
Using a Formal Specification and a Model Checker to
Monitor and Direct Simulation

Serdar Tasiran
∗

Koç University
Istanbul, Turkey

Yuan Yu
Microsoft Research
Mountain View, CA

Brannon Batson
Intel Corporation
Santa Clara, CA

ABSTRACT
We describe a technique for verifying that a hardware design
correctly implements a protocol-level formal specification.
Simulation steps are translated to protocol state transitions
using a refinement map and then verified against the spec-
ification using a model checker. On the specification state
space, the model checker collects coverage information and
identifies states violating certain properties. It then gener-
ates protocol-level traces to these coverage gaps and error
states. This technique was applied to the multiprocessing
hardware of the Alpha 21364 microprocessor and the cache
coherence protocol. We were able to generate an error trace
which exercised a bug in the implementation that had not
been discovered before a prototype was built.

Categories and Subject Descriptors
M.1.5 [Design Methods]: Design Methodologies—Func-
tional design verification; T.2.2 [Design Tools]: Design
Verification—Functional Semi-formal Verification

General Terms
Verification, Design

Keywords
Specification, abstraction, coverage, model checking

1. INTRODUCTION
For hardware implementing a complex protocol, verifica-

tion of consistency with high-level specifications is a labor
intensive process that is never entirely completed in prac-
tice. Simulation using random patterns or hand-written test
programs is the only tool available for this validation task.
Typically, the design is written in a hardware description
language and the specification is a text document. Code

∗This work was done while the author was with the Systems
Research Center at Compaq (now HP).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03.0006 ...$5.00.

is written to check for violations of the high-level specifi-
cation during simulation. This approach is inadequate for
several reasons. First, since the specification is informal, it
is difficult to verify whether it is consistent and complete.
Second, the code checking for specification violations may it-
self contain errors. Third, and most important, it is difficult
to quantify how well different aspects of the specification
have been explored, and to direct simulation runs towards
unexplored areas.
We present a technique that improves this process. Our

technique requires a high-level specification written in a for-
mal language and a mapping that relates simulation steps in
the implementation to state transitions in the specification.
A model checker checks each such state transition for con-
sistency with the formal specification, and collects coverage
information using the specification states visited. Gaps in
coverage, deadlocks, assertion and invariant violations at the
specification level can all be formulated as target states for
the model checker, which is then used to generate traces to
these target states. These traces provide very useful starting
points for generating implementation level simulation runs
to exercise the protocol scenario under consideration. It is
difficult to automate this final step, nevertheless, the prob-
lem of simulation input generation is greatly eased when a
possible error scenario is provided in the form of a protocol-
level trace.
Our approach provides several significant benefits:

• Using formal verification techniques, inconsistencies
and other logical errors can be eliminated from the
specification and it can be ensured that the specifica-
tion is complete. [1, 7]

• Each step of the simulation is checked against a ver-
ified, protocol-level specification using a formal veri-
fication tool. Formal verification tools are better de-
bugged than design- and protocol-specific code.

• A discrepancy of the implementation from the protocol
design is signaled as soon as it occurs, where its cause
can be pinpointed easily.

• Coverage analysis based on the specification points out
gaps in validation. We measure state coverage for a
subset of specification variables and report unexplored
assignments to these variables.

• The counterexample generation facility of model check-
ers is used to facilitate simulation input generation to
address gaps in specification coverage.

The price paid for these benefits is the effort put into con-
structing an abstraction map. To ease this task, we present

356

23.1

an intuitive recipe for constructing abstraction maps in two
stages. The modular structure of the abstraction map makes
it feasible for a large design group to construct and maintain
it through the design process. The techniques described in
this paper were applied to the verification of the multipro-
cessing hardware of the Alpha 21364 EV7 microprocessor.

