
 Document number: P0083R3
 Date: 2016-06-24
 Prior Papers: N3586, N3645
 Audience: Library Working Group
 Reply to: Alan Talbot Jonathan Wakely
 cpp@alantalbot.com cxx@kayari.org

 Howard Hinnant James Dennett
 howard.hinnant@gmail.com jdennett@google.com

 Splicing Maps and Sets (Revision 5)

Related Documents

This proposal addresses the following open issues in LEWG status:

839. Maps and sets missing splice operation

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#839

1041. Add associative/unordered container functions that allow to extract elements

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#1041

Changes in Revision 5 (P0083R3 – this paper)

 Moved default constructor and swap into node_handle class definition.

 Map nodes now only have key and mapped. Set nodes only have value.

 Added mention of using std::launder to narrative.

 Improved wording and added wording per LWG input.

 Fixed typos and changed variable names and formatting.

Changes in Revision 4 (P0083R2)

 Moved node_handle to section 23.

 Replaced 23.X.1 p2 with new wording and a table depicting transfer-compatible container
types.

 Reformulated the invalidation language and improved wording in several places.

 Removed vestigial nullptr_t overloads and all uses of smart-pointer-like access.

 Moved insertion return value behavior text to insert row in tables.

 Fixed various wording typo and formatting errors, and replaced normative uses of “node”
with “element”.

 Used std::optional for allocator in node_handle and fixed move semantics.

 Replace noexcept with throws nothing in several places. Added throws nothing to move
assignment operator.

 Added new signatures to support merging of transfer-compatible container types.

 Added Destructible and Swappable requirements to insert_return_type.

mailto:cpp@alantalbot.com
mailto:cxx@kayari.org
mailto:howard.hinnant@gmail.com
mailto:jdennett@google.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#839
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#1041

P0083R3

2

Changes in Revision 3 (P0083R1)

 Added the mapped and value accessor functions and the empty state test function.

 Removed the operator* and operator-> accessor functions.

 Added an example of changing the key of a map element.

 Changed the name of the node handle type from node_ptr to node_handle, removed its
characterization as a smart pointer, and stressed that it is move-only.

 Fixed several issues in the formal wording, including adding noexcept in several places.

 Changed typedefs to alias declarations.

 Improved wording about invalidation of references and pointers per CWG suggestion.

 Added wording to specify that the container’s comparator is used by merge.

 Strengthened the wording of the pair specialization restriction.

 Added feature test macro.

Changes in Revision 2 (P0083R0)

 Added the key accessor function.

 Added a discussion of concerns raised by previous versions.

 Fixed several problems with the proposed wording.

 Improved the organization overall, and improved the narrative in several places.

The Problem

Node-based containers are excellent for creating collections of large or unmovable objects. Maps
in particular provide a great way to create database-like tables where objects may be looked up
by ID and used in various ways. Since the memory allocations are stable, once you build a map
you can take references to its elements and count on them to remain valid as long as the map
exists.

The emplace functions were designed precisely to facilitate this pattern by eliminating the need
for a copy or a move when creating elements in a map (or any other container). When using a
list, map or set, we can construct objects, look them up, use them, and eventually discard them,
all without ever having to copy or move them (or construct them more than once). This is very
useful if the objects are expensive to copy, or have construction/destruction side effects (such as
in the classic RAII pattern).

No splice for old maps

But what happens when we want to take some elements from one table and move them to
another? If we were using a list, this would be easy: we would use splice. Splice allows logical
manipulation of the list without copying or moving the nodes—only the pointers are changed.
But lists are not a good choice to represent tables, and there is no splice for maps.

What about move?

Don’t move semantics basically solve all these problems? Unfortunately they don’t. Move is very
effective for small collections of objects which are indirectly large; that is, which own resources
that are expensive to copy. But if the object itself is large, or has some limitation on construction

P0083R3

3

(as in the RAII case), then move does not help at all. And “large” in this context may not be very
big. A 256 byte object may not seem large until you have several million of them and start
comparing the copy times of 256 bytes to the 16 bytes or so of a pointer swap.

