
Bijlage N Knuth meets NTG members 38

Knuth meets NTG members

March 13th, 1996

Abstract

On January 6th 1996, Kees van der Laan informed the NTG that Donald Knuth would be in Holland in March.
Knuth was invited by the Mathematisch Centrum (MC, nowadays called Centrum voor Wiskunde en Infor-
matica, CWI) because of CWI’s 50th anniversary. Both Knuth and Mandelbrot were invited as speakers at
the celebration.
The NTG noticed that this was an exceptional occasion to organize a special meeting with Knuth for all Dutch
TEX and METAFONT users who would like to meet the Grand Wizard himself.
Fortunately Knuth accepted the NTG invitation and so a meeting was organized in ‘De Rode Hoed’ in Am-
sterdam on March 13th. About 35 people from all over the country and even from Belgium joined to meet
Knuth.
Everything was recorded on both video and audio tape by Gerard van Nes. Christina Thiele volunteered to
write this transcript.

Erik Frambach: Welcome, everyone. This is a very spe-
cial meeting on the occasion that Mr. Donald Knuth is in
Holland. The NTG thought it would be a good idea to take
the opportunity and ask him if he would be willing to an-
swer our questions about TEX, METAFONT, and anything
else connected to the things we do with TEX. Luckily, he
has agreed. So we are very happy to welcome Mr. Donald
Knuth here — thank you for coming.

Tonight we have time to ask him any questions that we have
long been waiting to pose to him [laughter]. I’m sure that
all of you have many, many questions that you would like
the Grand Wizard’s opinion about. So, we could start now
with questions.

Donald E. Knuth: I get to ask questions too! [laughter]
Last Saturday I was in Prague and the Czechoslovak TEX
users had a session something like this and you’ll be glad
to know that I saw quite a few copies of 4TEX CD-ROMs
at that meeting.

It’s not my first time in Amsterdam. I was in Amsterdam in
1961, so it’s only been 35 years, and probably less than 35
years till the next time. I guess they’re tape recording these

questions-and-answers to try to keep me honest, because
they also did that in Prague. So in case the same question
comes up, you’ll have to take the average of the two an-
swers. [laughter]

Wietse Dol: Did you know that Barbara Beeton does that?
She mails you and says “Tape everything.”

Knuth: Yes, that’s what they said in Prague too! [laugh-
ter] I think she’s desperate for things to do, or maybe she
just has a lot of questions. But before I open questions, let
me say that one of the most interesting questions asked me
in Prague was after the session. And I wish it would get
into [the record]. The question was: how did I meet Duane
Bibby, who did the illustrations for The TEXbook and The
METAFONTbook? I always wanted people to know about
that somehow.

Here’s the story. I had the idea that after writing math
books for many years, I wanted to have a book that had
more weird — well, anyway, different — illustrations in it.
Here I was writing a book about books — books have il-
lustrations, so why shouldn’t I have illustrations too. So, I
wrote to an artist called Edward Gorey. Does anyone know
...

Frans Goddijn: Yup. Amphigorey. Beautiful.

Knuth: Yes, Edward Gorey. Amphigorey. He makes
very morbid drawings but with a wonderful sense of hu-
mor. I had used several of his books with my children. I
thought he would be a natural person. I wrote him two let-
ters but he never responded. Then I wrote to a Japanese
artist called Anno, Matsumasa Anno, who is really the logi-
cal successor to Escher. [. . .] Ano does what Escher did but
in color, so I asked him if he would do it. He sent me back
a nice letter, saying “I’m sorry I don’t have time because I
have so many other commitments, but here are five of my

Bijlage N Knuth meets NTG members 39

books full of pictures and if you want to use any of those,
go ahead.” I wanted personalized pictures.

Then I went to a party at Stanford where there was a lady
who worked for a publisher. She’d just met a brilliant
young artist who she’d just worked with. I invited him to
come to my house, and we spent some time together and
he’s a wonderful person. Duane lives now up in northern
California, about 4 hours’ drive from my house, so I only
went up there once to see him. He sometimes comes down
to the San Francisco area on business. First we discussed
the book and then he sent me a bunch of drawings and all
kinds of sketches that he had. Originally, TEX was going
to be a Roman, and he drew this man in a toga with olive
branches in his head — which is why the lion has the olive
branches now. But all of a sudden he started doing sketches
of his cat, which really seemed to click, and pretty soon
he had a draft of all 35 or whatever drawings, using a lion.
Most of those eventually become the drawings in the book,
and we adjusted half a dozen of the others. When I went to
visit up at his house, I got to meet TEX the cat. He looks
very much like the one you see in the book. So that’s the
story about Duane Bibby.

Erik: Thank you. Who would like to start with the first
question? Please identify yourself when you ask one.

Piet van Oostrum: My name is Piet van Oostrum. You
have this wonderful lion on the TEXbook and the lionness
on the The METAFONTbook. What about baby lions?

Knuth: Oh, I see .. . [laughter]. Duane still does illus-
trations for special occasions. He’s made illustrations for
the Japanese translation of both the TEXbook and the The
METAFONTbook. He has TEX and META both dressed up
in Japanese costumes. So now, if there happens to be some
kind of an offspring that would come out of some other
user, then, I imagine he would glad to help do it. But it
would probably be a little bit of an illegitimate child, from
my point of view [laughter]. I mean, I wouldn’t take re-
sponsibility for anything those characters do [laughter].

Piet: So what are your ideas about the offspring of TEX
and METAFONT?

Knuth: Well, I think that no matter what system you have,
there will be a way to improve it. If somebody wants to

take the time to do a good, careful job with it, then as we
learn more about typesetting, it will happen that something
else will come along. I personally hope that I won’t have to
take time to learn a new system, because I have enough for
my own needs. But I certainly never intended that my sys-
tem would be the only tool that anybody would ever need
for typesetting. I tried to make it as general as I could with
a reasonably small program, and with what we knew and
understood about typesetting at the time. So these other
projects — I don’t consider that they’re a threat to me or
anything. I hope that there will be some compatibility so
that — I mean, I’d like to be immortal— so that the books
I’ve written now could still be typeset 50 years from now
without having to go through the files and edit stuff. I like
the archival and machine-independent aspects of TEX es-
pecially, and I tried to set a model, a minimum standard of
excellence for other people to follow.

Hans Hagen: but when you look in the future, . . . you con-
sider today’s programming by a lot of people as an art, well
a lot of art takes hundred of years to be recognized as art. In
about a hundred years there will be pretty different comput-
ers, the programming languages will be changed, the media
on which we put all those things will be changed. Real pro-
grams and everything related to them, will they ever have
a chance to become immortal, as you see it?

Knuth: Did you state your name? [laughter]

Hans Hagen: I’m Hans Hagen.

Knuth: You’re saying that it’s pretty arrogant of us to as-
sume that what we do now will last at all. Technology is
changing so fast that we have absolutely no idea what peo-
ple are going to think of next. One hundred years ago,
physicists were saying there was nothing more to do in
physics, except to get another decimal — a fifth decimal
place for the fundamental constants — and then that would
wrap up physics. So, there is no way to know about these
things. But I do believe that once we have things in elec-
tronic form and we have mirror sites of them, there is a fair
degree of immortality — whereas paper burns.

