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SUMMARY

We propose a flexible and identifiable version of the 2-groups model, motivated by hierarchical Bayes
considerations, that features an empirical null and a semiparametric mixture model for the nonnull cases.
We use a computationally efficient predictive recursion (PR) marginal likelihood procedure to estimate the
model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical
Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery
rates. Simulations and real data examples demonstrate that, compared to existing approaches, PRtest’s
careful handling of the nonnull density can give a much better fit in the tails of the mixture distribution
which, in turn, can lead to more realistic conclusions.

Keywords: Dirichlet process; Marginal likelihood; Mixture model; Predictive recursion; Two-groups model.

1. INTRODUCTION

Large-scale multiple testing problems arise in many applied fields such as genomics (Dudoit and van der
Laan, 2008; Schäfer and Strimmer, 2005), proteomics (Ghosh, 2009), astrophysics (Liang and others,
2004; Miller and others, 2001), and image analysis (Schwartzman and others, 2008; Lindquist, 2008) to
name a few. An abstract representation of the problem is testing a set of hypotheses

H0i : the i th case manifests a “null” behavior, i = 1, . . . , n,

based on summary test statistics, or z-scores, Z1, . . . , Zn . The null behavior of a single z-score Zi can
be described by the N(0, 1) distribution when Zi is defined as the Gaussian transform of a test statistic
derived for the i th case, such as the 2 sample t-statistic comparing treatment to control. Although this
characterization leads to a simple rejection rule for the i th case in isolation, it is found insufficient when
all n tests in are to be performed, particularly when n is very large. In fact, one of the major developments
of modern statistics has been the philosophical shift from treating the z-scores as mutually independent
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to treating them as exchangeable (Efron and Tibshirani, 2002). Consequently, recent work on large-scale
simultaneous testing has focused on Bayesian models and, in particular, empirical Bayes methods that
allow for information sharing between cases even though separate decisions will be made for each case.

An elegant formalization of the large-scale simultaneous testing problem is the “2-groups model”
(Efron, 2004, 2007, 2008) which assumes Z1, . . . , Zn arise from a mixture density

f (z) = π f0(z) + (1 − π) f1(z), (1.1)

with f0 and f1, respectively, describing the null and nonnull distributions of the z-scores. Efron (2004,
2008) argues that, for a variety of reasons, the case-specific theoretical null distribution N(0, 1) may not
be an adequate choice for f0, and a more appropriate choice is the so-called empirical null distribution
N(μ, σ 2), where μ and σ are to be estimated from data.

Following Efron’s original treatment, various new methods have been proposed for fitting and drawing
inference from the 2-groups model of z-scores (Jin and Cai, 2007; Muralidharan, 2010). These methods,
together with related methodology based on p values or t-scores (e.g., Benjamini and Hochberg, 1995;
Storey, 2003), have been widely used in biological studies with high-throughput data in particular to
identify genes responsible for a phenotypical behavior based on microarray analysis. The single-summary-
per-case approach of these methods offers substantial computational advantage over other approaches,
such as those based on high-dimensional classification (Golub and others, 1999; Lee and others, 2003).

However, currently available methods for fitting (1.1) do not take full advantage of the 2-groups for-
mulation. Motivated by applications to microarray studies, where typically a very small fraction of genes
are linked with the phenotype, existing 2-groups methods take a conservative approach of encouraging
estimates of π close to 1. While this is reasonable for many applications, there are scientific studies where
such a conservative approach fails to detect any or a majority of the interesting cases. Figure 1 reports
2 such microarray studies, a leukemia study by Golub and others (1999) and a breast cancer study by
Hedenfalk and others (2001); more details are given in Section 6. As shown in the figure, existing meth-
ods each produce estimates of the null component π f0 that cover one or both tails of the z-score histogram,
leaving little to be explained by the nonnull component (1 − π) f1. Consequently, zero discoveries of in-
teresting genes are made in one or both tails. Classification-based analyses (e.g., Lee and others, 2003),
on the other hand, identify interesting genes in both tails for each of the 2 studies (see Section 6).

In this paper, we consider a new likelihood-based analysis of the 2-groups model, with a regularization
on μ, σ, π , and a semiparametric specification of the nonnull density f1. We employ a mixture represen-
tation of f1 that gives it heavier tails than f0 to reflect the belief that z-scores from the nonnull cases are
likely to be larger in magnitude than those from the null cases. The null weight π is given a beta prior with
a center close to one but with a relatively long left tail. Additionally, we use a prior on (μ, σ ) to reflect
the belief that this vector is likely to be close to (0, 1).