But even if the mapped type itself is very small, an int for example, the heap allocations and
deallocations required to insert a new node and erase an old one are very expensive compared
to swapping pointers. When there are large numbers of objects to move around, this overhead
can be very significant.

And you can't move the key

Yet another problem is that the key type of maps is const. You can’t move out of it at all. This
alone was enough of a problem to motivate Issue 1041. We believe that the const key is a basic
design flaw in the original map specification which we now have no way to fix because the value
type is exposed directly by the API. We feel the solution we are proposing is the best possible
given the need to preserve the current container design.

Does anyone care?

Yes! We know of several instances (at CppCon, on Stack Overflow, etc.) where people have asked
for functionality that we are proposing and the current Library cannot provide. We believe that
real people working on real problems very much need and want this functionality.

History

Talbot's original idea for solving this issue was to add splice-like members to associative contain-
ers that took the source container and iterators, and dealt with the splice action under the hood.
This would have solved the splice problem, but offered no further advantages.

In Issue 1041, Alisdair Meredith suggested that we need a way to move an element out of a
container with a combined move/erase operation. This solves another piece of the problem, but
does not help if move is not helpful, and does not address the allocation issue.

Hinnant then suggested that there should be a way to actually remove the node and hold it
outside the container. This solves all of the problems, and it is this design that we are proposing.
However, although it works fine, it introduces a theoretical problem because it requires casting
the const key to a non-const key, which invokes undefined behavior.

Wakely then proposed a refinement that we believe will help make the solution acceptable to
the Committee and library vendors.

The Solution

Can you really splice a map?

It turns out that what we need is not actually a splice in the sense of list::splice. Because elements
must be inserted into their correct positions, a splice-like operation for associative containers
must remove the element from the source and insert it into the destination, both of which are
non-trivial operations. Although these will have the same complexity as a conventional insert and
erase, the actual cost will typically be much less since the objects do not need to be copied nor
the nodes reallocated.

P0083R3

4

Overview

This design allows splicing operations of all kinds, moving elements (including map keys) out of
the container, and a number of other useful operations and designs. It is an enhancement to the
associative and unordered associative containers to support the manipulation of nodes. This is a
pure addition to the Standard Library.

Extract

The key to the design is a new function extract which unlinks the selected node from the con-
tainer (performing the same balancing actions as erase). The extract function has the same
overloads as the single parameter erase function: one that takes an iterator and one that takes
a key type. They return an implementation-defined type which we refer to as the node handle.
The node handle can be thought of as a special type of container which holds the node while in
transit. Note that extracting a node naturally invalidates all iterators to it (since it is no longer an
element of the container). Extracting a node from a map of any type invalidates pointers and
references to it; this does not occur for sets.

Node Handle

The node handle is a move-only type that holds and provides access to the element (the
value_type) stored in the node, and provides non-const access to the key part of the element
(the key_type) and the mapped part of the element (the mapped_type). If the node handle
is allowed to destruct while holding the node, the node is properly destructed using the
appropriate allocator for the container. The node handle contains a copy of the container’s
allocator. This is necessary so that the node handle can outlive the container. The container has
a type alias for the node handle type (node_type).

The node handle type will be independent of the Compare, Hash or Pred template parameters,
but will depend on the Allocator parameter. This allows a node to be transferred from
set<T,C1,A> to set<T,C2,A> (for example), but not from set<T,C,A1> to set<T,C,A2>.
Even though the allocator types are the same, the container’s allocator must also test equal to
the node handle’s allocator or the behavior of node handle insert is undefined.

Insert

There is also a new overload of insert that takes a node handle and inserts the node directly,
without copying or moving it. For the unique containers, it returns a struct which contains the
same information as the pair<iterator, bool> returned by the value insert, and also has a
member which is a (typically empty) node handle which will preserve the node in the event that
the insertion fails:

struct insert_return {

 iterator position;

 bool inserted;

 node_type node;

};

(We examined several other possibilities for this return type and decided that this was the best
of the available options.) For the multi containers, the node handle insert returns an iterator to
the newly inserted node.