Do you know anything about this project called ‘The
Clock’, being developed by Stewart Brand and his col-
leagues? He’s the one who published the Whole Earth Cat-
alogue. They have a bunch of people that are considering if
they could build something that would last for a thousand
years . . . I don’t want to go on too much more about that.
I do hope that the stability of TEX will make it possible to
reproduce the things we’re doing now, later. And since it’s
fairly easy to do that, I think it will happen — unless there’s
a nuclear holocaust. Some mathematicians have this de-
bate about the Platonic view ... does everything in math-
ematics exist and we’re just discovering it, or are we actu-
ally creating mathematics? In some sense, once something
gets put into bits, it’s mathematics and therefore it exists
forever, even if the human race dies out — it’s there, but so
what?

Erik: Who’s next?

Bijlage N Knuth meets NTG members 40

Marc van Leeuwen: If I could extend a bit on the previ-
ous questions. The stability of TEX itself, I could imagine,
might be a stumbling block for development of new things
exactly because it’s so stable and everybody’s already us-
ing it. So if something comes along that is just a bit better,
then people will not tend to use that because it’s not avail-
able everywhere, and there are all kinds of reasons to keep
on using the old thing.

Knuth: I guess I said in Florida that people are still trying
to use the old fonts that I’m still trying to stamp out from
the world. Four years ago I redesigned the Greek lowercase
delta and I made the arrowheads darker. I didn’t change
anything in the way TEX operates — all the dimensions and
the characters’ heights and widths stay exactly the same.
But I did tune up a lot of the characters. Still I see lots of
math journals are still using the old ones from four years
ago, and I get letters and preprints from people with the old-
style delta. I changed it because I just couldn’t stand the old
versions [laughter]. Now I’ve got home pages — if I ever
have some errata to TEX or something I put them there:
http://www-cs-faculty.stanford.edu/˜knuth.
This gets to my home page, and there’s a reference say-
ing, ‘Important notice for all users of TEX’, and that page
says ‘Look at the lowercase delta and if you have the wrong
one, you die!’ [laughter]

I understand that people have a reluctance to change from
something that they’ve become accustomed to. I know of
two main successors to TEX: one is ε-TEX and the other
is NTS. ε-TEX is going to be apparently 100% compatible
with TEX, so if somebody doesn’t switch over to incom-
patible features, then they have a system that still works
with old things. That will allow a gradual change-over. It’ll
take more space on a computer, of course, but that’s not a
big deal these days. The people who work on ε-TEX al-
ways sent me very reliable comments about TEX when they
caught errors in my stuff, so I imagine they’re going to be
doing a careful job. So it’ll be one of these things where
you walk into a random installation of UNIX or whatever
and you’ll find ε-TeX there as the default, and you’ll still
have TEX. Then you also have certain other features that
might be really important to you for your special applica-
tions.

Johannes Braams: You mentioned ε-TEX and NTS. But
are you also aware of the Omega project?

Knuth: Oh, the Omega project? Yes, I’m hoping to use
that myself for the authors’ names in my The Art of Com-
puter Programming. I’ve been collecting the names of Chi-
nese, Japanese, Indian, Hebrew, Greek, Russian, Arabic
authors and I want to typeset their names properly [laugh-
ter], not just in transliteration. I have some rudimentary
software that will do this for proofing purposes, for getting
my database going and for writing to people and saying, ‘Is
this your name?’ With the Omega system, I’m hoping that
it’ll be accompanied by good fonts that will make it possi-
ble for me to do this without a whole pile of work. Right

now, to get the Arabic names, I have to use ArabTEX, to get
the Hebrew names .. . I had a terrible time trying to get He-
brew fonts on CTAN two weeks ago — I can tell you that
whole story if you want to know ... I kept clicking on the
different things and they would refer to files that didn’t ex-
ist and README files that were four years out of date and
inconsistent, so I couldn’t find any Hebrew fonts. Maybe
you have it on your CD ...

Johannes: I could certainly point you to someone who
could help you with the Hebrew font — I know someone
in Israel who’s trying to do Hebrew support within the Ba-
bel system. And they do do typesetting in Israel with TEX.

Knuth: My own typesetting friend in Israel is Dan Berry,
who unfortunately is fairly committed to troff [laughter].
I’m sure that I can get good Hebrew through Yannis and
Omega. I sure hope UNICODE is going to arrive sooner
rather than later; it’s much better than the alternatives for
much the reasons that Marc [van Leeuwen] mentioned. I
haven’t found a great enthusiasm in Japan for UNICODE,
because they have a system that seems to work pretty well
for them, so why change. Everytime I ask a Japanese for
his name in UNICODE, he’ll say, ‘what’s UNICODE? Here’s
my JIS name’. But the JIS characters don’t include the Chi-
nese codes, and in fact, my own name — I have a Chinese
name — and my name in JIS isn’t quite the same. There
are two different UNICODE characters, one for the Japanese
version and one for the Chinese.

In the back? Kees?

Kees van der Laan: I have a lot of questions of course.
But I would like to start with some questions about META-
FONT. The first one is: how come macro writing in TEX
and METAFONT is so different?

Knuth: Why are macros in TEX and METAFONT so dif-
ferent? I didn’t dare make TEX as extreme as META-
FONT. These languages are of completely different design.
METAFONT is in some ways an incredible programming
language — it’s object-oriented macros. You have macros
in the middle of record structures.

The way I designed these languages is fairly simple to de-
scribe. Let’s take TEX. I wrote down one night what I
thought would be a good source file for The Art of Com-
puter Programming. I took a look at Vol. 2, which I had to
typeset. I started out on the first page, and when I got to
any copy that looked very much like something I had al-
ready done I skipped that. Finally I had examples of all
the different kinds of typesetting conventions that occur in
Vol. 2. It totalled 5 printed pages — and you can even see
these pages — exactly what my original test program was
— in a paper by David Fuchs and myself, where we talked
about optimum font caching.1 In there, we gave an exam-
ple and we show these 5 pages, which would illustrate what
I wanted TEX to be able to do. I wrote out what I thought
I would like to type — how my electronic file should look.
And then, I said, OK, that’s my input, and here’s my output

1ACM Transactions on Programming Languages and Systems 7 (1985), 74.

Bijlage N Knuth meets NTG members 41

— how do I get from input to output? And for this, well, it
looks like I need macros [laughter].