2. OUR METHOD
Because of the complexity of the EV7 hardware and the

cache coherence protocol, simulation is the only viable val-
idation tool for multi-processor configurations. Using our
approach (Fig. 1) we make improved use of simulation re-
sources by (i) making the correctness checking during sim-
ulation runs formal and rigorous, and (ii) identifying unex-
plored or possibly erroneous states of the specification state
space and directing simulation runs to these states. Sec-
tions 2.1-2.3 present the preliminaries: the TLA+ specifi-
cation language, the TLC model checker, the EV7 multi-
processing hardware and the cache coherence protocol. Sec-
tions 2.4-2.6 describe the innovative aspects of our approach.
Section 2.4 describes how the simulator and model checker
are linked using a refinement mapping in order to achieve
(i). Sections 2.5 and 2.6 explain how a model checker is
used to monitor correctness and coverage, and to generate
inputs to address coverage gaps. The successful application
of these techniques to detect a late-stage design error is also
presented in Section 2.6.

Traces to coverage gaps
and error states

HDL Model

Refinement map

Translation to implementation
level

Test suites, random tests

Formal specification

TLC Model checker

Simulator

Spec violated?

Figure 1: Simulation directed by a formal specifica-
tion and a model checker

2.1 The Formal Specification and Protocol Ver-
ification Framework

TLA+ [4] is a formal language for writing high-level speci-
fications of concurrent and reactive systems. TLA+ is based
on the temporal logic of actions (TLA) and incorporates first
order logic, set theory, and temporal operators, and is there-
fore very expressive. TLA+ supports high-level constructs,
such as sets, queues, records, and tuples, which arise natu-
rally in high-level specifications but are difficult to express
in verification input languages aimed at the register-transfer
level. TLA+ has been used successfully for specifying and
formally reasoning about complex protocols [1, 7].
In our work, we make use of the explicit-state TLA+

model checker TLC [7]. TLC has two key features that
are helpful for dealing with large state spaces. Support for
views and symmetry reductions. A view v is a function from
a large state space to a smaller one, expressed in terms of
the state variables in a TLA+ specification. When a state

s is visited while exploring the state-space, instead of stor-
ing the entire set of variable assignments that define s, TLC
stores v(s) and, in this way, visits only one state for each
value in the range of v . v can be used to define a coverage
metric on the specification state-space by assigning the same
value of v to states that are qualitatively the same. A fur-
ther reduction in the number of states explored is achieved
by exploiting the fact that the EV7 protocol specification
is symmetric with respect to the processors and memory
addresses.

Figure 2: EV7 chip block diagram

2.2 The EV7 Multiprocessing Hardware
The EV7 microprocessor provides support for glueless mul-

tiprocessing. It contains hardware that enables EV7 pro-
cessors connected in a two-dimensional torus to act as a
cache-coherent shared-memory multiprocessor (Fig. 3). The
hardware is composed of tens of sub-blocks with clean, well-
defined interfaces. A directory-based cache coherence proto-
col is implemented by means of two on-chip protocol engines
which collaborate with the level 2 cache controller (Fig. 2).
The protocol engines are part of the memory controllers and
can handle a total of 64 outstanding protocol transactions
simultaneously. Both the cache and the memory controllers
are deeply pipelined (some 20 stages each), highly optimized,
complex circuits. Queues, address and data arrays often
have more than one read and write port. There are large
(16 or more entries) victim buffers between level 1 and level
2 caches, the level 2 cache and the rest of the system. The
network protocol between processors can reorder messages.
All of these amount to a hardware implementation that is
complex to debug and is far beyond the reach of formal ver-
ification tools. Moreover, it has been found that, to exercise
certain aspects of the hardware for an EV7 multi-processor
system, configurations with more than six processors may
need to be simulated. In fact, even simulating such configu-
rations is computationally demanding and often necessitates
a distributed simulator running on several CPUs.