Compared to the existing methods based on z-scores, our proposal allows a wider range of estimates
of π . For scientific studies, where the existing methods discover a fair number of interesting cases, our
method makes similar discoveries. On the other hand, for other studies, where existing methods seem
to fail, such as the 2 studies mentioned earlier, our method produces different but arguably more believ-
able results (see Sections 6 and 7). A similar adaptability property manifests in our simulation study in
Section 5 where z-scores are generated according to (1.1) with π ranging between 0.75 to 0.99.

Despite a nonparametric specification of f1 and a likelihood-based analysis, our treatment of the
2-groups model retains the computational efficiency that is hallmark of methods based on z-scores. This
has been possible due to recent developments on a stochastic algorithm due to Newton (2002) called
predictive recursion (PR) for estimation of mixing densities with respect to any arbitrary dominating
measure (see also Newton and others, 1998). Theoretical properties of this algorithm are addressed in
Ghosh and Tokdar (2006), Martin and Ghosh (2008), Tokdar and others (2009), and Martin and Tokdar
(2009). Martin and Tokdar (2011) show how this algorithm can be used in a hierarchical mixture model to
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(a)Goluband others(1999) z-scores
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(b) Hedenfalkand others(2001) z-scores
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(c) Goluband others(1999) z-scores and PRtest fit
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(d) Hedenfalkand others(2001) z-scores and PRtest fit

Fig. 1. Density histogram ofz-scores from leukemia microarray data (Goluband others, 1999) and breast cancer data
(Hedenfalkand others, 2001). Panels (a) and (b) display estimates ofπ f0 based on the methods ofEfron (2004)
(—), Jin and Cai(2007) (−−), andMuralidharan(2010) (∙ ∙ ∙ ). Panels (c) and (d), discussed in Section6.2, show
thez-score histograms along with the corresponding PRtest fit:π f0 (solid black line),(1− π) f1 (dashed black line),
f (solid gray line). Estimated fdr and the 0.1 threshold are shown on the negative scale. The 27 genes identified by
Leeand others(2003) in each data set are marked with a vertical bar at theirz-score; the bar’s height represents its
posterior inclusion probability in their classification model. For the leukemia data in panel (c), dots point toz-scores
of the 50 genes originally identified byGoluband others(1999).
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construct a likelihood function over nonmixing parameters, marginalized over the mixing density.
This marginal likelihood is shown to have strong connections to the marginal likelihood under a Bayesian
Dirichlet process mixture model. We adapt this marginal likelihood to the 2-groups model, with μ, σ , π ,
and a scaling parameter in the specification of f1 serving as the nonmixing parameters.

For the multiple testing problem, we adopt the strategy of mimicking the Bayes oracle rule by thresh-
olding a plug-in estimate of the local false discovery rate (fdr), similar to Efron (2004, 2008), Jin and
Cai (2007), and Muralidharan (2010). Simulations presented in Section 5 show that the proposed method,
called PRtest, is more adaptive to asymmetry in the nonnull density f1 and to the degree of sparsity char-
acterized by π . Performance of PRtest in an interesting example using the artificial microarray data of
Choe and others (2005) is addressed in Section 6. In this example, the set of interesting genes is known
and we find that PRtest performs considerably better than existing methods and strikingly similar to the
oracle. Likewise, for the leukemia and hereditary breast cancer studies, we find that the PR-based estima-
tion produces a better fit in the tails of the distribution than that seen in Figure 1 and, consequently, we are
able to identify a number of interesting genes in each example. The identified genes are, in fact, consistent
with those identified by more sophisticated high-dimensional classification-based techniques.

2. MODEL SPECIFICATION

We take f0(z) = N(z|μ, σ 2), the normal density with unknown mean and variance μ and σ 2. The nonnull
density f1 is taken to be a semiparametric mixture of the form

f1(z) =
∫
U

N(z|μ + τσu, σ 2)ψ(u)du, (2.2)

with ψ a density with respect to the Lebesgue measure on U = [−1, 1] and τ � 1 a scaling factor. An
important consequence of the requirement that ψ be a density is given in the following theorem (for the
proof see Appendix A of the supplementary material available at Biostatistics online).

THEOREM 2.1 For f0 and f1 as described above, the parameters (μ, σ, π, τ, and ψ) in our version of the
2-groups model are identifiable.