Same thing for METAFONT. I went through my first draft
of all the fonts that later became Computer Modern. I
wrote actually in SAIL, an Algol-like compiler language,
but SAIL had a macro ability, so I developed a few primi-
tive macros in which I could say, ‘pick up the pen’, ‘draw
from point 1 to point 2’, and things like that. These macros
were compiled by the SAIL compiler into machine lan-
guage, which would then draw the letters. I went though
the entire alphabet, and by the end of the year, I had some
300 little programs, each one drawing a letter. Then I re-
alized what kind of a language I would want to write in, to
describe the letters. So one day, on a family camping trip
— I was in the Grand Canyon with my wife and kids —
I took an hour off, sat under a tree and wrote out the pro-
gram for the letter A, in a language that I thought would be
a good algebraic language, reflecting at a high level what I
had been doing with pretty primitive low-level instructions
in my SAIL programs. I did the letter B, too. Capital A and
B, and then went back to the camping trip. These sheets of
paper where I have my original programs are now in Stan-
ford’s archive — the program for the letter B was published
in a Stanford library publication called Imprint last year.
The woman who’s in charge of rare books and manuscript
collections at Stanford is quite interested in METAFONT so
she wrote a little article about what they have.

That program again implied that I wanted some macros to
go with it. But these needed to be much more structured
than the macros of TEX. It had to be that when I said, ‘z
1 prime’, this would actually be equivalent to ‘(x 1 prime,
y 1 prime)’ and I wanted to be able to write, ‘z 1 prime’
without any delimiters. It turned out that in order to have
a high-level language that would feel natural to me writ-
ing the program, it had to look completely different from
TEX. So TEX and METAFONT share a common format for
error messages and certain other data structures inside, but
otherwise, they’re quite different systems because, in order
to have a good high-level language, I don’t want to have
to waste time writing parentheses, brackets, commas, and
other delimiters.

Kees: It’s a nice introduction to my second question
[laughter]: For the future of MetaPost, which allows mark-
up of pictures, with .eps as the result, what is your atti-
tude to 2.5d for MetaPost and METAFONT? For example,
adding a triple as an analogy of the paired data structure?

Knuth: MetaPost already has a data structure for triples
because of color. So RGB are actually triples of numbers.

Kees: Yes, but the triple as a data point in space?

Knuth: Ah, I see. I did write METAFONT in a way that
has hooks in it so that it can be easily extended; [for exam-
ple], if you want to draw 3-dimensional pictures, for per-
spective and projective geometry instead of affine geome-
try. The program itself for METAFONT was written so that
it could easily be changed by people who wanted to have a

system that goes beyond the basics. I always wanted the
systems that I would make widely available would be be
able to handle 99% of all applications that I knew. But I al-
ways felt there were going to be special applications where
the easiest thing would be to change the program, and not
write a macro.

I tried to make the programs so that they would have log-
ical structure and it would be easy to throw in new fea-
tures. This hasn’t happened anywhere near as often as I
thought because people were more interested, I think, in
inter-changeability of what they do; once you have your
own program, then other people don’t have it. Still, if I
were a large publisher, and I were to get special projects —
some encyclopaedia, some new edition of the Bible, things
like that — I would certainly think that the right thing to
do would be to hire a good programmer and make a spe-
cial computer system just for this project. At least, that
was my idea about the way people would do it. It seems
that hasn’t happened very much, although in Brno I met a
student who is well along on producing Acrobat format di-
rectly in TEX, by changing the code. And the Omega sys-
tem that you mentioned, that’s 150,000 lines of change files
[laughter]. I built in hooks so that every time TEX outputs
a page, it could come to a whatsit node and a whatsit node
could be something that was completely different in each
version of TEX. So, when the program sees a whatsit node,
it calls a special routine saying, ‘how do I typeset this what-
sit node?’ It’ll look at the sub-type and the sub-type might
be another sub-type put in as a demo or it might be a brand-
new sub-type.

Similar hooks are in the METAFONT program. If people
have extra time when they’re not browsing the Web [laugh-
ter], I recommend as a great recreation to read the program
for METAFONT. Some parts of it are pretty rough going
and I hope that nobody ever finds a bug there because I’d
hate to have to look at them [laughter]. But those are the
rasterization routines, the things that actually fill in the pix-
els. There are many other things in that program — the lin-
ear equation solver that it has and the data structure abilities
. . . lots of beautiful algorithms are in there — to take square
roots in fixed point, and the intersection of two curves, and
so on. METAFONT is full of little programs that were great
fun to write and that I think are useful and interesting in
their own right. I think when John Hobby wrote MetaPost,
he enjoyed it, because he could add his own nice little pro-
grams to the ones that are already there.

I’m a big fan of MetaPost for technical illustrations. I don’t
know anything that’s near as good, so I’m doing all the il-
lustrations of The Art of Computer Programming in Meta-
Post. Also, the technical papers I’ve written are going to
be published in a series of eight volumes by Cambridge
University Press, and all the illustrations, except the pho-
tographs, are going to be MetaPosted. The first volume of
these eight was the book, Literate Programming; the sec-
ond volume is going to come out this summer and is go-
ing to be called Selected Papers in Computer Science. It
reprints a dozen or 15 papers that I wrote for general audi-

Bijlage N Knuth meets NTG members 42

ences, not for specialists in computer science, but in Sci-
entific American or Science magazine and things like that.
The third volume will be about digital typography, and it’ll
reprint all my articles in TUGboat and things about TEX.
What do you think, by the way — should I publish in that
third volume the memo that I wrote to myself the first night,
when I designed TEX? I put it in a computer file and it’s in
the archives, but I’ve never shown it to anyone. [round of
“of course!” and “sure” and laughter from the audience].
Maybe it’d sell more books [more laughter].

Frans Goddijn: You need to put it on your home page and
we can then decide —

Knuth: No, no. That way we’d never sell the books
[laughter]. Not that I’m a mercenary type of person, of
course. It’s in a file called TEX — well ‘teks’, actually. I
have to admit I pronounced it ‘teks’ for a month or two —
I was thinking of ‘technical texts’, though. tex.one was
the name of the file and it would make interesting reading
probably, someday.

And your name is?

Jan Kardan: In this company I will probably ask a very
heretic question, but a little heresy makes a lot of fun —
talking about METAFONT. There are probably many type
foundries now [that] crank out lots of good-quality fonts
and kerning tables. It’s not clear whether PostScript or True
Type will survive. Do you think that METAFONT will sur-
vive text fonts? Not talking about the math fonts.

Knuth: I don’t think the extra capabilities of METAFONT

have proved to be necessary for good-quality type fonts, al-
though I think that you can still make better-quality type
fonts with it. Designers find it difficult to think as a com-
puter person does, in the sense that when people in the
computer business automate something, trying to make the
computer do something, it’s natural for us to have param-
eters and say that we’re going to try to solve more than
one problem. We try to solve a whole variety of problems
based on the parameters that people set. But it’s much eas-
ier if people gave us only a single problem with a single
parameter, then we could have the computers do exactly
the prescribed thing. Computer scientists have become ac-
customed to thinking of how we would change behavior as
conditions change, but designers aren’t at all accustomed
to this. They are much happier if the boss says one month,
“Give me a roman font,” and the next month, “Give me a
bold font.” It’s much more difficult to say, “Show me how
you would draw something no matter how heavy I want the
letters to be.” METAFONT provides a way to solve that
problem and to draw characters with parameters, but it’s a
rare designer who’s comfortable with that notion. They can
do multiple master fonts by making multiple drawings and
then matching up points between the drawings and hav-

ing the computer interpolate. The multiple master fonts in
PostScript allow up to four parameters, and almost all of
them have only one or two parameters. The most I know
of is two; probably others have gone all the way to four.
But then they have to provide drawings for all the extreme
points of these parameters.