Figure 3: An EV7 Multi-processor configuration

357

2.3 The EV7 Cache Coherence Protocol
The specification for the EV7 cache coherence protocol

was written in TLA+ by architects who consulted formal
verification researchers. The protocol description, excluding
comments, consists of around 2000 lines of TLA+ code. At
the time we started applying our approach to verifying the
protocol implementation, both the implementation and the
specification were mature. The intent was to perform a fea-
sibility study, so that the method described in this method
could be used as a mainstream validation tool in a future
generation processor design.
The original specification for the protocol was in the form

of several high-level textual descriptions. Writing the formal
specification required translating these into one formal de-
scription in TLA+ at roughly the same level of abstraction.
This process required rigorous thought about the protocol
and the implementation, and was found by the architects to
be very beneficial. In fact, the architects chose to start de-
signs for several future processors by describing the protocol
design using TLA+ and debugging it using TLC.
The EV7 cache coherence protocol is directory-based and

implements distributed shared memory. Each processor owns
the portion of the address space that resides in the memory
chips controlled by its memory controllers. This processor is
called the home node for these addresses. The memory con-
troller at the home node is responsible for keeping track of
outstanding protocol transactions for the addresses it owns.
Requests for a particular address are serialized at the home
memory controller. Allowing up to 64 outstanding requests
per home node provides high throughput for the multipro-
cessor system.
The protocol specification is parametrized in the number

of processors and memory addresses in the system. The
specification state variables can be grouped into three, fol-
lowing the structure of the design: variables that represent
the cache controller state (the Cbox), memory controller
state (the Zbox or DIFT) and variables that represent mes-
sages in flight between processors (the Net).

Figure 4: An EV7 protocol scenario

TLA+ specifications consist of actions, which are essen-
tially disjunctions of guarded commands: if a certain con-
dition holds at the current state, the TLA+ action speci-
fies how the state variables are to be updated and which
messages are to be sent. Each action in the EV7 proto-
col specification pertains to a transaction representing one
phase of a protocol scenario, an example of which is shown
in Fig. 4. One such phase describes the processing done
for a protocol request, forward, or response message at the
requesting, home, or sharer processor’s Zbox or Cbox. This
description style and structure mimics the original high-level
textual description of the EV7 protocol, which itself reflects
the multiprocessing architecture. TLA+ became intuitive
for the architects after a few days and further discussions
were not hindered by language issues.

One disjunct in the TLA+ action ZboxRecvLPResp de-
scribing the protocol phase in Fig. 4 is shown in Fig. 5.
In this protocol phase, the requestor node (R) sends a re-
quest for exclusive ownership of an address (ReadMod) to
the home node (H). The states of the cache and the vic-
tim buffer (encapsulated in the variable “probe” in line 15)
the directory (line 16) and the memory controller (line 14
and a few omitted lines state that the next ZBox entry to be
processed for this address contains the ReadMod command)
are looked up. Then, the protocol engine sends invalidate
messages (SharedInv, line 20) to the nodes that hold copies
of that cache line (the “Sharers”, S). The home node also
sends a BlkExclusiveCnt, line 18 message to the requestor
containing the data at that address and telling the requestor
how many invalidate acknowledgements to wait for before
modifying the cache line (line 19).

1 module EV 7ProtocolSnippet
2 ZboxRecvLPResp(addr)

∆
=

3 let ReleaseDIFTEntry(addr)
∆
=

4 DIFT ′ = [DIFT except ![addr] = [reqQ �→ Tail(@.reqQ),
5 state �→ “None”,
6 vicseen �→ “None”]]
7 SetDir(addr , state, sharers)

∆
=

8 Dir ′ = [Dir except ![addr] =
9 [owners �→ sharers, state �→ state]]

10 SetDirExclusiveIfRemote(pid)
∆
=

11 if pid = HomeNode(addr)
12 then SetDir(addr , “Stale”, StaleOwners)
13 else SetDir(addr , “Exclusive”, {pid})
14 in ∧ dentry .cmd = “ReadMod”
15 ∧ probe = “Mem”
16 ∧ Dir [addr].state = “Shared”
17 ∧ let invaldests

∆
= Dir [addr].owners \ {dentry .reqPID}

18 in Send(BlkExclusiveCnt(dentry .reqPID ,
19 CohCnt(invaldests))
20 ∪ SharedInvalSingles(invaldests))
21 ∧ SetDirExclusiveIfRemote(dentry .reqPID)
22 ∧ ReleaseDIFTEntry(addr)

