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 Splicing Maps and Sets (Revision 5)  

Related Documents 

This proposal addresses the following open issues in LEWG status: 

839. Maps and sets missing splice operation 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#839 

1041. Add associative/unordered container functions that allow to extract elements 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#1041 

Changes in Revision 5 (P0083R3 – this paper) 

 Moved default constructor and swap into node_handle class definition. 

 Map nodes now only have key and mapped. Set nodes only have value. 

 Added mention of using std::launder to narrative. 

 Improved wording and added wording per LWG input. 

 Fixed typos and changed variable names and formatting. 

Changes in Revision 4 (P0083R2) 

 Moved node_handle to section 23. 

 Replaced 23.X.1 p2 with new wording and a table depicting transfer-compatible container 
types. 

 Reformulated the invalidation language and improved wording in several places. 

 Removed vestigial nullptr_t overloads and all uses of smart-pointer-like access. 

 Moved insertion return value behavior text to insert row in tables. 

 Fixed various wording typo and formatting errors, and replaced normative uses of “node” 
with “element”. 

 Used std::optional for allocator in node_handle and fixed move semantics. 

 Replace noexcept with throws nothing in several places. Added throws nothing to move 
assignment operator. 

 Added new signatures to support merging of transfer-compatible container types. 

 Added Destructible and Swappable requirements to insert_return_type. 
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Changes in Revision 3 (P0083R1) 

 Added the mapped and value accessor functions and the empty state test function. 

 Removed the operator* and operator-> accessor functions. 

 Added an example of changing the key of a map element. 

 Changed the name of the node handle type from node_ptr to node_handle, removed its 
characterization as a smart pointer, and stressed that it is move-only. 

 Fixed several issues in the formal wording, including adding noexcept in several places. 

 Changed typedefs to alias declarations. 

 Improved wording about invalidation of references and pointers per CWG suggestion. 

 Added wording to specify that the container’s comparator is used by merge. 

 Strengthened the wording of the pair specialization restriction. 

 Added feature test macro. 

Changes in Revision 2 (P0083R0) 

 Added the key accessor function. 

 Added a discussion of concerns raised by previous versions. 

 Fixed several problems with the proposed wording. 

 Improved the organization overall, and improved the narrative in several places. 

The Problem 

Node-based containers are excellent for creating collections of large or unmovable objects. Maps 
in particular provide a great way to create database-like tables where objects may be looked up 
by ID and used in various ways. Since the memory allocations are stable, once you build a map 
you can take references to its elements and count on them to remain valid as long as the map 
exists.  

The emplace functions were designed precisely to facilitate this pattern by eliminating the need 
for a copy or a move when creating elements in a map (or any other container). When using a 
list, map or set, we can construct objects, look them up, use them, and eventually discard them, 
all without ever having to copy or move them (or construct them more than once). This is very 
useful if the objects are expensive to copy, or have construction/destruction side effects (such as 
in the classic RAII pattern). 

No splice for old maps 

But what happens when we want to take some elements from one table and move them to 
another? If we were using a list, this would be easy: we would use splice. Splice allows logical 
manipulation of the list without copying or moving the nodes—only the pointers are changed. 
But lists are not a good choice to represent tables, and there is no splice for maps. 

What about move? 

Don’t move semantics basically solve all these problems? Unfortunately they don’t. Move is very 
effective for small collections of objects which are indirectly large; that is, which own resources 
that are expensive to copy. But if the object itself is large, or has some limitation on construction 
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(as in the RAII case), then move does not help at all. And “large” in this context may not be very 
big. A 256 byte object may not seem large until you have several million of them and start 
comparing the copy times of 256 bytes to the 16 bytes or so of a pointer swap. 

But even if the mapped type itself is very small, an int for example, the heap allocations and 
deallocations required to insert a new node and erase an old one are very expensive compared 
to swapping pointers. When there are large numbers of objects to move around, this overhead 
can be very significant. 

And you can't move the key 

Yet another problem is that the key type of maps is const. You can’t move out of it at all. This 
alone was enough of a problem to motivate Issue 1041. We believe that the const key is a basic 
design flaw in the original map specification which we now have no way to fix because the value 
type is exposed directly by the API. We feel the solution we are proposing is the best possible 
given the need to preserve the current container design. 