P0083R3

5

Inserting a node into a map of any type invalidates all pointers and references to it; this does not
occur for sets.

Merge

There is also a merge operation which takes a non-const reference to the container type and
attempts to insert each node in the source container. Merging a container will remove from the
source all the elements that can be inserted successfully, and (for containers where the insert
may fail) leave the remaining elements in the source. This is very important—none of the
operations we propose ever lose elements. (What to do with the leftovers is left up to the user.)
The insertions are done using the comparator of the destination (the container on which merge
is called), as with any other insertion.

This operation is worth a dedicated function because although it is possible to write fairly efficient
client code that does the same thing, it is not quite trivial to do so in the case of the unique
containers. (See the Inserting an entire set example below for details.) Furthermore, in some
cases the merge operation does not need to balance the source container until the merge is
complete.

Exception safety

If the container’s Compare function is no-throw (which is very common), then removing a node,
modifying it, and inserting it is no-throw unless modifying the value throws. And if modifying the
value does throw, it does so outside of the containers involved.

If the Compare function does throw, insert will not yet have moved its node handle argument,
so the node will still be owned by the argument and will remain available to the caller.

Concerns

Several concerns have been raised about this design. We will address them here.

Undefined behavior

The most difficult part of this proposal from a theoretical perspective is the fact that the extracted
element retains its const key type. This prevents moving out of it or changing it. To solve this, we
have provided the key accessor function, which provides non-const access to the key in the
element held by the node handle. This function requires implementation "magic" to ensure that
it works correctly in the presence of compiler optimizations. One way to do this is with a union
of pair<const key_type, mapped_type> and pair<key_type, mapped_type>. The
conversion between these can be effected safely using a technique similar to that used by

std::launder on extraction and reinsertion.

We do not feel that this poses any technical or philosophical problem. One of the reasons the
Standard Library exists is to write non-portable and magical code that the client can’t write in
portable C++ (e.g. <atomic>, <typeinfo>, <type_traits>, etc.). This is just another such example.
All that is required of compiler vendors to implement this magic is that they not exploit undefined
behavior in unions for optimization purposes—and currently compilers already promise this (to
the extent that it is being taken advantage of here).

P0083R3

6

This does impose a restriction on the client that, if these functions are used, std::pair cannot be
specialized such that pair<const key_type, mapped_type> has a different layout than
pair<key_type, mapped_type>. We feel the likelihood of anyone actually wanting to do this
is effectively zero, and in the formal wording we restrict any specialization of these pairs.

Note that the key member function is the only place where such tricks are necessary, and that
no changes to the containers or pair are required.

Limitations on implementation

Matt Austern, Chandler Carruth and others have expressed concern that this change limits the
implementation options for the associative containers. But these limits already exist. §23.2.4
Associative containers [associative.reqmts] ¶9, and §23.2.5 Unordered associative containers
[unord.req] ¶14, effectively require implementations to use node-based designs. So while non-
node-based implementations are valid and useful, the Committee has not chosen to standardize
such implementations, so we can rely on node-based containers.

Allocator considerations

All allocation is done by the container. The node handle preserves the allocator type and state to
ensure that nodes are not exchanged between allocator-incompatible containers, and to ensure
that destruction of the element, should the need arise, is done by the correct allocator.

Implementation experience

Hinnant has implemented almost all of this design and feels there is also a great deal of
implementation and positive field experience in this area. We believe this is strong evidence that
it is implementable and practical.

Examples

Moving elements from one map to another

map<int, string> src {{1,”one”}, {2,”two”}, {3,”buckle my shoe”}};

map<int, string> dst {{3,”three”}};

dst.insert(src.extract(src.find(1))); // Iterator version.

dst.insert(src.extract(2)); // Key type version.

auto r = dst.insert(src.extract(3)); // Key type version.

// src == {}

// dst == {“one”, “two”, “three”}

// r.position == dst.begin() + 2

// r.inserted == false

// r.node == “buckle my shoe”

We have moved elements of src into dst without any heap allocation or deallocation, and
without constructing, destroying or losing any elements. The third insert failed, returning the
usual insert return values and the orphaned node.