24

Figure 5: Part of the TLA+ specification for the
home Zbox phase of the protocol scenario in Fig. 4

Since the focus of this paper is verifying implementations
against formal specifications, we discuss the issue of verify-
ing properties of the protocol itself only briefly and refer the
interested reader to previous papers dedicated to this issue.
As described in [1, 7], prior to our work, TLC was used to
check the specification for consistency and to prove prop-
erties on small configurations for the protocol, i.e. for few
processors and addresses. For larger configurations, certain
safety properties were proven by hand on the specification
since a theorem prover was not available for TLA+. For
these larger configurations, algorithmic verification was lim-
ited to checking the consistency of the protocol. While this
may at first seem to be a limitation of our method, it is
important to note that, because of the complexity of the
implementation, even the simplest formal checks, let alone
model checking, are prohibitively costly to apply at the im-
plementation level.

358

Figure 6: The map from the state space of a multi-
processor system to that of the corresponding TLA+

specification. TLC checks whether the transitions
c0 → c1 and c1 → c2 are legal.

2.4 The Abstraction Map
An execution at the specification level consists of a se-

quence of atomic protocol transactions, each of which is
described by a single TLA+ action. At this level, values
of protocol state variables appear instantly available. Each
action updates a group of specification variables simultane-
ously, atomically. This is a much higher level of abstraction
than the implementation. One specification state variable,
such as the cache state, typically corresponds to a group of
implementation variables which may be distributed across
the hardware. These implementation variables are not nec-
essarily updated simultaneously or atomically. Accessing
and updating these variables require sequences of requests
and responses, each of which may take several clock cycles
to transmit and receive. This abstraction gap needs to be
bridged using a map. In this section, we present our method
for constructing such a map.
Our approach is distinct in two regards: (i) The effort put

into constructing the map enables the formal specification to
be used as a monitor during all simulations and (ii) The two-
phase recipe for constructing abstraction maps presented in
this section makes it feasible to apply for verification non-
experts even on a large design. Further, since the abstract
model is the protocol specification itself, the construction,
analysis, and maintenance of this model is a natural part of
the design process.
We define the abstraction map as a function fabs (Fig. 6)

which maps each implementation state s to a state of the
specification c = fabs(s). For each transition in the im-
plementation si−1 → si in a simulation run, we compute
ci−1 = fabs(si−1) and ci = fabs(si), and use TLC to check
whether the transition ci−1 → ci is allowed by the TLA

+

specification.
Through the use of an intermediate level of abstraction,

we express the map as the composition of two maps. The
first map, fimpl→int is from the implementation to the in-
termediate level, the second, fint→spec from the intermediate
level to the specification. The intermediate representation
is for better exposition of the mapping process. A state
transition model for it is never constructed.
The state variables of the intermediate model and the

specification are the same but the level of atomicity is dif-
ferent. The atomic transactions at the intermediate level
are updates to a single intermediate state variable, such as

Dir [addr].state, whereas the specification updates a group of
such variables at once (lines 17-22 in Fig. 5. fimpl→int keeps
track of the low-level transactions and distributed updates
in the hardware for variables representing each intermediate
state variable. It aggregates these updates into one atomic
update of an intermediate state variable. In a similar fash-
ion, fint→spec aggregates updates to collections of intermedi-
ate state variables into one atomic update corresponding to
one TLA+ protocol action.
Each phase of the mapping establishes a correspondence

between variable updates that are distributed in time and
space in the lower level of abstraction to an atomic transac-
tion in the upper level. Our approach to constructing these
maps is similar to the method of “aggregation of distributed
transactions” [5]. The aggregation method associates with
each high level, atomic transaction a commit point in the
implementation. Transactions in progress in the implemen-
tation do not cause a change in the abstract state until they
reach the commit point. When they do, the abstraction map
computes the implementation state that would be reached
if the lower level representation was run to quiescence with
no additional transactions (the completion point). Then it
computes the projection of the implementation state onto
the specification variables.
In our maps, we wait until transactions reach the com-