Does anyone care? 

Yes! We know of several instances (at CppCon, on Stack Overflow, etc.) where people have asked 
for functionality that we are proposing and the current Library cannot provide. We believe that 
real people working on real problems very much need and want this functionality. 

History 

Talbot's original idea for solving this issue was to add splice-like members to associative contain-
ers that took the source container and iterators, and dealt with the splice action under the hood. 
This would have solved the splice problem, but offered no further advantages. 

In Issue 1041, Alisdair Meredith suggested that we need a way to move an element out of a 
container with a combined move/erase operation. This solves another piece of the problem, but 
does not help if move is not helpful, and does not address the allocation issue. 

Hinnant then suggested that there should be a way to actually remove the node and hold it 
outside the container. This solves all of the problems, and it is this design that we are proposing. 
However, although it works fine, it introduces a theoretical problem because it requires casting 
the const key to a non-const key, which invokes undefined behavior. 

Wakely then proposed a refinement that we believe will help make the solution acceptable to 
the Committee and library vendors. 

The Solution 

Can you really splice a map? 

It turns out that what we need is not actually a splice in the sense of list::splice. Because elements 
must be inserted into their correct positions, a splice-like operation for associative containers 
must remove the element from the source and insert it into the destination, both of which are 
non-trivial operations. Although these will have the same complexity as a conventional insert and 
erase, the actual cost will typically be much less since the objects do not need to be copied nor 
the nodes reallocated. 
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Overview 

This design allows splicing operations of all kinds, moving elements (including map keys) out of 
the container, and a number of other useful operations and designs. It is an enhancement to the 
associative and unordered associative containers to support the manipulation of nodes. This is a 
pure addition to the Standard Library. 

Extract 

The key to the design is a new function extract which unlinks the selected node from the con-
tainer (performing the same balancing actions as erase). The extract function has the same 
overloads as the single parameter erase function: one that takes an iterator and one that takes 
a key type. They return an implementation-defined type which we refer to as the node handle. 
The node handle can be thought of as a special type of container which holds the node while in 
transit. Note that extracting a node naturally invalidates all iterators to it (since it is no longer an 
element of the container). Extracting a node from a map of any type invalidates pointers and 
references to it; this does not occur for sets. 

Node Handle 

The node handle is a move-only type that holds and provides access to the element (the 
value_type) stored in the node, and provides non-const access to the key part of the element 
(the key_type) and the mapped part of the element (the mapped_type). If the node handle 
is allowed to destruct while holding the node, the node is properly destructed using the 
appropriate allocator for the container. The node handle contains a copy of the container’s 
allocator. This is necessary so that the node handle can outlive the container. The container has 
a type alias for the node handle type (node_type). 

The node handle type will be independent of the Compare, Hash or Pred template parameters, 
but will depend on the Allocator parameter. This allows a node to be transferred from 
set<T,C1,A> to set<T,C2,A> (for example), but not from set<T,C,A1> to set<T,C,A2>. 
Even though the allocator types are the same, the container’s allocator must also test equal to 
the node handle’s allocator or the behavior of node handle insert is undefined. 

Insert 

There is also a new overload of insert that takes a node handle and inserts the node directly, 
without copying or moving it. For the unique containers, it returns a struct which contains the 
same information as the pair<iterator, bool> returned by the value insert, and also has a 
member which is a (typically empty) node handle which will preserve the node in the event that 
the insertion fails: 
 

struct insert_return { 

 iterator position; 

 bool inserted; 

 node_type node; 

}; 

(We examined several other possibilities for this return type and decided that this was the best 
of the available options.) For the multi containers, the node handle insert returns an iterator to 
the newly inserted node. 
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Inserting a node into a map of any type invalidates all pointers and references to it; this does not 
occur for sets. 