P0083R3

7

Inserting an entire set

set<int> src{1, 3, 5};

set<int> dst{2, 4, 5};

dst.merge(src); // Merge src into dst.

// src == {5}

// dst == {1, 2, 3, 4, 5}

Here is what you would have to do to get the same functionality with similar efficiency:

for (auto i = src.begin(); i != src.end();)

{

 auto p = dst.equal_range(*i);

 if (p.first == p.second)

 dst.insert(p.first, src.extract(i++));

 else

 ++i;

}

However, this user code could lose nodes if the comparator throws during insert. The merge
operation does not need to do the second comparison and can be made exception-safe.

Surviving the death of the container

The node handle does not depend on the allocator instance in the container, so it is self-
contained and can outlive the container. This makes possible things like very efficient factories
for elements:

auto new_record()

{

 table_type table;

 table.emplace(...); // Create a record with some parameters.

 return table.extract(table.begin());

}

table.insert(new_record());

Moving an object out of a set

Today we can put move-only types into a set using emplace, but in general we cannot move them
back out. The extract function lets us do that:

set<move_only_type> s;

s.emplace(...);

move_only_type mot = move(s.extract(s.begin()).value());

P0083R3

8

Failing to find an element to remove

What happens if we call the value version of extract and the value is not found?

set<int> src{1, 3, 5};

set<int> dst;

dst.insert(src.extract(1));

dst.insert(src.extract(2)); // Returns {src.end(), false, node_type()}.

// src == {3, 5}

// dst == {1}

This is well defined. The extract failed to find 2 and returned an empty node handle, which insert
then trivially failed to insert.

If extract is called on a multi container, and there is more than one element that matches the
argument, the first matching element is removed.

Changing the key of a map element

This is a very useful operation that is not possible today without deleting the element and
constructing a new one. While doing this with a node handle does require the insertion and tree
balancing overhead, it does not cause any memory allocation or deallocation.

map<int, string> m{{1,”mango”}, {2,”papaya”}, {3,”guava”}};

auto nh = m.extract(2);

nh.key() = 4;

m.insert(move(nh));

// m == {{1,”mango”}, {3,”guava”}, {4,”papaya”}}

Acknowledgements

Thanks to Alisdair Meredith for long ago pointing out that this problem is more interesting than
it first appears, and for Issue 1041.

Thanks to Pablo Halpern, John Lakos, and Alisdair Meredith for reviewing draft materials for
Revision 2.

Thanks to Matt Austern, Chandler Carruth and others at the Bristol meeting who encouraged us
to spend more time on this to be sure we got it right.

Thanks to Daniel Krügler for reviewing a draft of Revision 4 and pointing out many subtle errors
and omissions, and for considerable help with the wording in Revision 5.

P0083R3

9

Feature Test Macro

The suggested feature test macro for addition to SD-6 is:

 __cpp_lib_node_extract

Proposed Wording

Add a new section to clause 23 [containers]:

23.X Node handle [container.node]

23.X.1 node_handle overview [container.node.overview]

1 A node handle is an object that accepts ownership of a single element from an associative

container or an unordered associative container. It may be used to transfer that ownership to

another container with compatible nodes. Containers with compatible nodes have the same

node handle type. Elements may be transferred in either direction between container types in

the same row of table X.

Table X – Container types with compatible nodes
map<K, T, C1, A> map<K, T, C2, A>

map<K, T, C1, A> multimap<K, T, C2, A>

set<K, C1, A> set<K, C2, A>

set<K, C1, A> multiset<K, C2, A>

unordered_map<K, T, H1, E1, A> unordered_map<K, T, H2, E2, A>

unordered_map<K, T, H1, E1, A> unordered_multimap<K, T, H2, E2, A>

unordered_set<K, H1, E1, A> unordered_set<K, H2, E2, A>

unordered_set<K, H1, E1, A> unordered_multiset<K, H2, E2, A>

2 If a node handle is not empty, then it contains an allocator that is equal to the allocator of the

container when the element was extracted. If a node handle is empty, it contains no allocator.