This result is useful because, in general, identifiability is not guaranteed for a 2-groups model (1.1)
with an empirical null that involves unknown parameters. For our specification, the key to identifiability is
the model feature that f1, by virtue of averaging over locations shifts of f0, has heavier tails than f0. This
feature is scientifically relevant as it embeds the belief that z-scores in the tails of the histogram are more
likely to correspond to nonnull cases than null. Efron (2008) incorporates a similar belief through a “zero-
assumption”: most z-scores near zero are from the null component. However, such a zero-assumption can
be too strong to allow learning from data and can lead to an estimate of π f0 that has heavier tails than any
reasonable histogram-smoothing estimate of f , as reported by Strimmer (2008) and illustrated in Figure 1.
In comparison, separating f0 and f1 by their tails seems more practical (see Section 6).

3. MIXTURE MODELS AND PREDICTIVE RECURSION

It is more convenient to write our specification of f as the mixture model

f (z) =
∫
U

p(z |θ, u)�(du) (3.3)

with parameters θ = (μ, σ, τ), kernel p(z | θ, u) = N(z |μ + τσu, σ 2), and mixing probability measure
� on U that assigns a positive mass π at 0 ∈ U and distributes the remaining mass on U according to
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a Lebesgue density ψ . The collection of all such � is the set P = P(U , ν) of probability measures that
are absolutely continuous with respect to the measure ν defined as the sum of the Lebesgue measure on
U and a point mass at 0. The ν-density of such an � will be denoted by π〈0〉 + (1 − π)ψ .

Inference on (θ,�), with � as in (3.3), can be performed in a Bayesian setting with a prior distribution
on (θ,�). A popular choice of prior distribution for the nonparametric probability measure � is the
Dirichlet process prior (Ferguson, 1973). However, there are 2 practical difficulties in employing this
inference framework for our model. First, the Dirichlet process prior entertains only discrete probability
measures, thus violating the important absolute continuity property of � with respect to ν. Second, despite
recent advances in computing, fitting a Dirichlet process mixture model does not scale well with the
number of observations n. For microarray studies, n ranges from thousands to tens of thousands, whereas
for more recent single nucleotide polymorphism studies, n can reach several hundreds of thousands. For
such massive data sets, fitting a Dirichlet process mixture model can be fairly time-consuming, nullifying
some of the advantages of the 2-groups framework.

As an alternative, we estimate (θ,�) via the PR methodology (Newton, 2002; Martin and Tokdar,
2011). PR is a stochastic algorithm for estimating a mixing distribution � in (3.3) through fast recursive
updates that have a strong connection with posterior updates for Dirichlet process mixture models. The
algorithm accommodates user-specified absolute continuity constraints on the mixing distribution and
enjoys attractive convergence properties under mild conditions with allowance for model misspecification
(Ghosh and Tokdar, 2006; Tokdar and others, 2009; Martin and Ghosh, 2008; Martin and Tokdar, 2009).
However, Newton’s original proposal can estimate the mixing distribution only when the kernel being
mixed is known exactly, i.e., for (3.3), an estimate of � is available only when θ is known. To resolve this
difficulty, Martin and Tokdar (2011) introduce a “marginal likelihood” function for nonmixing parameters
θ based on the output of the PR algorithm.

PR ALGORITHM. Start with an initial estimate �0 with ν-density π0〈0〉 + (1 − π)ψ0 and a sequence
of weights w1, . . . , wn ∈ (0, 1). For i = 1, . . . , n, compute

fi−1,θ (Zi ) =
∫

p(Zi |θ, u)�i−1(du),

�i (du) = (1 − wi )�i−1(du) + wi p(Zi |θ, u)�i−1(du)/ fi−1,θ (Zi ). (3.4)

Produce �n as an estimate of � and Ln(θ) = ∏n
i=1 fi−1,θ (Zi ) as the marginal likelihood of θ .

Martin and Tokdar (2011) give several justifications for labeling Ln(θ) as a likelihood function of θ .
For n = 1, L1(θ) equals the marginal likelihood function of θ , integrating out � under the Bayesian
specification � ∼ DP(α,�0), the Dirichlet process distribution with precision α = (1−w1)/w1 and base
measure �0. For n > 1, this correspondence is not exact, but Ln(θ) can be viewed as a filtering approxi-
mation of the corresponding Dirichlet process marginal likelihood function. Additionally, Ln(θ) features
an asymptotic concentration property commonly enjoyed by likelihood functions for i.i.d. data models
(Wald, 1949). Specifically, for large n, with Z1, . . . , Zn independently drawn from a common density f 
,
log Ln(θ) ≈ −nK 
(θ), where K 
(θ) equals the minimum Kullback–Leibler divergence between f 
 and
densities f of the form (3.3) with � ranging over the set P and its weak limit points.