Merge 

There is also a merge operation which takes a non-const reference to the container type and 
attempts to insert each node in the source container. Merging a container will remove from the 
source all the elements that can be inserted successfully, and (for containers where the insert 
may fail) leave the remaining elements in the source. This is very important—none of the 
operations we propose ever lose elements. (What to do with the leftovers is left up to the user.) 
The insertions are done using the comparator of the destination (the container on which merge 
is called), as with any other insertion. 

This operation is worth a dedicated function because although it is possible to write fairly efficient 
client code that does the same thing, it is not quite trivial to do so in the case of the unique 
containers. (See the Inserting an entire set example below for details.) Furthermore, in some 
cases the merge operation does not need to balance the source container until the merge is 
complete. 

Exception safety 

If the container’s Compare function is no-throw (which is very common), then removing a node, 
modifying it, and inserting it is no-throw unless modifying the value throws. And if modifying the 
value does throw, it does so outside of the containers involved. 

If the Compare function does throw, insert will not yet have moved its node handle argument, 
so the node will still be owned by the argument and will remain available to the caller. 

Concerns 

Several concerns have been raised about this design. We will address them here. 

Undefined behavior 

The most difficult part of this proposal from a theoretical perspective is the fact that the extracted 
element retains its const key type. This prevents moving out of it or changing it. To solve this, we 
have provided the key accessor function, which provides non-const access to the key in the 
element held by the node handle. This function requires implementation "magic" to ensure that 
it works correctly in the presence of compiler optimizations. One way to do this is with a union 
of pair<const key_type, mapped_type> and pair<key_type, mapped_type>. The 
conversion between these can be effected safely using a technique similar to that used by 

std::launder on extraction and reinsertion. 

We do not feel that this poses any technical or philosophical problem. One of the reasons the 
Standard Library exists is to write non-portable and magical code that the client can’t write in 
portable C++ (e.g. <atomic>, <typeinfo>, <type_traits>, etc.). This is just another such example. 
All that is required of compiler vendors to implement this magic is that they not exploit undefined 
behavior in unions for optimization purposes—and currently compilers already promise this (to 
the extent that it is being taken advantage of here). 
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This does impose a restriction on the client that, if these functions are used, std::pair cannot be 
specialized such that pair<const key_type, mapped_type> has a different layout than 
pair<key_type, mapped_type>. We feel the likelihood of anyone actually wanting to do this 
is effectively zero, and in the formal wording we restrict any specialization of these pairs. 

Note that the key member function is the only place where such tricks are necessary, and that 
no changes to the containers or pair are required. 

Limitations on implementation 

Matt Austern, Chandler Carruth and others have expressed concern that this change limits the 
implementation options for the associative containers. But these limits already exist. §23.2.4 
Associative containers [associative.reqmts] ¶9, and §23.2.5 Unordered associative containers 
[unord.req] ¶14, effectively require implementations to use node-based designs. So while non-
node-based implementations are valid and useful, the Committee has not chosen to standardize 
such implementations, so we can rely on node-based containers. 

Allocator considerations 

All allocation is done by the container. The node handle preserves the allocator type and state to 
ensure that nodes are not exchanged between allocator-incompatible containers, and to ensure 
that destruction of the element, should the need arise, is done by the correct allocator. 

Implementation experience 

Hinnant has implemented almost all of this design and feels there is also a great deal of 
implementation and positive field experience in this area. We believe this is strong evidence that 
it is implementable and practical. 

Examples 

Moving elements from one map to another 
 

map<int, string> src {{1,”one”}, {2,”two”}, {3,”buckle my shoe”}}; 

map<int, string> dst {{3,”three”}}; 

 

dst.insert(src.extract(src.find(1))); // Iterator version. 

dst.insert(src.extract(2));   // Key type version. 

auto r = dst.insert(src.extract(3)); // Key type version. 

 

// src == {} 

// dst == {“one”, “two”, “three”} 

// r.position == dst.begin() + 2 

// r.inserted == false 

// r.node == “buckle my shoe” 

We have moved elements of src into dst without any heap allocation or deallocation, and 
without constructing, destroying or losing any elements. The third insert failed, returning the 
usual insert return values and the orphaned node. 
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Inserting an entire set 
 

set<int> src{1, 3, 5}; 

set<int> dst{2, 4, 5}; 

 

dst.merge(src); // Merge src into dst. 