In spite of this limited use of parameters, what’s avail-
able commercially is quite beautiful, as far as readability
is concerned, although it doesn’t really provide the quality
that you guys had in the Netherlands in the 17th century.
What’s the man’s name, the great punch cutter at Enschedé
— he made 4.5, 5pt up to 16pt, and each letter was de-
signed for its size, and fonts had a nice uniform appearance.
This wouldn’t have happened at all with the Type1 fonts.
There were two guys who did most of the punch cutting
for Enschedé and others in the 18th century: One of them,
Fleischman, was a genius for really beautiful letters; the
other, Rosart, was just good at making lots and lots of let-
ters [laughter].2 [. . .] They were fun. Rosart would make
all kinds of highly decorated alphabets and things like that.
I have a big coffee-table book that gives examples of all
the fonts from Enschedé, which was translated into English
by Matthew Carter’s father. Anyways, in this book, Type-
foundries in the Netherlands, you can look at these type-
faces and weep.3

Still, on a laser printer, we get pretty good fonts now, and
therefore it looks like there won’t be that many profes-
sional type designers using METAFONT. Pandora was a
good design by a genuine graphic artist. METAFONT has
turned out to be wonderful for making ordered designs
and special-purpose things for geometry. There’s now this
really neat system in Poland where they have TEX and
METAFONT in a closed loop — TEX outputs something
and then METAFONT draws a character and if that does-
n’t fit, TEX says, ‘go back and try it again’. Jackowski and
Ryćko understand TEX and METAFONT, and the programs
are well documented and can do these things. So Metafont
isn’t going to disappear for that reason; but it’s never going
to be taught in high school.

2Johann Michael Fleischman, 1701–1768; Jacques-François Rosart, 1714–1777.
3Typefoundries in the Netherlands from the Fifteenth to the Nineteenth Centuries, by Charles Enschedé, translated by Harry Carter

(Haarlem: Stichting Museum Enschedé, 1978), 477 pp. This magnificent book was composed by hand and printed by letterpress to
commemorate the 275th anniversary of Joh. Enschedé en Zonen.

Bijlage N Knuth meets NTG members 43

Frans Goddijn: My name is Frans Goddijn and I have one
question with some sub-questions [laughter]; I’d like to ask
the sub-questions first. What I’m wondering — and this
may have been asked often before — is whether you would
consider, in retrospect, what you have created [to be] an art
or a tool? And the reason I ask is — when I hear you speak
with so much passion for type fonts and the beautiful algo-
rithms that you put into METAFONT that you would like to
point people to and the recognition that you get from peo-
ple who understand that — but, there is a vast majority of
users who just got TEX from some server, never realized
who created it, and use it to typeset not always very pretty
documents [laughter]. They do that in a very crude way and
don’t care less. You froze TEX at a certain point, allowing
other people to build around it. I was wondering how such
a thing would feel to a father — are you father of a piece
of art that other people use as a tool, or is it a child that you
have frozen in its development, that will never grow up .. .
there are so many questions .. . if you just go back to the art
vs. tool idea, and your feelings about that.

Knuth: Obviously, if I write something that has a lot of
power to do many different things, it’ll be possible to make
it do awful things. I just came from the Rijksmuseum,
where they have an exhibit called “The Age of Ugliness”.
It was a whole bunch of fancy silver bowls from the late
19th century When you say an art, I’m not sure I un-
derstand exactly what you mean. To me, art is used in two
quite different senses, most often nowadays in the sense of
fine art, while art, originally, Kunst, was anything that was
not natural — so we have the word artificial, something
that is made by people instead of by nature. The Greek
word is techne [laughter]. But then you refer to a tool as
something that is maybe just a device that is the fastest way
to get from here to there but maybe you don’t care about el-
egance .. . But what I think you mean when you talk about
art is the aesthetics — something about beauty and some-
thing with a little bit of love in it. With TEX, my idea was
to make it possible to produce works that you are proud of;
I assumed that people can enjoy actually spending a little
extra time making the results better. I didn’t expect that the
whole world would be doing this [laughter].

Incidentally, I can’t understand the mentality of a person
who writes graffiti on a beautiful building although I can
see why drawing is fun. Why would you want to scrawl
something — some kind of animal instinct of territory
might account for it, I suppose, but it’s really impossible
for me to conceive of such actions.

When it comes to matters of aesthetics, you can’t dictate
taste. You can’t say that your idea of beauty is going to
match anyone else’s idea of beauty. But I did want to have
a tool where we could reach the highest levels of beauty
according to our own tastes. I didn’t allow people to have
letterspacing very easily, but I tried to make everything else
easy [laughter]. Of course, I originally designed TEX
just for myself, for The Art of Computer Programming; I
thought my secretary and I were going to be the only users.
And it wasn’t until later that I was convinced that I should

make it more general and so on. But I did want a tool for
myself by which I could produce books that would make
me feel good after spending almost all my life writing those
books.

I started writing The Art of Computer Programming when
I was 24 years old and I still have 20 years of work to do on
it. That’s a lot of time. I don’t want to write those books if
they’re going to come out looking awful. I wanted a way
to make it possible [to produce good-looking books]. Orig-
inally, when computers started out, they knew only num-
bers, digits. The 19th-century computers could print tables.
Then we had computers that could do numbers and letters,
but only on a teletype machine; so you had some capital let-
ters and a 32-character set. But then, after I graduated from
college, we got . . . let me see, I was probably ten years out
of college before we could do lowercase letters on a com-
puter. You know, the PASCAL language, when it came out,
it used all uppercase letters — there was never any con-
sideration that there would be more than 64 characters in
a computer’s repertoire. Finally, we were beginning to see
in the middle 70s that computers could actually do lower-
case letters, and produce something that looked a little bit
readable, a little bit like books. Wow! [laughter].

Then there was this development of typographic software
starting at MIT in 1960 and going through 4 or 5 gener-
ations, leading to troff and EQN, where there was even
mathematics being typeset. In 1977 I therefore knew an
existence theorem: It was possible to typeset something
that looked almost like good mathematics. EQN was being
used in physics journals and experience showed that secre-
taries could learn how to do it. So I thought, “Why not go
all the way to the end, to convergence?” What I wanted
to do with TEX was not to be a little refinement over troff
and the other things, but I was saying now, “Let me try
to go to the best typography that’s ever been achieved by
mankind” Except for the illuminated gold leaf type of let-
tering, I wanted to at least — when it came to black and
white printing — I wanted to match the best conventions
that had been achieved. Computer typesetting had gone
through this lengthy development, getting a little better and
a little better. It was time to say, “Well, let’s jump to the end
now.” Of course, I didn’t think this would be an activity
that everybody would want to do. But there were enough
people that would care about trying to get as much qual-
ity as possible, that they could be — well, that’s why I fi-
nally made TEX more available. The American Math So-
ciety were the first people, nearly the first people who con-
vinced me that I should make the system do more than I
originally intended.

