot travel to level2 cities. Next the 
level2 salesman takes in charge to find the shortest 
path. Thus the salesman takes his tour in parallel with 
the assigned vehicle based on the road capacity. 
Salesman at level1 will have one type of vehicle v1. 
Salesman at level2 will have another type of vehicle 
denoted as v2, so if there are ‘n’ levels of road then 
the salesman will have ‘vn’ vehicle types. The PSPMS 
algorithm continues till the salesman travel through all 
the cities. Thus there will be parallel execution of the 
algorithm by different salesman in different levels. By 
this the salesman can reach the city using shortest 
route and with optimal assigned vehicle. 

Algorithm 3: Parallel shortest path multiple travelling 
salesman Algorithm PSPMS 
Input: Graph G = (V, E, w) with edge weights 

1. Let S [i] be the salesman set with I = 1, 2…n. //S 
be the array of salesman 

2. Let p[i] be the processor set with I = 1,2,…n //P 
be the array of processor 

3. The adjacency matrix is portioned by S-vecto
 //Partition the salesman array 
4. For each salesman i of n do in parallel 
 //start the loop for each portioned salesman array  
5. Read addr[vi] of s[i]   
 //read the city address of salesman 
6. Assign the values to the processor P[i] 
 //assign to processor i 
7. Get theadjacency Matrix offor p[i] denoted by D
 //get the values in then array for P 
8. For every vertex v in D   
 //read the vertices in D 
9. Dist [source] = 0   
 //Initial the source vertex distance  
10. Q: =set of all node in D   // 

put the D vertex set to Q 
11. While Q not empty   
 //start the loop while Q is not empty 
12. U = vertex in Q with smallest distant dist [];//find 

minimum element from Q named as ‘u’  
13. Remove u from Q //remove ‘u’ from the queue 
14. for each neighbor v of u.  
 //find the adjacent node of ‘u’ 
15. Sp = dist[u] + dist-between (u, v) ; 
 //find the shortest path 
16. If sp < dist[v]: 
17. Dist[v]: = sp; 
18. Previous[v]: = u; 
19. Decrease-key v in Q; 
20. End if 
21. End for//end of for loop 
22. Node is broadcasted to D-vector //send the 

result to the D 
23. End for in parallel//do in parallel for all i values of p 
24. End while //end while 
25. Return dist; //end 

The algorithm makes use of parallel algorithm 
technique proposed by Vaira and Kurasova (2011), to 
find the shortest path. The PSPMS involves portioning 
the adjacency vertex in D blocks with the allotted salesman 
to the vertex. Salesman 1 is put in one vertex, salesman2 
in other vertex and so on. Each portioned vertex set, based 
on salesman is put into different processor. Each processor 
has the node ni, nj of same capacity. The node is broad 
casted into all processor and the D-vector is updated.  
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Fig. 2. Cities with levels and road capacity 
 
The source is portioned and the processor finds the 
single source shortest path from very vi to all other 
vertices by PSPMS algorithm. It is found the parallel 
running time is O (n2). Cost optimal can use ‘n’ 
processor where ‘n’ depends on the problem size. It can 
use n2 processor for smaller problem size. If the 
problem size increases it can use up to n3 processor in 
the worst case. If there are p processors, with p>n then it 
can be executed in n/p processor. So the computation 
time is Tp≈O (n3/p). To broadcast the node to all 
processor and to update the D-vector the time taken is O 
(nlog p). So the Tp≈O (n3/p) + O(n log p). Which is less 
complexity than O (n3). The above PSPMS algorithm is 
executed and compared with the sequential algorithms 
and it shown considerable decrease in the running time. 

8. RESULTS  

The computational complexity of sequential algorithm 
is shown Table 3. For cities of four levels. The 
computational complexity of the existing algorithm for 
more numeber of cities is high in the order of O(n3). Table 
4 shows the computationl complexity for the proposed 
PSPMS algorithm. The algorithm runs in parallel for 85 
processor. In each processor n = 4, so the time complexity 
is minimized. Here we use processor of size 85.Thee 
complexity of using this PSPMS algorithm is O(n3/p). 

Table 3. Existing Algorithm  

P  N Sequential 
1 4 64 
1 12 1728 
1 48 110592 
1 192 7529536 

 
Table 4. PSPMS algorithm 

P  N PSPMS  
1  4  64 
4  12  432 
16  48  6912 
64  192 117649  

 

9. DISCUSSION 

The computation time for the propose PSPMS 
algorithm is Tp≈O (n3/p), which is less complexity than 
O (n3), the existing algorithm. The existing algorithm 
makes use of one procesor and runs sequentially. Figure 
3 shows the computational complexity of the existing 
algorithm for each level of cities. The computational 
complexity is represented in exponential order. Figure 4 
Shows the computaional complexity of the PSPMS 
algorithm with exponential order. 
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Fig. 3. Performance of the existing algorithm  
 

 
 

Fig. 4. Performance of PSPMS algorithm 
 
This makes uses of one processor for 4 cities, so for each 
level of cities the processer increases in the order of 1, 
41, 42, 43 totally of 85 processor. Comparing the graph in 
Fig. 3 and 4 shows the computational complexity of the 
proposed PSPMS algorithm is less time consuming.  

10. CONCLUSION 

The multiple salesman problem is solved by 
considering the road capacity. The solution to the 
problem is obtained in 3 states by Assigning address to 
cities, assigning cities to salesman and finally finding the 
shortest route for each salesman by executing the 
algorithm in PSPMS algorithm. The advantage of this 
algorithm is time complexity reduction. For more 
number of cities it takes O(n3/p), which is less than the 
existing sequential algorithms and very easy to 
implement .In the proposed work, since the road capacity 

is also taken into consideration, the salesman need not 
use the same type of vehicle for all the roads. The 
salesmen uses different vehicle in different roads. This 
increases the optimal use of vehicles. The limitation of 
the approach presented in this study is, workload of the 
salesman is balaced only if the cities are evely 
distributed in all levels. This work can be further 
extended by balancing the workload of the salesmen with 
varying number of cities at different levels. 
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