 

// src == {5} 

// dst == {1, 2, 3, 4, 5} 

Here is what you would have to do to get the same functionality with similar efficiency: 
 

for (auto i = src.begin(); i != src.end();) 

{ 

 auto p = dst.equal_range(*i); 

 if (p.first == p.second) 

  dst.insert(p.first, src.extract(i++)); 

 else 

  ++i; 

} 

However, this user code could lose nodes if the comparator throws during insert. The merge 
operation does not need to do the second comparison and can be made exception-safe. 

Surviving the death of the container 

The node handle does not depend on the allocator instance in the container, so it is self-
contained and can outlive the container. This makes possible things like very efficient factories 
for elements: 
 

auto new_record() 

{ 

 table_type table; 

 table.emplace(...); // Create a record with some parameters. 

 return table.extract(table.begin()); 

} 

 

table.insert(new_record()); 

Moving an object out of a set 

Today we can put move-only types into a set using emplace, but in general we cannot move them 
back out. The extract function lets us do that: 
 

set<move_only_type> s; 

s.emplace(...); 

move_only_type mot = move(s.extract(s.begin()).value()); 
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Failing to find an element to remove 

What happens if we call the value version of extract and the value is not found? 
 

set<int> src{1, 3, 5}; 

set<int> dst; 

 

dst.insert(src.extract(1)); 

dst.insert(src.extract(2)); // Returns {src.end(), false, node_type()}. 

 

// src == {3, 5} 

// dst == {1} 

This is well defined. The extract failed to find 2 and returned an empty node handle, which insert 
then trivially failed to insert. 

If extract is called on a multi container, and there is more than one element that matches the 
argument, the first matching element is removed. 

Changing the key of a map element 

This is a very useful operation that is not possible today without deleting the element and 
constructing a new one. While doing this with a node handle does require the insertion and tree 
balancing overhead, it does not cause any memory allocation or deallocation. 
 

map<int, string> m{{1,”mango”}, {2,”papaya”}, {3,”guava”}}; 

 

auto nh = m.extract(2); 

nh.key() = 4; 

m.insert(move(nh)); 

 

// m == {{1,”mango”}, {3,”guava”}, {4,”papaya”}} 
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Feature Test Macro 

The suggested feature test macro for addition to SD-6 is: 
 

 __cpp_lib_node_extract 

 

Proposed Wording 

Add a new section to clause 23 [containers]: 

23.X Node handle [container.node] 

23.X.1 node_handle overview [container.node.overview] 

1 A node handle is an object that accepts ownership of a single element from an associative 

container or an unordered associative container. It may be used to transfer that ownership to 

another container with compatible nodes. Containers with compatible nodes have the same 

node handle type. Elements may be transferred in either direction between container types in 

the same row of table X. 

Table X – Container types with compatible nodes 
map<K, T, C1, A> map<K, T, C2, A> 

map<K, T, C1, A> multimap<K, T, C2, A> 

set<K, C1, A> set<K, C2, A> 

set<K, C1, A> multiset<K, C2, A> 

unordered_map<K, T, H1, E1, A> unordered_map<K, T, H2, E2, A> 

unordered_map<K, T, H1, E1, A> unordered_multimap<K, T, H2, E2, A> 

unordered_set<K, H1, E1, A> unordered_set<K, H2, E2, A> 

unordered_set<K, H1, E1, A> unordered_multiset<K, H2, E2, A> 

2 If a node handle is not empty, then it contains an allocator that is equal to the allocator of the 

container when the element was extracted. If a node handle is empty, it contains no allocator.  

3 Class node_handle is for exposition only. An implementation is permitted to provide 

equivalent functionality without providing a class with this name. 