Andries Lenstra: Why didn’t you start from troff? It was
completely inappropriate?

Knuth: Yes, yes. You see, troff was patched on top of .. .
I mean, there was a whole system, it was a fifth generation,
each of which was a patch on another one. So it was time
to scrap it and start all over again: “Here’s what the lan-
guage should be, so let’s design some good data structures

Bijlage N Knuth meets NTG members 44

for it.” Not “Let’s try to be compatible.” I had the advan-
tage that I was not at Bell Labs, where I wouldn’t be hurt-
ing anybody’s feelings by saying, “Let’s throw it all away”
[laughter]. It was impossible for the people at Bell Labs to
do such a thing — it wouldn’t be nice. But it occurred to
me that now that we had proof that this goal was possible, I
should start over, and rethink how I could get from input to
output, so the program could be much more unified, much
smaller, and would also work. I mean, troff was collaps-
ing all the time. A lot of the earliest users of TEX had been
frustrated by troff breaking over and over again, so it had
gotten unwieldy. But it had also proved that there was light
at the end of the tunnel.

I also had to scrap TEX, you know, and start over again; af-
ter five years, I decided that it would be best to go back and
re-do the program. But it would have been very hard to
do that if my friend in the next office had done it [laugh-
ter]. So, I just have this philosophy that there will be al-
ways some people who are more interested in quality than
others, and I wanted to make TEX good for them. I don’t
see any good way to make it impossible to make a bad doc-
ument, unless you have only a system with a small menu
of options; that’s good for a large class of users, to make a
system that’s so simple that you can’t possible do anything
ugly in it.

Erik: I think it’s time for a coffee break now — we’ll take
five or ten minutes.

Knuth: Johannes, you had a question that you had to ask,
so let’s get that over with [laughter].

Johannes Braams: It’s about typesetting. What is your
opinion about the skyline model of typesetting? In TEX,
you talk about boxes: each letter is inside a box, and we
glue boxes together to a line, and the line itself is inside a
box, and each line is viewed as a box and the boxes are fit-
ted together to form a paragraph. The skyline model tries to
go a little bit further than the rigid box and line, and tries to
take into account that some of the descenders in the upper
line and the high parts in the lower line don’t overlap, so
that you could actually have lines much tighter together —
especially in math typesetting, that could be an advantage.

Knuth: Hmmm, I guess you’re talking about general prin-
ciples of computer graphics where you have rectangles in-
side a picture, instead of having the rectangles grouped
only inside of a rectangle. . . . This certainly would be a ma-
jor change in all the data structures of TEX. You could go to
a quad tree structure or something like that. All the things
that people use to solve hidden-line problems and do ren-
dering, to find out what’s in front of something else, and
all the algorithms they use to make movies like Toy Story.
It would be most valuable, I imagine, for catching unusual
cases in math formulas.

I have two feelings about these things. One is that I like to
see people extending the things that computers can do au-
tomatically. People learn a lot when they try to do this. The

whole field of artificial intelligence has been one of the ar-
eas that has had greatest spin-offs to computer science be-
cause they’ve tried to solve very hard problems. Especially
in the early days, they came up with methods that turned
out to be useful in many other parts of computer science.
So, it’s my feeling that when people are working on more
ambitious goals, they develop powerful techniques that of-
ten have very relevant spin-offs. Even so, after they’ve
solved that problem, they’re going to think of something
else which will be another refinement and so on — they’ll
never have a situation where they’re going to automatically
create the most beautiful document. There’s going to be a
time when you can look at the output and see that you can
still improve it. Designers of the most automatic systems
would be well advised to at least still leave a chance for
somebody to move something up and down and fake out
their automatic algorithm.

The philosophy that I had when I did TEX was that I would
try to have a system that did 99% of everything automati-
cally, and then I would look at what remained and I would
kludge the rest. But kludging it is one way to say it; another
way of saying it is “Tidy up the rest,” or “Dot the i’s and
cross the t’s.” My feeling is that this non-automatic part
gives me a little extra pride that I have put the spit and pol-
ish on the final product, that I know I did it. If it occurs a
lot, then it’s a nuisance and I’m wasting time. But if I can
really limit this to 1% — if I’ve spent 30 hours writing a
paper and it takes me only another 15 minutes to clean up,
then I’m happy to do another 15 minutes at the end. It’s a
small little extra that gives me a chance to celebrate the fact
that I’ve finished the paper.

The spacing that TEX does worst right now, in my experi-
ence, is with respect to square root signs being a little too
tight, with the operand either too close to the radical sign
or too close to the bar line or both; I find that I’m most of-
ten fiddling with that. I’ve adopted in the book Concrete
Math and also in The Art of Computer Programming now,
the convention where in the math formula I put an @-sign
where I want one math unit of extra space. The @-sign
is then defined to have a math code of hexadecimal 8000,
which means that this will invoke in math mode and the @-
sign will be regarded as a macro that adds one math unit
of space. So I’ll type ‘square root of’ ‘@-sign’ ‘log of n’
[laughter], because otherwise the space before ‘el’ is a little
bit too tight. Now maybe even this skyline model wouldn’t
know that ‘el’ was too tight, maybe it would. But it’s cases
like that . . .

The most common case really is where I have something
like ‘x squared over 3’, where you have a simple super-
script and then a slash, and then the denominator. There’s
almost always too much space before the slash. And this is
true, I find, in all the books that I used to think were type-
set perfectly by hand [laughter], but now I’m sensitive to
this. Now I go through, typically with emacs, and look
for all occurrences of something with a one-character expo-
nent followed by a slash, and most of those look better with

Bijlage N Knuth meets NTG members 45

a negative thinspace before the slash. It would be nicer if I
didn’t have to do that. But still, it’s a small thing for me.

Would the skyline model help me much? Sometimes I run
into cases where I’ll add another word to the answer to
an exercise in order to avoid a clash between lines. Here,
the lines are actually not getting spread apart too far, but
they’re so close together that the ‘subscript k less-than-or-
equal to n’ will clash with a left parenthesis in the next line.
And I don’t want the type to be quite so close together there.
Now, if I had been smarter, I would have designed my ≤-
sign to have a diagonal stroke under the< instead of a hor-
izontal bar, and I wouldn’t have had those clashes — too
late for that now. [laughter]

Kees?

Kees: May I ask you a question about your attitude to
mark-up in general? And let me illustrate it by first telling a
story. When we started with using TEX etc., we mean actu-
ally we start with LATEX — I mean, that is the effect in Hol-
land. And then I looked at the products of the mark-up and
I did not like it. And then I was wondering, what is your
attitude to that? I’m sorry to say so, I paged through the
TEXbook file texbook.tex and I looked at all the things
in there and then I thought, “Well, I have some idea of what
your ideas are of mark-up.” And when you explained about
METAFONT and all those things not in there, which you
have implicit — am I wrong if I summarize this, that you
adhere to something like minimal mark-up?