4. REGULARIZED PREDICTIVE RECURSION INFERENCE AND PRTEST

We employ a regularized version of the predictive recursion methodology to estimate (θ,�) for our
2-groups model. The regularization is motivated by a hierarchical Bayes formulation of (3.3) with � ∼
DP(α,�0) where hyper-prior distributions are specified on the model parameters μ, σ, τ , and �0. We
take the ν-density of �0 to be π0〈0〉 + (1 − π0)ψ0 with a fixed choice of ψ0(u) ∝ u2. Among the
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remaining parameters, σ ∈ (0, ∞), τ ∈ (1, ∞), and π0 ∈ (0, 1) are taken to be independent with
log σ ∼ N(0, 0.252), log(τ − 1) ∼ N(0, 1), and π0 ∼ Beta(22.7, 1). Given σ and the other parameters, μ
is assigned the conditional prior distribution N(0, σ 2/400).

In our experience, σ in the range [0.5, 2.0] is typical, and the log-normal prior puts nearly all of its
mass there. Other priors for σ may also be considered, such as a conjugate scaled inverse-chi distribution.
The restriction τ > 1 ensures that the nonnull density f1 is considerably wider than f0, and the normal
prior for log(τ − 1) supports a large set of values in this range. The 22.7 in the beta prior for π0, also
used by Bogdan and others (2008), assigns about 90% of its mass to the interval [0.9, 1], reflecting the
belief that the null proportion π is likely to be large. Finally, the prior for μ is scaled to the choice of σ
and highly concentrated around the origin, reflecting the belief that the z-scores should have mean close
to zero. Finer tuning of this default prior for specific problems is straightforward.

For a predictive recursion analog of this hierarchical Bayesian model, we interpret the predictive
recursion likelihood as a function of both θ = (μ, σ, τ ) and π0. Writing this likelihood as Ln(μ, σ, τ, π0)
and letting g(μ, σ, τ, π0) denote the joint prior density function on these parameters, a regularized version
of the predictive recursion marginal log-likelihood function can be written as

�̃n(μ, σ, τ, π0) = log Ln(μ, σ, τ, π0) + log g(μ, σ, τ, π0). (4.5)

Estimates of these parameters are obtained by maximizing �̃n = �̃n(μ, σ, τ, π0). Once these estimates are
obtained, PR is run one last time with the estimated values of these parameters to produce an estimate
of F , i.e., of π and of ψ in (1.1) and (2.2), respectively. In our implementations, maximization of �n

is done by the gradient-based Broyden–Fletcher–Goldfarb–Shanno optimization method. Appendix B of
the supplementary material available at Biostatistics online provides a variation on the PR algorithm that
produces the gradient of log Ln as a by-product.

The PR methodology depends on 2 additional factors, namely, the choice of weights w1, . . . , wn and
the order in which the z-scores are processed by the algorithm. Martin and Tokdar (2009) provide an upper
bound on the rate of convergence for PR estimates of the mixture f when the weights are of the form
wi = (i +1)−γ , γ ∈ (2/3, 1]. Our choice wi = (i +1)−0.67 is close to the limit γ = 2/3 where the upper
bound is optimal. The recursive nature of the algorithm induces dependence on the order in which the Zi

values are visited. We reduce this dependence by replacing �̃n with its average over a number of random
permutations of the data sequence. Averaging over permutations increases the overall computation time
but adds stability to parameter estimation (Tokdar and others, 2009). In our experience, averaging over
10 random permutations is sufficient to stabilize the estimates of θ , and the additional computation time
required is negligible. To reduce variability due to random permutation, we keep the set of permutations
fixed over the process of maximizing �̃n .