4 If a user-defined specialization of std::pair exists for pair<const Key, T> or 

pair<Key, T>, where Key is the container’s key_type and T is the container’s 

mapped_type, the behavior of operations involving node handles is undefined. 
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template<unspecified> 

class node_handle 

{ 

public: 

 // These type declarations are described in 

[tab:containers.associative.requirements] and [tab:HashRequirements] 

   using value_type = see below;  // Not present for map containers 

   using key_type  = see below;  // Not present for set containers 

   using mapped_type = see below;  // Not present for set containers 

   using allocator_type = see below; 

  

private: 

   using container_node_type = unspecified; 

 using ator_traits = allocator_traits<allocator_type>; 

   typename ator_traits::rebind_traits<container_node_type>::pointer ptr_; 

   optional<allocator_type> alloc_; 

 

public: 

   constexpr node_handle() noexcept : ptr_(), alloc_() {} 

 

   ~node_handle(); 

 

   node_handle(node_handle&&) noexcept; 

   node_handle& operator=(node_handle&&); 

 

 value_type& value() const;  // Not present for map containers 

 key_type& key() const;  // Not present for set containers 

 mapped_type& mapped() const; // Not present for set containers 

 

   allocator_type get_allocator() const; 

   explicit operator bool() const noexcept; 

   bool empty() const noexcept; 

   void swap(node_handle&) 

 noexcept(ator_traits::propagate_on_container_swap::value || 

            ator_traits::is_always_equal::value); 

 

 friend void swap(node_handle& x, node_handle& y) noexcept(noexcept(x.swap(y))) 

 { x.swap(y); } 

}; 

 

 

23.X.2 node_handle constructors, copy, and assignment [container.node.cons] 
 

node_handle(node_handle&& nh) noexcept; 

 

   Effects: Constructs a node_handle object initializing ptr_ with nh.ptr_. 

   Move constructs alloc_ with nh.alloc_. Assigns nullptr to nh.ptr_ and assigns nullopt to 

 nh.alloc_. 
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node_handle& operator=(node_handle&& nh); 

 

   Requires:  Either !alloc_, or  
 ator_traits::propagate_on_container_move_assignment 

   is true, or alloc_ == nh.alloc_. 

   Effects: If ptr_ != nullptr, destroys the value_type subobject in the 

   container_node_type object pointed to by ptr_ by calling 

 ator_traits::destroy, then deallocates ptr_ by calling  

ator_traits::rebind_traits<container_node_type>::deallocate. Assigns nh.ptr_ to ptr_. 

If !alloc_ or ator_traits::propagate_on_container_move_assignment 

   is true, move assigns nh.alloc_ to alloc_. Assigns nullptr to nh.ptr_ and assigns nullopt to 

 nh.alloc_. 

   Returns: *this.  

   Throws: Nothing.  

23.X.3 node_handle destructor [container.node.dtor] 
 

~node_handle(); 

 

   Effects:  If ptr_ != nullptr, destroys the value_type subobject in the 

   container_node_type object pointed to by ptr_ by calling 

 ator_traits::destroy, then deallocates ptr_ by calling  

 ator_traits::rebind_traits<container_node_type>::deallocate. 

23.X.4 node_handle observers [container.node.observers] 
 

value_type& value() const; 

 

   Requires: empty() == false. 

   Returns: A reference to the value_type subobject in the container_node_type object pointed to by 

ptr_. 

   Throws: Nothing.  
 

key_type& key() const; 

 

   Requires: empty() == false. 

   Returns: A non-const reference to the key_type member of the value_type subobject in the 

container_node_type object pointed to by ptr_. 

   Throws: Nothing. 

 Remarks: Modifying the key through the returned reference is permitted. 
 

mapped_type& mapped() const; 

 

   Requires: empty() == false. 

    Returns: A reference to the mapped_type member of the value_type subobject in the 

container_node_type object pointed to by ptr_. 

   Throws: Nothing.  
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allocator_type get_allocator() const; 

 

   Requires: empty() == false. 

 Returns: *alloc_. 

   Throws: Nothing.  
 

explicit operator bool() const noexcept; 

 

Returns: ptr_ != nullptr. 
 

bool empty() const noexcept; 

 

Returns: ptr_ == nullptr. 

23.X.5 node_handle modifiers [container.node.modifiers] 
 

void swap(node_handle& nh) 

 noexcept(ator_traits::propagate_on_container_swap::value || 

   ator_traits::is_always_equal::value); 

 

Requires:  !alloc_, or !nh.alloc_, or ator_traits::propagate_on_container_swap is true, 

or alloc_ == nh.alloc_. 
 