pletion point before reflecting their effects on the abstract
state. The transactions modify the abstract state in the
same order as their commit points, only with an additional
delay. We perform the abstract state update specified by an
action only if (i) it is completed, and (ii) comes first in the
order that the hardware serializes transactions. This serial-
ization order is critical and is explicitly represented in the
hardware.
Our way of computing the maps can be viewed as a de-

layed version of the aggregation method. This delayed ver-
sion has the advantage of avoiding making the completion
of a transaction (which is, in effect, simulating the hard-
ware to quiescence) part of the abstraction map. Running
the simulator to quiescence at each implementation step is
infeasible, both because of the computational cost and the
extra requirement from simulators that simulation steps be
reversible.
Our mapping approach is especially well suited to complex

designs where a large team of designers implement hardware
sub-blocks. Each hardware designer can construct the por-
tion of fimpl→int relating to his sub-block. Then architects re-
sponsible for the overall design can construct fint→spec. This
decoupling allows conceptual errors in the protocol to be dis-
tinguished from implementation errors, and makes detection
and correction of such errors easier. It also makes maintain-
ing the map through the design cycle easier, since modifica-
tions to the protocol design or to hardware sub-blocks only
modify one component of the map.
The abstraction map was implemented as a C++ module

that was linked with the simulator (Fig. 1). The mapping
module computes fabs incrementally in order to avoid exam-
ining all of the implementation state. At each clock phase,
after the simulator computes the state transition si−1 → si ,
the mapping module is invoked and checks if any implemen-
tation variable of interest has changed. It then determines
if ci = fabs(si) is different from ci−1 = fabs(si−1). If this
is the case, it notifies TLC, which checks if the transition
ci−1 → ci was legal. Note that TLC is used only to check

359

a single specification-level state transition. The time spent
by TLC, which is run as a parallel process, to check and
record one such transition is negligible compared with the
cost of simulating. Our rudimentary implementation results
in about 100% simulation overhead.
The portion of hardware involved in the map was de-

scribed using approximately 20 thousand lines of HDL code.
The map itself took eight thousand lines of C++ code, ex-
cluding comments, which is roughly the same size as imple-
mentation level checkers that had been previously written.
The map was constructed by a formal verification researcher
after the design was complete, which made the process time
consuming. The cache coherence hardware of a future gener-
ation microprocessor design was first specified using TLA+

and it was expected that the task of extracting the infor-
mation from the design required for such a map would be
passed down to the implementors of hardware components
as described above.
Our method provides an iterative process for debugging

the specification, implementation, and the abstraction map
together. Whenever an inconsistency between the imple-
mentation and the abstraction is detected, either the ab-
straction map is modified or the implementation and/or pro-
tocol specification are corrected. In each case, the quality
of verification is improved.

2.5 The TLC Model Checker as a Monitor
Once the abstraction map is constructed and linked with

the simulator, during all subsequent simulations, TLC can
be used as a monitor that checks consistency with the pro-
tocol specification. Since at each step of the simulation the
abstraction map produces a protocol-level state, when an er-
ror is signaled by TLC, the sequence of states produced by
the map up to that point provide a high-level trace, which
is a useful aid for debugging. If TLC signals an error, the
spec-level trace up to that point can be used to determine
whether there was an error in the construction of the map,
or whether the hardware in fact performed an illegal oper-
ation. This is an improvement over checkers that implicitly
perform both the abstraction and the consistency checking,
since these two aspects of the protocol consistency verifi-
cation process are decoupled and therefore verified and de-
bugged separately. A significant feature of our approach is
the fact that an error is signaled the first time the hardware
performs an operation inconsistent with the specification.
This provides strong justification for high-level, executable
specifications, and model checkers that can handle them.
We use TLC to store the specification states covered dur-

ing simulation. In this way, coverage information is collected
at the same time protocol conformance is being tested. To
keep coverage data managable, we make use of symmetry
reductions and views as described in Section 2.1. A view in
effect designates a subset of specification variables as cover-
age variables. One natural choice for a view is the tuple of
variables that the case splits in protocol phases are based
on. These were the same variables used in the text descrip-
tion for the protocol for coverage measurement during prior
simulations: the memory controller state, the result of the
cache, victim buffer and directory look-ups, and the type
of the message the memory controller is processing. All of
these are specification state variables. The late-stage design
bug described in the next section was directly related to a
gap according to this notion of coverage.