Knuth: Yes. For example, when I am reading Edsger Di-
jkstra’s books, every time I get to a section where it says
‘End of Comment’, it strikes me as redundant. And I al-
ways think, “Oh, yes, this is Edsger’s style.” When I wrote
a paper for his 60th birthday, I said at the end, “Acknowl-
edgment, I want to thank Edsger for such-and-such,” and
‘End of Acknowledgment’ [laughter].4 But that’s the only
time in my life I’ll ever do that. Maybe I’m an illogical per-
son, but apparently half the people using html now type
only the p at the beginning of a paragraph, and the other
half type only a /p at the end of a paragraph [laughter].
Hardly anybody uses both, according to what my spies tell
me. And I don’t know what the heck these systems actu-
ally do with the unbracketed material. When I writehtml,
I’m scrupulous with my mark-up. If you look at my home
pages — I’ll pay you $2.56 if you find any case where I
started something and didn’t close it with the right tag. I
tried to be very careful in that, and to indent everything
very well, and so on. But I found it a terrible nuisance, be-
cause it’s not the way I think.

I think a high-level language, to me, is something that
should reflect its structure in some visual way but not nec-
essarily explicitly; so that, when I know the conventions,
we can suppress some things. Parentheses are one such
convention and mathematics got a lot better when people
invented other notations like operator precedence that we
can see structure without spelling it out in too much detail.
A mathematician spends a lot of time choosing notations

for things, and one of the things we try to avoid in mathe-
matics is double subscripts. I read one French PhD thesis
where the author had five levels of subscripts [laughter]—
he kept painting himself into a trap. He started out with a
set x1 through xn , so then when he talked of a subset, it had
to be x sub-i1 through x sub-ik, and then he wanted to talk
of a subset of this, so then he had a theorem that says, let a
sub-b sub-c .. . and so on [laughter]. I try to choose nota-
tions that give me the economy of thought at a high level.

That’s why I probably didn’t believe in a great deal of
mark-up in the TEXbook; I would begin typewriter type and
end typewriter type for sections by saing \begintt and
\endtt. I would also delimit the lines and when I’m pre-
senting parts of the plain TEX macros,\beginlines and
\endlines— those macros are in the file, since it’s very
important to me to see how that works. But in other cases,
I’ve left [things] as simple as possible, for me to see vi-
sually the beginning and end of stuff. It’s something also
like problem solving — sometimes, if I’ve solved a prob-
lem and I’m not worried about it anymore, I forget to tell
anybody else the solution. I was always a very bad com-
mittee chairman because I’m not very good at finishing that
last ending line, I guess. Still, with html, the document
was short and I decided that my home pages were going to
be used by many different kinds of browsing software so I
had better be very rigorous.

While I was developing TEX, I attended one of the meet-
ings of the committee that designed SGML and had a very
good discussion with Charlie Goldfarb and the other peo-
ple on the committee — we only had that one meeting near
Stanford. Certainly I appreciate the fact that this structure
makes it possible to build other kinds of programs around
what you have. The more structure you have in a docu-
ment, the easier it is to make a database that includes things
about it, and knows what’s going on. I never objected to it;
I just always felt that in order to maximize my efficiency, I
didn’t want to mess around with full mark-up unless I had
to.

X: SGML allows minimizations; that’s why the end-
paragraph is not necessary. So that’s one of the reasons
why it’s so difficult sometimes. You have a formalization
to minimize.

Knuth: But LATEX doesn’t allow it.

Johannes: But we do have some books, however, permit-
ting omitted end-tags in LATEX3, but that’s not far enough
along.

Knuth: Well, talk to him [laughter]. I don’t need a special
editor for html — people are hyping fancy things where
you can click on a tool and it’ll put in the start and end tag
together — but when I wrote my files, I did make up a sim-
ple emacs macro that would take whatever tag I just typed
and create the end-tag. All it had to do was search back till
it found a less-than sign and then copy that string twice and

4Beauty is Our Business (Springer, 1990), 242.

Bijlage N Knuth meets NTG members 46

put a slash in front of it, so I used that all the time — it was
easy.

Johannes: Quite different type of question now, from
someone who’d like to ask here: literally, he writes, “Why
is the height of the minus sign in the cm symbol font the
same as the height of the cmr plus sign?”

Knuth: Ah. A lot of people are wondering about that one.
Where you have ‘a minus c’ or you say ‘x sub minus’ or
something, why is it that the height and depth are greater
than the actual shape of the minus sign?. In fact, it’s not
just the plus and minus, it’s also the +, −, ±, ∓, ⊕, 	,
⊗, �, × and ÷— if you look at the code for these, there
is a beginarithchar macro that begins all of the arithmetic
characters in the font, guaranteeing that they will have the
same size.

Johannes: But it doesn’t say why.

Knuth: That’s right — it doesn’t say why. And the reason
is that early on, I wanted certain things to line up the same.
For example, if you had

√
x + y +√x − y,

I wanted the square root signs to be place in the same way.

Otherwise, you would get

√
x + y +√x − y.

[slightly exagerated here to show the point] And so there
are many other cases where you have formulas where
there’s a plus sign in one part of a formula and a minus sign
in the other part, and for consistency of spacing, it ought to
look symmetrical. There are other cases, I readily admit,
where you have only a minus sign — you never have a sim-
ilar thing with a plus sign, and you wonder why there’s ex-
tra space left there. So I say \smash minus [laughter]
in those cases.

Johannes: The particular application, why this question
was asked — Michael Downes from the AMS —

Knuth: Yes, Michael Downes, he has more experience
than any of us in this room; he’s the chief typesetter of most
of the mathematics in the world.

Johannes: He has a problem properly attaching a super-
script on top of the \rightarrowfill . . .

Knuth: The \rightarrowfill? OK ... The
\rightarrowfill is this thing that makes a right ar-
row of any desired length, and then he wants to put a
superscript on this. What’s the macro for building that
up? I haven’t used that page in a long .. . [laughter]5 The
\rightarrowfill is made up of minus signs and so
probably if I had known Michael . . . known about that in

the old days, I would have changed the plain TEX macros
so that it would not use the height of the minus sign in the
\rightarrowfill operator [. . .]6 Anyways, I’ve now
told you the reason why it’s there for the other ones.

Johannes: Another question, which is about multiple lan-
guages. There’s a problem when you have one paragraph
where you have different languages.

Knuth: Yes, the \lccode changes. This is the .. .

Johannes: And I’ve been told that inside one paragraph
you can only use one hyphenation table, which is the one
which is active at the end of the paragraph. So, switching
hyphenation tables inside paragraphs. Suppose, for exam-
ple, you have a paragraph with English text, with a German
quote inside it, the German quote being several lines long.

Knuth: I know that TEX will properly keep track of which
hyphenation table to use. The glitch, the mistake, that
I didn’t anticipate is if the two languages have different
\lccode mappings — so that each has a different idea
of which characters are lowercase. When you hyphenate,
you need to hyphenate an uppercase word the same as an
lowercase word, so TEX uses the \lccode of a character
to convert every letter into the lowercase code of that let-
ter. I didn’t anticipate that people might, for different lan-
guages, have a different mapping from uppercase to low-
ercase. And so it’s that mapping that, at the end of a para-
graph, applies to all the languages in the paragraph. But
otherwise, TEX is careful to keep track of what language
you have.