For multiple testing, we consider the local fdr (Efron, 2004), given by

fdr(z) = π f0(z)/ f (z),

which represents the posterior probability that a case with z-score Z = z is null. Sun and Cai (2007)
argue that the local fdr is the fundamental quantity for multiple testing. Once regularized PR estimation
of (μ, σ, τ, π , and ψ) is completed, a plug-in estimate f̂dr of fdr is readily available, and PRtest is im-
plemented by thresholding f̂dr; that is, we declare case i as nonnull if f̂dr(Zi ) < r for some specified
threshold r ∈ (0, 1). According to Efron, this multiple testing rule will control the Benjamini–Hochberg
FDR at level r . In our examples, we take r = 0.1. This choice, used by Sun and Cai (2007), is some-
what subjective but sits between the choice r = 0.2 of Efron (2008) and Strimmer (2008) and the choice
r = 0.05 of Jin and Cai (2007) and others.
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5. SIMULATIONS

Here, we investigate the performance of PRtest in simulations compared to the benchmark Bayes oracle
test that thresholds the true fdr at level 0.1. The results will also be compared to those obtained from the
Fourier-based method of Jin and Cai (2007) and the mixfdr method of Muralidharan (2010).

For Z1, . . . , Zn , we assume independence and take the null density as f0(z) = N(z |μ, σ 2). Here, we
fix n = 1000, μ = 0, and σ = 1. Four choices of f1 are considered

C1: f1(z) = N(z | 0, σ 2 + ω2). Taking ω2 = 13 ≈ 2σ 2 log n ensures the nonnull z-scores are “de-
tectable” (Donoho and Johnstone, 1994). But, in our experience, the range of z-scores, one finds in
real data analysis is consistent with smaller signals, so we take ω2 = 4.

C2: f1(z) = 0.5
∫ 4

2 N(z | u, σ 2)du. This choice, used by Muralidharan (2010) and Johnstone and
Silverman (2004), exhibits asymmetry and has only slightly heavier tails than the null.

C3: f1(z) = 0.67N(z |−3, 2) + 0.33N(z | 3, 2). This one is asymmetric and a large portion of its mass
is concentrated away from the origin.

C4: f1(z) = 0.25
∫

[−4,−2]∪[2,4] N(z | u, σ 2)du. This is a symmetrized version of C2. A key feature of
this choice is that the unobserved signals are bounded away from zero.

For each of the 4 choices of f1, we consider 6 choices of π ranging from 0.75 to 0.99, forming a total of
24 simulations settings. Each setting is replicated 500 times and the results are reported below.

Table 1 summarizes the estimates of the null parameters π for each simulation setting. Estimates of
(μ, σ) are similarly accurate across methods, models, and sparsity, so these results are omitted. From the
table, we find that the maximum PR marginal likelihood estimates are the most adaptive across the range
of π values, specifically for choices C2–C4. Of particular interest is PRtest’s strong performance in the 2
most practically realistic cases, namely C3 and C4, which have smooth nonnull densities with modes on
both the left and right side of zero. Also the average computation time for PRtest is roughly 3 s, which
compares favorably with that for Jin–Cai (0.7 s) and mixFDR (0.5 s).

Next, we compare the performance of the selected methods based on false nondiscovery rate (FNR),
false discovery rate (FDR), power, and Bayes risk. We limit this discussion to nonnull choice C3; the
results for the other models are similar. Figure 2 plots these quantities as functions of π for the selected
methods and the Bayes oracle procedure. The message is that PRtest is competitive with the other tests in
all aspects across a range of sparsity levels. In particular, the 4 tests are similar in terms of FNR for large
π , but PRtest is better than mixFDR and Jin–Cai for relatively small π . Also, each of the 4 tests have
relatively small FDRs, although the Jin–Cai method has a somewhat unexpected spike, which explains its
higher power for large π values. Theoretically, the Bayes oracle test has the smallest Bayes risk uniformly
over π , but the PRtest risk sits very close over the entire range of π . This suggests that PRtest may be
asymptotically optimal in the sense of Bogdan and others (2011).

6. EXAMPLES

6.1 Validation with spike-in data

An interesting “spike-in” data set was built by Choe and others (2005). The data set itself is artificial—
so the set of interesting genes is known—but their careful construction gives it some features of a real
control-versus-treatment microarray study. We consider a subset of this data (available in the R package
st) consisting of 11 475 genes, of which 1331 are differentially expressed. Z-scores are obtained by taking
a Gaussian transform of the standard 2-sample t-test statistics. Figure 3(a) shows histogram of the ob-
served z-scores along with the PRtest fit of the 2-groups mixture model. The estimated density clearly fits
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Table 1. Mean (standard deviation) of the 500 estimates of π for the method of Jin and Cai (2007), the
mixfdr method of Muralidharan (2010), and PRtest for the 4 f1’s described in Section 5

f1 π Jin–Cai mixfdr PRtest
C1 0.75 0.928 (0.019) 0.957 (0.009) 0.918 (0.017)