   Effects:  Calls swap(ptr_, nh.ptr_). If !alloc_, or !nh.alloc_, or 

   ator_traits::propagate_on_container_swap is true calls 

   swap(alloc_, nh.alloc_). 

 

23.2.4 Associative containers [associative.reqmts] 

In ¶ 8: Change “a denotes a value of type X,” to “a denotes a value of type X, a2 denotes a value 

of a type with nodes compatible with type X (Table X)”. Add “nh denotes a non-const rvalue of 

type X::node_type”. 

Add to ¶ 9:  

The extract members invalidate only iterators to the removed element; pointers and references 

to the removed element remain valid. However, accessing the element through such pointers and 

references while the element is owned by a node_type is undefined behavior. References and 

pointers to an element obtained while it is owned by a node_type are invalidated if the element is 

successfully inserted. 
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Add to Table 109 — Associative container requirements (in addition to container): 

Expression 
X::node_type 

Return type 

a specialization of a node_handle class template, such that the public nested types are the same types as the 

corresponding types in X. 

Assertion/note/pre-/post-condition 

see [container.node]. 

Complexity  

compile time 

Expression 
X::insert_return_type 

Return type 

A class type used to describe the results of inserting a node_type that includes at least the following non-static 

public data members: 
  bool inserted;  

  X::iterator position; 

  X::node_type node; 

The type shall be MoveConstructible, MoveAssignable, DefaultConstructible, Destructible, and 

lvalues of that type shall be swappable ([swappable.requirements]). 

Assertion/note/pre-/post-condition 

Complexity  

compile time 

Expression 
a_uniq.insert(nh) 

Return type 
X::insert_return_type   

Assertion/note/pre-/post-condition 

Precondition: nh is empty or a_uniq.get_allocator() == nh.get_allocator() 

Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is no element 

in the container with a key equivalent to nh.key(). 

Postcondition: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the 

insertion took place, inserted is true, position points to the inserted element, and node is empty; if 

the insertion failed, inserted is false, node has the previous value of nh, and position points to an element 

with a key equivalent to nh.key(). 

Complexity 

logarithmic 
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Expression 
a_eq.insert(nh) 

Return type 
iterator   

Assertion/note/pre-/post-condition 

Precondition: nh is empty or a_eq.get_allocator() == nh.get_allocator(). 

Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by nh and 

returns an iterator pointing to the newly inserted element. If a range containing elements with keys equivalent to 

nh.key() exists in a_eq, the element is inserted at the end of that range. 

Postcondition: nh is empty. 

Complexity 

logarithmic 

Expression 
a.insert(p, nh) 

Return type 
iterator   

Assertion/note/pre-/post-condition 

Precondition: nh is empty or a.get_allocator() == nh.get_allocator(). 

Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by nh if and 

only if there is no element with key equivalent to nh.key() in containers with unique keys; always inserts the 

element owned by nh in containers with equivalent keys. Always returns the iterator pointing to the element with 

key equivalent to nh.key(). The element is inserted as close as possible to the position just prior to p. 

Postcondition: nh is empty if insertion succeeds, unchanged if insertion fails. 

Complexity 

Logarithmic in general, but amortized constant if the element is inserted right before p. 

Expression 
a.extract(k) 

Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes the first element in the container with key equivalent to k. Returns a node_type owning the element if 

found, otherwise an empty node_type. 

Complexity 
log(a.size()) 
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Expression 
a.extract(q) 

Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes the element pointed to by q. Returns a node_type owning that element. 

Complexity 

Amortized constant 

Expression 
a.merge(a2) 

Return type 
void 

Assertion/note/pre-/post-condition 

Precondition: a.get_allocator() == a2.get_allocator(). 

Attempts to extract each element in a2 and insert it into a using the comparison object of a. In containers with 

unique keys, if there is an element in a with key equivalent to the key of an element from a2, then that element is 

not extracted from a2. 

Postcondition: Pointers and references to the transferred elements of a2 refer to those same elements but as 

members of a. Iterators referring to the transferred elements will continue to refer to their elements, but they now 

behave as iterators into a, not into a2. 