And by the way, there’s a file called tex82.bug. Go to
the CTAN archives, and find subdirectory /knuth, and
under that/errata, and that’s where this is. At the end of
tex82.bug this particular error about\lccode is men-
tioned as being something that’s an oversight that’s too late
to fix.

Marc van Leeuwen: Why is it too late to fix? It would
conflict with other things?

Knuth: Yes. So that people are already using these things
in lots of documents, and it’s very hard to change. In fact, I
don’t see any way to fix it [laughter]. I would say that when
you are faced with a situation where you’re doing multiple
languages with multiple \lccodes, this is a good reason
to write your own version of TEX.

Andries Lenstra: Could I ask a question? Happily
enough, I’m not the first person to mention LATEX, so I
may mention it now. There’s a situation that often arises
when people try to write a PhD thesis where they want
to change LATEX code because they think they know bet-
ter about things of beauty or typography, and unhappily
enough they are not experts on LATEX, so they don’t suc-
ceed or they succeed badly. In general, people who know

5Knuth was trying to remember \buildrel; see The TEXbook, p. 437.
6In fact, the \leftarrowfill and \rightarrowfill macros now omit the height and depth of the minus, in plain.tex

version 3.14159 (March 1995).

Bijlage N Knuth meets NTG members 47

about typography can’t write beautiful LATEX code or other
forms of code, and vice versa — people who know how to
write these forms of code, are no experts on typography.
What do you think of the endeavors in the past to bring the
two worlds together, for instance, as Victor Eijkhout has
tried to do with his lollipop format, a machine to create
other formats. I would have thought that it would have had
a big success but the opposite seems to be the truth. What
do you think of it?

Knuth: I’m not familiar with the details of lollipop.
I suppose that was based on a famous quotation from Alan
Perlis, who said that, “If somebody tells you that he wants a
programming language which will only do the right thing,
give him a lollipop.”

Andries: Yes.

Knuth: I’m sure that the lollipop effort was instructive
and worthwhile, but I don’t know the details so I can’t an-
swer in great detail on this. Probably the type designers
didn’t find the language easy to learn. I do think that we’re
having much more communication now, as every month
goes by, between the people that know about type and the
people that know about macros. It’s just a matter of time
as we wait for these waves to continue moving — we’re
nowhere near a convergent stage, where TEX has reached
its natural boundary and the type designers have reached
their natural boundary. They’re still moving toward each
other. I don’t think it’s like a hyperbolic geometry, where
they never will get together.

The main difficulty of course is that TEX is free, and so a
lot of people will say, “Well, how could it be any good,
if you’re not charging money for it?” A lot of the people
in the type design community would only work in things
where there’s money behind it; money proves to them that
it’s worth talking to people. So it just takes a little while
till they see some good examples, which will make them
more open for these discussions. And that’s happening all
the time in different countries.

In the Czech Republic I was quite delighted to learn that
the new encyclopaedia in Czech, which is the first one for
many years, is being done with TEX. And not only that, it’s
being done with a very high budget. They made this deci-
sion because they tried all the other systems and were dis-
gusted with them. They had good results with TEX. Many
other commercial publishers are using it too because they
talk to their friends at the big publishing houses. This will,
I think, be solved with time. And products likelollipop
are very worthwhile in the meanwhile to facilitate this. It
takes time to bring different communities together. I think
the financial factor is definitive for a lot of people.

Piet van Oostrum: I don’t know if you have ever looked
into the LATEX code inside, but if you look into that, you
get the impression that TEX is not the most appropriate pro-
gramming language to design such a large system. Did you
ever think of TEX being used to program such large systems

and if not, would you think of giving it a better program-
ming language?

Knuth: In some sense I put in many of the programming
features kicking and screaming, and I’ll try to explain the
background. I know how Leslie went about writing LATEX
— first he would write the algorithms out in a high-level
programming language, with while’s and if-then’s and so
on, and then he would pretty much mechanically convert
this to TEX macros. If I had suspected that such a style was
going to be the most common use of TEX, I probably would
have worried a lot in those days. Now, computers are so
fast that I don’t worry so much about the running time, be-
cause it still seems to go zip!

In the 70s, I had a negative reaction to systems that tried to
be all things to all people. Every system I looked at had its
own universal Turing machine built into it somehow, and
everybody’s was a little different from everybody else’s.
So I thought, “Well, I’m not going to design a programming
language; I wanted to have just a typesetting language.”
Little by little, I needed more features and so the program-
ming constructs grew. Guy Steele began lobbying for more
capabilities early on, and I put many such things into the
second version of TEX, TEX82, because of his urging. That
made it possible to calculate prime numbers as well as do
complicated things with page layout and figure placements.
But the reason I didn’t introduce programming features at
first was because, as a programmer, I was tired of having
to learn ten different almost-the-same programming lan-
guages for every system I looked at; I was going to try to
avoid that. Later, I realised that it was sort of inevitable,
but I tried to keep it as close to the paradigm of TEX as a
character-by-charactermacro language as I could. As I said
before, I was expecting that the really special applications
would be done by changing things in the machine language
code. But people didn’t do that, they wanted to put low-
level things in at a higher level.

Piet: What do you think, for example, of something like
building in a programming language which is, from a soft-
ware engineering point of view, easier to use?

Knuth: It would be nice if there were a well-understood
standard for an interpretive programming language inside
of an arbitrary application. Take regular expressions — I
define UNIX as “30 definitions of regular expressions liv-
ing under one roof.” [laughter] Every part of UNIX has a
slightly different regular expression. Now, if there were
a universal simple interpretive language that was common
to other systems, naturally I would have latched onto that
right away.

Piet: The Free Software Foundation is trying to do that
and Sun is trying to do it and Microsoft is trying to .. .

Knuth: The Free Software Foundation is trying actually
to include also the solutions of Sun and Microsoft. In other
words, to make all of the conventions work simultaneously
as much as possible. And that conflicts with my own style,
where I’ve tried to have unity rather than diversity .. . I did-

Bijlage N Knuth meets NTG members 48

n’t go for ten ways to do one thing. C++ is similar — when
the committee would say, “Well, we could do it this way or
this way,” they did both. I hadn’t gone that route in my sys-
tem, because it is messy. But I admit that the messy way is
the best that can presently be realized in practice.

Marc van Leeuwen: I have a question about literate pro-
gramming. I know you must be very fond of it, if I under-
stand your interviews —

Knuth: Yes, I’m so fond of it that I could .. . well . . . OK
[laughter]. You know, I’m really so fond of literate pro-
gramming, it’s one of the greatest joys of my life, just doing
it.

Marc: My question was that obviously it’s not nearly as
popular as TEX is, and, what’s more, there isn’t much co-
herence in the world of literate programming. There are a
dozen different systems being used — some people favor
this, some people favor that — and this worries me a bit. I
too am very fond of this style of programming, but I would
like to see it being used much more.