3 Class node_handle is for exposition only. An implementation is permitted to provide

equivalent functionality without providing a class with this name.

4 If a user-defined specialization of std::pair exists for pair<const Key, T> or

pair<Key, T>, where Key is the container’s key_type and T is the container’s

mapped_type, the behavior of operations involving node handles is undefined.

P0083R3

10

template<unspecified>

class node_handle

{

public:

 // These type declarations are described in

[tab:containers.associative.requirements] and [tab:HashRequirements]

 using value_type = see below; // Not present for map containers

 using key_type = see below; // Not present for set containers

 using mapped_type = see below; // Not present for set containers

 using allocator_type = see below;

private:

 using container_node_type = unspecified;

 using ator_traits = allocator_traits<allocator_type>;

 typename ator_traits::rebind_traits<container_node_type>::pointer ptr_;

 optional<allocator_type> alloc_;

public:

 constexpr node_handle() noexcept : ptr_(), alloc_() {}

 ~node_handle();

 node_handle(node_handle&&) noexcept;

 node_handle& operator=(node_handle&&);

 value_type& value() const; // Not present for map containers

 key_type& key() const; // Not present for set containers

 mapped_type& mapped() const; // Not present for set containers

 allocator_type get_allocator() const;

 explicit operator bool() const noexcept;

 bool empty() const noexcept;

 void swap(node_handle&)

 noexcept(ator_traits::propagate_on_container_swap::value ||

 ator_traits::is_always_equal::value);

 friend void swap(node_handle& x, node_handle& y) noexcept(noexcept(x.swap(y)))

 { x.swap(y); }

};

23.X.2 node_handle constructors, copy, and assignment [container.node.cons]

node_handle(node_handle&& nh) noexcept;

 Effects: Constructs a node_handle object initializing ptr_ with nh.ptr_.

 Move constructs alloc_ with nh.alloc_. Assigns nullptr to nh.ptr_ and assigns nullopt to

 nh.alloc_.

P0083R3

11

node_handle& operator=(node_handle&& nh);

 Requires: Either !alloc_, or
 ator_traits::propagate_on_container_move_assignment

 is true, or alloc_ == nh.alloc_.

 Effects: If ptr_ != nullptr, destroys the value_type subobject in the

 container_node_type object pointed to by ptr_ by calling

 ator_traits::destroy, then deallocates ptr_ by calling

ator_traits::rebind_traits<container_node_type>::deallocate. Assigns nh.ptr_ to ptr_.

If !alloc_ or ator_traits::propagate_on_container_move_assignment

 is true, move assigns nh.alloc_ to alloc_. Assigns nullptr to nh.ptr_ and assigns nullopt to

 nh.alloc_.

 Returns: *this.

 Throws: Nothing.

23.X.3 node_handle destructor [container.node.dtor]

~node_handle();

 Effects: If ptr_ != nullptr, destroys the value_type subobject in the

 container_node_type object pointed to by ptr_ by calling

 ator_traits::destroy, then deallocates ptr_ by calling

 ator_traits::rebind_traits<container_node_type>::deallocate.

23.X.4 node_handle observers [container.node.observers]

value_type& value() const;

 Requires: empty() == false.

 Returns: A reference to the value_type subobject in the container_node_type object pointed to by

ptr_.

 Throws: Nothing.

key_type& key() const;

 Requires: empty() == false.

 Returns: A non-const reference to the key_type member of the value_type subobject in the

container_node_type object pointed to by ptr_.

 Throws: Nothing.

 Remarks: Modifying the key through the returned reference is permitted.

mapped_type& mapped() const;

 Requires: empty() == false.

 Returns: A reference to the mapped_type member of the value_type subobject in the

container_node_type object pointed to by ptr_.

 Throws: Nothing.

P0083R3

12

allocator_type get_allocator() const;

 Requires: empty() == false.

 Returns: *alloc_.

 Throws: Nothing.

explicit operator bool() const noexcept;

Returns: ptr_ != nullptr.

bool empty() const noexcept;

Returns: ptr_ == nullptr.