Throws: Nothing unless the comparison object throws. 

Complexity 

N log(a.size() + N) (N has the value a2.size()) 

 

23.2.5 Unordered associative containers [unord.req] 

In ¶ 11: Change “a is an object of type X,” to “a is an object of type X, a2 is an object with nodes 

compatible with type X (Table X)”. Add “nh denotes a non-const rvalue of type X::node_type”. 

Add a new paragraph after ¶ 15: 

The extract members invalidate only iterators to the removed element, and preserve the relative 

order of the elements that are not erased; pointers and references to the removed element remain 

valid. However, accessing the element through such pointers and references while the element is 

owned by a node_type is undefined behavior. References and pointers to an element obtained 

while it is owned by a node_type are invalidated if the element is successfully inserted. 
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Add to Table 110 — Unordered associative container requirements (in addition to container): 

Expression 
X::node_type 

Return type 

a specialization of a node_handle class template, such that the public nested types are the same types as the 

corresponding types in X. 

Assertion/note/pre-/post-condition 

see [container.node]. 

Complexity  

compile time 

Expression 
X::insert_return_type 

Return type 

A class type used to describe the results of inserting a node_type that includes at least the following non-static 

public data members: 
  bool inserted; 

  X::iterator position; 

  X::node_type node; 

The type shall be MoveConstructible, MoveAssignable, DefaultConstructible, Destructible, and 

lvalues of that type shall be swappable ([swappable.requirements]). 
 

Assertion/note/pre-/post-condition 

Complexity  

compile time 

Expression 
a_uniq.insert(nh) 

Return type 
X::insert_return_type   

Assertion/note/pre-/post-condition 

Precondition: nh is empty or a_uniq.get_allocator() == nh.get_allocator() 

Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is no element 

in the container with a key equivalent to nh.key(). 

Postcondition: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the 

insertion took place, inserted is true, position points to the inserted element, and node is empty; if 

the insertion failed, inserted is false, node has the previous value of nh, and position points to an element 

with a key equivalent to nh.key(). 

Complexity 

Average case O(1), worst case O(a_uniq.size()). 
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Expression 
a_eq.insert(nh) 

Return type  
iterator   

Assertion/note/pre-/post-condition 

Precondition: nh is empty or a_eq.get_allocator() == nh.get_allocator(). 

Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by nh and 

returns an iterator pointing to the newly inserted element. 

Postcondition: nh is empty. 
 

Complexity 

Average case O(1), worst case O(a_eq.size()). 

Expression 
a.insert(q, nh) 

Return type 
iterator 

Assertion/note/pre-/post-condition 

Precondition: nh is empty or a.get_allocator() == nh.get_allocator(). 

Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by nh if and 

only if there is no element with key equivalent to nh.key() in containers with unique keys; always inserts the 

element owned by nh in containers with equivalent keys. Always returns the iterator pointing to the element with 

key equivalent to nh.key().  The iterator q is a hint pointing to where the search should start. Implementations 

are permitted to ignore the hint. 

Postcondition: nh is empty is insertion succeeds, unchanged if insertion fails. 

Complexity 

Average case O(1), worst case O(a.size()). 

Expression 
a.extract(k) 

Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes an element in the container with key equivalent to k. Returns a node_type owning the element if 

found, otherwise an empty node_type. 

Complexity 

Average case O(1), worst case O(a.size()). 
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Expression 
a.extract(q) 

Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes the element pointed to by q. Returns a node_type owning that element. 

Complexity 

Average case O(1), worst case O(a.size()). 

Expression 
a.merge(a2) 

Return type 
void 

Assertion/note/pre-/post-condition 

Precondition: a.get_allocator() == a2.get_allocator(). 

Attempts to extract each element in a2 and insert it into a using the hash function and key equality predicate of a. 

In containers with unique keys, if there is an element in a with key equivalent to the key of an element from a2, 

then that element is not extracted from a2. 

Postcondition: Pointers and references to the transferred elements of a2 refer to those same elements but as 

members of a. Iterators referring to the transferred elements and all iterators referring to a will be invalidated, 

but iterators to elements remaining in a2 will remain valid. 