Knuth: Literate programming is so much better than any
other style of programming it’s hard to imagine why the
world doesn’t convert to it. I think that Jon Bentley put his
finger on the reason and it was something like this: There
aren’t that many people in the world who are good pro-
grammers and there aren’t that many people in the world
who are good writers, and here we are expecting them to be
both. That overstates the case but it touches the key point.
I think that everyone who’s looked at literate programming
agrees that it’s a really good way to go, but they aren’t con-
vinced that ordinary students can do it. Some experiments
at Texas are proving otherwise, and I’ve had a smaller-scale
experience at Stanford. It’s a hypertext way of program-
ming and I imagine that with better hypertext systems that
we’re seeing now and people becoming so familiar with
the Web, we’re going to get a variety of new incompatible
systems that will support literate programming. Hopefully
somebody with time and talent, and taste, will put together
a system of literate programming that is so charming it will
captivate a lot of people. I believe that the potential is there,
and it’s just waiting for the right person to make that hap-
pen.

Marc: I think one problem might be that if you compare
your programs with the average program that people write,
there just aren’t nearly as many interesting algorithms in
the average program, so literate programming doesn’t add
too much to a program which is very dull by itself.

Knuth: Well, thank you for your comment. But maybe
sometimes I make a non-interesting algorithm interesting
just by putting in a joke here or there. I’ve taken programs
that I got from Sun Microsystems, for example, and as an
exercise, spent the afternoon converting them to a literate
form. There weren’t any exciting algorithms in there, but

still, you could look at the final program and it was better
— it had better error diagnostics, better organisation, it cor-
rected a few bugs. I don’t have time to go over to Sun and
show them this, and say, “Why don’t you rewrite your oper-
ating system?” [laughter] but I know that it would be much
better. So all I ever published was the very simple rewrite
of the wc word count routine in UNIX, which is not at all an
exciting algorithm, but as a demo of how it could be done.7

My approach to literate programming isn’t the only one,
of course, and in the recent book by a group at Princeton,
A Retargetable C Compiler, Chris Fraser and Dave Han-
son used a variety of literate programming to describe their
C compiler. Other books are coming out now that are us-
ing some flavors of literate programming. I was talking to
someone at Microsoft who said that he thought literate pro-
gramming was on the rise, and I said, “Does that mean the
next version of Windows is going to be all done in liter-
ate programming?” “Well, no, not exactly” .. . [laughter].
The people who’ve experienced literate programming will
never go back, and they’ll probably gan influence gradu-
ally. The companies that use it are going to sell more prod-
ucts than their competitors, so pretty soon this will happen.
I imagine that there are about ten thousand users of literate
programming and a million users of TEX, so it’s a factor of
a hundred.

Marc: Do you think it still has to develop? I get the im-
pression that with so many tools around, that it’s not yet
mature. The idea is mature, but the implementation still has
to .. .

Knuth: Yeah, that’s true. There’s great need for program-
ming environments based on this idea. It’s not at all easy
to create these environments and to have the power to pro-
mote them and maybe the support to do it in a way that
wouldn’t make it too expensive or too hard for people to
install. The most ideal thing would be if the Free Software
Foundation were to adopt it, or something like that, or some
of the people they work with. Actually, [Richard] Stallman
[of the FSF] designed a variant of literate programming that
he uses, and he has it well integrated with TEX, in his own
style. He hasn’t put it in too many of his programs, but he
has a version. It’s one of these things that needs, as you say,
to mature.

Marc: Do you believe it should go in the direction of in-
tegrated systems, where you really have all the facilities
you need in one system? Because I think the tendency is
more towards very minimalistic systems that do not do any
pretty printing because that gets you into too much trouble
when you’re switching programming languages. So it re-
ally boils down to something which is very flexible but not
very convenient for someone to use.

Knuth: One programming language is good enough for
me so I’m not the right person to ask. But then, I guess, for
the The Art of Computer Programming, for the next twenty

7D.E. Knuth, Literate Programming (Stanford, 1991), 341–348, based on a prototype by Klaus Guntermann and Joachim Schrod,
TUGboat 7 (1986), 135–137.

Bijlage N Knuth meets NTG members 49

years, I’m pretty sure that CWEB is going to be as good as
anything I need. I’ll write programs for Mathematica and
I’ll write some programs for MetaPost; I could develop or
use literate programming for those programs, but I don’t
think I will. I don’t write so many lines that I would gain a
great deal . . . although I would get a better program after-
wards. Unless somebody already presents me with a good
system for it, I won’t go ahead with MathWeb or MPWeb.
But with CWEB, I’m going to write an average of five pro-
grams a week for the foreseeable future, and there, my pro-
ductivity is infinitely faster when I do it with literate pro-
gramming.

One other thought flashed in my mind as I was talking just
now ... I wrote a paper last year, I think it was, about mini-
indexes for literate programs8 and here I was trying to show
what sort of programming environment would help me. In
the listings for TEX the program and METAFONT, and also
for the Stanford Graphbase, on the righthand page of each
two-page spread, there’s an index to all the identifiers used
on that page and where they were declared. My paper ex-
plains the system I used to get those indexes, and this kind
of functionality would also be needed in any hypertext sys-
tem. These minimalistic systems are attractive primarily
because a good programmer can write them in a couple
of days, understand them and use them, and get a lot of
mileage out of them. Once somebody writes a good hyper-
text system for literate programming, I think that’ll attract a

lot of people — a system that doesn’t crash, and has a famil-
iar user interface because it’s like other hypertext systems
that we’re already using. The time for that will be ripe in
about two years.

Erik: It’s half past nine now and I think we’ll have to stop
here. I want to thank our special guest, Donald Knuth, for
the time here. I think we’ve all learned a lot now. We’re
very happy that you were able to be here. Thank you very
much.

Knuth: I really appreciate all the work you did to get this
special room here on rather short notice. [applause]

Erik: Also, thank you to Elsevier Science, who helped, in
the person of Simon Pepping; and your English colleague,
Sebastian Rahtz, who is not here, although I expected him.
But he paid for the coffee and tea, so thanks. There’s of
course a little present that we have for you. I hope you like
it! [He presents a book about Dutch art called ‘De Stijl’.]

Knuth: Yes, . . . the Dutch type designer, Gerard Unger,
came to Stanford for three weeks, he and his wife Marjan,
and they talked about things like this to our type design-
ers. They also related fashion of clothes and furniture and
architecture to type styles as well. This is great. This was
done with TEX?

Erik: I don’t think so .. . as we are in Holland now ...
[laughter]. [He also presents a pair of wooden tulips]

Knuth: A nice gift for my wife.

Erik: And of course a copy of the EuroTEX’95 proceed-
ings. [He presents the proceedings]

Knuth: Oh!! I thought you’d never — [laughter]. Yes,
I was looking at this last week in the Czech Republic, so
thank you everyone.

Erik: What is your opinion about the fonts we used?

Knuth: I think it’s . . . oh, you used the Computer Modern
Brights. Yes, the only complaint I had was that the kern-
ing in the word ‘TEX’ itself could be tuned a little bit.9 It’s
quite attractive — thank you very much.

8Software Concepts and Tools 15 (1994), 2–11.
9“The TEX logo in various fonts,” TUGboat 7 (1986), 101.