While it is possible to collect coverage information by writ-
ing coverage measurement code observing the implementa-
tion state only, inferring the coverage information also re-
quires translation from the time granularity and signal rep-
resentation of the implementation to the protocol level. Us-
ing the formal specification and the mapping for this purpose
as well avoids duplicated work and makes coverage data col-
lection more rigorous.

2.6 Addressing Coverage Gaps
Possibly the most important benefit offered by our ap-

proach is the facilitation of coverage-guided validation. In
the later stages of the functional validation process, assign-
ments to coverage variables that have not been exercised
during simulation are identified as coverage gaps. These
then serve as targets for TLC, which is used to explore the
protocol state space, and to generate a trace to the target if
one exists.
A path to a target state generated by TLC is intuitive to

understand, and is a very valuable aid for simulation input
generation. Since the abstract specification closely reflects
the structure of the EV7 design, translating this path into a
simulation run of the EV7 is a manageable task. Typically,
translating a specification-level run into an implementation
run involves writing a script to convert high level proto-
col messages to clock accurate representations at the input
pins of a processor, and experimenting with the timing of
consecutive messages. Due to the complexity of the imple-
mentation, it is a much more formidable task to generate the
same simulation run without being provided a protocol-level
path.
A major difficulty in making use of coverage information is

identifying which coverage gaps are due to insufficient sim-
ulation and which ones are scenarios that cannot happen.
The use of formal specifications for coverage measurement
alleviates this difficulty. Formal verification tools such as
TLC can determine or conservatively estimate whether a
coverage target is reachable or not. Coverage gaps that ap-
pear due to insufficient simulation can then be given priority
in test generation.

Figure 7: The late-stage design bug

To demonstrate the viability of our approach, we selected
a bug (Fig.7) from the EV7 bug database that was discov-
ered only after the first hardware prototype was built and
tested in an eight processor configuration. We deliberately
chose such a bug to make sure that it was unlikely to exercise
it during random simulation or pre-silicon directed tests. A
description of the bug follows.

360

Requests per proc.
1 2 3

3 proc.s 44s, 3K, 15 33 m, 79K, 25 5h, .7M, 38
4 proc.s 21m, 53K, 21 >8h, >1.2M, ? >8 h, >2.8M, ?

Table 1: TLC run-time, size (number of states) and
diameter of the state space

Initially, a memory address (addr0), whose home node is
processor 0, is in shared state in processors 0, 1, and 2. The
home node asks for exclusive access to the address (Shared-
toDirty[1] in Fig. 7 and gets it. Later, it evicts this line from
its cache (the Victim message in Fig. 7). In the meantime,
processors 1 and 2 ask for exclusive access to the same line
(SharedtoDirty[3] and [4], respectively). The victim message
remains pending in the victim buffer because of too many
other memory requests keeping the memory controller busy.
SharedtoDirty[3] is refused due to the eviction in progress.
The protocol design implicitly assumes that after this re-
fusal, the victim will make its way to the memory controller
and resets the associated “inflight” bit. SharedtoDirty[4] is
processed by Zbox0 as if there is no victim message in flight.
But then Zbox0 receives the Victim message while processing
SharedtoDirty[4]. Since this scenario was not anticipated, no
next state had been specified in the protocol engine specifi-
cation or implementation. This unexpected victim message
causes an assertion violation during a model checking run
using TLC on a single-address, three-processor configura-
tion. This particular model checking run took less than five
minutes and about 30 MB of memory on a 625 MHz Alpha
server. It was confirmed with the architects that if they
were given the protocol-level trace produced by TLC before
the bug was discovered, they could easily have produced a
corresponding run in the implementation.
We then repeated the simulation run that exercised this

bug, this time using TLC as a correctness monitor. The sim-
ulation was consistent with the (buggy version of the) spec-
ification throughout the run. This proved that the protocol-
level error trace was an actual bug in the implementation
and was not due to the protocol specification containing
too much non-determinism. The fact that our methodology
could be used to identify a protocol-level trace and to verify
that it is indeed a trace in the implementation and leads to
a real error demonstrates the power of our approach. The
work described in this paper was a demonstration of con-
cept, rather than the primary means of verification for the
EV7. Therefore, the experimental results presented are lim-
ited. As a measure of the complexity of the protocol and
TLC’s performance, Table 2.6 lists some performance data.