Throws: Nothing unless the hash function or key equality predicate throws. 

Complexity 

Average case O(N), where N is a2.size(). Worst case O(N * a.size() + N). 
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23.4.4.1 Class template map overview [map.overview] 

Add to class map: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& nh); 

iterator           insert(const_iterator hint, node_type&& nh); 

 

template<class C2> 

  void merge(map<Key, T, C2, Allocator>& source); 

template<class C2> 

  void merge(map<Key, T, C2, Allocator>&& source); 

template<class C2> 

  void merge(multimap<Key, T, C2, Allocator>& source); 

template<class C2> 

  void merge(multimap<Key, T, C2, Allocator>&& source); 

23.4.5.1 Class template multimap overview [multimap.overview] 

Add to class multimap: 
 

typedef unspecified node_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& nh); 

iterator insert(const_iterator hint, node_type&& nh); 

 

template<class C2> 

  void merge(multimap<Key, T, C2, Allocator>& source); 

template<class C2> 

  void merge(multimap<Key, T, C2, Allocator>&& source); 

template<class C2> 

  void merge(map<Key, T, C2, Allocator>& source); 

template<class C2> 

  void merge(map<Key, T, C2, Allocator>&& source); 
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23.4.6.1 Class template set overview [set.overview] 

Add to class set: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& nh); 

iterator           insert(const_iterator hint, node_type&& nh); 

 

template<class C2> 

  void merge(set<Key, C2, Allocator>& source); 

template<class C2> 

  void merge(set<Key, C2, Allocator>&& source); 

template<class C2> 

  void merge(multiset<Key, C2, Allocator>& source); 

template<class C2> 

  void merge(multiset<Key, C2, Allocator>&& source); 

23.4.7.1 Class template multiset overview [multiset.overview] 

Add to class multiset: 
 

typedef unspecified node_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& nh); 

iterator insert(const_iterator hint, node_type&& nh); 

 

template<class C2> 

  void merge(multiset<Key, C2, Allocator>& source); 

template<class C2> 

  void merge(multiset<Key, C2, Allocator>&& source); 

template<class C2> 

  void merge(set<Key, C2, Allocator>& source); 

template<class C2> 

  void merge(set<Key, C2, Allocator>&& source); 
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23.5.4.1 Class template unordered_map overview [unord.map.overview] 

Add to class unordered_map: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& nh); 

iterator           insert(const_iterator hint, node_type&& nh); 

 

template<class H2, class P2> 

  void merge(unordered_map<Key, T, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_map<Key, T, H2, P2, Allocator>&& source); 

template<class H2, class P2> 

  void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source); 

23.5.5.1 Class template unordered_multimap overview [unord.multimap.overview] 

Add to class unordered_multimap: 
 

typedef unspecified node_type; 

  

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& nh); 

iterator insert(const_iterator hint, node_type&& nh); 

 

template<class H2, class P2> 

  void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source); 

template<class H2, class P2> 

  void merge(unordered_map<Key, T, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_map<Key, T, H2, P2, Allocator>&& source); 
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23.5.6.1 Class template unordered_set overview [unord.set.overview] 

Add to class unordered_set: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

  

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& nh); 

iterator           insert(const_iterator hint, node_type&& nh); 

 

template<class H2, class P2> 

  void merge(unordered_set<Key, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_set<Key, H2, P2, Allocator>&& source); 

template<class H2, class P2> 

  void merge(unordered_multiset<Key, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_multiset<Key, H2, P2, Allocator>&& source); 

23.5.7.1 Class template unordered_multiset overview [unord.multiset.overview] 

Add to class unordered_multiset: 
 

typedef unspecified node_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& nh); 

iterator insert(const_iterator hint, node_type&& nh); 

 

template<class H2, class P2> 

  void merge(unordered_multiset<Key, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_multiset<Key, H2, P2, Allocator>&& source); 

template<class H2, class P2> 

  void merge(unordered_set<Key, H2, P2, Allocator>& source); 

template<class H2, class P2> 

  void merge(unordered_set<Key, H2, P2, Allocator>&& source); 

 