23.X.5 node_handle modifiers [container.node.modifiers]

void swap(node_handle& nh)

 noexcept(ator_traits::propagate_on_container_swap::value ||

 ator_traits::is_always_equal::value);

Requires: !alloc_, or !nh.alloc_, or ator_traits::propagate_on_container_swap is true,

or alloc_ == nh.alloc_.

 Effects: Calls swap(ptr_, nh.ptr_). If !alloc_, or !nh.alloc_, or

 ator_traits::propagate_on_container_swap is true calls

 swap(alloc_, nh.alloc_).

23.2.4 Associative containers [associative.reqmts]

In ¶ 8: Change “a denotes a value of type X,” to “a denotes a value of type X, a2 denotes a value

of a type with nodes compatible with type X (Table X)”. Add “nh denotes a non-const rvalue of

type X::node_type”.

Add to ¶ 9:

The extract members invalidate only iterators to the removed element; pointers and references

to the removed element remain valid. However, accessing the element through such pointers and

references while the element is owned by a node_type is undefined behavior. References and

pointers to an element obtained while it is owned by a node_type are invalidated if the element is

successfully inserted.

P0083R3

13

Add to Table 109 — Associative container requirements (in addition to container):

Expression
X::node_type

Return type

a specialization of a node_handle class template, such that the public nested types are the same types as the

corresponding types in X.

Assertion/note/pre-/post-condition

see [container.node].

Complexity

compile time

Expression
X::insert_return_type

Return type

A class type used to describe the results of inserting a node_type that includes at least the following non-static

public data members:
 bool inserted;

 X::iterator position;

 X::node_type node;

The type shall be MoveConstructible, MoveAssignable, DefaultConstructible, Destructible, and

lvalues of that type shall be swappable ([swappable.requirements]).

Assertion/note/pre-/post-condition

Complexity

compile time

Expression
a_uniq.insert(nh)

Return type
X::insert_return_type

Assertion/note/pre-/post-condition

Precondition: nh is empty or a_uniq.get_allocator() == nh.get_allocator()

Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is no element

in the container with a key equivalent to nh.key().

Postcondition: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the

insertion took place, inserted is true, position points to the inserted element, and node is empty; if

the insertion failed, inserted is false, node has the previous value of nh, and position points to an element

with a key equivalent to nh.key().

Complexity

logarithmic

P0083R3

14

Expression
a_eq.insert(nh)

Return type
iterator

Assertion/note/pre-/post-condition

Precondition: nh is empty or a_eq.get_allocator() == nh.get_allocator().

Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by nh and

returns an iterator pointing to the newly inserted element. If a range containing elements with keys equivalent to

nh.key() exists in a_eq, the element is inserted at the end of that range.

Postcondition: nh is empty.

Complexity

logarithmic

Expression
a.insert(p, nh)

Return type
iterator

Assertion/note/pre-/post-condition

Precondition: nh is empty or a.get_allocator() == nh.get_allocator().

Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by nh if and

only if there is no element with key equivalent to nh.key() in containers with unique keys; always inserts the

element owned by nh in containers with equivalent keys. Always returns the iterator pointing to the element with

key equivalent to nh.key(). The element is inserted as close as possible to the position just prior to p.

Postcondition: nh is empty if insertion succeeds, unchanged if insertion fails.

Complexity

Logarithmic in general, but amortized constant if the element is inserted right before p.

Expression
a.extract(k)

Return type
node_type

Assertion/note/pre-/post-condition

Removes the first element in the container with key equivalent to k. Returns a node_type owning the element if

found, otherwise an empty node_type.

Complexity
log(a.size())

P0083R3

15

Expression
a.extract(q)

Return type
node_type

Assertion/note/pre-/post-condition

Removes the element pointed to by q. Returns a node_type owning that element.

Complexity

Amortized constant

Expression
a.merge(a2)

Return type
void

Assertion/note/pre-/post-condition

Precondition: a.get_allocator() == a2.get_allocator().