0.80 0.929 (0.019) 0.965 (0.007) 0.930 (0.016)
0.85 0.934 (0.018) 0.971 (0.006) 0.942 (0.014)
0.90 0.945 (0.015) 0.980 (0.005) 0.960 (0.014)
0.95 0.961 (0.011) 0.989 (0.003) 0.980 (0.010)
0.99 0.978 (0.005) 0.995 (0.001) 0.995 (0.003)

C2 0.75 0.905 (0.015) 0.827 (0.016) 0.761 (0.017)
0.80 0.874 (0.019) 0.860 (0.012) 0.804 (0.014)
0.85 0.860 (0.023) 0.894 (0.009) 0.851 (0.013)
0.90 0.869 (0.028) 0.927 (0.007) 0.896 (0.010)
0.95 0.926 (0.017) 0.962 (0.005) 0.940 (0.009)
0.99 0.984 (0.007) 0.991 (0.003) 0.980 (0.008)

C3 0.75 0.909 (0.013) 0.857 (0.017) 0.788 (0.016)
0.80 0.886 (0.015) 0.881 (0.013) 0.828 (0.015)
0.85 0.871 (0.021) 0.909 (0.011) 0.867 (0.014)
0.90 0.886 (0.020) 0.937 (0.008) 0.903 (0.014)
0.95 0.935 (0.012) 0.967 (0.005) 0.937 (0.013)
0.99 0.980 (0.004) 0.991 (0.003) 0.982 (0.010)

C4 0.75 0.951 (0.007) 0.886 (0.035) 0.784 (0.066)
0.80 0.934 (0.010) 0.897 (0.015) 0.814 (0.021)
0.85 0.920 (0.015) 0.920 (0.010) 0.862 (0.018)
0.90 0.908 (0.025) 0.948 (0.007) 0.901 (0.013)
0.95 0.929 (0.017) 0.975 (0.005) 0.943 (0.012)
0.99 0.980 (0.007) 0.995 (0.002) 0.992 (0.005)

the data very well, and the fdr thresholding method flags 235 genes as downregulated. For comparison,
Figure 3(b) reports an oracle fit of the 2-groups model, where π is estimated as the known proportion of
differentially expressed genes, (μ, σ) are estimated by maximum likelihood based on the null z-scores,
and f1 is estimated by a standard Gaussian kernel estimate based on the nonnull z-scores; the top panel of
Table 2 reports the parameter estimates. This oracle procedure is, in some sense, the best fdr thresholding
procedure, one can hope for, and it flags 249 genes as downregulated.

For further comparison, we applied the methods of Efron, Jin–Cai, and Muralidharan and the results
are summarized in the top panel of Table 2. PRtest and the oracle perform similarly in every respect, while
the other methods are substantially different. Only the Jin–Cai method is able to pick out a reasonable set
of interesting genes, a bit larger than the sets identified by the oracle and PRtest. However, these additional
discoveries result in a 50% increase in FDR.

6.2 Application to real data

We applied PRtest, along with the methods of Efron, Jin−Cai and Muralidharan, to the 2 microarray
gene expression data sets mentioned in Section 1: the leukemia study by Golub and others (1999) and
the hereditary breast cancer study by Hedenfalk and others (2001). The parameter estimates and gene
classifications are summarized in the bottom 2 panels of Table 2. In both data sets, PRtest estimates π to be
relatively small and identifies a number of interesting genes, while the others identify none (see Figure 1(c)
and (d)). PRtest’s findings in these 2 data sets are corroborated by the results of Lee and others (2003) who
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Fig. 2. Plots of the FNR (top left), FDR (top right), power (bottom left), and Bayes risk (bottom right) against π for
the selected testing procedures in the C3 simulation setting described in Section 5.

learn a treatment classifier from gene expression levels and validate it by accurately classifying samples
from an independent test set. That is, the set of interesting genes identified by PRtest substantially overlaps
with the set of genes Lee and others (2003) flag as important constituents of their classifier; these are also
displayed in Figure 1(c) and (d). For the breast cancer study, some of the genes identified by PRtest and
Lee and others (2003), such as keratin 8, TOB 1, and phosphofructokinase platelet, have known biological
connections to breast cancer mutations (Lee and others, 2003, p. 93). The fact that the gene expression
levels lead to a well-validated classifier suggests that some genes must be differentially expressed. In
this light, it is surprising that the methods of Efron, Jin–Cai, and Muralidharan fail to identify a single
interesting gene.
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(a) PRtest fit
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(b) Oracle fit