3. RELATED WORK
In [6], similar to our work, the same formal description is

used for collecting coverage information and deriving simu-
lation inputs. The formal description in that case is a list of
interface properties describing a bus protocol. Our work is
different in several regards. First, the specification for the
EV7 cache-coherence protocol is at a more abstract level
than the more cycle-accurate, RTL-level interface specifica-
tions in [6]. This necessitates an abstraction map, but in
return provides tools for reasoning at a higher level. Sec-
ond, the properties in [6] are very localized in time, for in-
stance, they can not express constraints on bus protocol

transactions. Perhaps more importantly, the EV7 specifica-
tion reflects the internal architecture of the multiprocessing
engine, and is thus better suited for measuring coverage and
directing simulation to exercise all aspects of the hardware.
The EV7 protocol specification can also be viewed as a

detailed functional coverage model similar to those in [3].
The fact that our specification is executable and that there
are verification tools that can be run on it addresses a key
issue pointed out in [3]: determining whether coverage gaps
are true deficiencies in validation or are due to the coverage
model being too general. The techniques described in [3] can
be used to limit the number of coverage targets for TLC. Our
work is similar to [2] in making formal verification tools and
simulation collaborate. However, the existence of a high-
level, executable formal specification and tools for reasoning
on it distinguishes our approach.

4. CONCLUSIONS
We presented a technique for using formal specifications

of hardware as simulation monitors, coverage analysis, and
coverage-guided generation of simulation input vectors. Our
approach makes the process of checking functional correct-
ness during simulation formal and rigorous, and enables for-
mal coverage analysis, and automation for directing sim-
ulation runs towards coverage gaps. We demonstrate the
efficacy of our approach on verifying the cache coherence
engine of the Alpha 21364 microprocessor.

Acknowledgements
We would like to thank Maurice Steinman, Brian Lilly, Luka
Bodrozic, Kathy Menzel, Jonathan Nall, Rajeev Joshi, Scott
Kreider and Scott Taylor for their contributions to this work.

5. REFERENCES
[1] H. Akhiani, D. Doligez, P. Harter, L. Lamport,

M. Tuttle, and Y. Yu. TLA+ Verification of
Cache-Coherence Protocols http://research.-
microsoft.com/users/lamport/tla/fm99.pz.Z.

[2] P.-H. Ho, T. R. Shiple, K. Harer, J. H. Kukula,
R. Damiano, V. Bertacco, J. Taylor, and J. Long.
Smart simulation using collaborative formal and
simulation engines. In Proc. Intl. Conf. on
Computer-Aided Design, pages 120–126, Nov. 2000.

[3] O. Lachish, E. Marcus, S. Ur, and A. Ziv. Hole analysis
for functional coverage data. In Proc. 2002 Design
Automation Conference, 39th DAC, pp. 807–812, 2002.

[4] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison/Wesley, 2002.

[5] S. Park and D. L. Dill. Verification of Cache Coherence
Protocols by Aggregation of Distributed Transactions.
In Theory Comput. Systems, Vol. 31, pp. 355–376, 1998

[6] K. Shimizu and D. L. Dill. Deriving a Simulation Input
Generator and a Coverage Metric from a Formal
Specification In Proc. 2002. Design Automation
Conference, 39th DAC, pp. 801–806, 2002.

[7] Y. Yu, P. Manolios, and L. Lamport. Model checking
TLA+ specifications. In Proc. IFIP Working
Conference on Correct Hardware Design and
Verification Methods, CHARME, Lecture Notes in
Computer Science 1703, pp. 54–66, 1999.

361

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