Attempts to extract each element in a2 and insert it into a using the comparison object of a. In containers with

unique keys, if there is an element in a with key equivalent to the key of an element from a2, then that element is

not extracted from a2.

Postcondition: Pointers and references to the transferred elements of a2 refer to those same elements but as

members of a. Iterators referring to the transferred elements will continue to refer to their elements, but they now

behave as iterators into a, not into a2.

Throws: Nothing unless the comparison object throws.

Complexity

N log(a.size() + N) (N has the value a2.size())

23.2.5 Unordered associative containers [unord.req]

In ¶ 11: Change “a is an object of type X,” to “a is an object of type X, a2 is an object with nodes

compatible with type X (Table X)”. Add “nh denotes a non-const rvalue of type X::node_type”.

Add a new paragraph after ¶ 15:

The extract members invalidate only iterators to the removed element, and preserve the relative

order of the elements that are not erased; pointers and references to the removed element remain

valid. However, accessing the element through such pointers and references while the element is

owned by a node_type is undefined behavior. References and pointers to an element obtained

while it is owned by a node_type are invalidated if the element is successfully inserted.

P0083R3

16

Add to Table 110 — Unordered associative container requirements (in addition to container):

Expression
X::node_type

Return type

a specialization of a node_handle class template, such that the public nested types are the same types as the

corresponding types in X.

Assertion/note/pre-/post-condition

see [container.node].

Complexity

compile time

Expression
X::insert_return_type

Return type

A class type used to describe the results of inserting a node_type that includes at least the following non-static

public data members:
 bool inserted;

 X::iterator position;

 X::node_type node;

The type shall be MoveConstructible, MoveAssignable, DefaultConstructible, Destructible, and

lvalues of that type shall be swappable ([swappable.requirements]).

Assertion/note/pre-/post-condition

Complexity

compile time

Expression
a_uniq.insert(nh)

Return type
X::insert_return_type

Assertion/note/pre-/post-condition

Precondition: nh is empty or a_uniq.get_allocator() == nh.get_allocator()

Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is no element

in the container with a key equivalent to nh.key().

Postcondition: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the

insertion took place, inserted is true, position points to the inserted element, and node is empty; if

the insertion failed, inserted is false, node has the previous value of nh, and position points to an element

with a key equivalent to nh.key().

Complexity

Average case O(1), worst case O(a_uniq.size()).

P0083R3

17

Expression
a_eq.insert(nh)

Return type
iterator

Assertion/note/pre-/post-condition

Precondition: nh is empty or a_eq.get_allocator() == nh.get_allocator().

Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by nh and

returns an iterator pointing to the newly inserted element.

Postcondition: nh is empty.

Complexity

Average case O(1), worst case O(a_eq.size()).

Expression
a.insert(q, nh)

Return type
iterator

Assertion/note/pre-/post-condition

Precondition: nh is empty or a.get_allocator() == nh.get_allocator().

Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by nh if and

only if there is no element with key equivalent to nh.key() in containers with unique keys; always inserts the

element owned by nh in containers with equivalent keys. Always returns the iterator pointing to the element with

key equivalent to nh.key(). The iterator q is a hint pointing to where the search should start. Implementations

are permitted to ignore the hint.

Postcondition: nh is empty is insertion succeeds, unchanged if insertion fails.

Complexity

Average case O(1), worst case O(a.size()).

Expression
a.extract(k)

Return type
node_type

Assertion/note/pre-/post-condition

Removes an element in the container with key equivalent to k. Returns a node_type owning the element if

found, otherwise an empty node_type.

Complexity

Average case O(1), worst case O(a.size()).

P0083R3

18

Expression
a.extract(q)

Return type
node_type

Assertion/note/pre-/post-condition

Removes the element pointed to by q. Returns a node_type owning that element.

Complexity

Average case O(1), worst case O(a.size()).

Expression
a.merge(a2)

Return type
void

Assertion/note/pre-/post-condition

Precondition: a.get_allocator() == a2.get_allocator().

Attempts to extract each element in a2 and insert it into a using the hash function and key equality predicate of a.

In containers with unique keys, if there is an element in a with key equivalent to the key of an element from a2,

then that element is not extracted from a2.