Fig. 3. Histogram of the z-scores for the spike-in data in Section 6 along with fits of the 2-groups model using (a)
PRtest and (b) the Oracle described in the text. In each plot, overlays are π f0 (solid black line), (1 − π) f1 (dashed
black line), and f (solid gray line). The estimated fdr and the 0.1 threshold are shown on the negative scale. Numerical
values on the top left and right indicate the number of genes flagged as down- and upregulated, respectively, by the
fdr thresholding rule.

Table 2. Results for the 3 data sets considered in Section 6. The “Oracle” method, as described in the
text, uses the information about which genes are differentially expressed to estimate fdr

Data Method μ σ π Number of genes FDR (%) FNR (%)
Left Right

Spike-in Efron 0.33 1.50 0.99 2 0 0 12
Jin–Cai 0.77 1.45 0.91 306 0 3 9
mixfdr 0.28 1.45 0.97 8 0 0 12
PRtest 0.42 1.34 0.88 235 0 2 10
Oracle 0.30 1.31 0.88 249 0 2 10

Leukemia Efron 0.57 1.18 0.88 276 0 — —
Jin–Cai 0.95 1.30 0.91 291 0 — —
mixfdr 0.56 1.35 0.96 71 0 — —
PRtest 0.23 1.04 0.63 333 226 — —

BRCA Efron −0.33 1.45 1.00 0 0 — —
Jin–Cai −0.42 1.44 1.00 0 0 — —
mixfdr −0.31 1.38 0.99 0 0 — —
PRtest −0.01 1.04 0.45 231 44 — —
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7. DISCUSSION

This paper provides a new and identifiable semiparametric formulation of the 2-groups model and a com-
putationally efficient algorithm to estimate the model parameters. This naturally leads to a nonparametric
empirical Bayes multiple testing rule based on thresholding the estimated local fdr. In simulations, we find
that PRtest is comparable to existing methods, including the Bayes oracle. What is particularly interesting
is that the PRtest results differ substantially from those of existing methods in the examples of Section 6,
and we argue that our findings are, in fact, more believable.

We have chosen to focus only on the case where the null z-scores are normally distributed, though the
theory and methods presented here work for other well-behaved parametric families. Normality of null
z-scores is indeed a strong structural assumption, but identification of the null from the nonnull requires
strong parametric shape restrictions on one of the 2 components. Assuming a normal null component
is natural because, theoretically, the null z-scores should have a standard normal distribution. This is
similar to p-value-based methods where the null p values are assumed to be uniform. A purely statistical
verification of this kind of assumption seems quite challenging. One could possibly gain insight on this
issue through biological experiments consisting entirely of null cases.

We have justified the continuous location mixture formulation of f1 in (2.2) on 2 grounds: first, it
makes the model parameters identifiable and second it conforms to the accepted notion that the alternative
is more likely than the null to produce z-scores of large magnitude. This latter property is also satisfied by
a discrete mixture f1 = ∑J

j=1 π j N(μ + τσu j , σ
2) for which the identifiability condition does not hold.

But with the regularization to encourage selection of f0 centered near zero, and the ability of a flexible
continuous mixture to approximate a discrete one, PRtest might still perform well in this difficult situa-
tion. Our limited simulations seem to indicate that this is true. The case where f1 is not wider than f0 also
yields a coherent statistical simulation model, but we argue that it corresponds to a biologically untenable
abstraction. Indeed, the multiple testing framework accepts the z-scores as scores whose magnitudes (pos-
sibly after a small shift of origin) give an ordering of how interesting the cases are relative to each other.
The question is to decide how interesting a case must be in order to be labeled as nonnull. Accepting the
relative ordering is equivalent to accepting that f1 must be wider than f0.

SOFTWARE

R software for PRtest is available at http://www.stat.duke.edu/˜st118/Software.

SUPPLEMENTARY MATERIAL

Supplementary material, including a proof of Theorem 2.1 and a recursive algorithm for evaluating the
gradient of �̃n(·) in (4.5), is available at http://biostatistics.oxfordjournals.org.
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