Postcondition: Pointers and references to the transferred elements of a2 refer to those same elements but as

members of a. Iterators referring to the transferred elements and all iterators referring to a will be invalidated,

but iterators to elements remaining in a2 will remain valid.

Throws: Nothing unless the hash function or key equality predicate throws.

Complexity

Average case O(N), where N is a2.size(). Worst case O(N * a.size() + N).

P0083R3

19

23.4.4.1 Class template map overview [map.overview]

Add to class map:

typedef unspecified node_type;

typedef unspecified insert_return_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

insert_return_type insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class C2>

 void merge(map<Key, T, C2, Allocator>& source);

template<class C2>

 void merge(map<Key, T, C2, Allocator>&& source);

template<class C2>

 void merge(multimap<Key, T, C2, Allocator>& source);

template<class C2>

 void merge(multimap<Key, T, C2, Allocator>&& source);

23.4.5.1 Class template multimap overview [multimap.overview]

Add to class multimap:

typedef unspecified node_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

iterator insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class C2>

 void merge(multimap<Key, T, C2, Allocator>& source);

template<class C2>

 void merge(multimap<Key, T, C2, Allocator>&& source);

template<class C2>

 void merge(map<Key, T, C2, Allocator>& source);

template<class C2>

 void merge(map<Key, T, C2, Allocator>&& source);

P0083R3

20

23.4.6.1 Class template set overview [set.overview]

Add to class set:

typedef unspecified node_type;

typedef unspecified insert_return_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

insert_return_type insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class C2>

 void merge(set<Key, C2, Allocator>& source);

template<class C2>

 void merge(set<Key, C2, Allocator>&& source);

template<class C2>

 void merge(multiset<Key, C2, Allocator>& source);

template<class C2>

 void merge(multiset<Key, C2, Allocator>&& source);

23.4.7.1 Class template multiset overview [multiset.overview]

Add to class multiset:

typedef unspecified node_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

iterator insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class C2>

 void merge(multiset<Key, C2, Allocator>& source);

template<class C2>

 void merge(multiset<Key, C2, Allocator>&& source);

template<class C2>

 void merge(set<Key, C2, Allocator>& source);

template<class C2>

 void merge(set<Key, C2, Allocator>&& source);

P0083R3

21

23.5.4.1 Class template unordered_map overview [unord.map.overview]

Add to class unordered_map:

typedef unspecified node_type;

typedef unspecified insert_return_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

insert_return_type insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class H2, class P2>

 void merge(unordered_map<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_map<Key, T, H2, P2, Allocator>&& source);

template<class H2, class P2>

 void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source);

23.5.5.1 Class template unordered_multimap overview [unord.multimap.overview]

Add to class unordered_multimap:

typedef unspecified node_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

iterator insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class H2, class P2>

 void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source);

template<class H2, class P2>

 void merge(unordered_map<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_map<Key, T, H2, P2, Allocator>&& source);

P0083R3

22

23.5.6.1 Class template unordered_set overview [unord.set.overview]

Add to class unordered_set:

typedef unspecified node_type;

typedef unspecified insert_return_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

insert_return_type insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class H2, class P2>

 void merge(unordered_set<Key, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_set<Key, H2, P2, Allocator>&& source);

template<class H2, class P2>

 void merge(unordered_multiset<Key, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_multiset<Key, H2, P2, Allocator>&& source);

23.5.7.1 Class template unordered_multiset overview [unord.multiset.overview]

Add to class unordered_multiset:

typedef unspecified node_type;

node_type extract(const_iterator position);

node_type extract(const key_type& x);

iterator insert(node_type&& nh);

iterator insert(const_iterator hint, node_type&& nh);

template<class H2, class P2>

 void merge(unordered_multiset<Key, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_multiset<Key, H2, P2, Allocator>&& source);

template<class H2, class P2>

 void merge(unordered_set<Key, H2, P2, Allocator>& source);

template<class H2, class P2>

 void merge(unordered_set<Key, H2, P2, Allocator>&& source);

